File size: 116,635 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:12:30.071614Z"
    },
    "title": "COLLOQL: Robust Cross-Domain Text-to-SQL Over Search Queries",
    "authors": [
        {
            "first": "Karthik",
            "middle": [],
            "last": "Radhakrishnan",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Carnegie Mellon University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Arvind",
            "middle": [],
            "last": "Srikantan",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Carnegie Mellon University",
                "location": {}
            },
            "email": "asrikantan@salesforce.com"
        },
        {
            "first": "Victoria",
            "middle": [],
            "last": "Xi",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Carnegie Mellon University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "",
            "middle": [],
            "last": "Lin",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Carnegie Mellon University",
                "location": {}
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Translating natural language utterances to executable queries is a helpful technique in making the vast amount of data stored in relational databases accessible to a wider range of nontech-savvy end users. Prior work in this area has largely focused on textual input that is linguistically correct and semantically unambiguous. However, real-world user queries are often succinct, colloquial, and noisy, resembling the input of a search engine. In this work, we introduce data augmentation techniques and a sampling-based content-aware BERT model (COLLOQL) to achieve robust text-to-SQL modeling over natural language search (NLS) questions. Due to the lack of evaluation data, we curate a new dataset of NLS questions and demonstrate the efficacy of our approach. COLLOQL's superior performance extends to well-formed text, achieving 84.9% (logical) and 90.7% (execution) accuracy on the WikiSQL dataset, making it, to the best of our knowledge, the highest performing model that does not use execution guided decoding.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Translating natural language utterances to executable queries is a helpful technique in making the vast amount of data stored in relational databases accessible to a wider range of nontech-savvy end users. Prior work in this area has largely focused on textual input that is linguistically correct and semantically unambiguous. However, real-world user queries are often succinct, colloquial, and noisy, resembling the input of a search engine. In this work, we introduce data augmentation techniques and a sampling-based content-aware BERT model (COLLOQL) to achieve robust text-to-SQL modeling over natural language search (NLS) questions. Due to the lack of evaluation data, we curate a new dataset of NLS questions and demonstrate the efficacy of our approach. COLLOQL's superior performance extends to well-formed text, achieving 84.9% (logical) and 90.7% (execution) accuracy on the WikiSQL dataset, making it, to the best of our knowledge, the highest performing model that does not use execution guided decoding.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Relational databases store a vast amount of the world's data and are typically accessed via structured query languages like SQL. A natural language interface to these databases (NLIDB) could significantly improve the accessibility of this data by allowing users to retrieve and utilize the information without any programming expertise. With the release of large-scale datasets (Zhong et al., 2017; Finegan-Dollak et al., 2018; Yu et al., 2018b) , this task has gained a lot of attention and has been widely studied in recent years.",
                "cite_spans": [
                    {
                        "start": 378,
                        "end": 398,
                        "text": "(Zhong et al., 2017;",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 399,
                        "end": 427,
                        "text": "Finegan-Dollak et al., 2018;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 428,
                        "end": 445,
                        "text": "Yu et al., 2018b)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Prior research has primarily focused on translating grammatical, complete sentences to queries. However, an internal user survey on the search service of a major customer relationship management (CRM) platform 1 revealed that users have a tendency to communicate in a colloquial form which could vary from using only keywords (\"player 42\") to very short phrases (\"show player 42\") to complete sentences (\"Who is the player who wears Jersey 42?\"). Apart from variation in style, users dropping content words from their searches in the interest of brevity also has the potential consequence of making their questions ambiguous. This could render the task unsolvable even to models accustomed to the NLS style of text. For example, in Figure 1 , without the word \"Jersey\", it is impossible to identify which column's value (Id or Jersey) must equal 42.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 732,
                        "end": 740,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this work, we show that Text2SQL systems trained on only complete sentences struggle to adapt to the noisy keyword/short phrasal style of questions. To combat this, we introduce different data augmentation strategies inspired from our user search patterns and style. To tackle the induced ambiguity, a potential solution is to utilize the table content by allowing the model to scan the table for different terms present in the question and utilize that information to disambiguate (If the token \"42\" was only found in the Jersey column, then Jersey must be the column equal to 42). Though effective, this approach could become prohibitively expensive (in terms of inference time or memory required) on large tables as the model would have to search over the entire of the table content for every question.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We hypothesize that in most cases, the model only needs samples from the table content and not the exact rows that match tokens in the NLS question to disambiguate columns. For example, if the Id column contained alpha-numeric IDs, Player and Nationality contained strings, and Jersey contained two digit numbers, then Jersey must be the column equal to 42. Sampling alleviates the need of a full table scan for every question. The samples for each column could be generated offline and remain unchanged across questions or periodically refreshed (to reflect potential distribution shifts in the table or user queries), allowing for adaptation and personalization without retraining the model. In summary, our contributions are as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "1. We augment the well-formed WikiSQL dataset with synthetic search-style questions to adapt to short, colloquial input.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "2. We propose new models which incorporate table content in a BERT encoder via two sampling strategies to handle ambiguous questions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "3. We perform an in-depth qualitative and quantitative (accuracy, inference time, memory) analysis to show the efficacy of each content sampling strategy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "4. We curate a dataset of 400 questions to benchmark performance of Text-to-SQL models in this setting.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Apart from adapting to NLS style questions, COLLOQL also achieves state-of-the-art performance on the original WikiSQL (Zhong et al., 2017) dataset, outperforming all baselines that do not use execution guided decoding. We base our work off SQLova (Hwang et al., 2019) but our methods are generalizable to other approaches 2 .",
                "cite_spans": [
                    {
                        "start": 119,
                        "end": 139,
                        "text": "(Zhong et al., 2017)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 248,
                        "end": 268,
                        "text": "(Hwang et al., 2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Text-to-SQL approaches for the WikiSQL benchmark Text-to-SQL falls under a broader class of semantic parsing tasks and has been widely studied in the NLP and database communities. While early works have focused on pattern-matching and rule-based techniques (Androutsopoulos et al., 1995; Li and Jagadish, 2014; Setlur et al., 2016) , with the introduction of large scale datasets such as WikiSQL (Zhong et al., 2017) , recent works have focused on neural methods for generating SQL. They can be broadly categorized into a few themes -sequence to sequence (Seq2Seq), sequence to tree (Seq2Tree), and SQL-Sketch (logical form) methods. Seq2Seq models frame the task as an encoderdecoder problem by trying to generate the SQL query token-by-token from the input question. However, as noted by Xu et al. (2018) these models suffer from the \"order matters\" issue where the model is forced to match the ordering of the where clauses. Zhong et al. (2017) employ reinforcement learning based method to overcome this issue but the gains from this has been limited as noted in Xu et al. (2018) . Seq2Tree models generate the SQL query as an abstract syntax tree (AST) instead of a token sequence Wang et al., 2020) . These approaches define a generation grammar for SQL and learn to output the action sequence for constructing the AST (Yin and Neubig, 2018) . Seq2Tree approaches are widely adopted for benchmarks that contain complex SQL queries (Yu et al., 2018b) as the syntactic constraints they adopt are effective at pruning the output search space and capturing structural dependencies. However, they do not show much advantage on the WikiSQL benchmark where the SQL ASTs are largely flat. SQLNet (Xu et al., 2018) introduces the concept of a SQL-Sketch, where it generates a sketch capturing the salient elements of the query as opposed to directly generating the query itself. SQLNet uses LSTMs to encode the question and headers and employs column attention to predict different components of the SQL-Sketch. As shown in Figure 2, the query is decomposed into different components which are predicted individually. Type-SQL (Yu et al., 2018a) extends upon this approach by augmenting each token in the question with its type (whether it resembles the name of the column, FreeBase entity type, etc). SQLova (Hwang et al., 2019) replaces the LSTMs encoder from SQLNet and uses BERT to encode the question and headers jointly. Unlike SQLNet, SQLova does not share any parameters in the decoders and identifies the where clause values using span detection instead of pointer generators. HydraNet breaks down the problem into column-wise ranking and decoding and assembles the outputs from each column to create the SQL query.",
