File size: 165,761 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:12:15.567373Z"
    },
    "title": "Annotation-based Semantics",
    "authors": [
        {
            "first": "Kiyong",
            "middle": [],
            "last": "Lee",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Korea University Seoul",
                "location": {
                    "country": "Korea"
                }
            },
            "email": "ikiyong@gmail.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper proposes a semantics ABS for the model-theoretic interpretation of annotation structures. It provides a language ABSr that represents semantic forms in a (possibly \u03bb-free) type-theoretic first-order logic. For semantic compositionality, the representation language introduces two operators \u2295 and with some subtypes for the conjunctive or distributive composition of semantic forms. ABS also introduces a small set of logical predicates to represent semantic forms in a simplified format. The use of ABSr is illustrated with some annotation structures that conform to ISO 24617 standards on semantic annotation such as ISO-TimeML and ISO-Space.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper proposes a semantics ABS for the model-theoretic interpretation of annotation structures. It provides a language ABSr that represents semantic forms in a (possibly \u03bb-free) type-theoretic first-order logic. For semantic compositionality, the representation language introduces two operators \u2295 and with some subtypes for the conjunctive or distributive composition of semantic forms. ABS also introduces a small set of logical predicates to represent semantic forms in a simplified format. The use of ABSr is illustrated with some annotation structures that conform to ISO 24617 standards on semantic annotation such as ISO-TimeML and ISO-Space.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "This paper has two aims: [i] to formulate a semantics, called Annotation-based Semantics (ABS), for the modeltheoretic interpretation of annotation structures and [ii] to recommend it as a semantics for ISO 24617 standards on semantic annotation frameworks such as ISO-TimeML (ISO, 2020) or ISO-Space (ISO, 2020) . As a semantics for these annotation frameworks, ABS has two roles. One role is to validate the abstract syntax that formally defines each annotation framework in set theoretic terms (Bunt, 2010) . The other is to interpret the annotation structures that are generated by, or conform to, a relevant annotation framework (see (Lee, 2018) and (Pustejovsky et al., 2019) ). ABS is a structurally simple semantics, consisting of [i] a representation language ABSr and [ii] a finite set of logical predicates that are used in ABSr, but are defined as part of a model structure like meaning postulates or word meanings as introduced by Carnap (1947 Carnap ( 1956 and Montague (1974) , as shown in Figure 1 , and further developed by Dowty (1979) and Pustejovsky (1995) . The rest of the paper develops as follows: Section 2 provides some motivations for ABS . Section 3 describes the basic design of ABS. Section 4 defines the type-theoretic first-order predicate logic-based representation language ABSr . Section 5 breifly outlines some characteristics of an interpretation model structure for ABS . Section 6 shows how the composition rules of ABSr apply to the annotation structures that conform to some of the ISO 24617 standards on semantic annotation. Section 7 introduces some related works and discuses the convertibility of semantic forms of ABS to DRSs or \u03bb-formulas. Section 8 makes some concluding remarks.",
                "cite_spans": [
                    {
                        "start": 301,
                        "end": 312,
                        "text": "(ISO, 2020)",
                        "ref_id": null
                    },
                    {
                        "start": 497,
                        "end": 509,
                        "text": "(Bunt, 2010)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 639,
                        "end": 650,
                        "text": "(Lee, 2018)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 655,
                        "end": 681,
                        "text": "(Pustejovsky et al., 2019)",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 944,
                        "end": 956,
                        "text": "Carnap (1947",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 957,
                        "end": 970,
                        "text": "Carnap ( 1956",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 975,
                        "end": 990,
                        "text": "Montague (1974)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 1041,
                        "end": 1053,
                        "text": "Dowty (1979)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1058,
                        "end": 1076,
                        "text": "Pustejovsky (1995)",
                        "ref_id": "BIBREF48"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1005,
                        "end": 1013,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The main motivation of ABS is to lighten the burden of automatically generating intermediary interpretations, called semantic forms or logical forms, of semantic annotation structures for both human and machine learning or understanding. For this purpose, ABS and its representation language ABSr introduce two minor operational modifications into the two well-established and model-theoretically interpretable representation languages, the type-theoretic \u03bbcalculus, used for Montague Semantics (MS) (Montague, 1974) , and Kamp and Reyle (1993) 's Discourse Representation Theory (DRT). The representation language ABSr of ABS is designed to to be free from \u03bb-operations, especially involving higher-order variables, by replacing the operation of substitution through the \u03bb-conversion with an equation solving approach (see Lee (1983) ), or to convert its semantic forms into visually more readable Discourse Representation Structures (DRSs) preferably without introducing embedded or stacked structures into them. From a theoretical point of view, neither ABS nor ABSr is totally different from Bunt (2020b) or his earlier efforts to develop an annotation-based semantics with the interpretation function I to convert or annotation structures, defined in abstract (set-theoretic) terms, to DRSs based on Kamp and Reyle (1993) 's Discourse Representation Theory (DRT). From a practical point of view, ABS is characterized by dividing the task of interpreting annotation structures between the representation of simpler or abbreviated semantic forms and their interpretations enriched with lexical meaning in the form of meaning postulates that constrain the set of possible interpretation model structures.",
                "cite_spans": [
                    {
                        "start": 500,
                        "end": 516,
                        "text": "(Montague, 1974)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 523,
                        "end": 544,
                        "text": "Kamp and Reyle (1993)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 824,
                        "end": 834,
                        "text": "Lee (1983)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 1096,
                        "end": 1108,
                        "text": "Bunt (2020b)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1305,
                        "end": 1326,
                        "text": "Kamp and Reyle (1993)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivation for ABS",
                "sec_num": "2."
            },
            {
                "text": "Based on a type-theoretic first-order predicate logic (FOL), ABSr is augmented with [i] a small set of operators and [ii] a set of logical predicates. As is developed in Section 3, for any a that refers to the abstract specification of an annotation structure or its substructures, either an entity or a link structure, preferably through its ID, the operator \u03c3 maps a to a semantic form \u03c3(a), represented in a first-order logic, while the two non-Boolean operators \u2295 and , with their finer-grained subtypes of merging, each relate \u03c3(a) to another semantic form, constrained by their semantic type. Without much depending on the particular syntactic analysis of each input, these operators combine, in a compositional manner, the pieces of information conveyed by each annotation structure or its substructures into a model-theoretically interpretable logical form, called semantic form, in FOL. Besides the Boolean connectives in FOL, these non-Boolean operators are needed to combine semantic forms that are not of type t (sentential type) as bridges that connect annotation structures to logical forms: for instance, to combine \u03c3(F ido) of individual entity type e with \u03c3([runs(e) \u2227 agent(e, x)]) of type e \u2192 (v \u2192 t) without using \u03bb-operations in an overt way.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivation for ABS",
                "sec_num": "2."
            },
            {
                "text": "As is elaborated in Section 3, ABS also introduces a small set of logical predicates into its representation language ABSr and treats them as meaning postulates that constrain a model structure (see Montague (1974) and Dowty (1979) ). There are at least two reasons for the introduction of a small set of logical predicates. One reason is representational simplicity: it can, for instance, represent the semantic form of the past tense of a verb in English as past(e), where past is a predicate to be defined as part of an interpretation model and e is a variable of type v for eventualities, instead of introducing one of its definitions, which is the most common one [\u03c4 (e) \u2286 t \u2227 t \u227a n] into the semantic form. This semantic form requires the introduction of a real-time function \u03c4 from events to times, two temporal relations, those of inclusion \u2286 and precedence \u227a, and the notion of the present time n. Furthermore, it is a straightforward process to translate an entity structure like event(e1, ran, pred:run, tense:past) into a semantic form [run(e 1 ) \u2227 past(e 1 )]. Another reason is representational flexibility. ABS can first choose an appropriate definition or meaning from a set of possible definitions given in a model structure and then decide on an appropriate model M and an assignment g that together satisfy a semantic form like [run(e 1 ) \u2227 past(e 1 )]. This would be the case particularly if the past tense needs to be interpreted in a deitic or situational sense, as discussed by Partee (1973) and Quirk et al. (1985) . ABS upholds the principle of minimalism and partiality in its representation. It does not aim nor claim to treat the total interpretation of natural language expressions. Being based on a restricted set of markables in data, either textual or audio-visual, and their annotation, the task of annotation and that of its semantics such as ABS are bound to be restrictive: the semantics can be either simple or complex depending on what needs to be annotated. The granularity or complexity of semantic forms only depends on that of the input annotation structures and their substructures. The granularity of perceiving and constructing these structures, especially involving spatio-temporal information, is controlled or modulated through common-sense logic by the need of their applications, as is discussed by Miller and Shanahan (1999) and Gordon and Hobbs (2017) ).",
                "cite_spans": [
                    {
                        "start": 199,
                        "end": 214,
                        "text": "Montague (1974)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 219,
                        "end": 231,
                        "text": "Dowty (1979)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1501,
                        "end": 1514,
                        "text": "Partee (1973)",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 1519,
                        "end": 1538,
                        "text": "Quirk et al. (1985)",
                        "ref_id": "BIBREF50"
                    },
                    {
                        "start": 2349,
                        "end": 2375,
                        "text": "Miller and Shanahan (1999)",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 2380,
                        "end": 2403,
                        "text": "Gordon and Hobbs (2017)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivation for ABS",
                "sec_num": "2."
