File size: 79,705 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:33:34.016630Z"
    },
    "title": "Keyword spotting for audiovisual archival search in Uralic languages",
    "authors": [
        {
            "first": "Nils",
            "middle": [],
            "last": "Hjortnaes",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Indiana University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Niko",
            "middle": [],
            "last": "Partanen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Helsinki Helsinki",
                "location": {
                    "country": "Finland"
                }
            },
            "email": "niko.partanen@helsinki.fi"
        },
        {
            "first": "Francis",
            "middle": [
                "M"
            ],
            "last": "Tyers",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Indiana University",
                "location": {
                    "settlement": "Bloomington",
                    "region": "IN"
                }
            },
            "email": "ftyers@iu.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this study we investigate the potential of using Automatic Speech Recognition (ASR) for keyword spotting for four Uralic languages: Finnish, Hungarian, Estonian and Komi. These languages also represent different levels on the high and low resource continuum. Although the accuracy of the ASR systems show there is a long way to go, we show that they still have potential to be useful for downstream tasks such as keyword spotting. By using a simple text search after running ASR, we are already able to achieve an F 1 score of between 0.15 and 0.33, a precision of nearly 0.90 for Estonian and Hungarian, and a precision of 0.76 for Komi. Tiivistelm\u00e4 Tutkimus k\u00e4sittelee puheentunnistuksen k\u00e4ytt\u00f6\u00e4 avainsanojen tunnistamisessa nelj\u00e4ll\u00e4 uralilaisella kielell\u00e4, joita ovat suomi, unkari, viro ja komisyrj\u00e4\u00e4ni. N\u00e4m\u00e4 kielet ovat my\u00f6s eri tasoilla saatavilla olevien resurssien m\u00e4\u00e4r\u00e4n suhteen. Vaikka varsinaiset puheentunnistusj\u00e4rjestelm\u00e4t eiv\u00e4t v\u00e4ltt\u00e4m\u00e4tt\u00e4 viel\u00e4 toimi toivotulla tavalla, osoitamme, ett\u00e4 n\u00e4it\u00e4 teknologioita voi jo hy\u00f6dynt\u00e4\u00e4 eri teht\u00e4viss\u00e4, joista yksi on avainsanojen tunnistus. Kokeissamme avainsanat tunnistetaan suoraan puheentunnistuksen tuottamasta tekstist\u00e4. N\u00e4in saavutettu tarkkuus on verrattain korkea, mutta herkkyys yh\u00e4 melko matala.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this study we investigate the potential of using Automatic Speech Recognition (ASR) for keyword spotting for four Uralic languages: Finnish, Hungarian, Estonian and Komi. These languages also represent different levels on the high and low resource continuum. Although the accuracy of the ASR systems show there is a long way to go, we show that they still have potential to be useful for downstream tasks such as keyword spotting. By using a simple text search after running ASR, we are already able to achieve an F 1 score of between 0.15 and 0.33, a precision of nearly 0.90 for Estonian and Hungarian, and a precision of 0.76 for Komi. Tiivistelm\u00e4 Tutkimus k\u00e4sittelee puheentunnistuksen k\u00e4ytt\u00f6\u00e4 avainsanojen tunnistamisessa nelj\u00e4ll\u00e4 uralilaisella kielell\u00e4, joita ovat suomi, unkari, viro ja komisyrj\u00e4\u00e4ni. N\u00e4m\u00e4 kielet ovat my\u00f6s eri tasoilla saatavilla olevien resurssien m\u00e4\u00e4r\u00e4n suhteen. Vaikka varsinaiset puheentunnistusj\u00e4rjestelm\u00e4t eiv\u00e4t v\u00e4ltt\u00e4m\u00e4tt\u00e4 viel\u00e4 toimi toivotulla tavalla, osoitamme, ett\u00e4 n\u00e4it\u00e4 teknologioita voi jo hy\u00f6dynt\u00e4\u00e4 eri teht\u00e4viss\u00e4, joista yksi on avainsanojen tunnistus. Kokeissamme avainsanat tunnistetaan suoraan puheentunnistuksen tuottamasta tekstist\u00e4. N\u00e4in saavutettu tarkkuus on verrattain korkea, mutta herkkyys yh\u00e4 melko matala.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Very large quantities of audio recordings exist for Uralic languages, as there is a long history of pri-mary data collection. It is another question how large a portion of these materials are adequately archived, and if they are, whether they are findable and accessible. The situation is continuously improving, and as different archives digitize their collections, the material that can be used relatively easily will keep increasing in size. At the same time materials that are not transcribed, translated or annotated can be very challenging to work with. This problem is not unique to the Uralic language materials, nor linguistic materials in general, but touches archived data very widely.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Computational methods have been recognized as one approach to this issue, and several of the related technologies already give very good results (Blokland et al., 2019) . When it comes to speech data, it still remains a challenge to develop high performance speech recognition for endangered or low-resource languages (Xu et al., 2020; Stoian et al., 2020) . There has, however, been continuous progress in this field to build tools and methods that would allow integration of speech recognition technology into language documentation workflows (see i.e. Adams et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 145,
                        "end": 168,
                        "text": "(Blokland et al., 2019)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 318,
                        "end": 335,
                        "text": "(Xu et al., 2020;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 336,
                        "end": 356,
                        "text": "Stoian et al., 2020)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 555,
                        "end": 574,
                        "text": "Adams et al., 2020)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this study we investigate the usability of using Automatic Speech Recognition (ASR) for keyword spotting for four Uralic languages: Finnish, Hungarian, Estonian and Komi. This way even ASR models that currently have a lower accuracy could be used effectively in some downstream tasks, of which keyword spotting is an important one. For example, there are often recordings that have accompanying notes or metadata, from which potential keywords can be extracted. In long recordings, locating these sections is, however, very tedious and slow to conduct manually. Keyword spotting would allow easier navigation and verification work with unannotated recordings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To contextualize even partly how large the scale of unannotated but existing multimedia is, we use Komi as the example in this section. Focus to Komi in this section is also motivated by the fact that the venue where our study is published is at Syktyvkar, Komi Republic, and Komi is the only endangered language which we address, and thereby the need to accurately locate Komi materials also more urgent. We are most familiar with the European archives, and focus to those, although most substantial Komi collections certainly are stored in Syktyvkar. The first audio recordings of Permian Komi and Udmurt were most likely done in 1911 (\u0414\u0435\u043d\u0438\u0441\u043e\u0432, 2014, 34) , which is now 110 years ago. This tells that the materials have accumulated for a long period already.",
                "cite_spans": [
                    {
                        "start": 637,