                "cite_spans": [
                    {
                        "start": 257,
                        "end": 287,
                        "text": "(Androutsopoulos et al., 1995;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 288,
                        "end": 310,
                        "text": "Li and Jagadish, 2014;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 311,
                        "end": 331,
                        "text": "Setlur et al., 2016)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 396,
                        "end": 416,
                        "text": "(Zhong et al., 2017)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 790,
                        "end": 806,
                        "text": "Xu et al. (2018)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 928,
                        "end": 947,
                        "text": "Zhong et al. (2017)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 1067,
                        "end": 1083,
                        "text": "Xu et al. (2018)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 1186,
                        "end": 1204,
                        "text": "Wang et al., 2020)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1325,
                        "end": 1347,
                        "text": "(Yin and Neubig, 2018)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 1437,
                        "end": 1455,
                        "text": "(Yu et al., 2018b)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1694,
                        "end": 1711,
                        "text": "(Xu et al., 2018)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 2124,
                        "end": 2142,
                        "text": "(Yu et al., 2018a)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 2306,
                        "end": 2326,
                        "text": "(Hwang et al., 2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 2021,
                        "end": 2027,
                        "text": "Figure",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Text-to-SQL with table content Recent works like NL2SQL-RULE , RAT-SQL (Wang et al., 2020) and Photon (Zeng et al., 2020) have looked into incorporating table content into the SQL generation. NL2SQL-RULE augments BERT representations with mark vectors for each question and table header token to indicate a match across the two parts. Photon only incorporates the content of a limited set of categorical fields when there is an exact match with a question token. Unlike NL2SQL-RULE, ColloQL includes table content in the BERT encoder allowing it to form content-enhanced question and header representations and unlike Photon, ColloQL incorporates content for all columns and includes samples even when there is not an exact match to disambiguate columns effectively. TaBERT (Yin et al., 2020) lifted the idea further by pre-training joint representation of text and table taking into account row subsampled in a random or relevance-based manner. The pre-trained joint representation has been shown to outperform vanilla language models in several table QA and semantic parsing tasks.",
                "cite_spans": [
                    {
                        "start": 71,
                        "end": 90,
                        "text": "(Wang et al., 2020)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 102,
                        "end": 121,
                        "text": "(Zeng et al., 2020)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 774,
                        "end": 792,
                        "text": "(Yin et al., 2020)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Text-to-SQL with execution guided decoding One common theme across all the high performing models on WikiSQL is that they all employ Execution Guided (EG) decoding. First introduced by Wang et al. (2018) , EG is a technique where partial SQL queries are executed and their results are used to guide the decoding process. While EG has been shown to boost accuracy significantly, we do not apply execution guided decoding on our models for two reasons: Firstly, most EG methods modify the predicted query based on whether an empty set is returned. While this works well in the WikiSQL setting, having no results is often not due to an erroneous query. It is not uncommon for users to issue searches like \"my escalated support cases\"(with the expectation of surfacing zero records) or \"John Doe leads\"(to ensure that a record does not already exist before creating one) and we wanted to eliminate the reliance on database outputs to translate a query correctly. Secondly, database tables could have over 1M records and performing multiple database executions for every query could be expensive and is not always feasible whilst keeping up with the latency requirements of clients.",
                "cite_spans": [
                    {
                        "start": 185,
                        "end": 203,
                        "text": "Wang et al. (2018)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Text-to-SQL with noisy user input While recent text-to-SQL research typically focus on benchmark datasets with complete and grammatical input, noisy user queries are commonly encountered in practical NLIDBs. Previous work have proposed several ways to address this issue. Zettlemoyer and Collins (2007) introduced non-standard combinators to a combinatorial categorical grammar (GGG) based semantic parser to handle flexible word order and telegraphic language. Sajjad et al. (2012) and Yao et al. (2019a,b) developed interactive semantic parsing models that generate clarification questions for user to complete their underspecified queries. Arthur et al. (2015) paraphrases an ambiguous input into a less ambiguous form. Setlur et al. (2019) generates default logical forms for underspecified input. Zeng et al. (2020) synthesized a new dataset and trained question filter to identify noisy user input and prompt user to rephrase. Our work focus on handling short user utterances typically found in the search service of Salesforce CRM, where sampling-based content-aware models are effective at resolving most ambiguities.",
                "cite_spans": [
                    {
                        "start": 272,
                        "end": 302,
                        "text": "Zettlemoyer and Collins (2007)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 462,
                        "end": 482,
                        "text": "Sajjad et al. (2012)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 487,
                        "end": 507,
                        "text": "Yao et al. (2019a,b)",
                        "ref_id": null
                    },
                    {
                        "start": 643,
                        "end": 663,
                        "text": "Arthur et al. (2015)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 723,
                        "end": 743,
                        "text": "Setlur et al. (2019)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "The Text2SQL task is to generate a SQL query from a natural language question and the database schema/content. In this work, we use the Wik-iSQL dataset (Zhong et al., 2017) as it most closely matches the queries we expect to serve in a CRM. Our users typically don't issue linguistically complex queries requiring joins or nesting but instead focus on filtering a single table based on certain clauses.",
                "cite_spans": [
                    {
                        "start": 153,
                        "end": 173,
                        "text": "(Zhong et al., 2017)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task and Datasets",
                "sec_num": "3"
            },
            {
                "text": "WikiSQL contains over 80K natural language questions distributed across 24K tables and their gold SQL queries. The performance is typically evaluated on two different types of accuracies -Logical Form (LF) and Execution (EX). LF measures if the generated query exactly matches the gold query while EX executes the predicted and gold queries on the database and verifies if the answers returned by both are equal. Note that LF is a stricter metric as many different SQL queries could produce the same output. which deals have an expected revenue of over 10 number of deals closed in 2019 how many deals have closing year as 2019 Table 1 : WikiSQL questions and their NLS-style counterparts.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 628,
                        "end": 635,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Task and Datasets",
                "sec_num": "3"
            },
            {
                "text": "The WikiSQL dataset mostly comprises of verbose questions which differ in style as compared to the NLS questions issued by our users. Table  1 shows NLS questions and their WikiSQL-style equivalents. To account for the differences in style, we augment the WikiSQL dataset with our synthetic data to simulate real-user NLS questions which is generated as follows.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 134,
                        "end": 142,