            },
            {
                "text": "The main characteristics of ABS are the following. First, ABS is based on annotation work, making use of the semantic annotation of coumminicative linguistic data for their semantic interpretation. Without relying on a pre-defined syntax, it manipulates minimally what is encoded in annotation structures and their substructures and converts these structures to logical forms that can be interpreted modeltheoretically. ABS is, for instance, designed to support spatio-temporal annotation by validating the abstract syntax of ISO-Space (ISO, 2020), as proposed and outlined by Lee (2016) , Lee (2018) , and Lee et al. (2018) as well as ISO-TimeML (ISO, 2012) and Pustejovsky et al. (2010) . Second, ABS only provides partial information on a restricted set of markables for semantic annotation. Unlike ordinary semantics like Montague Semantics (Montague, 1974) or even Minimal Recursion Semantics (Copestake et al., 2005) , ABS is not a general semantics that attempts to treat all aspects of language in an abstract way. Third, ABS leaves much of the information unspecified. It allows, for instance, some variables to occur unbound in well-formed semantic forms, as in the interval temporal logic of Pratt-Hartmann (2007) , while their scoping is left unspecified till the last stage of composing semantic forms or being interpreted (model-theoretically), unless the scope is specified as part of annotation. As a result, the semantic type of semantic forms is partially non-deterministic: it can be interpreted either as of type t potentially denoting a proposition or a truth-value or of a functional type \u03b1 \u2192 t, where \u03b1 is a well-defined type, denoting a set of individual objects or of higher-order objects. Fourth, ABS introduces a small set of predicates such as past and perfective for the specification of tense and aspect. It can also introduce the predicates holds and occurs, as defined in Allen (1984) and others, for the event-type dependent temporal anchoring into semantic forms. All these predicates that occur in semantic forms are defined as part of an interpretation model or leaving room for various uses of grammatical concepts or their contextually dependent interpretations. Being based on annotations, ABS must deal with complex issues in semantic annotation such as quantification, for instance, as raised by Bunt (2020a) and Bunt (2020b) or the meaning of determiners that include numerals as in \"two donkeys\" in language in general. It may also have to deal with the structure and substructures of eventualities, especially dealing with dynamic motions, as discussed in Mani and Pustejovsky (2012) . The complexity or granularity of ABS thus totally depends on that of annotation structures or the type of annotations. In addition, ABS upholds a couple of well-established basic assumptions as its theoretical basis:",
                "cite_spans": [
                    {
                        "start": 577,
                        "end": 587,
                        "text": "Lee (2016)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 590,
                        "end": 600,
                        "text": "Lee (2018)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 607,
                        "end": 624,
                        "text": "Lee et al. (2018)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 663,
                        "end": 688,
                        "text": "Pustejovsky et al. (2010)",
                        "ref_id": "BIBREF46"
                    },
                    {
                        "start": 845,
                        "end": 861,
                        "text": "(Montague, 1974)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 898,
                        "end": 922,
                        "text": "(Copestake et al., 2005)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 1203,
                        "end": 1224,
                        "text": "Pratt-Hartmann (2007)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 1904,
                        "end": 1916,
                        "text": "Allen (1984)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 2337,
                        "end": 2349,
                        "text": "Bunt (2020a)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 2354,
                        "end": 2366,
                        "text": "Bunt (2020b)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 2600,
                        "end": 2627,
                        "text": "Mani and Pustejovsky (2012)",
                        "ref_id": "BIBREF38"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic Assumptions",
                "sec_num": "3.1."
            },
            {
                "text": "1. Semantics is constrained by a type theory (Montague semantics: Montague (1974) and Dowty et al. (1981)) 2. Events are viewed as individuals (Neo-Davidsonian semantics: Davidson (1979) , , Parsons (1990) , Pustejovsky (1995)) 3. Variables are linked to discourse referents (Discourse representation theory: Kamp and Reyle (1993)) 3.2. Metamodel Figure 1 shows the general design of ABS , which consists of (1) a representation language ABS and (2) an interpretation model M with logical predicates defined. ABS is an annotation-based semantics, meaning that its representation language ABSr translates each a of the abstract specification of entity or link structures that constitute annotation structures to a well-defined semantic form \u03c3(a). ABS then interprets each semantic form \u03c3(a) with respect to a model M , a list D of definitions of logical predicates, and an assignment g of values to variables, [[\u03c3(a) ]] M,D,g . Each \u03c3(a) in ABSr is an expression of first-order logic, but each of the logical predicates that my occur in \u03c3(a) may be defined in terms of higher-order logic as part of the model structure. ",
                "cite_spans": [
                    {
                        "start": 45,
                        "end": 81,
                        "text": "(Montague semantics: Montague (1974)",
                        "ref_id": null
                    },
                    {
                        "start": 86,
                        "end": 106,
                        "text": "Dowty et al. (1981))",
                        "ref_id": null
                    },
                    {
                        "start": 171,
                        "end": 186,
                        "text": "Davidson (1979)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 191,
                        "end": 205,
                        "text": "Parsons (1990)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 208,
                        "end": 227,
                        "text": "Pustejovsky (1995))",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 309,
                        "end": 331,
                        "text": "Kamp and Reyle (1993))",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 909,
                        "end": 915,
                        "text": "[[\u03c3(a)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 347,
                        "end": 355,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Basic Assumptions",
                "sec_num": "3.1."
            },
            {
                "text": "ABS adopts the system of semantic types which Kracht (2002) and Pustejovsky et al. (2019) have developed. They extend the list of basic types from Montague (1974) 's basic set of types {e, t} to an enlarged list, as specified in (1).",
                "cite_spans": [
                    {
                        "start": 46,
                        "end": 59,
                        "text": "Kracht (2002)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 64,
                        "end": 89,
                        "text": "Pustejovsky et al. (2019)",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 147,
                        "end": 162,
                        "text": "Montague (1974)",
                        "ref_id": "BIBREF41"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic and Functional Types",
                "sec_num": "4.1."
            },
            {
                "text": "(1) Extended List of Types:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic and Functional Types",
                "sec_num": "4.1."
            },
            {
                "text": "[i] Basic Types: a. t, the type of truth-values b. e, the type of individual entities c. v, the type of eventualities d. i, the type of time points e. p, the type of spatial points f. m, the type of measures g. int, the type of intervals h. vec, the type of vectors 1 [ii] Functional Types: h. If \u03b1 and \u03b2 are any types, then \u03b1 \u2192 \u03b2 is a type.",
                "cite_spans": [
                    {
                        "start": 266,
                        "end": 267,
                        "text": "1",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic and Functional Types",
                "sec_num": "4.1."
            },
            {
                "text": "Type constructors such as \u2192 are introduced to define functional types: e.g., e \u2192 t, v \u2192 t, i \u2192 t, p \u2192 t or e \u2192 (e \u2192 t). Eventuality descriptions such as run or love are of type v \u2192 t, which is abbreviated to E (see Pustejovsky (1995) ), while the same symbol E is also used as as a symbol for a variable ranging over a set of eventualities or instances of an eventuality. The functional type p \u2192 t, denoting a set of spatial points, is often represented by a type r of regions 2 I may call these functional types E and r pseudo-basic types, for they are seldom analyzed as functional types. As introduced by Pustejovsky et al. (2019), path types are defined on the basis of the type of intervals int, which is defined [0, 1] \u2282 R, where R is a set of reals. A path \u03c0 will be that function int \u2192 p, which indexes locations on the path to values from the interval [0,1] (see Pustejovsky et al. (2019) ). A vector path \u03c0 v can also be defined as int \u2192 vec. An event path \u03c0 v will be defined as v \u2192 \u03c0 v as the function from eventualities to the vector path. Kracht (2002) and Pustejovsky et al. (2019) also introduce the group operator \u2022 to form group types, for example, p \u2022 for the group of spatial points. Link (1998) introduces two symbols * and and prefixes them to a predicate P to generate the group predicate * P and the plural predicate P , both based on the predicate P . Corresponding to each of the IDs of annotation structures or its substructures, entity or link structures, and of each of the types as defined in (1), there is a list of variables. Some of them are listed below: Table 1 : IDs, variables, and types",
                "cite_spans": [
                    {
                        "start": 215,
                        "end": 233,
                        "text": "Pustejovsky (1995)",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 872,
                        "end": 897,
                        "text": "Pustejovsky et al. (2019)",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 1053,
                        "end": 1066,
                        "text": "Kracht (2002)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 1071,
                        "end": 1096,
                        "text": "Pustejovsky et al. (2019)",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 1204,
                        "end": 1215,
                        "text": "Link (1998)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1589,
                        "end": 1596,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Basic and Functional Types",
                "sec_num": "4.1."
            },
            {
                "text": "Categories 3 Ids Types Variables annotation a 1,... t a 1 , ... entity x 1,... e x, x 1 , ... v s, e, e 1 , ... event e 1,... E, e \u2192 t E, ... timex3 t 1,... I, i \u2192 t t, t 1 , ... place pl 1,... r, p \u2192 t l, l 0 , ... path p 1,... \u03c0 v , int \u2192 p p, p 1 , ... event-path ep 1,... \u03c0 v \u2192 \u03c0 v measure me 1,... m m, m 1 , ... link l 1,... t",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic and Functional Types",
                "sec_num": "4.1."
            },
            {
                "text": "The list of variables is just a conventionally used list. To be precise, for each entity structure E that confirms to a recognized annotation scheme such as ISO-TimeML or ISO-Space, a variable is defined as a pair <var:\u03c4 >, where var is a variable and \u03c4 is a type. Conventionally, any lowercase Latin characters such as x, y, etc. or e and s are used as variable for any one of the basic types provided that its type is specified: for example, x:<var, p \u2192 t> to use x as a variable ranging over regions of type r, or p \u2192 t. Uppercase Latin characters or special characters like E are used for functional types: E is a variable for eventuality descriptions such as what is denoted by a verb like \"run\". Note that run(e) is of type t, while the eventuality description run is of type v \u2192 t and its argument e is a variable of eventuality type v. 4 ",
                "cite_spans": [
                    {
                        "start": 844,
                        "end": 845,
                        "text": "4",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Basic and Functional Types",
                "sec_num": "4.1."
            },
            {
                "text": "The part of ABSr that introduces the merge operators and their use is defined by Syntax absR . This syntax specifies what constitutes ABSr and how its constituents are formed. Some preliminary remarks are made before specifying the syntax of ABSr .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Syntax Proper",
                "sec_num": "4.2."
            },
            {
                "text": "Just like any language, the representation language ABSr is a language that consists of a non-empty set of strings of character symbols. Each of such character strings in",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminary Remarks",
                "sec_num": "4.2.1."
            },
            {
                "text": "ABSr is called a semantic form because it serves as an intermediary form for the model-theoretic interpretation of annotation structures. Further to clarify what ABSr is, I make some technical remarks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminary Remarks",
                "sec_num": "4.2.1."
            },
            {
                "text": "Remark 1: Mapping \u03c3 For any a that refers to the abstract specification of each of the entity or link structures which together constitute an annotation structure, independent of how these structures are represented, \u03c3 maps a to a semantic form in ABSr . \u03c3(a) is read as \"the semantic form of a\" in ABSr and is a well-formed form (wff) of ABSr . \u03c3(a) is considered independent of the format that represents it, but has to check the abstract syntax that validates the abstract specification a. Hence, a must be the same as the interpretation function I that is introduced in Bunt (2020b) and Bunt (2020a) . Remark 3: Typing ABSr is a type-based language. Hence, every well-formed (semantic) form A and any c of its constituents such as variables in ABSr is assigned a type. The type \u03c4 of A or c is represented as a pair: e.g., <A:\u03c4 >, <c:\u03c4 >, <var:\u03c4 >, or as a subscript to A or one of its constituents:",
                "cite_spans": [
                    {
                        "start": 591,
                        "end": 603,
                        "text": "Bunt (2020a)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminary Remarks",
                "sec_num": "4.2.1."
            },
            {
                "text": "A \u03c4 , c \u03c4 or x e .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminary Remarks",
                "sec_num": "4.2.1."
            },
            {
                "text": "Like the syntax of an ordinary language, Syntax absR consists of a vocabulary and a set of formation rules, as specified in (2).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Formulation of Syntactic Rules",
                "sec_num": "4.2.2."
            },
            {
                "text": "(2) Syntax absR = <V ,R> such that a. V is a vocabulary that includes binary merge operators {\u2295, } over the set of semantic forms in ABSr and their subtypes, and b. R is a set of composition rules for merging, as formulated in (7).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Formulation of Syntactic Rules",
                "sec_num": "4.2.2."