                        "end": 656,
                        "text": "(\u0414\u0435\u043d\u0438\u0441\u043e\u0432, 2014, 34)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The Archive of Estonian Dialects and Finno-Ugric Languages at the Institute of the Estonian Language (Ermus et al., 2019 ) contains a large number of recordings in various Uralic languages, and their online catalogue lists 212 Komi recordings that total in 19 hours. Most of their Komi materials have been collected by Anu-Reet Hausenberg and Adolf Turkin.",
                "cite_spans": [
                    {
                        "start": 101,
                        "end": 120,
                        "text": "(Ermus et al., 2019",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Similarly, the Institute for the Languages of Finland contains large Komi collections. These start with the work of Erkki Itkonen, who did a fieldwork trip to Syktyvkar in 1958 an (Itkonen, 1958, 70) . Very soon after this G\u00fcnter Johannes Stipa conducted similar trip (Stipa, 1962, 65-66) . We also have to highlight the collections Muusa Vahros-Pertamo did in 1962 both with Zyrian and Permian Komi dialects (Vahros-Pertamo, 1963 ). These materials have not been published. In 1950s and 1960s Erik V\u00e1szolyi conducted similar work, and his recordings were later published (V\u00e1szolyi-Vasse, 1999) , but also copied by Pertti Virtaranta to Helsinki. Also the recordings of V\u00e1szolyi do contain several hours of unpublished materials, primarily conversations. The case of V\u00e1szolyi is particularly interesting, as the same recordings must be currently copied in several locations: Helsinki, Syktyvkar, Budapest and Perth, Australia, where he was last located before his death. These recordings are approximately 20 hours.",
                "cite_spans": [
                    {
                        "start": 180,
                        "end": 199,
                        "text": "(Itkonen, 1958, 70)",
                        "ref_id": null
                    },
                    {
                        "start": 268,
                        "end": 288,
                        "text": "(Stipa, 1962, 65-66)",
                        "ref_id": null
                    },
                    {
                        "start": 409,
                        "end": 430,
                        "text": "(Vahros-Pertamo, 1963",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 572,
                        "end": 594,
                        "text": "(V\u00e1szolyi-Vasse, 1999)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Speech recognition has been previously studied on all of these languages, and some earlier work on keyword spotting also exists. For Finnish and Estonian ASR technologies have already been developed for a long period of time. Among the most recent studies in Finnish ASR is Jain et al. (2020) , and for Estonian Alum\u00e4e et al. (2019) . Enarvi et al. (2017) addressed both of these languages at the same time. A common point of research has been the need to address sub-word segmentation in various ways, as the agglutinative structure of these languages makes the number of unseen word forms potentially very high. At the same time, when the models have been trained with data from media broadcasts and parliamentary proceedings, the recognition of various conversational genres remains a challenge. Work on keyword spotting, or document retrieval in general, has been more scarce, but (Turunen and Kurimo, 2008) have studied the detection of morphemes from unsegmented Finnish audio recordings.",
                "cite_spans": [
                    {
                        "start": 274,
                        "end": 292,
                        "text": "Jain et al. (2020)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 312,
                        "end": 332,
                        "text": "Alum\u00e4e et al. (2019)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 335,
                        "end": 355,
                        "text": "Enarvi et al. (2017)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 885,
                        "end": 911,
                        "text": "(Turunen and Kurimo, 2008)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "3"
            },
            {
                "text": "Several experiments for Komi ASR have been conducted, but the quality has not yet reached levels where the models are particularly useful. The steady progress the work has yielded, however, warrants optimism. In the first reported experiment the results were extremely bad, but demonstrated that in principle these systems can be trained with the currently available data, and some insight was shown to the roles the language models and transfer learning may have in the training process (Hjortnaes et al., 2020). A later study refined the language model with online materials, which improved the result considerably (Hjortnaes et al., 2020) . All these models used English as the source language in transfer learning. Most recently an investigation was done about the possible use of other languages, and the transfer learning with Russian Common Voice data was tested (Hjortnaes et al., 2021) . The results improved due to changes in the Deep-Speech architecture between different versions, but the English transfer learning still gave better results due to the quantity of data available. Further testing of these models by the authors has shown that producing an accurate transcript from a very clearly pronounced Komi speech can work relatively well. In real spontaneous speech the results are extremely sporadic. However, since there is also a clear ratio of correctly recognized words, or their parts, we believe testing the model in real world scenarios for other down stream tasks such as keyword spotting could be very beneficial. When we search for words we expect to occur in the text, we ignore the impact of entirely incorrectly recognized words, and by boosting the individual keywords we improve the possibility of recognizing the words we want to find even further. Unfortunately this scenario is not entirely realistic, as in many instances we cannot know what themes and words are present. However, there are also many instances where metadata containing keyword and topic information exists, and the researchers who have done the recordings often have acute information about the topics covered, which they may want to locate in the recordings more automatically.",
                "cite_spans": [
                    {
                        "start": 617,
                        "end": 641,
                        "text": "(Hjortnaes et al., 2020)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 870,
                        "end": 894,
                        "text": "(Hjortnaes et al., 2021)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "3"
            },
            {
                "text": "Within the research of ASR at Uralic languages we can also mention the study on Samoyedic languages by , where relatively good accuracies were reported for single speaker scenarios. In the context of minority languages spoken in Russia, also reported recently on their experiment with Bashkir. There have also been approaches to create keyword spotting without an ASR system at the background (van der Westhuizen et al., 2021).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "3"
            },
            {