                        "text": "Table  1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Task and Datasets",
                "sec_num": "3"
            },
            {
                "text": "Synthesizing user utterances from gold SQL labels Since WikiSQL contains the gold labels for the SQL sketch, we can use this data to generate NLS-style questions. By analyzing our user search queries (which resemble those shown in Table 1 ) we built question templates which we fill based on the gold SQL-Sketch. Some examples include shuffling the ordering of where conditions (users apply filters in different order), interchange ordering of column names and values (some users type \"US region cases\" while others type \"region US cases\"), and insert the select column name in the beginning or the end of a question (\"John Doe accounts\" vs \"accounts John Doe\"). The synthetic data is used in conjunction with clean well-formed queries from the original dataset, allowing the model to generalize to other queries not present in the templates. An example of synthetic utterances generated this way is shown below.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 231,
                        "end": 238,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Task and Datasets",
                "sec_num": "3"
            },
            {
                "text": "Original Query -Who is the player of Australian nationality that wears jersey number 42? Generated Queriesplayer jersey 42 australian nationality; 42 jersey australian nationality player; australian nationality jersey 42 player; . . .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task and Datasets",
                "sec_num": "3"
            },
            {
                "text": "We identify popular query ngrams when the conditional operator in the SQL-Sketch corresponds to either \">\" or \"<\" and randomly replace these ngrams (\"bigger than\", \"larger than\", etc) with the operator symbols, allowing our model to properly interpret them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supporting relational symbols in user utterance",
                "sec_num": null
            },
            {
                "text": "Controlled question simplification Since Wik-iSQL contains no keyword-based questions and only a small portion of questions that are succinct enough to require reasoning over the table content, we employ a sentence simplification model followed by manual verification to create a test dataset to evaluate performance on NLS questions. A common user behavior is to drop unnecessary words from complete sentences to create shorter questions. We simulate this behavior by simplifying/compressing sentences to reduce verbosity. Note that keyword queries can be viewed as an extreme case of sentence simplification where only the required keywords are retained.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supporting relational symbols in user utterance",
                "sec_num": null
            },
            {
                "text": "We make use of the controllable sentence simplifier by Handler and O'Connor (2019) to compress sentences to a desired length whilst retaining a specified set of keywords. We specify the list of keywords to be the header name of the select column, the values in the where columns (we ignore the header names for the where columns as users tend to omit them from their queries).",
                "cite_spans": [
                    {
                        "start": 55,
                        "end": 82,
                        "text": "Handler and O'Connor (2019)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supporting relational symbols in user utterance",
                "sec_num": null
            },
            {
                "text": "In total, we create two datasets: short questions with gold SQL labels and replacement of relation symbols, and simple questions with controlled sentence simplification.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supporting relational symbols in user utterance",
                "sec_num": null
            },
            {
                "text": "Manually verified test set We create a highquality test set by manually verifying a subset of simple questions 3 . A potential problem with sentence simplification models is ensuring that the shortened version still has enough information to execute the query correctly. This could vary based on the table content and is difficult to identify if the query is impossible to be executed correctly. We had a team of data scientists and engineers proficient in SQL to verify/correct outputs produced by the sentence simplification model and generated 400 queries for testing. We show examples in this dataset and report our manual quality evaluation in \u00a7 A.1. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supporting relational symbols in user utterance",
                "sec_num": null
            },
            {
                "text": "Following Xu et al. (2018) and Hwang et al. 2019, we decompose the SQL generation task into 6 different subtasks -one for each component of the SQL-Sketch. These subtasks all share a common encoder but use different decoder layers. The encoder is a BERT model (Devlin et al., 2018) which produces contextualized representations of the question, headers and the decoders largely use a task-specific LSTM with column-attention. Column-attention (Xu et al., 2018 ) is a mechanism where each header attends over all query tokens to produce a single representation over which a dense layer is used to predict probabilities. The select, aggregation, where-num, and whereoperator branches use LSTMs + Column-attention followed by a softmax layer to output probabilities. The where-column branch is similar but uses a sigmoid instead as multiple columns could appear in the where clause and the where-value outputs start-end spans for the values from the question. Figure 3 highlights the architecture of our model. We retain the same encoder-decoder architecture as SQLova as our main contribution lies in the data augmentation and content sampling techniques to handle NLS questions.",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 26,
                        "text": "Xu et al. (2018)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 260,
                        "end": 281,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 443,
                        "end": 459,
                        "text": "(Xu et al., 2018",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 957,
                        "end": 965,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Proposed Approach",
                "sec_num": "4"
            },
            {
                "text": "As highlighted previously, table content could be a useful feature in helping the model disambiguate between different columns. Consider a table of tennis players as shown below. Now, consider a question \"courts with Rafael Nadal as winner\". A model which isn't informed about the content of the table cannot easily understand that Rafael Nadal needs to be the where clause value for Player and winner for the Result column. Allowing the model to scan the table for entities like \"Rafael Nadal\" or \"winner\" could help the model incorporate table content effectively. Consider another question \"courts with Roger Federer as winner\". It is intuitive that this query follows the same structure as the previous, except that the required value is now \"Roger Federer\". However, \"Roger Federer\" is not present in the table. We hypothesize that while table content is useful to the model, it does not need to be relevant to the query. The model, when given random samples of values for each column can infer the role of a particular column and generalize to unseen values which are similar to the column samples. In this work, we experiment with two sampling techniques -random and relevance sampling.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Content Incorporation",
                "sec_num": "4.1"
            },
            {
                "text": "Random sampling uses a fixed set of question agnostic column values sampled randomly (without replacement) and does not require access to the table once the samples are created. Since the sampling process can be done entirely offline, it adds negligible memory and time to the query execution. Additionally, the model can now be used in privacy sensitive scenarios as it does not access the table content and the samples could be manually configured. The model, now being content informed, performs better than its non-content counterparts whilst being more efficient than its full table con-tent counterparts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Random Sampling",
                "sec_num": "4.1.1"
            },
            {
                "text": "Relevance sampling is used in cases where access to table is permitted and it includes a combination of samples relevant to question tokens and random samples. We index all cells of a table and perform a keyword search in the question to identify most relevant cells using FlashText (Singh, 2017) and include them as samples. In situations where the number of keyword matches are fewer than intended for a column or there are no matches, we fallback on random sampling to select the remaining samples.",
                "cite_spans": [
                    {
                        "start": 283,
                        "end": 296,
                        "text": "(Singh, 2017)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relevance Sampling",
                "sec_num": "4.1.2"
            },
            {
                "text": "To illustrate the importance of including random samples in the relevance sampling strategy, consider the following example:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relevance Sampling",
                "sec_num": "4.1.2"
            },
            {
                "text": "Question -Which countries hosted the MHL league?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relevance Sampling",
                "sec_num": "4.1.2"
            },
            {