            },
            {
                "text": "There are two sorts of well-formed semantic forms (swff) in ABSr: basic and composed, each defined by a rule in R, a list of rules, in (4.2.3) and (7).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Formulation of Syntactic Rules",
                "sec_num": "4.2.2."
            },
            {
                "text": "Atomic semantic forms are defined by Rule A.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atomic Semantic Forms",
                "sec_num": "4.2.3."
            },
            {
                "text": "(3) Rule A for Atomic semantic forms:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atomic Semantic Forms",
                "sec_num": "4.2.3."
            },
            {
                "text": "For any abstract specification aEc of an entity structure E of category c, 5 and a type \u03c4 associated with cat, \u03c3(a Ec ) \u03c4 is a well-formed form of type \u03c4 in ABSr .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atomic Semantic Forms",
                "sec_num": "4.2.3."
            },
            {
                "text": "Remark 4: a Ec in \u03c3(a Ec ) \u03c4 is replaced by the ID of Ec.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atomic Semantic Forms",
                "sec_num": "4.2.3."
            },
            {
                "text": "Following DRT (Kamp and Reyle, 1993) , the new occurrences of variables in a semantic form are registered.",
                "cite_spans": [
                    {
                        "start": 14,
                        "end": 36,
                        "text": "(Kamp and Reyle, 1993)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atomic Semantic Forms",
                "sec_num": "4.2.3."
            },
            {
                "text": "(4) Rule A.1 for Variable Registry: Any variable that is newly introduced to \u03c3(a Ec ) is listed in the preamble: i.e., \u03a3 var:type \u03c3(a Ec ). Note: These variables may not be registered if they can be recognized contextually.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atomic Semantic Forms",
                "sec_num": "4.2.3."
            },
            {
                "text": "The variables in the preamble \u03a3 var:type are treated as discourse referents, to which each occurrence of the variables in \u03c3(a Ec ) is bound.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atomic Semantic Forms",
                "sec_num": "4.2.3."
            },
            {
                "text": "Consider an example, annotated as in (5):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atomic Semantic Forms",
                "sec_num": "4.2.3."
            },
            {
                "text": "(5) a. Fido ran w2 away w3 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atomic Semantic Forms",
                "sec_num": "4.2.3."
            },
            {
                "text": "b. Annotation(id=a5) event(e1, w2-3, pred:run, tense:past)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atomic Semantic Forms",
                "sec_num": "4.2.3."
            },
            {
                "text": "c. Semantic form: \u03c3(e1 e ) \u03b1 := {e 1 :e}[run(e 1 ) t \u2227 past(e 1 ) t ] \u03b1 where \":=\" is a meta-symbol standing for \"is\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atomic Semantic Forms",
                "sec_num": "4.2.3."
            },
            {
                "text": "Some notes are needed here. (1) For now temporally, the type of \u03c3(e1) is left unspecified: it is only marked with \u03b1, whereas the type of e 1 in the registry is specified as the individual type e. (2) The ID \"e1\" in \u03c3(e1) does not refer to the entity structure of category event, but its abstract specification that conforms to the abstract syntax of the relevant annotation scheme. 3The representation of \u03a3 var:type \u03c3(a Ec ) is exactly the same as DRS except that \u03c3(e1) in ABSr is typed, as in Bos et al. 2017's Groningen Meaning Bank (GMB). The semantic form in (5) can be converted to a type-based DRS except that the type of the entire DRS is not specified.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atomic Semantic Forms",
                "sec_num": "4.2.3."
            },
            {
                "text": "e 1 :e run(e 1 ) t past(e 1 ) t",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Atomic Semantic Forms",
                "sec_num": "4.2.3."
            },
            {
                "text": "The current version of ABSr introduces two merge operators, \u2295 and , and their subtypes each marked with a different superscript to represent the merging of (1) two semantic forms or (2) a pair of semantic forms with a functorlike semantic form. The second type of merging is motivated by the treatment of tripartite link structures of the form <\u03b7, E, \u03c1>, where \u03c1 is a type of relation between an entity \u03b7 and a set E of entities, in ABSr . These operators are non-Boolean connectives. They are needed to be able to merge semantic forms of type other than the truth-type t. More operators may need to be introduced to treat finer-grained compositions, especially involving the semantics of determiners that include generalized quantifiers, plurals, and the merging of scopes. As suggested by Bunt (personal communication), different symbols will be introduced to represent various subtypes of composition. 6 For the formulation of composition rules, it is assumed that these rules hold for any well-formed semantic forms A \u03b1 , B \u03b2 , and C \u03b3 , each of which is typed as \u03b1, \u03b2, and \u03b3, respectively. For these semantic forms, there are two major types of composition, conjunctive (\u2295) and distributive ( ), and then their subtypes:",
                "cite_spans": [
                    {
                        "start": 905,
                        "end": 906,
                        "text": "6",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "(7) Types of composition:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "Conjunctive composition (\u2295): ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "a. [A t \u2295 bo C t ] \u03b1 := [A t \u2227 C t ] t b. [{A t , B t } \u03b1 \u2295 bo C t ] := [[A t \u2227 B t ] t \u2227 C t ]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "Rule 1 bo applies to most of the annotation structures in ISO-TimeML (ISO, 2012), ISO-Space (ISO, 2020), and ISO standard on semantic role annotation (ISO, 2014). For illustration, consider 9 (10) a. Semantic forms of the entity structures:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "\u03c3(x1) t := {x 1 :e}[dog(x 1 ) \u2227 named(x 1 , F ido)] \u03c3(e1) t := {e 1 :v}[bark(e 1 ) \u2227 presProg(e 1 )]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "b. Semantic form of Semantic role link: \u03c3(srlink) t := {x 1 :e, e 1 :v}",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "[{\u03c3(x1) t , \u03c3(e 1 ) t } \u2295 bo agent(e 1 , x 1 ) t ] := {x 1 :e, e 1 :v} [[\u03c3(x1) t \u2227 \u03c3(e 1 ) t ] \u2227 agent(e 1 , x 1 ) t ] := {x 1 :e, e 1 :v} [[dog(x 1 ) \u2227 named(x 1 , F ido)] \u2227 [bark(e 1 ) \u2227 presProg(e 1 )] \u2227 agent(e 1 , x 1 )]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "c. Semantic form of annotation structure: \u03c3(a 9 ) := {x:e, e:v}\u03c3(srlink)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "by Variable renaming and binding := {x:e, e:v}[bark(e) \u2227 presProg(e)] \u2227 agent(e, x)]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "Rule 1 fa Functional conjunctive composition reflects the functional application of a functor applying to its argument(s) in Montague Semantics (Montague, 1974) or (Dowty et al., 1981) . Rule 1 fa is formulated in (11):",
                "cite_spans": [
                    {
                        "start": 144,
                        "end": 160,
                        "text": "(Montague, 1974)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 164,
                        "end": 184,
                        "text": "(Dowty et al., 1981)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "(11) Rule 1 fa Functional conjunctive composition: a. [A \u03b1 \u2295 fa C \u03b1\u2192t) ] := [A t \u2227 C t ] or b. [{A \u03b1 , B \u03b2 }] \u2295 fa C \u03b2\u2192(\u03b1\u2192t) ] := [[A t \u2227 B t ] \u2227 C t ]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "Example (9) can be analyzed in terms of a functor-argument analysis by assigning a functional type \u03b1 \u2192 t, where \u03b1 is a type, to the type of each of the annotation structures.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "(12) a. Semantic forms of the entity structures:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "\u03c3(x1) e\u2192t := {x 1 :e}[dog(x 1 ) \u2227 named(x 1 , F ido)] \u03c3(e1) v\u2192t := {e 1 :v}[bark(e 1 )\u2227 presProg(e 1 )]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "b. Semantic form of Semantic role link: The functional composition with the operator \u2295 fa is equivalent to the functional application in \u03bb-calculus, as shown by (13):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "\u03c3(srlink) := {x 1 :e, e 1 :v} [{\u03c3(x1) e\u2192t , \u03c3(e 1 ) v\u2192t } \u2295 f a agent(e 1 , x 1 ) (v\u2192t)\u2192((e\u2192t)\u2192t) ] := {x 1 :e, e 1 :v} [[\u03c3(x1) t \u2227 \u03c3(e 1 ) t ] \u2227 agent(e 1 , x 1 ) t ] := {x 1 :e, e 1 :v} [[dog(x 1 ) \u2227 named(x 1 , F ido)] t \u2227 [bark(e 1 ) \u2227 presProg(e 1 )] t \u2227 agent(e 1 , x 1 ) t ]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "(13) a. Arguments:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "\u03c3(x1) e\u2192t := \u03bbx 1 [dog(x 1 ) \u2227 named(x 1 , F ido)] \u03c3(e1) v\u2192t := \u03bbe 1 [bark(e 1 )\u2227 presProg(e 1 )]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "b. Funtor for Semantic role link applying to the two arguments in (a):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "\u03c3(srlink) := [\u03bbQ[\u03bbP [P (x 1 ) \u2227 Q(e 1 ) \u2227 agent(e, x)](\u03c3(e 1 ))](\u03c3(x 1 ))]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "By applying four \u03bb-conversions to (13b), we obtain the same result as (12c). One noticeable problem with the functional application in \u03bb-calculus is the placing of the arguments in the right order when the functor applies to them. Unlike the equation solving approach proposed here, Kamp and Reyle (1993) represents names like Fido as F ido(x) of type t in DRSs. This is acceptable but fails to apply the substitution of identicals. Note also that the equation solving approach can be extended to basic types other than entity type e.",
                "cite_spans": [
                    {
                        "start": 283,
                        "end": 304,
                        "text": "Kamp and Reyle (1993)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composed Semantic Forms",
                "sec_num": "4.2.4."
