File size: 83,961 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:33:49.419896Z"
    },
    "title": "Dynamic Facet Selection by Maximizing Graded Relevance",
    "authors": [
        {
            "first": "Michael",
            "middle": [],
            "last": "Glass",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "T.J. Watson Research Center",
                "location": {
                    "settlement": "Yorktown Heights",
                    "region": "NY",
                    "country": "USA"
                }
            },
            "email": "mrglass@us.ibm.com"
        },
        {
            "first": "Md",
            "middle": [],
            "last": "Faisal",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "T.J. Watson Research Center",
                "location": {
                    "settlement": "Yorktown Heights",
                    "region": "NY",
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Mahbub",
            "middle": [],
            "last": "Chowdhury",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "T.J. Watson Research Center",
                "location": {
                    "settlement": "Yorktown Heights",
                    "region": "NY",
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Yu",
            "middle": [],
            "last": "Deng",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "T.J. Watson Research Center",
                "location": {
                    "settlement": "Yorktown Heights",
                    "region": "NY",
                    "country": "USA"
                }
            },
            "email": "dengy@us.ibm.com"
        },
        {
            "first": "Ruchi",
            "middle": [],
            "last": "Mahindru",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "T.J. Watson Research Center",
                "location": {
                    "settlement": "Yorktown Heights",
                    "region": "NY",
                    "country": "USA"
                }
            },
            "email": "rmahindr@us.ibm.com"
        },
        {
            "first": "Nicolas",
            "middle": [
                "Rodolfo"
            ],
            "last": "Fauceglia",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "T.J. Watson Research Center",
                "location": {
                    "settlement": "Yorktown Heights",
                    "region": "NY",
                    "country": "USA"
                }
            },
            "email": "nicolas.fauceglia@ibm.com"
        },
        {
            "first": "Alfio",
            "middle": [],
            "last": "Gliozzo",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "T.J. Watson Research Center",
                "location": {
                    "settlement": "Yorktown Heights",
                    "region": "NY",
                    "country": "USA"
                }
            },
            "email": "gliozzo@us.ibm.com"
        },
        {
            "first": "Nandana",
            "middle": [],
            "last": "Mihindukulasooriya",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "T.J. Watson Research Center",
                "location": {
                    "settlement": "Yorktown Heights",
                    "region": "NY",
                    "country": "USA"
                }
            },
            "email": "nandana.m@ibm.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Dynamic faceted search (DFS), an interactive query refinement technique, is a form of Human-computer information retrieval (HCIR) approach. It allows users to narrow down search results through facets, where the facetsdocuments mapping is determined at runtime based on the context of user query instead of pre-indexing the facets statically. In this paper, we propose a new unsupervised approach for dynamic facet generation, namely optimistic facets, which attempts to generate the best possible subset of facets, hence maximizing expected Discounted Cumulative Gain (DCG), a measure of ranking quality that uses a graded relevance scale. We also release code to generate a new evaluation dataset. Through empirical results on two datasets, we show that the proposed DFS approach considerably improves the document ranking in the search results.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Dynamic faceted search (DFS), an interactive query refinement technique, is a form of Human-computer information retrieval (HCIR) approach. It allows users to narrow down search results through facets, where the facetsdocuments mapping is determined at runtime based on the context of user query instead of pre-indexing the facets statically. In this paper, we propose a new unsupervised approach for dynamic facet generation, namely optimistic facets, which attempts to generate the best possible subset of facets, hence maximizing expected Discounted Cumulative Gain (DCG), a measure of ranking quality that uses a graded relevance scale. We also release code to generate a new evaluation dataset. Through empirical results on two datasets, we show that the proposed DFS approach considerably improves the document ranking in the search results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Human-computer information retrieval (HCIR) is the study of techniques that takes advantage of human intelligence into the search process. Through a multi-step search process, it facilitates opportunities for human feedback by taking into account the query context. Examples of HCIR approaches include -faceted search, relevance feedback, automatic query reformulation, illustration by tag clouds, etc.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Faceted Search (FS) (Tunkelang, 2009) , a form of HCIR, is a prevalent technique in e-commerce where document retrieval systems are augmented with faceted navigation. Facets are terms that present an overview on the variety of data available given the user query, thereby hinting at the most relevant refinement operations for zooming in on the target information need (Ben-yitzhak et al., 2008) .",
                "cite_spans": [
                    {
                        "start": 20,
                        "end": 37,
                        "text": "(Tunkelang, 2009)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 369,