                "text": "League values -NHL, MLB, NBA",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relevance Sampling",
                "sec_num": "4.1.2"
            },
            {
                "text": "Photon (Zeng et al., 2020) , a model which only includes up to a single matched value, interprets this query incorrectly (Select country where league = MHL league). Its value matching approach retrieves an empty set to augment the table. 4 Our model with relevance sampling tackles cases like this successfully (Select country where league = MHL) as NHL, MLB, and NBA were included as samples because of the fallback on random sampling. Including random samples improves the model's ability to interpret questions that have values not directly found in the table.",
                "cite_spans": [
                    {
                        "start": 7,
                        "end": 26,
                        "text": "(Zeng et al., 2020)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 238,
                        "end": 239,
                        "text": "4",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relevance Sampling",
                "sec_num": "4.1.2"
            },
            {
                "text": "The addition of random samples also allows the model to discriminate between columns effectively. Consider Question 4 from Table 2 , the question is ambiguous without table content because it is unclear if the column to be selected is Place or Country. The pattern \"where are. . . from?\" indicates that the user's intent is to find a location and both column names seem like a reasonable choice (Place is a synonym for location and Country is a location). However, when augmented with random column samples, we see that the Place column only contains numeric values and is used as the synonym of \"rank\" in this table. Figure 3 shows our input representation to the BERT model. Our representation bears similarity to Photon where the content values are concatenated along with the headers and the question separated by special tokens. However, Photon only tackles columns with picklists (categorical columns storing small fixed set of values) while we support numeric and free-form text columns as well. Additionally, as mentioned above, since Photon only incorporates a single matched value, it doesn't gracefully interpret all questions.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 123,
                        "end": 130,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 618,
                        "end": 626,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Relevance Sampling",
                "sec_num": "4.1.2"
            },
            {
                "text": "We concatenate the column samples to the headers with special delimiters and experiment with 1,3,5 samples for each column. The number of samples is currently limited by the maximum sequence length supported by BERT models and in the future we hope to experiment with operating on each column individually and diversity based sampling to extract the most distinctive samples.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relevance Sampling",
                "sec_num": "4.1.2"
            },
            {
                "text": "We use the base version of BERT in all our experiments and made necessary changes for sampling on the original SQLova codebase. We use Adam (Kingma and Ba, 2019) optimizer with a learning rate of 1e-3 for the decoder layers and 1e-5 for the BERT model. Table 2 shows some qualitative examples from our model when augmented with 3 values included for each column. The first two examples are based on random sampling and the latter two are based on relevance sampling. Our model is able to correctly resolve phrases such as \"Maria Herrera\" and \"BMW\" to the right columns when the corresponding values were not seen during training or inference. Consider the first two examples with different modifiers of \"rider\", leveraging the sampled values, our model correctly matches \"BMW\" to Manufacturer (column storing brand name like values) and \"Maria Herrera\" to Rider (column storing human name like values).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 253,
                        "end": 260,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment Setup",
                "sec_num": "5"
            },
            {
                "text": "We show performance of our model evaluated on the original WikiSQL dev dataset under different sampling settings. Owing to the 512 token limit, we only sample upto 5 values per column in ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Effect of Random Sampling",
                "sec_num": "6.2"
            },
            {
                "text": "In addition to random sampling, we also provide results on a model that finds the most relevant samples to the question. In Table 4 , we compare our results with NL2SQL-RULE (Guo and Gao, 2019) (uses entire table content) and EM:1 (including a * Due to unavailability of code, HydraNet numbers are only reported on datasets used in their paper single exactly matched value), the content incorporation strategy adopted by Photon (Zeng et al., 2020) . Since WikiSQL does not distinguish categorical columns, we applied the exact match to all columns. Our model achieves 85.2% logical form and 90.65% execution accuracy on the original WikiSQL dataset outperforming all models without EG. We also studied the memory and time footprint for indexing cells with increasing table sizes by benchmarking the performance of random and relevance sampling on very large tables. To simulate real-world data, we used IMDB movie database -a large-scale database with tables spanning over 7M rows containing movie metadata.",
                "cite_spans": [
                    {
                        "start": 428,
                        "end": 447,
                        "text": "(Zeng et al., 2020)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 124,
                        "end": 131,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Effect of Relevance Sampling",
                "sec_num": "6.3"
            },
            {
                "text": "The random sampling method is agnostic to table size as samples are generated just once while the relevance sampling method scans the table to pick the best samples for each query. The results are shown in Table 5 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 206,
                        "end": 213,
                        "text": "Table 5",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Effect of Relevance Sampling",
                "sec_num": "6.3"
            },
            {
                "text": "Rows ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "To measure the efficacy of content augmentation, we compared COLLOQL with other works on our dataset of 400 simplified queries which was generated by the sentence simplification model and verified/corrected by a team of data scientists and engineers. This dataset largely contains queries in which the where columns are not explicitly mentioned in the query and requires the model to infer them. We can see from Table 6 that a model uninformed of the content drops in accuracy (especially in the where column prediction) while COL-LOQL retains its performance. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 412,
                        "end": 419,
                        "text": "Table 6",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "Performance on Simple Questions",
                "sec_num": "6.4"
            },
            {
                "text": "Since SQLova was originally trained with complete sentences, it does not adapt well to short questions. Retraining the same model with augmented data from our templates recovers the performance (tested using short questions). Additionally, the augmentation also results in improved generalization resulting in a minor LF accuracy improvement on the original dev data as shown in Table 7 . ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 379,
                        "end": 386,
                        "text": "Table 7",
                        "ref_id": "TABREF12"
                    }
                ],
                "eq_spans": [],
                "section": "Effect of Augmentation",
                "sec_num": "6.5"
            },
            {
                "text": "We classified the errors made by our model on the ColloQL curated dataset into two major categories: Aggregation -Given that WikiSQL contains noisy labels for aggregation component (Hwang et al., 2019) and the model was optimized for accuracy on WikiSQL, there are some errors in predicting this slot.",
                "cite_spans": [
                    {
                        "start": 181,
                        "end": 201,
                        "text": "(Hwang et al., 2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "7"
            },
            {
                "text": "Select Columns -The simplified questions are often more ambiguous when predicting whether a column is a target to be selected or is used in a filtering condition (e.g. for the question \"smallest tiesplayed 6 years\", the model interprets it as SELECT MIN(years) WHERE tiesplayed = 6 while the correct query is SELECT MIN(tiesplayed) WHERE years = 6). Additionally, we noticed that our annotators simplified column headers like \"shortstop\" and \"rightfielder\" to \"SS\" and \"RF\", making the question very difficult to solve.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "7"
            },
            {
                "text": "In this work we tackled the task of converting noisy (short, potentially ambiguous) search-like (NLS) questions to SQL queries. We introduced data augmentation strategies to adapt to the NLS style of text and a novel content enhancement to BERT via two sampling strategies -random and relevance sampling. Random sampling overcomes some of the performance / privacy challenges of incorporating table content and relevance sampling achieves state-of-the-art performance when access to table content is permitted. Finally, we also curated a new held-out dataset to evaluate performance against NLS questions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "8"