            },
            {
                "text": "[{A \u03b1 , B \u03b2 } C \u03b2\u2192(\u03b1\u2192t) ] := [A t \u2192 c B t ] t ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule 2 Distributive Composition ( ):",
                "sec_num": null
            },
            {
                "text": "where \u2192c refers to an implication the type of which needs to be specified for each case and A and B are minimal modifications of A and B.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule 2 Distributive Composition ( ):",
                "sec_num": null
            },
            {
                "text": "The conjunctive operator \u2295 and its subtypes generate truthfunctional conjunctions. In contrast, the distributive operator possibly with its subtypes generates non-conjunctive relations of implication the type or meaning of which needs further analysis. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule 2 Distributive Composition ( ):",
                "sec_num": null
            },
            {
                "text": ":= {e 1 , t 1 }[{\u03c3(e1) v\u2192t , \u03c3(t1) i\u2192t } \u2295 f a occurs(e 1 , t 1 ) (i\u2192t)((v\u2192t)\u2192t) ] := {e 1 , t 1 }[[\u03c3(e1) t \u2227 \u03c3(t1) t ] \u2227 \u03c3(tlink) t ] :={e 1 , t 1 }[[die(e 1 ) \u2227 past(e 1 )] \u2227 year(t 1 ,2019) \u2227 occurs(e 1 , t 1 )]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "c. Semantic form of annotation structure: \u03c3(a 17 ) := {e, t}\u03c3(tlink) := {e, t}[die(e) \u2227 past(e) \u2227 year(t,2019) \u2227occurs(e, t)]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "Rule 1 eq Equation solving (\u2295 eq ) applies to the annotation structures that contain names or other basic types. Consider an example taken from Pustejovsky et al. 2019 The treatment of a spatial relation given in (19d,e) fails to indicate which location stands for x and which for y. In fact, one of the difficulties with \u03bb-operation is where to place its arguments. Example (19) can be treated more explicitly with Rule 1 eq equation solving. With the rule of substitution of identicals, we then obtain the same result in(G, S), as given in (19e).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "Rule 2 Distributive composition with the operator applies to subordination or quantification constructions. Consider example (21), called equi-NP construction. 8",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "(21) a. John x1,w1 wants e1,w2 to teach e2,w4 on Monday.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "b. Annotation (id = a 21 ): Entity structures: entity(x1, w1, form:John) event(e1, w2, pred:want, theme(e1,e2)) event(e2, w4, pred:teach, agent(e2,x1)) Subordination link structure: slink(e1, e2, modal) 9 Pustejovsky et al. (2005) annotated the subordination relation between two events, want(e 1 ) and teach(e 2 ) as being modal. Montague Semantics, in contrast, treats it as a relation between the intensional predicate want and the property of teaching. However, the intensionality of the predicate want in the main clause requires Rule 2 i with an operator i , a subtype of disjunctive composition for intensional cases like \u03c3(a 21 ).",
                "cite_spans": [
                    {
                        "start": 205,
                        "end": 230,
                        "text": "Pustejovsky et al. (2005)",
                        "ref_id": "BIBREF45"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "(22) a. Semantic forms of the entity structures: The semantic form \u03c3(a 21 ) shows that the predicate want has the event e 2 as its theme and that the agent of the predicate go in the subordinated complement is John. The non-Boolean connective \u2192 int connects the semantic forms of the two components of the subordination construction (21) involving the intensional predicate want. The connective \u2192 i needs to be defined as part of a model structure with a tentative definition as in (23):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "\u03c3(x1) t := {x 1 }[x 1 =John] \u03c3(e1) E ,where E=(v",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "(23) Definition of \u2192 int (tentative)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "Given a model M for a modal logic with a set W of possible worlds W that includes the actual world w0 and an intentional world wi accessible from w0, and two semantic forms, \u03c6 and \u03c8, of type t,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "[[\u03c6 \u2192 i \u03c8]] M,w0 =1 iff [[\u03c8]] M,wi =1 provided [[\u03c6]] M,w0 =1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "This means that the eventuality of \"teaching (on Monday)\" is or becomes realized in the mind (intended world) of the experiencer John only.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "8 Annotation a21 is simplified to focus on the subordination link (slink).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "9 This example is taken from Pustejovsky et al. 2005, p. 553.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Illustrations",
                "sec_num": "4.3."
            },
            {
                "text": "Semantic forms are subject to a model-theoretic interpretation. Each well-formed semantic form \u03c3(a) of an annotation structure a is interpreted with respect to a model M and an assignment g of values to variables. [[\u03c3(a) ]] M,g is then understood as the interpretation or denotation of \u03c3(a).",
                "cite_spans": [
                    {
                        "start": 214,
                        "end": 220,
                        "text": "[[\u03c3(a)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "General",
                "sec_num": "5.1."
            },
            {
                "text": "The structure of each model M depends on the kind of semantic annotation. For the interpretation of temporal annotation, for instance, a set of times T and a set of temporal relations such as the precedence relation \u227a over T become a part of its model structure. Furthermore, the construction of such a model is constrained by some possible uses or definitions of logical predicates, called meaning postulates, as is discussed in 5.2.1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "General",
                "sec_num": "5.1."
            },
            {
                "text": "There may be some unbound occurrences of variables in well-formed semantic forms of ABSr . By Rule A.1 for Variable Registry, these variables may be either bound to the discourse referents registered before the semantic form of each of the substructures of an annotation structure or bound existentially when their scope is explicitly specified. Or else they can be interpreted with the assignment g as if they were bound existentially. as in Kamp and Reyle (1993, page 521) . Then its definition is given in (25) as part of an interpretation model structure.",
                "cite_spans": [
                    {
                        "start": 443,
                        "end": 474,
                        "text": "Kamp and Reyle (1993, page 521)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Interpretation of unbound occurrences of variables",
                "sec_num": "5.2."
            },
            {
                "text": "(25) Truth Definition of Predicate past:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meaning Postulates as Constraints",
                "sec_num": "5.2.1."
            },
            {
                "text": "Given an event e, a runtime function \u03c4 from events to times, a time t, and the present time n, as specified in a model structure M , past(e) is true with respect to a model M if and only if \u03c4 (e) \u2286 t and t \u227a n.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meaning Postulates as Constraints",
                "sec_num": "5.2.1."
            },
            {
                "text": "The predicate past may be defined differently to accommodate its deitic or situational use (see Partee (1973) or Quirk et al. (1985) ). Semantic form (26c) is then interpreted by the definition of presPerfect given as part of a model structure. Otherwise, its representation gets complicated similar to DRS, for instance. Here is an example from Cann et al. (2009) . 27 The interpretation of \u03c3(e 1 ) in (28c), for instance, requires the truth-conditional definition of presPerfect(e) that reflects those notions of the perfective aspect encoded in DRS (27b) above. Furthermore, the proposed way of treating tense, aspect, and other complex predicates allows different interpretations or uses of them. Those predicates that constitute part of the representation language of semantic forms in ABSr , however, require truth-definitions or meaning postulates that constrain and define a set of admissible model structures (see Carnap (1947 Carnap ( 1956 Montague (1974; Dowty (1979) ).",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 109,
                        "text": "Partee (1973)",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 113,
                        "end": 132,
                        "text": "Quirk et al. (1985)",
                        "ref_id": "BIBREF50"
                    },
                    {
                        "start": 346,
                        "end": 364,
                        "text": "Cann et al. (2009)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 923,
                        "end": 935,
                        "text": "Carnap (1947",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 936,
                        "end": 949,
                        "text": "Carnap ( 1956",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 950,
                        "end": 965,
                        "text": "Montague (1974;",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 966,
                        "end": 978,
                        "text": "Dowty (1979)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meaning Postulates as Constraints",
                "sec_num": "5.2.1."
            },
            {
                "text": "6. Applications",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meaning Postulates as Constraints",
                "sec_num": "5.2.1."
            },
            {
                "text": "ISO-Space (ISO, 2020) introduces the movement link (movelink) to annotate motions involving paths. The predicate traverses associated with motions is one of the logical predicates that need to be defined in the model structure of ABS . It can also be illustrated how the semantic forms involving motions and paths can be derived through Rule 1 bo Boolean conjunctive composition, as is demonstrated in (29).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Boolean Conjunctive Composition",
                "sec_num": "6.1."
            },
            {
                "text": "(29) a. Marakbles: Mia x1,w1 arrived m1,w2 \u2205 ep1 in Boston pl1,w4 yesterday.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Boolean Conjunctive Composition",
                "sec_num": "6.1."
            },
            {
                "text": "b. Annotation (id=a 29 ): Entity structures: entity(x1,w1, type:person, form:nam) motion(m1,w2, pred:arrive, type: transition, tense:past) eventPath(ep1,\u2205, start:unspecified, end:pl1, trigger(m1,ep1)) place(pl1,w4, type:city, form:nam) Movement link structure: movelink(figure:x1, ground:ep1, relType:traverses)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Boolean Conjunctive Composition",
                "sec_num": "6.1."
            },
            {
                "text": "Each markable is identified with an ID associated with its category and anchored to a word. Motions, as denoted by verbs like arrive, trigger a path, called event-path. This path is marked with a null category or non-consuming tag \u2205 because it is not associated with any non-null string of words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Boolean Conjunctive Composition",
                "sec_num": "6.1."
            },
            {
                "text": "(30) a. Semantic forms of entity structures:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Boolean Conjunctive Composition",
                "sec_num": "6.1."
            },
            {
                "text": "\u03c3(x1) t := [person(x 1 ) \u2227 named(x 1 , M ia)] \u03c3(m1) t := [arrive(m 1 ) \u2227 past(m 1 )] \u03c3(ep1) t := [start(\u03c0, \u03b3(l 0 )) \u2227 end(\u03c0, l 1 ) \u2227 triggers(m 1 , \u03c0)] \u03c3(pl1) t := [named(l 1 , Boston) \u2227 city(l 1 )]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Boolean Conjunctive Composition",
                "sec_num": "6.1."
            },
            {
                "text": "b. Semantic form of the movement link structure:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Boolean Conjunctive Composition",
                "sec_num": "6.1."
            },
            {
                "text": "\u03c3(movelink) := [{\u03c3(x1) t , \u03c3(ep1) t } \u2295 bo traverses(x, \u03c0) t ] := [[[person(x 1 ) \u2227 named(x 1 , M ia)] \u2227 [start(\u03c0, \u03b3(l 0 )) \u2227 end(\u03c0, l 1 ) \u2227 triggers(m 1 , \u03c0)] \u2227 [named(l 1 , Boston) \u2227 city(l 1 )]] \u2227 traverses(x, \u03c0)]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Boolean Conjunctive Composition",
                "sec_num": "6.1."
            },
            {
                "text": "c. Annotation structure:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Boolean Conjunctive Composition",
                "sec_num": "6.1."
            },
            {
                "text": "\u03c3(a 29 ) := {x 1 , \u03c0 1 , l 0 , l 1 , m 1 }\u03c3(movelink) =: {x, \u03c0, l 0 , l 1 , m} [[[person(x) \u2227 named(x, M ia)] \u2227 [start(\u03c0, \u03b3(l 0 )) \u2227 end(\u03c0, l 1 ) \u2227 triggers(m, \u03c0)] \u2227 [named(l 1 , Boston) \u2227 city(l 1 )]] \u2227 traverses(x, \u03c0)]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Boolean Conjunctive Composition",
                "sec_num": "6.1."
            },
            {
                "text": "All of the semantic forms that are derived through various links have been shown to undergo Rule 1 bo Boolean conjunctive composition only. This was illustrated with srlink for semantic role labeling, tlink for temporal anchoring, qslink for the location of regions, and movelink for the annotation of motions involving their movers and event-paths.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Boolean Conjunctive Composition",
                "sec_num": "6.1."
            },
            {
                "text": "Besides its subtype int for intensional subordinate constructions, the distributive composition can have other subtypes. Here I introduce Rule 2 imp with the operator imp for the case of implication. The word if in English triggers a conditional sentence which is often interpreted as a d. \u03c3(a 32b ) := {e 1 , e 2 , e 3 .t 1 , \u03b3(t2)}\u03c3(slink) [[rain(e 1 ) \u2227 date(t 1 ,2019-02-04) \u2227 occurs(e 1 , t 1 )] t \u2192 [[beCanceled(e 3 ) \u2227 theme(e 3 , e 2 ) \u2227 future(e 3 )] \u2227 \u03b3(t 2 ) \u2227 occurs(e 3 , \u03b3(t 2 )) t ]]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Distributive Composition for Conditionals",
                "sec_num": "6.2."