                "text": "In the test data we look at two compendia. The first is the Common Voice (Ardila et al., 2020) collection of the data for Hungarian and Estonian, and the second is the collection of available data for Finnish and Komi. The datasets are described below, with the first selection representing more artificial read literary language sentences, and the second containing spontaneous spoken language.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Test data",
                "sec_num": "4"
            },
            {
                "text": "Common Voice (Ardila et al., 2020 ) is a project aimed at collecting speech data for all of the world's languages. One of the advantages of Common Voice is that, for the languages supported, it provides a very convenient way to contribute and distribute voice recordings. The data consists of short sentences, typically no longer than 10-15 tokens which are read by a range of different speakers. Readings longer than 10 seconds are discarded.",
                "cite_spans": [
                    {
                        "start": 13,
                        "end": 33,
                        "text": "(Ardila et al., 2020",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Common Voice",
                "sec_num": "4.1"
            },
            {
                "text": "We followed the training process in Tyers and Meyer (2021) to train speech recognition models for Hungarian and Estonian using the Common Voice data. After training the models we extracted a number of keywords for the two languages from their test sets. We selected all tokens that appeared more than 5 times and that were 5 characters or longer. This second constraint was to try and avoid closed categories that would be unlikely to be used as keywords (e.g. Hungarian \u00e9s 'and' or Estonian on 'is').",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Common Voice",
                "sec_num": "4.1"
            },
            {
                "text": "As the experiments with Common Voice demonstrate what can be done with read speech, we wanted to see how well the models would work with spontaneous speech of the type more typically found in language archives.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Real-word data",
                "sec_num": "4.2"
            },
            {
                "text": "The Finnish test data is taken from a CC-BY licensed Samples of Spoken Finnish corpus (Institute for the Languages of Finland, 2014), which contains 100 recordings of 50 Finnish dialects recorded primarily in the 1960s and 1970s. What makes this material particularly relevant is that the recordings originated in the Finnish dialect documentation program, which aimed to record 30 hours of dialect materials from each Finnish municipality. By the end of the 1970s the collections already contained 15,000 hours, and the currently available Finnish dialect materials, in the Institute for the Languages of Finland alone, number 24,000 hours\u00b9. The materials from which our sample is taken represents a tiny fragment of the recordings that have ever been published in any format.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Finnish",
                "sec_num": "4.2.1"
            },
            {
                "text": "We have selected five recordings from different dialect regions, and tagged the transcriptions for 100 keywords. The recordings chosen from the corpus were SKN03b_Palkane, SKN10b_Mikkeli, SKN12a_Salla, SKN13b_Pihtipudas and SKN18b_Rautalampi.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Finnish",
                "sec_num": "4.2.1"
            },
            {
                "text": "The keyword tagging is applied on this dataset, and the accuracy is measured. We believe the Finnish results will be generalizable to the wider context of archived Finnish multimedia, at least what it comes to this portion of the dialect recordings. We used the normalized versions of the transcriptions, as those are available in the corpus we used. Those deviate in various ways from the original dialectal representation, but the high variation between word forms in different dialects would had made the comparison of keywords challenging. In the further work, the dialectal variants of the wordforms could be mapped together to allow more dialect-aware keyword search. At the same time, to our knowledge, no ASR system has yet been trained that would even start to address the phenomena met in the dialectal Finnish, and the target of these systems is usually modern literary Finnish. Also the current training data for our Finnish ASR model Table 1 : Languages and data. The datasets used in training the speech recognition models that were used in these experiments.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 947,
                        "end": 954,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Finnish",
                "sec_num": "4.2.1"
            },
            {
                "text": "is basically in modern literary Finnish, as it was trained using the read sentences from Common Voice, making it poorly suited for dialectal data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Finnish",
                "sec_num": "4.2.1"
            },
            {
                "text": "For Komi we used a story recorded by Erik V\u00e0szolyi (for various versions of 'Ballad of the softhaired sister' see V\u00e1szolyi-Vasse, 2001; V\u00e1szolyi-Vasse and L\u00e1z\u00e1r, 2010) , described in a recent study by (Blokland et al., 2021) . This is a text that exists in two variants, as it has been recorded both as a sung and narrated version. The narrative version used in this experiment is 17 minutes long. This text is particularly relevant for testing keyword recognition, as it has culturally very relevant content to detect. However, the sang version of the text was already included in the training material of the model, invalidating any results obtained from testing on that data, and thereby excluded from comparison. Especially with the archival data, the same individual is often recorded numerous times, so a situation where some of their recordings are already included into the model is not entirely unrealistic. As always, further testing is obviously required with more speakers and text types. Also for Komi we manually selected 100 keywords that are represented in the text. As this Komi text was recorded with a tape recorded in 1966, it is very representative of archived Komi materials that do exist in large quantities in different archives. We described the wider context of the archival recordings most familiar to us in Section 2. This illustrates how one central goal in work described here is to be able to better navigate and access untranscribed archival recordings. We describe the related methodology next.",
                "cite_spans": [
                    {
                        "start": 114,
                        "end": 135,
                        "text": "V\u00e1szolyi-Vasse, 2001;",
                        "ref_id": null
                    },
                    {
                        "start": 136,
                        "end": 167,
                        "text": "V\u00e1szolyi-Vasse and L\u00e1z\u00e1r, 2010)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 201,
                        "end": 224,
                        "text": "(Blokland et al., 2021)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Komi",
                "sec_num": "4.2.2"
            },
            {