                        "end": 395,
                        "text": "(Ben-yitzhak et al., 2008)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Traditional facet generation approaches present several drawbacks. Documents must be pre-tagged with an existing taxonomy, adding overhead in content curation and management. Moreover, such static facets lack contextual matching with documents or queries. Figure 1 shows an example of static/traditional facets.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 256,
                        "end": 264,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Dynamic Faceted Search (DFS) overcomes such limitations (Dash et al., 2008) . For Dynamic facets, the facet to document mapping is determined at run-time based on the context of user query instead of pre-indexing the facets statically. In other words, in an information retrieval (IR) system, there is no exclusive list of terms to be considered for dynamic facets and such facets are not known in advance. There is no pre-existing mapping of facets to the documents (that are indexed in the corresponding IR system). The mapping can only be created at the real-time when the query is submitted followed by generation of such facets based on the search results specific to the given query and are presented to the user along with the relevant documents.",
                "cite_spans": [
                    {
                        "start": 56,
                        "end": 75,
                        "text": "(Dash et al., 2008)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we present an approach for generating dynamic facets and selecting the best set of facets to be presented to the user. Hence, allowing the user to select relevant facets (if any) to interactively refine their queries, which in turn improves search results at each facet selection iteration. This interaction can be repeated until the user is satisfied with the results presented or no further refinement is possible.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Below we highlight the major contributions of our work -",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 a new state-of-the-art unsupervised approach for dynamic facet generation (see Section 3) evaluated on two datasets (see Section 6), and \u2022 a new benchmark dataset, Stackoverflow-Technotes (or, simply Stackoverflow) Benchmark. 1 (see Section 5).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Rest of the paper is structured as follows. Section 2 includes a brief summary of related work with respect to DFS. Section 3 describes our proposed approaches. The next two sections (4 and 5) describes the experimental settings and datasets. In Section 6, we show the empirical results, both quantitative and qualitative. Finally, Section 7 concludes the paper and highlights perspectives for future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "A closely related research task of facet generation is to generate alternative queries, also known as query suggestion (Mei et al., 2008) . Other related tasks are query substitution (Jones et al., 2006 ) and query refinement (Kraft and Zien, 2004) . The main difference between these tasks and facet generation is that facets are not alternative/substitute/refined queries but rather a way to organize the search results obtained using the original query.",
                "cite_spans": [
                    {
                        "start": 119,
                        "end": 137,
                        "text": "(Mei et al., 2008)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 183,
                        "end": 202,
                        "text": "(Jones et al., 2006",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 226,
                        "end": 248,
                        "text": "(Kraft and Zien, 2004)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Another related task is query expansion (Xu and Croft, 1996) where the goal is adding related words to a query in order to increase the number of returned documents and improve recall accordingly. In contrast, selection of facets allow to narrow down search results.",
                "cite_spans": [
                    {
                        "start": 40,
                        "end": 60,
                        "text": "(Xu and Croft, 1996)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "There is a considerable amount of work on faceted search (Zheng et al., 2013; Kong, 2016) . For brevity, here we focus on DFS only. DFS can be divided into two categories. First, DFS on databases (Basu Roy et al., 2008; Kim et al., 2014; Vandic et al., 2018) . Databases have a rich meta-data in the form of tables, attributes, dimensions, etc. DFS on databases focuses on the 1 We provide the codes for automatically creating the dataset using publicly available data, and also to run the simulated automatic evaluation. They can be found herehttps://github.com/IBM/ Stackoverflow-Technotes-dataset. best possible attributes from the meta-data, to be presented as facets.",
                "cite_spans": [
                    {
                        "start": 57,
                        "end": 77,
                        "text": "(Zheng et al., 2013;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 78,
                        "end": 89,
                        "text": "Kong, 2016)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 196,
                        "end": 219,
                        "text": "(Basu Roy et al., 2008;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 220,
                        "end": 237,
                        "text": "Kim et al., 2014;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 238,
                        "end": 258,
                        "text": "Vandic et al., 2018)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 377,
                        "end": 378,