            },
            {
                "text": "With respect to the operator imp , the semantic form of the antecedent, \u03c3(tl1), is understood to be the restrictor R and that of the consequent, \u03c3(tl2), is the nuclear scope N , while the relation of implication between them is represented by the operator \u2192.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Distributive Composition for Conditionals",
                "sec_num": "6.2."
            },
            {
                "text": "There have been several theoretical works showing how annotation structures can be interpreted and a variety of largescale computational efforts to implement them for computational applications. Some of them are annotation-based semantics in one way or another. Hobbs and Pustejovsky (2003) develop a semantics for TimeML (Pustejovsky et al., 2005) , based on the OWLtime ontology. They provide a fine-grained way of annotating and interpreting various temporal relations. ABS is designed to accommodate the OWL-time ontology in defining its logical predicates related to temporal annotation. Katz (2007) introduces a denotational semantics that directly interprets TimeML annotation structures represented in XML. The model structure proposed in Katz (2007) becomes part of the temporal model structure for ABS . Bunt (2007) and Bunt (2011) introduce a semantics for semantic annotation. This eventually develops into a semantics based on the abstract syntax of a semantic annotation scheme. Bunt (2020a) and Bunt (2020b) have developed QuantML, a markup language for quantification, that can apply to the annotation and interpretation of a full-range of features related to quantification such as the definiteness, involvement or collectivity (distributivity) of entities or scope ambiguity involving quantifiers and eventualities. Lee (2008) and Lee (2011) follow the OWL-time ontology and a compositional approach to work on temporal annotations with an extensive use of \u03bb-operations. It shows some degree of complexity in the use of \u03bb-operations when they are recursively embedded, for it requires to raise the order of variables as the embedding gets deeper. One of the reasons for introducing ABSr is to avoid recursive embedding and substitutions (see Hausser (2015) ). For now, ABSr has Rule 1 sub Substitutive conjunctive composition, but this should be deleted eventually except for the illustration of rudimentary annotations involving names and other basic types. Database Semantics (DBS) (Hausser, 2006) provides a theoretical foundation for the understanding of language analysis and generation without recursions and substitutions, but with the associative linear processing of language. This has motivated the design of ABS to some extent. Then there are other types of semantics that present different ways of representing meaning in language. Banarescu et al. (2013) introduce AMR (the Abstract Meaning Representation) to represent the semantic roles mainly based on PropBank in a logical format, PENNMAN format, or directed graph structure. He (2018) also introduces a way of annotating semantic roles, which is called Shallow Semantics, without relying on pre-defined syntactic structures but introducing syntax-independent span-based neural models or labelled span-graph networks (LSGNs). Based on syntax-free annotations, ABSr is also syntaxindependent. Its current representation format is strictly linear but needs to move onto a graphic mode for visual purposes. The composition rules of ABSr are constrained by type matching and also syntax-independent unlike Moens and Steedman (1988) 's categorial grammar or Kamp and Reyle (1993) 's DRSs. Dobnik et al. (2012) and Dobnik and Cooper (2017) introduce a type theory with records to constrain semantic representations and their manipulations in language processing. Their type system, especially related to spatial perception, will properly orient the spatiotemporal annotation of ISO-Space and meaning representation through ABS . The earlier work of Pustejovsky (2001) on type construction also lays a basis for the type theory of ABS for a finer-grained treatment of entities and eventualities.",
                "cite_spans": [
                    {
                        "start": 262,
                        "end": 290,
                        "text": "Hobbs and Pustejovsky (2003)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 322,
                        "end": 348,
                        "text": "(Pustejovsky et al., 2005)",
                        "ref_id": "BIBREF45"
                    },
                    {
                        "start": 593,
                        "end": 604,
                        "text": "Katz (2007)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 747,
                        "end": 758,
                        "text": "Katz (2007)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 814,
                        "end": 825,
                        "text": "Bunt (2007)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 830,
                        "end": 841,
                        "text": "Bunt (2011)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 993,
                        "end": 1005,
                        "text": "Bunt (2020a)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1010,
                        "end": 1022,
                        "text": "Bunt (2020b)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 1334,
                        "end": 1344,
                        "text": "Lee (2008)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 1349,
                        "end": 1359,
                        "text": "Lee (2011)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 1760,
                        "end": 1774,
                        "text": "Hausser (2015)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 2002,
                        "end": 2017,
                        "text": "(Hausser, 2006)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 2362,
                        "end": 2385,
                        "text": "Banarescu et al. (2013)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 3087,
                        "end": 3112,
                        "text": "Moens and Steedman (1988)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 3138,
                        "end": 3159,
                        "text": "Kamp and Reyle (1993)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 3169,
                        "end": 3189,
                        "text": "Dobnik et al. (2012)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 3194,
                        "end": 3218,
                        "text": "Dobnik and Cooper (2017)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 3528,
                        "end": 3546,
                        "text": "Pustejovsky (2001)",
                        "ref_id": "BIBREF49"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "7.1."
            },
            {
                "text": "For the computational applications of semantic annotations, the Gronigen Meaning Bank (GMB) (Bos et al., 2017) is very much related to the basic motivation of ABS in efforts to modify the classical version of DRT by making its syntax based on a (Montagovian) type systems consisting of two types, e and t, and by translating DRSs into a firstorder logic only, for instance, while deleting so-called duplex conditions in DRSs. The basic design of the Parellel Meaning Bank (PMB) also adopts DRT as its formalism for meaning representation while adopting Combinatory Categorial Grammar as its syntax. Since it applies to multilingual annotation, ABS can make use of it when the ISO standards on semantic annotation are extended to multilingual annotations, especially for the purposes of multilingual translations. Nevertheless, the theoretical framework of ABS and its representation language is conservative in practice, being essentially based on the \u03bb-calculus and the graphic representation of Kamp and Reyle (1993) 's DRT. This will be shown in the ensuing Subsection 7.2.",
                "cite_spans": [
                    {
                        "start": 92,
                        "end": 110,
                        "text": "(Bos et al., 2017)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 997,
                        "end": 1018,
                        "text": "Kamp and Reyle (1993)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "7.1."
            },
            {
                "text": "The composition of semantic forms is constrained by their semantic types. These types simply reflect those in Montague semantics (Montague, 1974) and (Dowty et al., 1981) and also the extended type theory by Kracht (2002) and Pustejovsky et al. (2019) , thus making all these semantic forms isomorphic to those \u03bb-constructions in \u03bb-calculus. If such a typing of the semantic forms of annotation structures is ignored or if each of the semantic forms is treated as being of type t, then these semantic forms can easily be converted to DRSs (Kamp and Reyle, 1993) . There is an option to choose a type-theoretic semantics or not. ABS allows both but prefers to choose a type-theoretic semantics to constrain its representation language ABSr , while enriching its interpretation model structure, as shown in Figure 2 . 11 11 Although Figure 2 indicates that DRT/DRSs are not based on If a type theory is adopted, then the logical predicates can be defined in terms of type-theoretic higher-order logic.",
                "cite_spans": [
                    {
                        "start": 129,
                        "end": 145,
                        "text": "(Montague, 1974)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 150,
                        "end": 170,
                        "text": "(Dowty et al., 1981)",
                        "ref_id": null
                    },
                    {
                        "start": 208,
                        "end": 221,
                        "text": "Kracht (2002)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 226,
                        "end": 251,
                        "text": "Pustejovsky et al. (2019)",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 539,
                        "end": 561,
                        "text": "(Kamp and Reyle, 1993)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 816,
                        "end": 821,
                        "text": "11 11",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 805,
                        "end": 813,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 831,
                        "end": 839,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "In ABS , the choice of a theory depends on the treatment of unbound variables and unspecified types. ABS treats logical forms with occurrences of unbound variables as wellformed semantic forms. Individual (or predicate) variables may occur unbound in well-formed semantic forms, as in the interval temporal logic of Pratt-Hartmann (2007) . 12 Here is an example with a markable \"visited\" e1 :",
                "cite_spans": [
                    {
                        "start": 316,
                        "end": 337,
                        "text": "Pratt-Hartmann (2007)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 340,
                        "end": 342,
                        "text": "12",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "(34) a. Data:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "Mia x1 visited e1 Berlin, New York, [last year] t1 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "b. Annotation (id=a 5.unbound ): Entity structures: event(e1, m1, pred:visit, tense:past) timex3(t1, m2, type:gYear, value:2019)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "Link structure: tlink(e1, t1, isIncluded) c. Semantic Forms:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "\u03c3(e1) \u03b1 := {e 1 }[visit(e 1 ) \u2227 past(e 1 )] \u03c3(t1) \u03b2 := {t 1 }[gYear=(t 1 , 2019)] \u03c3(tlink) \u03b3 := {e 1 , t 1 }[{\u03c3(e1), \u03c3(t1)} occurs(e 1 , t 1 )]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "Each of the semantic forms in (34c) contains some variables which are registered in its preamble. In ABSr , these variables can be bound in two different ways, either by the existential quantifier or by the \u03bb-operator. The assignment of a type to each semantic form depends on which way these (registered) variables are bound. The type of each semantic form is:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "\u2022 Case 1: either of type t (truth-value carrying) as if the unbound variables were bound by the existential quantifier \u2203: i.e., \u2203{e}[visit(e) \u2227 past(e)] (type t)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "\u2022 Case 2: or of some functional type (predicate) as if the unbound variables were bound by the \u03bb-operator: i.e., \u03bbe[visit(e) \u2227 past(e)] (type v \u2192 t) a type theory, the DRT formalism adopted by Bos et al. (2017) is based on a type theory.",
                "cite_spans": [
                    {
                        "start": 193,
                        "end": 210,
                        "text": "Bos et al. (2017)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "12 ABS has no predicate variables.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "Depending on which case is chosen, the semantic form of a link like \u03c3(tlink) in (34c) undergoes a different rule of composition.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "Case 1 allows the conversion of semantic forms in ABS to DRSs. As shown in (35), Case 1 Boolean conjunctive composition (\u2295 bo ) can easily be converted to an equivalent DRS.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "(36) Case 1 in DRS: e t visit(e) past(e) gYear (t,2019) occurs(e,t)",
                "cite_spans": [
                    {
                        "start": 47,
                        "end": 55,
                        "text": "(t,2019)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "Although the application of Rule 1 bo Boolean conjunctive composition is type-constrained, there is no such a constraint on the derivation of DRSs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "Case 2 allows the conversion of semantic forms in ABSr to well-formed forms in \u03bb-calculus as in Montague Semantics (Montague, 1974) . For the illustration of Case 2, consider example (34), as was just given:",
                "cite_spans": [
                    {
                        "start": 115,
                        "end": 131,
                        "text": "(Montague, 1974)",
                        "ref_id": "BIBREF41"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "(37) Case 2: Rule 2 Functional conjunctive composition (\u2295 f a ): a. \u03c3(tlink) t := [{\u03c3(e 1 ) E , \u03c3(t 1 ) I } \u2295 f a occurs(e 1 , t 1 ) I\u2192(E\u2192t) ] := [[visit(e 1 ) \u2227 past(e 1 )] \u2227 gYear(t 1 ,2019) \u2227 occurs(e 1 , t 1 )] b. \u03c3(a 34 ) = \u03c3(tlink) t",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "The semantic form \u03c3(tlink) in (37) is treated of a functional type, I \u2192 (E \u2192 t), where I is i \u2192 t and E is v \u2192 t. Then the semantic forms \u03c3(e1) and \u03c3(t1) are treated as arguments of \u03c3(tlink) such that they are of types E (set of eventuality descriptions) and I (set of time points), respectively. In the process of the Boolean conjunctive composition, the unbound occurrences of the variables are anchored to the discourse referents e and t, as in DRS, or existentially quantified, while adjusting their variable names accordingly. As for the case of the functional conjunctive composition, the whole process is understood as if all the semantic forms were subject to a series of \u03bb-conversions as in (38):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "(38) \u03bb-operations: a. \u03c3(e 1 ) v\u2192t := \u03bbe 1 [visit(e 1 ) \u2227 past(e 1 )] b. \u03c3(t 1 ) i\u2192t := \u03bbt 1 [gYear(t 1 ,2019)] c. \u03c3(tlink) t := \u03bbT \u03bbE\u2203{e, t}[E(e) \u2227 T (t) \u2227 occurs(e, t)] (\u03c3(e 1 ))(\u03c3(t 1 )) := \u2203{e, t}[\u03c3(e1)(e) \u2227 \u03c3(t1)(t)] := \u2203{e, t} [[visit(e) \u2227 past(e)] \u2227 gYear(t,2019) \u2227 occurs(e, t)]",
                "cite_spans": [
                    {
                        "start": 232,
                        "end": 242,
                        "text": "[[visit(e)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "It should again be stated that the derivation of semantic forms in ABSr does not undergo such \u03bb-operations. The application of Rule 2 Functional conjunctive composition is only implicitly understood to undergo such operations. Unlike semantic forms that involve \u03bb-operations, the application of the \u2295 f a in ABSr does not introduce predicate variables of a higher-order, but individual variables of the first order only. This keeps ABSr to remain at the level of first-order.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Convertibility",
                "sec_num": "7.2."