                "text": "Keyword spotting is the task of finding specific words in a given audio stream, often containing continuous speech. This has a wide variety of uses, most notably keyword search and wake-word detection. Keyword searching is when you have a large collection of audio saved on disk, and you want to identify all the instances of certain word. This is especially useful for information retrieval scenarios, and is easily generalizable to the situations where we know something about the recordings, but not exactly where which topic is discussed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "5"
            },
            {
                "text": "The task discussed in this study, keyword spotting, is just one part of a larger pipeline that related technologies create. This involves text recognition of already written transcriptions, and forced alignment of the text with audio. Keyword spotting usually predates a well functioning ASR, as it can be, arguably, implemented before speech recognition is yet fully established. In the longer perspective keyword tagging is also related to subject indexing, where the topics and keywords are extracted from the document text. Such systems are already successfully in use with larger Uralic languages, such as Finnish (Suominen, 2019) . Indeed, keyword spotting would regularly be conducted in a context where we have reasons to assume specific term of interest is used somewhere in the document, be that a text or recording.",
                "cite_spans": [
                    {
                        "start": 619,
                        "end": 635,
                        "text": "(Suominen, 2019)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "5"
            },
            {
                "text": "While there are specific algorithms for keyword spotting, cf. Mazumder et al. (2021), we use a very simple approach. We decode the audio as if we are performing a normal Speech-to-Text transcription task, and then we do a simple text search over the transcript. In this study we did not use specific keyword boosting techniques, which would be an additional approach to improve the findability of a specific string. Such use cases also distinguish keyword spotting more clearly from speech recognition, as our current methodology essentially uses generated transcription as a starting point.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "5"
            },
            {
                "text": "For the experiments, we took the test set for each language, and selected 10 words at random from a set of those words longer than four characters to favour content words over function words. The results are presented in Table 2 : Keyword spotting. We show the dataset size, precision, recall and F 1 score. In general the precision is high and recall is moderate to low.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 221,
                        "end": 228,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "5"
            },
            {
                "text": "We will first explain the concepts we have used to measure the model's performance. Precision Precis how often the model is correct when it identifies a keyword. Recall (Rec) is how many of the keywords in the test data the search is able to find. F 1 is a weighted average of precision and recall which tends towards whichever value is lower, meaning the best score is achieved by balancing precision and recall. This gives intuitively interpretable and comparative information about the experiments. Our results were the best for Estonian and Hungarian. We believe this is largely connected to the narrow domain which was present in the Common Voice recordings, namely that the clips are read. The low accuracy of Finnish is probably related to the small amount of training data. Without an accurate model, the keywords may not be correctly transcribed and will not show up in the text search. In the case of Komi we reach a relatively high precision, on par with Hungarian and Estonian where the domain was narrow, and here the large amount of training data must have some role. However, the clips are from natural speech instead of read, which explains the lower accuracy when compared to Hungarian and Estonian despite the large quantity of training data. This is not an excellent result, but already a step toward a clearly functional system. As the recall is very low, it must stated that the system is not very successful in finding the keywords, but when it suggests them, those are often correct.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6"
            },
            {
                "text": "We expected Estonian and Hungarian to work relatively well, since the test data was not very realistic. However, the result with Komi comes relatively close to what we see with the test languages. Especially with Finnish experiments with more training data, possibly varying the training data size gradually, could help to understand how the ratio of the training data impacts to the model's performance. Similar experiment was previously conducted suc-cessfully for Kamas to evaluate changes in the accuracy . We also have to emphasise that the Finnish data was much more strongly dialectal than what would be customarily encountered in the recordings today, and what is present in the Common Voice dataset. Even though such older dialect recordings exist in large quantities in Finnish archives, they must still be considered a special case within Finnish speech technologies in general.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6"
            },
            {
                "text": "Another challenge, and factor that makes our results less reliable, is that we selected the keywords from the corpora themselves. This was the only available approach, as we wanted to measure the accuracy, but it also targeted our experiment toward the existing inflected forms that do exist in the test data. With agglutinative Uralic languages, however, the most useful test scenario would be one where the desired keywords are listed by their lemmas, but may occur in a different shape in the real usage, and the keyword spotting would ideally still work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6"
            },
            {
                "text": "Our research shows that keyword detection systems are in principle applicable for low resource settings, and even with a very small amount of training data the precision can be relatively high. It certainly is not possible to retrieve all keywords reliably under the current conditions, but even the accuracy we are now reaching could still be useful. Naturally, lots of work still remains to be done within this topic.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Concluding remarks",
                "sec_num": "7"
            },
            {
                "text": "One of the most important further tasks would be to extend the experiment into entirely realistic conditions. We could, for example, use archived recordings and their keyword lists and summaries to create the keyword queries, and compare the result against manually verified data. This way we could move toward concrete evaluation of how well and realistically the system performs with various archived datasets. Also different fieldwork collections in Uralic languages could be very well suited for this task. Even though exact keyword and topic listings may not be very common in current metadata models, there is still a long tradition of compiling such topic indexes, and this is inarguably a very useful strategy to classify non-transcribed recordings. Combined to keyword spotting such index can be used to navigate the recordings as well. Our current study is a first step to that direction in a wider context of Uralic languages, and with the goal of trying to test the keyword detection in languages representing different branches of this language family.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Concluding remarks",