            },
            {
                "text": "In the future, we hope to explore different sampling techniques (based on user history, sampling to maximize discernment between columns) to enhance performance. Besides, our approach and dataset mainly target telegraphic queries that can be effectively disambiguated with table contents, which frequency occur in our search service. We plan to extend our work to handle other types of input ambiguities and other application domains.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "8"
            },
            {
                "text": "One of the authors who did not participate in the dataset annotation randomly sampled 16/400 examples and manually checked the quality. 4/16 annotations were found to have issues in the natural language annotation. Table 9 shows examples from the simple question dataset. The first 4 examples are correct, highquality annotations while the bottom 4 are those with issues found during manual check. The highquality simple question annotations are readable and on average have a smaller compression ratio compared to the noisy annotations.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 215,
                        "end": 222,
                        "text": "Table 9",
                        "ref_id": "TABREF15"
                    }
                ],
                "eq_spans": [],
                "section": "A.1 Test Set Quality",
                "sec_num": null
            },
            {
                "text": "We noticed that some errors in the WikiSQL annotation (Hwang et al., 2019) were corrected when the simplified questions were produced, but some perpetuated through. In the second example, the annotator corrected spelling errors in the original WikiSQL annotation. However, in the 7th example, the original question misinterpreted Year acquired as a quantity and our simplified question inherited that error. Similarly, in the 8th example, the original question misinterpreted the field Finalists as \"score\" (it should represent \"number of finalists\") and our simplified question inherited it.",
                "cite_spans": [
                    {
                        "start": 54,
                        "end": 74,
                        "text": "(Hwang et al., 2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Test Set Quality",
                "sec_num": null
            },
            {
                "text": "The 5th and 6th examples have unreadable questions as a result of sentence simplification (but our annotators still labeled them as correct). This is an artifact of the dataset as such unreadable, keywordstyle queries may favor models that leverage table content to identify the columns. On the other hand, such queries could be useful as being able to interpret them may give users more flexibility when searching the content of a database.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Test Set Quality",
                "sec_num": null
            },
            {
                "text": "What is the amount of trees, that require replacement when the district is motovilikhinsky? ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Original",
                "sec_num": null
            },
            {
                "text": "https://www.salesforce.com/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Our code and annotated data can be found at https://github.com/karthikradhakrishnan96/ ColloQL.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Sentence simplification creates a diverse set of examples which contains some of those generated by gold SQL label.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We ran the evaluation on Photon's demo page.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/salesforce/WikiSQL",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We would like to thank Christian Posse and Mario Rodriguez for their support, help and invaluable feedback throughout the development of this work. We also would like to thank our team of expert annotators for their contribution.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Natural language interfaces to databases -an introduction",
                "authors": [
                    {
                        "first": "Ion",
                        "middle": [],
                        "last": "Androutsopoulos",
                        "suffix": ""
                    },
                    {
                        "first": "Graeme",
                        "middle": [
                            "D"
                        ],
                        "last": "Ritchie",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Thanisch",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ion Androutsopoulos, Graeme D. Ritchie, and Pe- ter Thanisch. 1995. Natural language interfaces to databases -an introduction.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Semantic parsing of ambiguous input through paraphrasing and verification",
                "authors": [
                    {
                        "first": "Philip",
                        "middle": [],
                        "last": "Arthur",
                        "suffix": ""
                    },
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Neubig",
                        "suffix": ""
                    },
                    {
                        "first": "Sakriani",
                        "middle": [],
                        "last": "Sakti",
                        "suffix": ""
                    },
                    {
                        "first": "Tomoki",
                        "middle": [],
                        "last": "Toda",
                        "suffix": ""
                    },
                    {
                        "first": "Satoshi",
                        "middle": [],
                        "last": "Nakamura",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "3",
                "issue": "",
                "pages": "571--584",
                "other_ids": {
                    "DOI": [
                        "10.1162/tacl_a_00159"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Philip Arthur, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura. 2015. Semantic pars- ing of ambiguous input through paraphrasing and verification. Transactions of the Association for Computational Linguistics, 3:571-584.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.04805"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understand- ing. arXiv preprint arXiv:1810.04805.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Improving text-to-sql evaluation methodology",
                "authors": [
                    {
                        "first": "Catherine",
                        "middle": [],
                        "last": "Finegan-Dollak",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [
                            "K"
                        ],
                        "last": "Kummerfeld",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Karthik",
                        "middle": [],
                        "last": "Ramanathan",
                        "suffix": ""
                    },
                    {
                        "first": "Sesh",
                        "middle": [],
                        "last": "Sadasivam",
                        "suffix": ""
                    },
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Dragomir",
                        "middle": [
                            "R"
                        ],
                        "last": "Radev",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018",
                "volume": "1",
                "issue": "",
                "pages": "351--360",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1033"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui Zhang, and Dragomir R. Radev. 2018. Im- proving text-to-sql evaluation methodology. In Pro- ceedings of the 56th Annual Meeting of the Associa- tion for Computational Linguistics, ACL 2018, Mel- bourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pages 351-360. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Towards complex text-to-sql in cross-domain database with intermediate representation",
                "authors": [
                    {
                        "first": "Jiaqi",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    },
                    {
                        "first": "Zecheng",
                        "middle": [],
                        "last": "Zhan",
                        "suffix": ""
                    },
                    {
                        "first": "Yan",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Yan",
                        "middle": [],
                        "last": "Xiao",
                        "suffix": ""
                    },
                    {
                        "first": "Jian-Guang",
                        "middle": [],
                        "last": "Lou",
                        "suffix": ""
                    },
                    {
                        "first": "Ting",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Dongmei",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019",
                "volume": "1",
                "issue": "",
                "pages": "4524--4535",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/p19-1444"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and Dongmei Zhang. 2019. Towards complex text-to-sql in cross-domain database with intermediate representation. In Pro- ceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28-August 2, 2019, Volume 1: Long Pa- pers, pages 4524-4535. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Content enhanced bert-based text-to-sql generation",
                "authors": [
                    {
                        "first": "Tong",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    },
                    {