            },
            {
                "text": "As in other parts of ISO 24617 standards on semantic annotation, this paper has a gap in dealing with the semantics of entities and determiners that include generalized quantifiers. Specifically, this paper fails to fully accommodate the new developments on quantification that have been made by Bunt (2020a) and Bunt (2020b) . ABS aims to lighten the burden and possible complexity of generating semantic annotation structures. It would be an ideal situation if semantic annotation structures could have every piece of relevant semantic information encoded into them and be interpreted directly without relying on any intermediate auxiliary representation scheme. But the task of generating such annotation structures and interpreting them directly should easily run into enormous cost and complexity.",
                "cite_spans": [
                    {
                        "start": 296,
                        "end": 308,
                        "text": "Bunt (2020a)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 313,
                        "end": 325,
                        "text": "Bunt (2020b)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Concluding Remarks",
                "sec_num": "8."
            },
            {
                "text": "ABS is an annotation-based semantics that converts annotation structures to semantic forms for their (model-theoretic) interpretation. For the representation of these semantic forms, ABS provides a simple representation language, a type-theoretic first-order logic without the overuse of \u03bboperations. This language makes use of a small set of logical predicates, such as referring to semantic roles or event and time structures and types, that are defined as part of an interpretation model. The meta-language that defines these logical predicates may be of a higher-order logic.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Concluding Remarks",
                "sec_num": "8."
            },
            {
                "text": "To follow the principle of semantic compositionality, ABS introduces two types of composition with the conjunctive \u2295 and distributive operators and their subtypes over the semantic forms of annotation structures that consist of entity and link structures. Most, if not all, of the link structures in ISO-TimeML and ISO-Space only require conjunctive composition, while quantificational, plural constructions or some subordinated constructions such as the if-then construction may undergo distributive (selective) composition. There are two major types of conjunctive composition: the Boolean type \u2295 boo and the functional type \u2295 f a . Then the functional type has two subtypes, one by substitution \u2295 sub and the other by equation solving \u2295 eq . Annotation structures that are isomorphic to non-embedded structures in Kamp and Reyle (1993) 's DRSs are considered as undergoing the process of Boolean conjunctive composition. In contrast, those annotation structures that match \u03bb-structures in Montague Semantics (Montague, 1974) undergo the functional conjunctive composition. This distinction is not very significant, for the semantic forms of most",
                "cite_spans": [
                    {
                        "start": 817,
                        "end": 838,
                        "text": "Kamp and Reyle (1993)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 1011,
                        "end": 1027,
                        "text": "(Montague, 1974)",
                        "ref_id": "BIBREF41"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Concluding Remarks",
                "sec_num": "8."
            },
            {
                "text": "(g) and (h) are my own additions to the list of basic types. 2 See Mani and Pustejovsky (2012) for the discussion of 3.2.2 regions as primitive objects vs. 3.2.3 regions as sets of points.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Here, it is a bit confusing to use e as standing for a basic type for individual entities and use it as referring to an eventuality of type v: e.g. [runv\u2192t(ev) \u2227 agent(e,x)] e\u2192(v\u2192t ].",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In a concrete syntax, this category is often called tag or element.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Bunt (2020b), for instance, introduces the scope merge operator \u2295 s and the possessive scoped merge operator \u2295 ps .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In practice, the semantic treatment of names is much more complicated than treating it merely for its referential use. Kamp and Reyle (1993) treat names like \"John\" as a predicate, thus representing it as John(x) in a DRS.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "\u03b3 is a function that assigns a time to a deitic temporal expression or a contextually determinable unspecified time.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "truth-functional implication in Propositional Logic. Given two well-formed formulas \u03c6 and \u03c8, the conditional formula [\u03c6 \u2192 \u03c8] is treated as a well-formed formula in Propositional Logic and interpreted truth-functionally as being false only if \u03c6 is true but \u03c8 is false. Although the interpretation of conditionals in ordinary language is more complex than the truth-functional interpretation just given, (31) and (32) illustrate how if-constructions are annotated and how their semantic forms are represented in a tripartite structure.(31) Data:If it rains tomorrow, then the picnic will be canceled.(32) a. Annotation of Antecedent (id=a 32a ): \u2227 theme(e 3 , e 2 ) \u2227 future(e 3 )] \u2227 \u03b3(t 2 ) \u2227 occurs(e 3 , \u03b3(t 2 )) t ]]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "annex",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Acknowledgements Thanks to Jae-Woong Choe, Chongwon Park, and James Pustejovsky for their reading the preliminary draft with invaluable comments and to the four anonymous reviewers for their detailed constructive comments. I am very much indebted to Harry Bunt for his laborious work to help improve the final submission for publication. I thank them all, but do not claim that all these reviewers agree with my proposal or that I have fully",
                "authors": [],
                "year": null,
                "venue": "the annotation structures undergo the process of Boolean conjunctive composition only",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "the annotation structures undergo the process of Boolean conjunctive composition only. This is the first version of ABS. It requires to be further tested against a variety of larger data and annotation struc- tures. This should be the case especially for the distributive composition involving complex semantic structures. 9. Acknowledgements Thanks to Jae-Woong Choe, Chongwon Park, and James Pustejovsky for their reading the preliminary draft with in- valuable comments and to the four anonymous reviewers for their detailed constructive comments. I am very much indebted to Harry Bunt for his laborious work to help im- prove the final submission for publication. I thank them all, but do not claim that all these reviewers agree with my pro- posal or that I have fully succeeded in accommodating their comments and suggestions. 10. Bibliographical References",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Towards a general theory of action and time",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "F"
                        ],
                        "last": "Allen",
                        "suffix": ""
                    }
                ],
                "year": 1984,
                "venue": "Artifical Intelligence",
                "volume": "23",
                "issue": "",
                "pages": "123--54",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Allen, J. F. (1984). Towards a general theory of action and time. Artifical Intelligence, 23:123-54.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Abstract meaning representationf or sembanking",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Banarescu",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Bonial",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Cai",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Georgescu",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Griffitt",
                        "suffix": ""
                    },
                    {
                        "first": "U",
                        "middle": [],
                        "last": "Hermjakob",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Schenider",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse",
                "volume": "",
                "issue": "",
                "pages": "178--186",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Banarescu, L., Bonial, C., Cai, S., Georgescu, M., Griffitt, K., Hermjakob, U., Knight, K., Koehn, P., Palmer, M., and Schenider, N. (2013). Abstract meaning representa- tionf or sembanking. In Proceedings of the 7th Linguis- tic Annotation Workshop and Interoperability with Dis- course, pages 178-186, Sofia, Bulgaria, August.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "The Groningen Meaning Bank",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Bos",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Basile",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Evang",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [
                            "J"
                        ],
                        "last": "Venhuizen",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Bjerva",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Handbook of Linguistic Annotation",
                "volume": "",
                "issue": "",
                "pages": "463--496",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bos, J., Basile, V., Evang, K., Venhuizen, N. J., and Bjerva, J. (2017). The Groningen Meaning Bank. In Nancy Ide et al., editors, Handbook of Linguistic Annotation, pages 463-496. Springer, Berlin.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "The Korea Society for Language and Information",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Bunt",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 21st Pacific Asia Conference on Language, Information and Computation",
                "volume": "",
                "issue": "",
                "pages": "13--28",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bunt, H. (2007). The semantics of semantic annotations. In Proceedings of the 21st Pacific Asia Conference on Language, Information and Computation, pages 13-28, Seoul, Korea. The Korea Society for Language and In- formation.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "A methodology for designing semantic annotation languages exploiting semantic-syntactic isomorphisms",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Bunt",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the Second International Conference on Global Interoperability for Language Resources (ICGL20100)",
                "volume": "",
                "issue": "",
                "pages": "29--46",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bunt, H. (2010). A methodology for designing semantic annotation languages exploiting semantic-syntactic iso- morphisms. In Alex C. Fang, et al., editors, Proceedings of the Second International Conference on Global Inter- operability for Language Resources (ICGL20100), pages 29-46, City University of Hong Kong, Hong Kong.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Introducing abstract syntax + semantics in semantic annotation, and its consequences for the annotation of time and events",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Bunt",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Recent Trends in Language an Knowledge Processing",
                "volume": "",
                "issue": "",
                "pages": "157--204",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bunt, H. (2011). Introducing abstract syntax + semantics in semantic annotation, and its consequences for the an- notation of time and events. In Eunryoung Lee et al., editors, Recent Trends in Language an Knowledge Pro- cessing, pages 157-204. Hankookmunhwasa, Seoul.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Annotation of quantification: the current state of ISO 24617-12",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Bunt",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 16th Joint ISO-ACL/SIGSEM Workshop on Interoperable Semantic Annotation",
                "volume": "",
                "issue": "",
                "pages": "1--13",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bunt, H. (2020a). Annotation of quantification: the cur- rent state of ISO 24617-12. In Harry Bunt, editor, Pro- ceedings of the 16th Joint ISO-ACL/SIGSEM Workshop on Interoperable Semantic Annotation, pages 1-13, May. A satellite workshop at LREC 2020, May 11-15, 2020, Marseille, France (postponed due to COVID-19).",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Semantic Annotation of Quantification in Natural Language",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Bunt",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bunt, H., (2020b). Semantic Annotation of Quantification in Natural Language. TiCC/Department of Cognitive Science and Artificial Intelligence, Tilburg University, Tilburg, 2nd edition, February. TiCC TR 2020-2.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Semantics: An Introduction to Meaning in Language",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Cann",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Kempson",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Gregoromichelaki",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cann, R., Kempson, R., and Gregoromichelaki, E. (2009). Semantics: An Introduction to Meaning in Language. Cambridge University Press, Cambridge.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Meaning and Necessity: A Study in Semantics and Modal Logic",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Carnap",