                "sec_num": "7"
            }
        ],
        "back_matter": [
            {
                "text": "Niko Partanen has produced this work within the project Language Documentation meets Language Technology: The Next Step in the Description of Komi, funded by Kone Foundation, Finland. This research was supported in part by Lilly Endowment, Inc., through its support for the Indiana University Pervasive Technology Institute.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Userfriendly automatic transcription of low-resource languages: Plugging ESPnet into Elpis",
                "authors": [
                    {
                        "first": "Oliver",
                        "middle": [],
                        "last": "Adams",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Galliot",
                        "suffix": ""
                    },
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Wisniewski",
                        "suffix": ""
                    },
                    {
                        "first": "Nicholas",
                        "middle": [],
                        "last": "Lambourne",
                        "suffix": ""
                    },
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Foley",
                        "suffix": ""
                    },
                    {
                        "first": "Rahasya",
                        "middle": [],
                        "last": "Sanders-Dwyer",
                        "suffix": ""
                    },
                    {
                        "first": "Janet",
                        "middle": [],
                        "last": "Wiles",
                        "suffix": ""
                    },
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Michaud",
                        "suffix": ""
                    },
                    {
                        "first": "S\u00e9verine",
                        "middle": [],
                        "last": "Guillaume",
                        "suffix": ""
                    },
                    {
                        "first": "Laurent",
                        "middle": [],
                        "last": "Besacier",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2101.03027"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Oliver Adams, Benjamin Galliot, Guillaume Wis- niewski, Nicholas Lambourne, Ben Foley, Rahasya Sanders-Dwyer, Janet Wiles, Alexis Michaud, S\u00e9ver- ine Guillaume, Laurent Besacier, et al. 2020. User- friendly automatic transcription of low-resource lan- guages: Plugging ESPnet into Elpis. arXiv preprint arXiv:2101.03027.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Advanced rich transcription system for Estonian speech",
                "authors": [
                    {
                        "first": "Ottokar",
                        "middle": [],
                        "last": "Tanel Alum\u00e4e",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Tilk",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1901.03601"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tanel Alum\u00e4e, Ottokar Tilk, et al. 2019. Advanced rich transcription system for Estonian speech. arXiv preprint arXiv:1901.03601.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Common Voice: A massivelymultilingual speech corpus",
                "authors": [
                    {
                        "first": "Rosana",
                        "middle": [],
                        "last": "Ardila",
                        "suffix": ""
                    },
                    {
                        "first": "Megan",
                        "middle": [],
                        "last": "Branson",
                        "suffix": ""
                    },
                    {
                        "first": "Kelly",
                        "middle": [],
                        "last": "Davis",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Henretty",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Kohler",
                        "suffix": ""
                    },
                    {
                        "first": "Josh",
                        "middle": [],
                        "last": "Meyer",
                        "suffix": ""
                    },
                    {
                        "first": "Reuben",
                        "middle": [],
                        "last": "Morais",
                        "suffix": ""
                    },
                    {
                        "first": "Lindsay",
                        "middle": [],
                        "last": "Saunders",
                        "suffix": ""
                    },
                    {
                        "first": "Francis",
                        "middle": [
                            "M"
                        ],
                        "last": "Tyers",
                        "suffix": ""
                    },
                    {
                        "first": "Gregor",
                        "middle": [],
                        "last": "Weber",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)",
                "volume": "",
                "issue": "",
                "pages": "4211--4215",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh Meyer, Reuben Morais, Lindsay Saunders, Francis M. Tyers, and Gregor Weber. 2020. Common Voice: A massively- multilingual speech corpus. In Proceedings of the 12th Conference on Language Resources and Evalu- ation (LREC 2020), pages 4211-4215.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "This is thy brother's voice",
                "authors": [
                    {
                        "first": "Rogier",
                        "middle": [],
                        "last": "Blokland",
                        "suffix": ""
                    },
                    {
                        "first": "Niko",
                        "middle": [],
                        "last": "Partanen",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Rie\u00dfler",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Mika H\u00e4m\u00e4l\u00e4inen, Niko Partanen, and Khalid Alnajjar",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rogier Blokland, Niko Partanen, and Michael Rie\u00dfler. 2021. This is thy brother's voice. In Mika H\u00e4m\u00e4l\u00e4i- nen, Niko Partanen, and Khalid Alnajjar, editors, Multilingual facilitation. University of Helsinki.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Using computational approaches to integrate endangered language legacy data into documentation corpora: Past experiences and challenges ahead",
                "authors": [
                    {
                        "first": "Rogier",
                        "middle": [],
                        "last": "Blokland",
                        "suffix": ""
                    },
                    {
                        "first": "Niko",
                        "middle": [],
                        "last": "Partanen",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Rie\u00dfler",
                        "suffix": ""
                    },
                    {
                        "first": "Joshua",
                        "middle": [],
                        "last": "Wilbur",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Workshop on Computational Methods for Endangered Languages",