                        "text": "1",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Our contributions are in the second category -DFS on textual data. An early approach was proposed by Ben-yitzhak et al. (2008) , where the generated dynamic facets are constrained by the ability to sum pre-defined Boolean expressions. Dash et al. (2008) proposed an approach, given a keyword as query, to dynamically select a small set of \"interesting\" attributes and present their aggregation to a user. Their work is focused on evaluating the execution time rather than result re-ranking. Dakka and Ipeirotis (2008) proposed an approach using external resources, namely WordNet and Wikipedia, to generate facets given a query.",
                "cite_spans": [
                    {
                        "start": 101,
                        "end": 126,
                        "text": "Ben-yitzhak et al. (2008)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 235,
                        "end": 253,
                        "text": "Dash et al. (2008)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 491,
                        "end": 517,
                        "text": "Dakka and Ipeirotis (2008)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Our proposed DFS approach on text generates dynamic facets that are terms (which are not restricted), not just aggregated values, and does not rely on any external resource. Input queries can be natural language texts, not restricted to keywords.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In a recent relevant work, Mihindukulasooriya et al. (2020) proposed an unsupervised DFS approach that exploits different types of word embedding models to extract so called flat and typed facets. The typed facets are organized in hierarchies while the flat facets are simply a list of facets without hierarchy. They show empirically both set of facets yield similar results.",
                "cite_spans": [
                    {
                        "start": 27,
                        "end": 59,
                        "text": "Mihindukulasooriya et al. (2020)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Given a ranked set of search results from a traditional search engine, our proposed approach, namely Optimistic facet set selection, tracks document ranking changes produced by selecting each candidate facet, and uses this information to select a subset of best possible facets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Dynamic Facet Generation",
                "sec_num": "3"
            },
            {
                "text": "We use the following notations in this section: \u2022",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Dynamic Facet Generation",
                "sec_num": "3"
            },
            {
                "text": "\u2022 D = [(d 1 , s 1 ), (d 2 , s 2 ), ..., (d n , s n )], where score s i \u2208 R,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Dynamic Facet Generation",
                "sec_num": "3"
            },
            {
                "text": "C = {f 1 , f 2 , .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Dynamic Facet Generation",
                "sec_num": "3"
            },
            {
                "text": ".., f c } is a set of c terms to be considered as facet candidates.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Dynamic Facet Generation",
                "sec_num": "3"
            },
            {
                "text": "\u2022 F \u2282 C is a set of k facets generated by the system as output, where k can be set by the user or the interactive search system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Dynamic Facet Generation",
                "sec_num": "3"
            },
            {
                "text": "Given a user query and the respective search results (i.e. documents) from a search engine, we extract the terms from those candidate documents with a frequency above threshold \u03b8 f req . Let us limit the expected number of dynamic facets to k. Given a pre-trained word embedding model (for the indexed document collection), cosine similarity, sim(q 0 , t), between the query and each term t is computed. Up to the top c terms with a minimum similarity score of \u03b8 sim are kept as facet candidates. 2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Facet candidate generation",
                "sec_num": "3.1"
            },
            {
                "text": "Our algorithm is built on two key assumptions:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Optimism: the user will select the best facet: one that attains the best Discounted Cumulative Gain (DCG) (or other graded relevance measure).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Relevance Probability: how likely a document is to be relevant is approximated by its rank in initial search results. 2 We set \u03b8 f req = 3, \u03b8sim = 0.5, and c = max(k 2 , 50). Each candidate facet, f , is associated with some change in the scores of the document results, \u03b4 f , and hence, some new ranking of the document results, R f . Using the filter strategy, \u03b4 f i is set as \u2212\u221e if f does not appear in document d i , else zero. Experimenting with a strategy of computing the change in BM25 score (Robertson and Zaragoza, 2009) if f is added to the query, resulted in lower performance.",
                "cite_spans": [
                    {
                        "start": 120,
                        "end": 121,
                        "text": "2",
                        "ref_id": null
                    },
                    {
                        "start": 502,
                        "end": 532,
                        "text": "(Robertson and Zaragoza, 2009)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": "1 Internal Pre-Announcement Information --Do Not Distribute R 1 R 2 3 2 5 R init R min min( ) ... ... 1 2 3 ... 3 6 1 ... 1 2 1 ... F = { f 1 f 2 ... }",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": "Suppose p i is the probability of being relevant for the ith ranked document in the initial retrieval. We fit a curve to estimate p i independent of the query or document results and find this probability to be roughly proportional to the inverse of the rank plus its square root. Figure 2 shows empirical probability of relevance and the curve to fit.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 281,