                        "suffix": ""
                    }
                ],
                "year": 1947,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Carnap, R. (1947, 1956). Meaning and Necessity: A Study in Semantics and Modal Logic. The University of Chicago Press, Chicago, 2nd edition.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Minimal recursion semantics: an introduction",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Copestake",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Flickinger",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Sag",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Pollard",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Journal of Research on Language and Computation",
                "volume": "",
                "issue": "",
                "pages": "281--332",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Copestake, A., Flickinger, D., Sag, I., and Pollard, C. (2005). Minimal recursion semantics: an introduction. Journal of Research on Language and Computation, pages 281-332.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "The logical form of action sentences",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Davidson",
                        "suffix": ""
                    }
                ],
                "year": 1979,
                "venue": "The Logic of Decision and Action",
                "volume": "",
                "issue": "",
                "pages": "81--120",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Davidson, D. (1979). The logical form of action sentences. In N. Rescher, editor, The Logic of Decision and Action, pages 81-120, Pittsburgh. University of Pittsburgh Press. Reprinted in Davidson (2001).",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Essays on Actions and Events",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Davidson",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Davidson, D. (2001). Essays on Actions and Events. Ox- ford University Press, Oxford, 2nd edition.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Interfacing language, spatial perception and cognition in type theory with records",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Dobnik",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Cooper",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Journal of Language Modelling",
                "volume": "5",
                "issue": "2",
                "pages": "273--301",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dobnik, S. and Cooper, R. (2017). Interfacing language, spatial perception and cognition in type theory with records. Journal of Language Modelling, 5(2):273-301.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Modelling language, action, and perception in type theory with records",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Dobnik",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Cooper",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Larsson",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Constraint Solving and Language Processing -7th International Workshop on Constraint Solving and Language Processing",
                "volume": "2012",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dobnik, S., Cooper, R., and Larsson, S. (2012). Modelling language, action, and perception in type theory with records. In D. Duchier et al., editors, Constraint Solving and Language Processing -7th International Workshop on Constraint Solving and Language Processing, CSLP 2012, Orelans, France, September. Revised Selected Pa- pers, number 8114 in Publications on Logic, Language and Information (FoLLI), Springer, Berlin, Heidelberg, 2013.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Word Meaning and Montague Grammar: The Semantics of Verbs and Times in Generative Semantics and in Montague's PTQ. D. Reidel",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "R"
                        ],
                        "last": "Dowty",
                        "suffix": ""
                    }
                ],
                "year": 1979,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dowty, D. R. (1979). Word Meaning and Montague Gram- mar: The Semantics of Verbs and Times in Generative Semantics and in Montague's PTQ. D. Reidel, Dor- drecht.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "A Formal Theory of Common Sense Psychology: How People Think People Think",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "S"
                        ],
                        "last": "Gordon",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Hobbs",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gordon, A. S. and Hobbs, J. R. (2017). A Formal Theory of Common Sense Psychology: How People Think People Think. Cambridge University Press, Cambridge.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "A Computational Model of Natural Language Communication: Interpretation, Inference, and Production in Database Semantics",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Hausser",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hausser, R. (2006). A Computational Model of Nat- ural Language Communication: Interpretation, Infer- ence, and Production in Database Semantics. Springer, Berlin.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "From montague grammar to database semantics",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Hausser",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Language and Information",
                "volume": "19",
                "issue": "2",
                "pages": "1--16",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hausser, R. (2015). From montague grammar to database semantics. Language and Information, 19(2):1-16. available at lagrammar.net.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Annotating and Modeling Shallow Semantics Directly from Text. Dissertation of doctor of philosophy in computer science and engineering",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "He, L. (2018). Annotating and Modeling Shallow Seman- tics Directly from Text. Dissertation of doctor of philos- ophy in computer science and engineering, University of Washington.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Annotating and reasoning about time and events",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Hobbs",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of AAAI Spring Symposium on Logical Formalizations of Common Sense Reasoning",
                "volume": "",
                "issue": "",
                "pages": "301--315",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hobbs, J. and Pustejovsky, J. (2003). Annotating and rea- soning about time and events. In Proceedings of AAAI Spring Symposium on Logical Formalizations of Com- mon Sense Reasoning, Stanford, CA, March. Reprinted in Mani et al. (eds), 2005, pages 301-315.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "ISO 24617-1 Language resource management -Semantic annotation framework -Part 1: Time and events. International Organization for Standardization, Geneva. Working group: ISO/TC 37/SC 4/WG 2 semantic annotation",
                "authors": [],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "ISO, (2012). ISO 24617-1 Language resource management -Semantic annotation framework -Part 1: Time and events. International Organization for Standardization, Geneva. Working group: ISO/TC 37/SC 4/WG 2 seman- tic annotation.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "ISO 24617-4 Language resource management -Semantic annotation framework -Part 4: Semantic roles (SemAF-SR). International Organization for Standardization",
                "authors": [],
                "year": 2014,
                "venue": "ISO",
                "volume": "37",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "ISO, (2014). ISO 24617-4 Language resource management -Semantic annotation framework -Part 4: Semantic roles (SemAF-SR). International Organization for Stan- dardization, Geneva. Working group: ISO/TC 37/SC",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "/WG 2 semantic annotation",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "/WG 2 semantic annotation.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "ISO 24617-7 Language resource management -Semantic annotation framework -Part 7: Spatial information. International Organization for Standardization",
                "authors": [],
                "year": 2020,
                "venue": "ISO",
                "volume": "37",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "ISO, (2020). ISO 24617-7 Language resource management -Semantic annotation framework -Part 7: Spatial infor- mation. International Organization for Standardization, Geneva, 2nd edition. Working group: ISO/TC 37/SC",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "/WG 2 semantic annotation",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "/WG 2 semantic annotation.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "From Discourse to Logic: Introduction to Modeltheoretic Semantics of Natural Language, Formal Logic and Discourse Representation Theory",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Kamp",
                        "suffix": ""
                    },
                    {
                        "first": "U",
                        "middle": [],
                        "last": "Reyle",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kamp, H. and Reyle, U. (1993). From Discourse to Logic: Introduction to Modeltheoretic Semantics of Nat- ural Language, Formal Logic and Discourse Represen- tation Theory. Kluwer Academic Publishers, Dordrecht.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Towards a denotational semantics for TimeML",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Katz",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Annotating, Extracting and Reasoning about Time and Events",
                "volume": "",
                "issue": "",
                "pages": "88--106",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Katz, G. (2007). Towards a denotational semantics for TimeML. In Frank Schilder, et al., editors, Annotating, Extracting and Reasoning about Time and Events, pages 88-106, Berlin. Springer.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "On the semantics of locatives",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Kracht",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Linguistics and Philosophy",
                "volume": "25",
                "issue": "",
                "pages": "157--232",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kracht, M. (2002). On the semantics of locatives. Linguis- tics and Philosophy, 25:157-232.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Revising ISO-Space and the role of the movement link",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Bunt",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 14th Joint ACL-ISO Workshop on Interoperable Semantic Annotation (ISA-14): COLING 2018 Workshop",
                "volume": "",
                "issue": "",
                "pages": "35--44",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee, K., Pustejovsky, J., and Bunt, H. (2018). Revising ISO-Space and the role of the movement link. In Harry Bunt, editor, Proceedings of the 14th Joint ACL-ISO Workshop on Interoperable Semantic Annotation (ISA- 14): COLING 2018 Workshop, pages 35-44, Santa Fe, New Mexico, U.S.A, August.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Equation solving",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 1983,
                "venue": "Language, Information and Computation",
                "volume": "",
                "issue": "",
                "pages": "14--26",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee, K. (1983). Equation solving. In Chungmin Lee et al., editors, Language, Information and Computation, pages 14-26. Taehaksa, Seoul.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Formal semantics for interpreting temporal annotation",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Unity and Diversity of Languages",
                "volume": "",
                "issue": "",
                "pages": "97--108",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee, K. (2008). Formal semantics for interpreting tem- poral annotation. In Piet van Sterkenburg, editor, Unity and Diversity of Languages, pages 97-108, Amsterdam. John Benjamins Publishing Co. Invited talk at the 18th Congress of Linguists, held in Seoul on July 21-26 2008.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "A compositional interval semantics for temporal annotation",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Recent Trends in Language an Knowledge Processing",
                "volume": "",
                "issue": "",
                "pages": "122--156",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee, K. (2011). A compositional interval semantics for temporal annotation. In Eunryoung Lee et al., editors, Recent Trends in Language an Knowledge Processing, pages 122-156. Hankookmunhwasa, Seoul.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "An abstract syntax for ISO-Space with its <moveLink> reformulated",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the LREC 2016 Workshop ISA-12 -12th Joint ACL-ISO Workshop on Interoperable Semantic Annotation",
                "volume": "",
                "issue": "",
                "pages": "28--37",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee, K. (2016). An abstract syntax for ISO-Space with its <moveLink> reformulated. In Harry Bunt, editor, Proceedings of the LREC 2016 Workshop ISA-12 -12th Joint ACL-ISO Workshop on Interoperable Semantic An- notation, pages 28-37, Portoroz, Slovenia, May.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Revising ISO-Space for the semantic annotation of dynamic spatial information in language. Language and Information",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "22",
                "issue": "",