                "volume": "2",
                "issue": "",
                "pages": "24--30",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rogier Blokland, Niko Partanen, Michael Rie\u00dfler, and Joshua Wilbur. 2019. Using computational ap- proaches to integrate endangered language legacy data into documentation corpora: Past experiences and challenges ahead. In Workshop on Computa- tional Methods for Endangered Languages, Honolulu, Hawai'i, USA, volume 2, pages 24-30.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Automatic speech recognition with very large conversational Finnish and Estonian vocabularies",
                "authors": [
                    {
                        "first": "Seppo",
                        "middle": [],
                        "last": "Enarvi",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Smit",
                        "suffix": ""
                    },
                    {
                        "first": "Sami",
                        "middle": [],
                        "last": "Virpioja",
                        "suffix": ""
                    },
                    {
                        "first": "Mikko",
                        "middle": [],
                        "last": "Kurimo",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "IEEE/ACM Transactions on Audio, Speech, and Language Processing",
                "volume": "25",
                "issue": "11",
                "pages": "2085--2097",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Seppo Enarvi, Peter Smit, Sami Virpioja, and Mikko Kurimo. 2017. Automatic speech recognition with very large conversational Finnish and Estonian vocab- ularies. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 25(11):2085-2097.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "The Archive of Estonian dialects and Finno-Ugric languages at the Institute of the Estonian language",
                "authors": [
                    {
                        "first": "Liis",
                        "middle": [],
                        "last": "Ermus",
                        "suffix": ""
                    },
                    {
                        "first": "Mari-Liis",
                        "middle": [],
                        "last": "Kalvik",
                        "suffix": ""
                    },
                    {
                        "first": "Tiina",
                        "middle": [],
                        "last": "Laansalu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Uralica Helsingiensia",
                "volume": "",
                "issue": "14",
                "pages": "351--366",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Liis Ermus, Mari-Liis Kalvik, and Tiina Laansalu. 2019. The Archive of Estonian dialects and Finno-Ugric languages at the Institute of the Estonian language. Uralica Helsingiensia, (14):351-366.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Towards a speech recognizer for Komi, an endangered and low-resource Uralic language",
                "authors": [
                    {
                        "first": "Nils",
                        "middle": [],
                        "last": "Hjortnaes",
                        "suffix": ""
                    },
                    {
                        "first": "Niko",
                        "middle": [],
                        "last": "Partanen",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Rie\u00dfler",
                        "suffix": ""
                    },
                    {
                        "first": "Francis",
                        "middle": [
                            "M"
                        ],
                        "last": "Tyers",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Sixth International Workshop on Computational Linguistics of Uralic Languages",
                "volume": "",
                "issue": "",
                "pages": "31--37",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nils Hjortnaes, Niko Partanen, Michael Rie\u00dfler, and Francis M. Tyers. 2020. Towards a speech recognizer for Komi, an endangered and low-resource Uralic lan- guage. In Tommi A. Pirinen, Francis M. Tyers, and Michael Rie\u00dfler, editors, Proceedings of the Sixth In- ternational Workshop on Computational Linguistics of Uralic Languages, pages 31-37. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "The relevance of the source language in transfer learning for ASR",
                "authors": [
                    {
                        "first": "Nils",
                        "middle": [],
                        "last": "Hjortnaes",
                        "suffix": ""
                    },
                    {
                        "first": "Niko",
                        "middle": [],
                        "last": "Partanen",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Rie\u00dfler",
                        "suffix": ""
                    },
                    {
                        "first": "Francis",
                        "middle": [
                            "M"
                        ],
                        "last": "Tyers",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 4th Workshop on Computational Methods for Endangered Languages",
                "volume": "1",
                "issue": "",
                "pages": "63--69",
                "other_ids": {
                    "DOI": [
                        "10.33011/computel.v1i.959"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nils Hjortnaes, Niko Partanen, Michael Rie\u00dfler, and Francis M. Tyers. 2021. The relevance of the source language in transfer learning for ASR. In Miikka Sil- fverberg, editor, Proceedings of the 4th Workshop on Computational Methods for Endangered Languages, volume 1, pages 63-69. University of Colorado Boul- der.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Suomen kielen n\u00e4ytteit\u00e4 -Samples of Spoken Finnish",
                "authors": [],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Institute for the Languages of Finland. 2014. Suomen kielen n\u00e4ytteit\u00e4 -Samples of Spoken Finnish [online- corpus], version 1.0. http://urn.fi/urn:nbn:fi:lb-",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Komin tasavallan kielitieteeseen tutustumassa",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Erkki Itkonen",
                        "suffix": ""
                    }
                ],
                "year": 1958,
                "venue": "",
                "volume": "62",
                "issue": "",
                "pages": "66--66",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Erkki Itkonen. 1958. Komin tasavallan kielitieteeseen tutustumassa. Viritt\u00e4j\u00e4, 62(1):66-66.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Finnish asr with deep transformer models",
                "authors": [
                    {
                        "first": "Abhilash",
                        "middle": [],
                        "last": "Jain",
                        "suffix": ""
                    },
                    {
                        "first": "Aku",
                        "middle": [],
                        "last": "Rouhe",
                        "suffix": ""
                    },
                    {
                        "first": "Stig-Arne",
                        "middle": [],
                        "last": "Gr\u00f6nroos",
                        "suffix": ""
                    },
                    {
                        "first": "Mikko",