                        "end": 289,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": "A facet set has a minimum possible rank for each document, the lowest rank that can be achieved by selecting any facet in the set, or no facet. We indicate this list of ranks as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": "R min = [r 1 , r 2 , ..., r n ] where r j = min j, min f \u2208F (R f j )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": ". The list of ranks R min is closely connected with our optimistic assumption. If, for example, the single relevant document is in initial rank j, then R min j is the rank it will have after the user sees the initial results and optionally selects the best facet.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": "Consider the case (a majority in our datasets) where only one document is relevant. Then the expected DCG under the optimistic assumption is given by Equation 2. DCG is a standard metric in IR to measure the overall quality of the search results. DCG depends only on the ranks of the relevant (rel i = 1) documents. Intuitively, we optimize DCG in expectation by providing facets that produce different and likely rankings for the returned documents.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": "DCG = n i=1 rel i log 2 (1 + i) (1) E(DCG F ) = n i=1 p i log 2 (1 + R min i ) (2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": "We select a facet set to approximately optimize E(DCG F ) using greedy and local search. Both the greedy and local search phases of facet set selection rely on a function to select the facet candidate that will improve E(DCG F ) the most:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": "Best(C, F, f * , s * ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": "The greedy phase adds k facet candidates to the facet set, each time adding the facet that maximizes the set score. Local search tries to swap each facet in the facet set for some better facet candidate. This process could repeat until E(DCG F ) does not improve. Algorithm 1 shows pseudocode for these functions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": "Algorithm 1 Greedy/Local Facet Set Selection Best(C, F, f * , s * ) for f in C \u2212 F do s \u2190 E(DCG F \u222a{f } ) if s > s * then f * \u2190 f s * \u2190 s end if end for return f * , s * Greedy(C, k) F \u2190 \u2205 for i \u2190 1 through k do f * , s * \u2190Best(C, F, \u2205, 0) F \u2190 F \u222a {f * } end for return F, s * LocalSearch(C, F, s * ) repeat s0 \u2190 s * for f0 in F do F \u2190 F/f0 f * , s * \u2190 Best(C, F, f0, s * ) F \u2190 F \u222a {f * } end for until s * = s0",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Optimistic Facet Set Selection",
                "sec_num": "3.2"
            },
            {
                "text": "Evaluation Settings: We use the simulated user based automatic evaluation, called ORACLE, proposed by Mihindukulasooriya et al. (2020) . For each iteration of the faceted search, the system presents a list of ranked search results and facets to the ORACLE. It selects the facet which retrieves the target document at the highest rank.",
                "cite_spans": [
                    {
                        "start": 102,
                        "end": 134,
                        "text": "Mihindukulasooriya et al. (2020)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "The first dataset is an existing benchmark of real-world user questions in English in the domain of technical customer support, named the TechQA dataset (Castelli et al., 2020) . The reason we choose this dataset is -the most recent work, (Mihindukulasooriya et al., 2020) ), that we are aware of for faceted search is evaluated on this dataset. The RoBERTa based state-of-the-art IR approach (Liu et al., 2019) that we use as one of the baselines also used this dataset. The TechQA dataset has 160 answerable questions in the Dev split and is aligned with a corpus of 801,998 publicly available IBM Technotes documents. We evaluate our approaches on these questions while treating the corresponding Technotes documents (containing the answers) as the corpus.",
                "cite_spans": [
                    {
                        "start": 153,
                        "end": 176,
                        "text": "(Castelli et al., 2020)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 239,
                        "end": 272,
                        "text": "(Mihindukulasooriya et al., 2020)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 393,
                        "end": 411,
                        "text": "(Liu et al., 2019)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "TechQA Benchmark",
                "sec_num": "5.1"
            },
            {
                "text": "In addition to the TechQA benchmark, we create a new dataset in the technical support domain to verify the generality of our approach. This allows us to evaluate it on a different benchmark containing real-world queries which are often noisy and not curated.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Stackoverflow Benchmark",
                "sec_num": "5.2"
            },
            {
                "text": "We are releasing the corresponding benchmark generation codes to the research community as part of this work. The dataset contains total 883 queries. It was created from Stackoverflow 3 forum threads. We only considered those queries where the accepted answer posts contain link(s) to documents in the Technotes corpus (the same corpus as mentioned in the TechQA Benchmark). Here is how the released codes create this new benchmark:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Stackoverflow Benchmark",
                "sec_num": "5.2"
            },
            {
                "text": "\u2022 Extraction of Candidate Question Answer (QA) Pairs: We first identify the set of question posts and corresponding accepted answer posts from the StackOverflow post history dump. Then we extract the title and body of the identified question posts from post history, considering that the post body further elaborates context of the question. \u2022 Validation of QA Pairs with Result Links: We retain the QA pairs where desired corpus links have been mentioned in answer posts. This ensures that the questions in the dataset have answer links from the Technotes corpus. \u2022 Generation of Benchmark Dataset: We then extract the Technotes IDs from the answer posts to form the benchmark dataset. Figure 4 shows an example of an entry in the dataset, which includes an \"id\" field containing the id of a question post, a \"title\" field about the title of the question post, a \"body\" field which is the body part of the question post, and a \"relevant docids\"",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 687,