                "pages": "221--245",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee, K. (2018). Revising ISO-Space for the semantic annotation of dynamic spatial information in language. Language and Information, 22.1:221-245.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Algebraic Semantics in Language and Philosophy",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Link",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Link, G. (1998). Algebraic Semantics in Language and Philosophy. CSLI Publications, Stanford, CA.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Interpreting Motion: Grounded Representations for Spatial Language",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Mani",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mani, I. and Pustejovsky, J. (2012). Interpreting Motion: Grounded Representations for Spatial Language. Ox- ford University Press, Oxford.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "The event-calculus in classical logic -alternative axiomatizations",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Miller",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Shanahan",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Electronic Transactions on Artificial Intelligence",
                "volume": "3",
                "issue": "1",
                "pages": "77--105",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Miller, R. and Shanahan, M. (1999). The event-calculus in classical logic -alternative axiomatizations. Electronic Transactions on Artificial Intelligence, 3(1):77-105.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Temporal ontology and temporal reference",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Moens",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Steedman",
                        "suffix": ""
                    }
                ],
                "year": 1988,
                "venue": "Computational Linguistics",
                "volume": "14",
                "issue": "2",
                "pages": "15--28",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Moens, M. and Steedman, M. (1988). Temporal ontol- ogy and temporal reference. Computational Linguistics, 14(2):15-28.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Formal Philosophy: Selected Papers of Richard Montague",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Montague",
                        "suffix": ""
                    }
                ],
                "year": 1974,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Montague, R. (1974). Formal Philosophy: Selected Papers of Richard Montague. Yale University Press, New Haven and London.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Events in the Semantics of English: A Study in Subatomic Semantics",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Parsons",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Parsons, T. (1990). Events in the Semantics of English: A Study in Subatomic Semantics. The MIT Press, Cam- bridge, MA.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Some structural analogies between tenses and pronouns in English",
                "authors": [
                    {
                        "first": "B",
                        "middle": [
                            "H"
                        ],
                        "last": "Partee",
                        "suffix": ""
                    }
                ],
                "year": 1973,
                "venue": "Reprinted in Compositionality in Formal Semantics: Selected Papers by Barbara H. Partee",
                "volume": "80",
                "issue": "",
                "pages": "50--58",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Partee, B. H. (1973). Some structural analogies between tenses and pronouns in English. The Journal of Philos- ophy, 80(18):601-9. Reprinted in Compositionality in Formal Semantics: Selected Papers by Barbara H. Par- tee, Malden, MA: Blackwell. pp. 50-58.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "From TimeML to interval temporal logic",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Pratt-Hartmann",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Seventh International Workshop on Computational Semantics",
                "volume": "",
                "issue": "",
                "pages": "111--180",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pratt-Hartmann, I. (2007). From TimeML to interval temporal logic. In Harry Bunt, editor, Proceedings of the Seventh International Workshop on Computational Semantics, pages 111-180, Tilburg, the Netherlands. Tilburg University.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "The specification language TimeML",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Ingria",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Saur\u00ed",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Littman",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Gaizauskas",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Setzer",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Katz",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Mani",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "The Language of Time",
                "volume": "",
                "issue": "",
                "pages": "545--557",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pustejovsky, J., Ingria, R., Saur\u00ed, R., o, J. C., Littman, J., Gaizauskas, R., Setzer, A., Katz, G., and Mani, I. (2005). The specification language TimeML. In James Puste- jovsky Inderjeet Mani et al., editors, The Language of Time, pages 545-557. Oxford University Press, Oxford.",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "ISO-TimeML: An international standard for semantic annotation",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Bunt",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Romary",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of LREC 2010",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pustejovsky, J., Lee, K., Bunt, H., and Romary, L. (2010). ISO-TimeML: An international standard for semantic annotation. In Harry Bunt, editor, Proceedings of LREC 2010, Valletta, Malta, May. LREC 2010.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "The semantics of ISO-Space",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Bunt",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 15th Joint ACL -ISO Workshop on Interoperable Semantic Annotation (ISA-15)",
                "volume": "",
                "issue": "",
                "pages": "46--53",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pustejovsky, J., Lee, K., and Bunt, H. (2019). The seman- tics of ISO-Space. In Harry Bunt, editor, Proceedings of the 15th Joint ACL -ISO Workshop on Interoperable Se- mantic Annotation (ISA-15), pages 46-53, Gothenburg, Sweden, May. International Workshop on Computational Semantics (IWCS 2029).",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "The Generative Lexicon",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pustejovsky, J. (1995). The Generative Lexicon. The MIT Press, Cambridge, MA.",
                "links": null
            },
            "BIBREF49": {
                "ref_id": "b49",
                "title": "Type construction and the logic of concepts",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "The Language of Word Meaning",
                "volume": "",
                "issue": "",
                "pages": "91--135",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pustejovsky, J. (2001). Type construction and the logic of concepts. In Pierrette Bouillon et al., editors, The Lan- guage of Word Meaning, pages 91-135. Cambridge Uni- versity Press, Cambridge, UK.",
                "links": null
            },
            "BIBREF50": {
                "ref_id": "b50",
                "title": "A Comprehensive Grammar of the English Language",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Quirk",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Greenbaum",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Leech",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Svartvik",
                        "suffix": ""
                    }
                ],
                "year": 1985,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Quirk, R., Greenbaum, S., Leech, G., and Svartvik, J. (1985). A Comprehensive Grammar of the English Lan- guage. Longman, London and New York, January.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "metamodel of ABS",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "text": "Model-theoretic Interpretation The symbol [[ ]] is used to represent a (model-theoretic) denotation. Given any semantic form \u03c3(a) in ABSr, its denotation with respect to a model M , an assignment g of values to variables, and a set D of definitions for logical predicates is represented by [[\u03c3(a)]] M,g,D .",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF2": {
                "text": "Structures: entity(x1, w1, type:dog, form:nam) event(e1, w2-3, pred:bark, tense:present, aspect:progressive) c. Link Structure: srlink(e1, x1, agent) The annotation of text fragment (9a) consists of a list of entity structures in (b) and a link structure (c) over them. Here, srlink specifies the semantic role of the participant x 1 as an agent participating in the event e 1 of barking, as illustrated in (10).",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF3": {
                "text": "t c. Semantic form of annotation structure: \u03c3(a 9 ) := {x:e, e:v}\u03c3(srlink) := {x:e, e:v} [[dog(x) \u2227 named(x, F ido)] \u2227 [bark(e) \u2227 presProg(e)] \u2227 agent(e, x)] by Variable renaming and binding",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF4": {
                "text": "\u2192 t), := {e 1 , e 2 }[want(e 1 ) \u2227 theme(e 1 , e 2 )] \u03c3(e2) e\u2192(E\u2192t) := {x 1 , e 2 }[teach(e 2 ) \u2227 agent(e 2 , x 1 )] b. Semantic form of the subordination link structure: \u03c3(slink) t := {x 1 , e 1 , e 2 }[{\u03c3(e 1 ) E , \u03c3(e 2 ) e\u2192(E\u2192t) ] i (\u03c3(e 1 ), \u03c3(e 2 )) (e\u2192(E\u2192t))\u2192(E\u2192t) ] := {x 1 , e 1 , e 2 }[\u03c3(e 1 ) t \u2192 int \u03c3(e 2 ) t ] := {x 1 , e 1 , e 2 }[[want(e 1 ) \u2227 theme(e 1 , e 2 )] \u2192 i ([go(e 2 ) \u2227 agent(e 2 , x 1 )])]c. Semantic form of the whole annotation structure: \u03c3(a 21 ) := \u03c3(slink) t",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF5": {
                "text": "ABS makes use of logical predicates as part of the (object) representation language to simplify the representation of semantic forms or make it flexible to accommodate different interpretations. These predicates, marked in boldface, in ABSr are defined possibly in terms of higher-order logic as part of the model structure. The predicate past is, for instance, introduced to represent the tense of an event as in (24): (24) a. [walk(e) \u2227 past(e)] b. instead of [walk(e) \u2227 e \u2286 t \u2227 t \u227a n]",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF6": {
                "text": "Aspectual features such as present perfect and progressive are also encoded into annotations just as they are. Consider a case of the present perfect aspect in (26). (26) a. Mia [has visited] e1 Boston. b. Annotation (id=a 26 ): event (e1, w2-3, pred:visit, tense:present, aspect: perfect) c. Semantic Form: \u03c3(e1) := [visit(e 1 ) \u2227 presPerfect(e 1 )]",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF7": {
                "text": "a. The plant has died. b. {a, e, t, n, r, s, u} e s, u) ABSr , in contrast, yields the following representation: (28) a. The plant has died. b. Annotation: entity(x1, w2, type:plant) event(e1, w4, pred:die, tense:present, aspect:perfct) srlink(e1,x1, theme) c. Semantic Forms: \u03c3(x 1 ) := plant(x 1 ) \u03c3(e 1 ) := [die(e 1 )\u2227 presPerfect(e 1 )] \u03c3(srlink) := [{\u03c3(x 1 ) t , \u03c3(e 1 ) t } \u2295 bo theme(e 1 , x 1 ) t ] \u03c3( 26 ) := {e, x}[die(e)\u2227 presPerfect(e) \u2227 theme(e, x)]",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF8": {
                "text": "Options: Type-theoretic or Not",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "TABREF1": {
                "html": null,
                "text": "Rule 1 bo Boolean conjunctive composition (\u2295 bo ) Rule 1 fa Functional conjunctive composition (\u2295 fa )",
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td>Rule 1 sub Substitutive conjunctive composition</td></tr><tr><td>by substitution (\u2295 sub )</td></tr><tr><td>Rule 1 eq Equative conjunctive composition</td></tr><tr><td>by equation solving (\u2295 eq )</td></tr><tr><td>Disjunctive composition ( ):</td></tr><tr><td>Rule 2 Disjunctive composition ( )</td></tr><tr><td>Rule 2 int Intensional disjunctive composition</td></tr><tr><td>( int )</td></tr><tr><td>Rule 2 imp Implicational disjunctive composition</td></tr><tr><td>( imp )</td></tr><tr><td>Rule 1 bo Boolean conjunctive composition (\u2295 bo ) is the</td></tr><tr><td>most common type of composition, as formulated in</td></tr><tr><td>(8) Rule 1</td></tr></table>"
            },
            "TABREF2": {
                "html": null,
                "text": "Rules 1 sub and 1 eq , subtypes of conjunctive composition, are needed when one of the inputs to links is treated as of some basic or pseudo basic type. Consider the same example (9) but with a different semantic treatment: 7 (14) a. \u03c3(x1) e := f ido e \u03c3(e1) v\u2192t := {e 1 :v}[bark(e 1 )\u2227 presProg(e 1 )]",
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td>b. \u03c3(srlink3)</td></tr><tr><td>:= {e 1 :v}</td></tr><tr><td>[{\u03c3(x1) e , \u03c3(e1) v\u2192t } \u2295 sub</td></tr><tr><td>agent(e 1 , x 1 ) (v\u2192t)\u2192(e\u2192t) ]</td></tr><tr><td>:= {e 1 :v}</td></tr><tr><td>[\u03c3(e1) t \u2227 agent(e 1 , f ido) t ]</td></tr><tr><td>:= {e 1 :v}</td></tr><tr><td>[[bark(e 1 ) \u2227 presProg(e 1 )] t \u2227</td></tr><tr><td>agent(e 1 , f ido)]</td></tr><tr><td>d. \u03c3(a 9 ) := \u03c3(srlink4)</td></tr><tr><td>Now by the rule of substitution of identicals in FOL, we</td></tr><tr><td>have:</td></tr><tr><td>(16) {e 1 :v}</td></tr><tr><td>[[bark(e</td></tr></table>"
            }
        }
    }
}