                        "first": "Huilin",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.07179"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tong Guo and Huilin Gao. 2019. Content enhanced bert-based text-to-sql generation. arXiv preprint arXiv:1910.07179.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Queryfocused sentence compression in linear time",
                "authors": [
                    {
                        "first": "Abram",
                        "middle": [],
                        "last": "Handler",
                        "suffix": ""
                    },
                    {
                        "first": "O'",
                        "middle": [],
                        "last": "Brendan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Connor",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "5969--5975",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1612"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Abram Handler and Brendan O'Connor. 2019. Query- focused sentence compression in linear time. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 5969- 5975, Hong Kong, China. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "A comprehensive exploration on wikisql with table-aware word contextualization",
                "authors": [
                    {
                        "first": "Wonseok",
                        "middle": [],
                        "last": "Hwang",
                        "suffix": ""
                    },
                    {
                        "first": "Jinyeung",
                        "middle": [],
                        "last": "Yim",
                        "suffix": ""
                    },
                    {
                        "first": "Seunghyun",
                        "middle": [],
                        "last": "Park",
                        "suffix": ""
                    },
                    {
                        "first": "Minjoon",
                        "middle": [],
                        "last": "Seo",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and Minjoon Seo. 2019. A comprehensive exploration on wikisql with table-aware word contextualization. ArXiv, abs/1902.01069.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "A method for stochastic optimization",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Diederik",
                        "suffix": ""
                    },
                    {
                        "first": "J Adam",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1412.6980"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Diederik P Kingma and J Adam Ba. 2019. A method for stochastic optimization. arxiv 2014. arXiv preprint arXiv:1412.6980, 434.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Nalir: an interactive natural language interface for querying relational databases",
                "authors": [
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Hosagrahar",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Jagadish",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 ACM SIGMOD international conference on Management of data",
                "volume": "",
                "issue": "",
                "pages": "709--712",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fei Li and Hosagrahar V Jagadish. 2014. Nalir: an in- teractive natural language interface for querying re- lational databases. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data, pages 709-712.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Hybrid ranking network for text-to-sql",
                "authors": [
                    {
                        "first": "Qin",
                        "middle": [],
                        "last": "Lyu",
                        "suffix": ""
                    },
                    {
                        "first": "Kaushik",
                        "middle": [],
                        "last": "Chakrabarti",
                        "suffix": ""
                    },
                    {
                        "first": "Shobhit",
                        "middle": [],
                        "last": "Hathi",
                        "suffix": ""
                    },
                    {
                        "first": "Souvik",
                        "middle": [],
                        "last": "Kundu",
                        "suffix": ""
                    },
                    {
                        "first": "Jianwen",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Zheng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik Kundu, Jianwen Zhang, and Zheng Chen. 2020. Hy- brid ranking network for text-to-sql. Technical Re- port MSR-TR-2020-7, Microsoft Dynamics 365 AI.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Underspecified query refinement via natural language question generation",
                "authors": [
                    {
                        "first": "Hassan",
                        "middle": [],
                        "last": "Sajjad",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Pantel",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Gamon",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "The COLING 2012 Organizing Committee",
                "volume": "",
                "issue": "",
                "pages": "2341--2356",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hassan Sajjad, Patrick Pantel, and Michael Gamon. 2012. Underspecified query refinement via natural language question generation. In Proceedings of COLING 2012, pages 2341-2356, Mumbai, India. The COLING 2012 Organizing Committee.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Eviza: A natural language interface for visual analysis",
                "authors": [
                    {
                        "first": "Vidya",
                        "middle": [],
                        "last": "Setlur",
                        "suffix": ""
                    },
                    {
                        "first": "Sarah",
                        "middle": [
                            "E"
                        ],
                        "last": "Battersby",
                        "suffix": ""
                    },
                    {
                        "first": "Melanie",
                        "middle": [],
                        "last": "Tory",
                        "suffix": ""
                    },
                    {
                        "first": "Rich",
                        "middle": [],
                        "last": "Gossweiler",
                        "suffix": ""
                    },
                    {
                        "first": "Angel X",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 29th Annual Symposium on User Interface Software and Technology",
                "volume": "",
                "issue": "",
                "pages": "365--377",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vidya Setlur, Sarah E Battersby, Melanie Tory, Rich Gossweiler, and Angel X Chang. 2016. Eviza: A natural language interface for visual analysis. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pages 365-377.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Inferencing underspecified natural language utterances in visual analysis",
                "authors": [
                    {
                        "first": "Vidya",
                        "middle": [],
                        "last": "Setlur",
                        "suffix": ""
                    },
                    {
                        "first": "Melanie",
                        "middle": [],
                        "last": "Tory",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Djalali",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 24th International Conference on Intelligent User Interfaces, IUI '19",
                "volume": "",
                "issue": "",
                "pages": "40--51",
                "other_ids": {
                    "DOI": [
                        "10.1145/3301275.3302270"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Vidya Setlur, Melanie Tory, and Alex Djalali. 2019. In- ferencing underspecified natural language utterances in visual analysis. In Proceedings of the 24th Inter- national Conference on Intelligent User Interfaces, IUI '19, page 40-51, New York, NY, USA. Associa- tion for Computing Machinery.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Replace or Retrieve Keywords In Documents at Scale. ArXiv e-prints",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "V. Singh. 2017. Replace or Retrieve Keywords In Doc- uments at Scale. ArXiv e-prints.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "RAT-SQL: relation-aware schema encoding and linking for textto-sql parsers",
                "authors": [
                    {
                        "first": "Bailin",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Shin",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Oleksandr",
                        "middle": [],
                        "last": "Polozov",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Richardson",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020",
                "volume": "",
                "issue": "",
                "pages": "7567--7578",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson. 2020. RAT-SQL: relation-aware schema encoding and linking for text- to-sql parsers. In Proceedings of the 58th Annual Meeting of the Association for Computational Lin- guistics, ACL 2020, Online, July 5-10, 2020, pages 7567-7578. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Robust text-to-sql generation with execution-guided decoding",
                "authors": [
                    {
                        "first": "Chenglong",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Kedar",
                        "middle": [],
                        "last": "Tatwawadi",
                        "suffix": ""
                    },
                    {
                        "first": "Marc",
                        "middle": [],
                        "last": "Brockschmidt",
                        "suffix": ""