                        "middle": [],
                        "last": "Kurimo",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Conference of the International Speech Communication Association (INTERSPEECH)",
                "volume": "21",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Abhilash Jain, Aku Rouhe, Stig-Arne Gr\u00f6nroos, and Mikko Kurimo. 2020. Finnish asr with deep trans- former models. In Conference of the International Speech Communication Association (INTERSPEECH), volume 21.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Few-shot keyword spotting in any language",
                "authors": [
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Mazumder",
                        "suffix": ""
                    },
                    {
                        "first": "Colby",
                        "middle": [],
                        "last": "Banbury",
                        "suffix": ""
                    },
                    {
                        "first": "Josh",
                        "middle": [],
                        "last": "Meyer",
                        "suffix": ""
                    },
                    {
                        "first": "Pete",
                        "middle": [],
                        "last": "Warden",
                        "suffix": ""
                    },
                    {
                        "first": "Vijay",
                        "middle": [
                            "Janapa"
                        ],
                        "last": "Reddi",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2104.01454"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mark Mazumder, Colby Banbury, Josh Meyer, Pete Warden, and Vijay Janapa Reddi. 2021. Few-shot keyword spotting in any language. arXiv preprint arXiv:2104.01454.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Speech recognition for endangered and extinct samoyedic languages",
                "authors": [
                    {
                        "first": "Niko",
                        "middle": [],
                        "last": "Partanen",
                        "suffix": ""
                    },
                    {
                        "first": "Mika",
                        "middle": [],
                        "last": "H\u00e4m\u00e4l\u00e4inen",
                        "suffix": ""
                    },
                    {
                        "first": "Tiina",
                        "middle": [],
                        "last": "Klooster",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 34th Pacific Asia Conference on Language, Information and Computation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Niko Partanen, Mika H\u00e4m\u00e4l\u00e4inen, and Tiina Klooster. 2020. Speech recognition for endangered and extinct samoyedic languages. In Proceedings of the 34th Pa- cific Asia Conference on Language, Information and Computation.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "K\u00e4ynti syrj\u00e4\u00e4nien tieteen tyyssijassa",
                "authors": [
                    {
                        "first": "Johannes",
                        "middle": [],
                        "last": "G\u00fcnter",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Stipa",
                        "suffix": ""
                    }
                ],
                "year": 1962,
                "venue": "",
                "volume": "66",
                "issue": "",
                "pages": "61--68",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G\u00fcnter Johannes Stipa. 1962. K\u00e4ynti syrj\u00e4\u00e4nien tieteen tyyssijassa. Viritt\u00e4j\u00e4, 66(1):61-68.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Analyzing ASR pretraining for lowresource speech-to-text translation",
                "authors": [
                    {
                        "first": "Sameer",
                        "middle": [],
                        "last": "Mihaela C Stoian",
                        "suffix": ""
                    },
                    {
                        "first": "Sharon",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Goldwater",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
                "volume": "",
                "issue": "",
                "pages": "7909--7913",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mihaela C Stoian, Sameer Bansal, and Sharon Gold- water. 2020. Analyzing ASR pretraining for low- resource speech-to-text translation. In ICASSP 2020- 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7909- 7913. IEEE.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Annif: DIY automated subject indexing using multiple algorithms",
                "authors": [
                    {
                        "first": "Osma",
                        "middle": [],
                        "last": "Suominen",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "LIBER Quarterly",
                "volume": "1",
                "issue": "29",
                "pages": "1--25",
                "other_ids": {
                    "DOI": [
                        "10.18352/lq.10285"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Osma Suominen. 2019. Annif: DIY automated subject indexing using multiple algorithms. LIBER Quarterly, 1(29):1-25.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Speech retrieval from unsegmented Finnish audio using statistical morpheme-like units for segmentation, recognition, and retrieval",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Ville",
                        "suffix": ""
                    },
                    {
                        "first": "Mikko",
                        "middle": [],
                        "last": "Turunen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kurimo",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "ACM Transactions on Speech and Language Processing (TSLP)",
                "volume": "8",
                "issue": "1",
                "pages": "1--25",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ville T Turunen and Mikko Kurimo. 2008. Speech re- trieval from unsegmented Finnish audio using statis- tical morpheme-like units for segmentation, recogni- tion, and retrieval. ACM Transactions on Speech and Language Processing (TSLP), 8(1):1-25.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "What shall we do with an hour of data? speech recognition for the un-and under-served languages of common voice",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Francis",
                        "suffix": ""
                    },
                    {
                        "first": "Josh",
                        "middle": [],
                        "last": "Tyers",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Meyer",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Francis M. Tyers and Josh Meyer. 2021. What shall we do with an hour of data? speech recognition for the un-and under-served languages of common voice.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Syrj\u00e4\u00e4nien asuinseuduilla",
                "authors": [
                    {
                        "first": "Muusa",
                        "middle": [],
                        "last": "Vahros-Pertamo",
                        "suffix": ""
                    }
                ],
                "year": 1963,
                "venue": "",
                "volume": "67",
                "issue": "",
                "pages": "77--85",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Muusa Vahros-Pertamo. 1963. Syrj\u00e4\u00e4nien asuin- seuduilla. Viritt\u00e4j\u00e4, 67(1):77-85.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Syrjaenica, volume One of Specimina Sibirica. Seminar f\u00fcr Uralische Philologie der Berzsenyi Hochschule",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "V\u00e1szolyi-Vasse",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "E. V\u00e1szolyi-Vasse. 1999. Syrjaenica, volume One of Specimina Sibirica. Seminar f\u00fcr Uralische Philologie der Berzsenyi Hochschule.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Seminar f\u00fcr Uralische Philologie der Berzsenyi Hochschule",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Seminar f\u00fcr Uralische Philologie der Berzsenyi Hochschule.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Songs from Komiland",
                "authors": [
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "V\u00e1szolyi",
                        "suffix": ""
                    },
                    {
                        "first": "-",
                        "middle": [],
                        "last": "Vasse",
                        "suffix": ""
                    },
                    {
                        "first": "Katalin",
                        "middle": [],
                        "last": "L\u00e1z\u00e1r",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Erik V\u00e1szolyi-Vasse and Katalin L\u00e1z\u00e1r. 2010. Songs from Komiland. Reguly T\u00e1rsas\u00e1g.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Feature learning for efficient ASR-free keyword spotting in low-resource languages",
                "authors": [
                    {
                        "first": "Herman",
                        "middle": [],
                        "last": "Ewald Van Der Westhuizen",
                        "suffix": ""
                    },
                    {
                        "first": "Raghav",
                        "middle": [],
                        "last": "Kamper",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Menon",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Quinn",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Niesler",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Computer Speech & Language",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ewald van der Westhuizen, Herman Kamper, Raghav Menon, John Quinn, and Thomas Niesler. 2021. Fea- ture learning for efficient ASR-free keyword spotting in low-resource languages. Computer Speech & Lan- guage, page 101275.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Ouvrir aux linguistes \u00abde terrain\u00bb un acc\u00e8s \u00e0 la transcription automatique",
                "authors": [
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Wisniewski",
                        "suffix": ""
                    },
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Michaud",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Galliot",
                        "suffix": ""
                    },
                    {
                        "first": "Laurent",
                        "middle": [],
                        "last": "Besacier",
                        "suffix": ""
                    },
                    {
                        "first": "S\u00e9verine",
                        "middle": [],
                        "last": "Guillaume",
                        "suffix": ""
                    },
                    {
                        "first": "Katya",
                        "middle": [],
                        "last": "Aplonova",
                        "suffix": ""
                    },
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Jacques",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guillaume Wisniewski, Alexis Michaud, Benjamin Gal- liot, Laurent Besacier, S\u00e9verine Guillaume, Katya Aplonova, and Guillaume Jacques. 2020. Ouvrir aux linguistes \u00abde terrain\u00bb un acc\u00e8s \u00e0 la transcription au- tomatique. Groupement de Recherche Linguistique In- formatique Formelle et de Terrain (LIFT), page 82.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Lrspeech: Extremely low-resource speech synthesis and recognition",
                "authors": [
                    {
                        "first": "Jin",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Xu",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Yi",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Sheng",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Tie-Yan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining",
                "volume": "",
                "issue": "",
                "pages": "2802--2812",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jin Xu, Xu Tan, Yi Ren, Tao Qin, Jian Li, Sheng Zhao, and Tie-Yan Liu. 2020. Lrspeech: Extremely low-resource speech synthesis and recognition. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2802-2812.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "\u0418\u0437 \u0438\u0441\u0442\u043e\u0440\u0438\u0438 \u043f\u0435\u0440\u0432\u044b\u0445 \u0444\u043e\u043d\u043e\u0433\u0440\u0430\u0444\u0438\u0447\u0435\u0441\u043a\u0438\u0445 \u0437\u0430\u043f\u0438\u0441\u0435\u0439 \u0443\u0434\u043c\u0443\u0440\u0442\u043e\u0432 \u0438 \u043a\u043e\u043c\u0438-\u043f\u0435\u0440\u043c\u044f\u043a\u043e\u0432 \u0432 1911-1912 \u0433\u0433. \u041d\u0430 \u0442\u0435\u0440\u0440\u0438\u0442\u043e\u0440\u0438\u0438 \u0432\u0435\u0440\u0445\u043d\u0435\u0433\u043e \u041f\u0440\u0438\u043a\u0430\u043c\u044c\u044f. \u0415\u0436\u0435\u0433\u043e\u0434\u043d\u0438\u043a \u0444\u0438\u043d\u043d\u043e-\u0443\u0433\u043e\u0440\u0441\u043a\u0438\u0445 \u0438\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u043d\u0438\u0439",
                "authors": [
                    {
                        "first": "\u0414\u0435\u043d\u0438\u0441\u043e\u0432",
                        "middle": [],
                        "last": "\u0412\u0438\u043a\u0442\u043e\u0440 \u041d\u0438\u043a\u043e\u043b\u0430\u0435\u0432\u0438\u0447",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "\u0412\u0438\u043a\u0442\u043e\u0440 \u041d\u0438\u043a\u043e\u043b\u0430\u0435\u0432\u0438\u0447 \u0414\u0435\u043d\u0438\u0441\u043e\u0432. 2014. \u0418\u0437 \u0438\u0441\u0442\u043e\u0440\u0438\u0438 \u043f\u0435\u0440\u0432\u044b\u0445 \u0444\u043e\u043d\u043e\u0433\u0440\u0430\u0444\u0438\u0447\u0435\u0441\u043a\u0438\u0445 \u0437\u0430\u043f\u0438\u0441\u0435\u0439 \u0443\u0434\u043c\u0443\u0440\u0442\u043e\u0432 \u0438 \u043a\u043e\u043c\u0438-\u043f\u0435\u0440\u043c\u044f\u043a\u043e\u0432 \u0432 1911-1912 \u0433\u0433. \u041d\u0430 \u0442\u0435\u0440\u0440\u0438\u0442\u043e\u0440\u0438\u0438 \u0432\u0435\u0440\u0445\u043d\u0435\u0433\u043e \u041f\u0440\u0438\u043a\u0430\u043c\u044c\u044f. \u0415\u0436\u0435\u0433\u043e\u0434\u043d\u0438\u043a \u0444\u0438\u043d\u043d\u043e-\u0443\u0433\u043e\u0440\u0441\u043a\u0438\u0445 \u0438\u0441\u0441\u043b\u0435\u0434\u043e\u0432\u0430\u043d\u0438\u0439, (4).",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF1": {
                "html": null,
                "content": "<table><tr><td colspan=\"2\">Language # Keywords</td><td>F 1 Prec Rec</td></tr><tr><td>fi</td><td colspan=\"2\">100 0.15 0.41 0.09</td></tr><tr><td>hu</td><td colspan=\"2\">192 0.28 0.89 0.16</td></tr><tr><td>et</td><td colspan=\"2\">546 0.33 0.88 0.21</td></tr><tr><td>kpv</td><td colspan=\"2\">100 0.20 0.76 0.12</td></tr></table>",
                "num": null,
                "text": "",
                "type_str": "table"
            }
        }
    }
}