                    },
                    {
                        "first": "Po-Sen",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Yi",
                        "middle": [],
                        "last": "Mao",
                        "suffix": ""
                    },
                    {
                        "first": "Oleksandr",
                        "middle": [],
                        "last": "Polozov",
                        "suffix": ""
                    },
                    {
                        "first": "Rishabh",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1807.03100"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Chenglong Wang, Kedar Tatwawadi, Marc Brockschmidt, Po-Sen Huang, Yi Mao, Olek- sandr Polozov, and Rishabh Singh. 2018. Robust text-to-sql generation with execution-guided decoding. arXiv preprint arXiv:1807.03100.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Sqlnet: Generating structured queries from natural language without reinforcement learning",
                "authors": [
                    {
                        "first": "Xiaojun",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Chang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Dawn",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaojun Xu, Chang Liu, and Dawn Song. 2018. Sqlnet: Generating structured queries from natural language without reinforcement learning.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Interactive semantic parsing for if-then recipes via hierarchical reinforcement learning",
                "authors": [
                    {
                        "first": "Ziyu",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Xiujun",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [
                            "M"
                        ],
                        "last": "Sadler",
                        "suffix": ""
                    },
                    {
                        "first": "Huan",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence",
                "volume": "2019",
                "issue": "",
                "pages": "2547--2554",
                "other_ids": {
                    "DOI": [
                        "10.1609/aaai.v33i01.33012547"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ziyu Yao, Xiujun Li, Jianfeng Gao, Brian M. Sadler, and Huan Sun. 2019a. Interactive semantic pars- ing for if-then recipes via hierarchical reinforce- ment learning. In The Thirty-Third AAAI Con- ference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial In- telligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -February 1, 2019, pages 2547-2554. AAAI Press.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Model-based interactive semantic parsing: A unified framework and A text-to-sql case study",
                "authors": [
                    {
                        "first": "Ziyu",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "Huan",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Wen-Tau",
                        "middle": [],
                        "last": "Yih",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019",
                "volume": "",
                "issue": "",
                "pages": "5446--5457",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1547"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019b. Model-based interactive semantic parsing: A unified framework and A text-to-sql case study. In Proceed- ings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter- national Joint Conference on Natural Language Pro- cessing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 5446-5457. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "TRANX: A transition-based neural abstract syntax parser for semantic parsing and code generation",
                "authors": [
                    {
                        "first": "Pengcheng",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    },
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Neubig",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "2018",
                "issue": "",
                "pages": "7--12",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/d18-2002"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Pengcheng Yin and Graham Neubig. 2018. TRANX: A transition-based neural abstract syntax parser for se- mantic parsing and code generation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018: Sys- tem Demonstrations, Brussels, Belgium, October 31 -November 4, 2018, pages 7-12. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Tabert: Pretraining for joint understanding of textual and tabular data",
                "authors": [
                    {
                        "first": "Pengcheng",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    },
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Neubig",
                        "suffix": ""
                    },
                    {
                        "first": "Yih",
                        "middle": [],
                        "last": "Wen-Tau",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Riedel",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online",
                "volume": "",
                "issue": "",
                "pages": "8413--8426",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se- bastian Riedel. 2020. Tabert: Pretraining for joint understanding of textual and tabular data. In Pro- ceedings of the 58th Annual Meeting of the Associ- ation for Computational Linguistics, ACL 2020, On- line, July 5-10, 2020, pages 8413-8426. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Typesql: Knowledgebased type-aware neural text-to-sql generation",
                "authors": [
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Zifan",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Zilin",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Dragomir",
                        "middle": [],
                        "last": "Radev",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1804.09769"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tao Yu, Zifan Li, Zilin Zhang, Rui Zhang, and Dragomir Radev. 2018a. Typesql: Knowledge- based type-aware neural text-to-sql generation. arXiv preprint arXiv:1804.09769.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Spider: A largescale human-labeled dataset for complex and crossdomain semantic parsing and text-to-sql task",
                "authors": [
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Kai",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Michihiro",
                        "middle": [],
                        "last": "Yasunaga",
                        "suffix": ""
                    },
                    {
                        "first": "Dongxu",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Zifan",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Irene",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Qingning",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Shanelle",
                        "middle": [],
                        "last": "Roman",
                        "suffix": ""
                    },
                    {
                        "first": "Zilin",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Dragomir",
                        "middle": [],
                        "last": "Radev",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. 2018b. Spider: A large- scale human-labeled dataset for complex and cross- domain semantic parsing and text-to-sql task. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Photon: A robust cross-domain text-to-SQL system",
                "authors": [
                    {
                        "first": "Jichuan",
                        "middle": [],
                        "last": "Zeng",
                        "suffix": ""
                    },
                    {
                        "first": "Victoria",
                        "middle": [],
                        "last": "Xi",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "H"
                        ],
                        "last": "Steven",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Hoi",
                        "suffix": ""
                    },
                    {
                        "first": "Caiming",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Irwin",
                        "middle": [],
                        "last": "Lyu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "King",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "204--214",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-demos.24"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jichuan Zeng, Xi Victoria Lin, Steven C.H. Hoi, Richard Socher, Caiming Xiong, Michael Lyu, and Irwin King. 2020. Photon: A robust cross-domain text-to-SQL system. In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 204- 214, Online. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Online learning of relaxed CCG grammars for parsing to logical form",
                "authors": [
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)",
                "volume": "",
                "issue": "",
                "pages": "678--687",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Luke Zettlemoyer and Michael Collins. 2007. Online learning of relaxed CCG grammars for parsing to logical form. In Proceedings of the 2007 Joint Con- ference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 678-687, Prague, Czech Republic. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Seq2sql: Generating structured queries from natural language using reinforcement learning",
                "authors": [
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Zhong",
                        "suffix": ""
                    },
                    {
                        "first": "Caiming",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2sql: Generating structured queries from natural language using reinforcement learning. CoRR, abs/1709.00103.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "text": "Examples of search-style user queries.",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "num": null,
                "text": "SQL-Sketch fromXu et al. (2018).",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF2": {
                "num": null,
                "text": "ColloQL uses the same NN architecture as SQLova where six decoding layers (one for each component of the SQL-Sketch) are used over BERT. The SQL query (SELECT Player Name WHERE Jersey = 42) is constructed from outputs of different components. Unlike SQLova, we also contextualize the question with the table samples (underlined in the figure) delimited by special tokens.",
                "uris": null,
                "type_str": "figure"
            },
            "TABREF1": {
                "num": null,
                "content": "<table><tr><td colspan=\"2\">0 (player name)</td><td colspan=\"2\">0 (no aggregation)</td><td/><td>1</td><td colspan=\"2\">[1] (Jersey)</td><td>[=]</td><td colspan=\"3\">[(2,2)] (span indices for \"42\")</td></tr><tr><td colspan=\"2\">Select Column</td><td colspan=\"2\">Aggregation Operator</td><td colspan=\"2\"># Where clauses LSTM</td><td colspan=\"2\">Where Column</td><td colspan=\"2\">Where Operator</td><td colspan=\"2\">Where Value</td></tr><tr><td>Column Attn</td><td/><td>Column Attn</td><td/><td/><td>Self Attn</td><td>Column Attn</td><td/><td>Column Attn</td><td/><td>Column Attn</td><td/></tr><tr><td>LSTM-q</td><td>LSTM-h</td><td>LSTM-q</td><td>LSTM-h</td><td>LSTM-q</td><td>LSTM-h</td><td>LSTM-q</td><td>LSTM-h</td><td>LSTM-q</td><td>LSTM-h</td><td>LSTM-q</td><td>LSTM-h</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table"
            },
            "TABREF2": {
                "num": null,
                "content": "<table><tr><td>SQL</td><td>SELECT (Grid) FROM 2-14125739-3 WHERE Rider = maria herrera AND Laps &lt;</td></tr><tr><td/><td>200</td></tr><tr><td/><td>fox tv series female</td></tr><tr><td/><td>Animal Name || Jack | SELECT (TV Series) FROM 2-11206371-5 WHERE Species = fox AND Gender =</td></tr><tr><td/><td>female</td></tr><tr><td/><td>Where are Charlie Freedman/Eddie Fletcher from?</td></tr><tr><td/><td>Place || 7 | 9 | 1 [SEP] SELECT (Country) FROM 2-10301911-6 WHERE Rider = charlie freedman/eddie</td></tr><tr><td/><td>fletcher</td></tr></table>",
                "text": "Modifying the architecture to operate on one column at a time (HydraNet) would allow us to use more samples.Our model performs significantly grid of bmw rider with > 200 laps Rider || Nicolas Terol | Mike Di Meglio | Stevie Bonsey [SEP] Manufacturer || Derbi | Honda | KTM [SEP] Laps || 1 | 24 | 0 [SEP] Grid || 20 | 29 | 25 . . . SQL SELECT (Grid) FROM 2-14125739-3 WHERE Manufacturer = bmw AND Laps > 200 grid of maria herrera rider with < 200 laps Rider || Nicolas Terol | Mike Di Meglio | Stevie Bonsey [SEP] Manufacturer || Derbi | Honda | KTM [SEP] Laps || 1 | 24 | 0 [SEP] Grid || 20 | 29 | 25 . . . The Big Owl | The Wild Boar [SEP] Species || Fox | Badger | Boar [SEP] Books || No | Yes [SEP] Gender || male | female . . . SQL Rider || Charlie Freedman/Eddie Fletcher | Mick Horsepole/E . . . [SEP] Country || West Germany | Switzerland | United Kingdom [SEP] . . . SQL",
                "html": null,
                "type_str": "table"
            },
            "TABREF3": {
                "num": null,
                "content": "<table><tr><td>Model</td><td/><td/><td colspan=\"2\">LF (dev) EX (dev)</td></tr><tr><td>SQLova BASE</td><td/><td/><td>79.5</td><td>85.3</td></tr><tr><td>SQLova LARGE</td><td/><td/><td>81.6</td><td>87.2</td></tr><tr><td>HydraNet LARGE</td><td colspan=\"2\">*</td><td>83.6</td><td>89.1</td></tr><tr><td colspan=\"2\">COLLOQL rand:1</td><td>\u2020</td><td>82.0</td><td>87.6</td></tr><tr><td colspan=\"2\">COLLOQL rand:3</td><td>\u2020</td><td>83.3</td><td>89.1</td></tr><tr><td colspan=\"2\">COLLOQL rand:5</td><td>\u2020</td><td>83.5</td><td>89.3</td></tr></table>",
                "text": "Some qualitative examples from our random (1,2) and relevance (3,4) sampling models. Bold values in headers indicate a match in the question.better than our base SQLova model and performs competitively with other larger models.",
                "html": null,
                "type_str": "table"
            },
            "TABREF4": {
                "num": null,
                "content": "<table><tr><td>: Model performance with different sampling</td></tr><tr><td>settings. Rand:[1,3,5] uses random sampling.  \u2020 indi-</td></tr><tr><td>cates that data augmentation is added.</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table"
            },
            "TABREF6": {
                "num": null,
                "content": "<table><tr><td>: Efficacy of different content incorporation</td></tr><tr><td>strategies. Relevance sampling (with 3 samples) gives</td></tr><tr><td>the best performance.  \u2021denotes our implementation of</td></tr><tr><td>Photon.</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table"
            },
            "TABREF8": {
                "num": null,
                "content": "<table><tr><td>: Benchmarking different content incorporation</td></tr><tr><td>strategies with respect to execution time (CPU), mem-</td></tr><tr><td>ory footprint and setup time (for indexing).</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table"
            },
            "TABREF10": {
                "num": null,
                "content": "<table/>",
                "text": "Performance on the curated test set i.e. 400 simplified queries.",
                "html": null,
                "type_str": "table"
            },
            "TABREF12": {
                "num": null,
                "content": "<table><tr><td colspan=\"4\">: Comparing logical form accuracy of SQLova</td></tr><tr><td colspan=\"4\">with augmentation. LF(short) is the dev accuracy on</td></tr><tr><td colspan=\"4\">the short questions. LF(dev) is the accuracy on the Wik-</td></tr><tr><td>iSQL dev split.</td><td/><td/><td/></tr><tr><td colspan=\"4\">6.6 Performance on WikiSQL test set</td></tr><tr><td colspan=\"4\">Finally, we also show the performance of our model</td></tr><tr><td colspan=\"4\">on the WikiSQL test dataset comparing them to the</td></tr><tr><td colspan=\"4\">top approaches on the WikiSQL leaderboard 5 . As</td></tr><tr><td colspan=\"4\">we can see in Table 8, COLLOQL achieves the high-</td></tr><tr><td colspan=\"4\">est accuracy without execution guided decoding on</td></tr><tr><td colspan=\"2\">the WikiSQL test set.</td><td/><td/></tr><tr><td>Model</td><td/><td colspan=\"2\">LF(test) EX(test)</td></tr><tr><td>HydraNet LARGE</td><td/><td>83.8</td><td>89.2</td></tr><tr><td>NL2SQL BASE</td><td/><td>83.7</td><td>89.2</td></tr><tr><td>COLLOQL rel:3</td><td>\u2020</td><td>84.9</td><td>90.7</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table"
            },
            "TABREF13": {
                "num": null,
                "content": "<table/>",
                "text": "Performance on the WikiSQL test set.",
                "html": null,
                "type_str": "table"
            },
            "TABREF14": {
                "num": null,
                "content": "<table><tr><td/><td colspan=\"2\">SELECT COUNT(Winning driver) from</td><td>WHERE Rnd=5</td></tr><tr><td/><td>SELECT (Title) from</td><td>WHERE US airdate=4 April 2008</td></tr><tr><td/><td>SELECT (Score) from</td><td>WHERE Semi-Finalist 1=Miami</td></tr><tr><td/><td colspan=\"2\">SELECT (School/Club Team/Country) from</td><td>WHERE No.(s)=10 AND</td></tr><tr><td/><td>Position=Forward</td></tr><tr><td>Original</td><td colspan=\"2\">Which visitors have a leading scorer of roy : 25?</td></tr><tr><td>Simple</td><td>visitor of 25-18</td></tr><tr><td/><td># SELECT (Visitor) from</td><td>WHERE Leading scorer=Roy : 25</td></tr><tr><td/><td colspan=\"2\">SELECT COUNT(Year acquired) from</td><td>WHERE Station=CHAN</td></tr><tr><td>Original</td><td colspan=\"2\">What are the names that had a finalist score of 2??</td></tr><tr><td>Simple</td><td colspan=\"2\">names that had finalist score 2?</td></tr><tr><td/><td>SELECT (School) from</td><td>WHERE Finalists=2</td></tr></table>",
                "text": "Simple the amount of trees, that require replacement district motovilikhinsky? District || Total amount of trees || Prevailing types, % || Amount of old trees || Amount of trees, that require replacement || ... SQL SELECT (Amount of trees, that require replacement) from WHERE District=Leninsky Original How many winning drivers were the for the rnd equalling 5? Simple how many winning drivers for 5? Rnd || Race Name || Circuit || City/Location || Date || Pole position || Winning driver || ... SQL Original For the episode(s) aired in the U.S. on 4 april 2008, what were the names? Simple for the episode(s) aired in U.S. 4 april 2008, names? No. in season || No. in series || Title || Canadian airdate || US airdate || Production code . . . SQL Original List the scores of all games when Miami were listed as the first Semi finalist? Simple scores with miami listed as first semi finalist? Year || Champion || Score || Runner-Up || Location || Semi-Finalist #1 || Semi-Finalist #2 . . . SQL Original What school did the forward whose number is 10 belong to? Simple what school did forward 10 Player || No.(s) || Height in Ft. || Position || Years for Rockets || School/Club Team/Country . . . SQL || Date || Visitor || Score || Home || Leading scorer || Attendance || Record || Streak . . . SQL Original how any were gained as the chan Simple how many gained chan City || Station || Year acquired || Primary programming source || Other programming sources . . . SQL School || Winners || Finalists || Total Finals || Year of last win SQL",
                "html": null,
                "type_str": "table"
            },
            "TABREF15": {
                "num": null,
                "content": "<table/>",
                "text": "Examples in simple questions dev set. We use \" \" as placeholder for table in the SQL queries. Only table headers were shown. The top 4 examples are correct while the bottom 4 have issue in the natural language annotation.",
                "html": null,
                "type_str": "table"
            }
        }
    }
}