                        "end": 695,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Proposed Stackoverflow Benchmark",
                "sec_num": "5.2"
            },
            {
                "text": "field with a set of Technotes IDs extracted from the corresponding accepted answer post.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Stackoverflow Benchmark",
                "sec_num": "5.2"
            },
            {
                "text": "The procedure described above is generic and can be replicated for other forums and corpora with similar characteristics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Stackoverflow Benchmark",
                "sec_num": "5.2"
            },
            {
                "text": "We implemented the flat facets proposed by Mihindukulasooriya et al. (2020) to compare with our results on both datasets. We use BM25 (Robertson and Zaragoza, 2009) as IR baseline for the Stackoverflow benchmark. For the TechQA dataset, we use the state-of-the-art IR approach of Zhang et al. (2020) built using RoBERTa (Liu et al., 2019) as baseline. Zhang et al. (2020) generously shared with us their system's output for the TechQA-DR (i.e. document retrieval) task mentioned in their paper. We feed this output as input in our system as well as our implementation of Mihindukulasooriya et al. (2020) to extract facets from corresponding search results.",
                "cite_spans": [
                    {
                        "start": 43,
                        "end": 75,
                        "text": "Mihindukulasooriya et al. (2020)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 134,
                        "end": 164,
                        "text": "(Robertson and Zaragoza, 2009)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 320,
                        "end": 338,
                        "text": "(Liu et al., 2019)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 352,
                        "end": 371,
                        "text": "Zhang et al. (2020)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 571,
                        "end": 603,
                        "text": "Mihindukulasooriya et al. (2020)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6"
            },
            {
                "text": "For a given query, we consider maximum 50 search results retrieved by the IR baseline. Then, the ORACLE accepts only up to 5 facets generated from a DFS approach, and chose only one facet (i.e. a single interaction with the DFS system) as a filter. If a corresponding search result does not containing this facet, it is discarded which changes ranks of some of the remaining search results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6"
            },
            {
                "text": "We use three standard evaluation metrics: Discounted Cumulative Gain (DCG), Mean Reciprocal Rank (MRR), and Hits@K. For Hits@K, we share the absolute number of queries where the expected document is ranked within top-K results. Table 1 empirically compares our DFS approach against other systems. As evident from the results, optimistic DFS demonstrated remarkable edge over the DFS approach of Mihindukulasooriya et al. (2020) on both of the datasets in every single metric. Furthermore, our approach significantly improves the results of the underlying strong IR baselines in both datasets.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 228,
                        "end": 235,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Quantitative Evaluation",
                "sec_num": "6.1"
            },
            {
                "text": "For the qualitative evaluation, we selected a sample set of 22 random queries from the Stackoverflow dataset. We asked a Subject Matter Expert (SME), who is a customer support agent in the field, to manually inspect the facets (produced by optimistic DFS) for each selected query.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative Evaluation",
                "sec_num": "6.2"
            },
            {
                "text": "According to the SME, a facet is considered useful, if it is contextually related but not already mentioned in the user's (short) query (i.e. the 'title' in Figure 4 ) and either appears in (i) the fully specified query, aka 'post' (i.e. the 'body' in Figure 4 ), or (ii) in the target document. Table 2 shows sample subset of \"User Query\", their corresponding \"Top 5 Dynamically Generated Facets\", \"Additional Relevant Facets Present in Post\" that the system could have considered to rank higher to place in the top 5, and \"SME Recommended Facets\" that the system should have presented (even though they are not seen in the post), as they are relevant for the corresponding user query. The values in the last two columns are provided by the SME.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 157,
                        "end": 165,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    },
                    {
                        "start": 252,
                        "end": 260,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    },
                    {
                        "start": 296,
                        "end": 303,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Qualitative Evaluation",
                "sec_num": "6.2"
            },
            {
                "text": "The SME marked the dynamically generated facets into four following categories:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative Evaluation",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 \"Facets seen in Post\" (highlighted in italic font) -facets seen in the post body and our algorithm also generated e.g. 'ClearCase Remote Client (CCRC)';",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative Evaluation",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 \"Facets seen in Post and relevant for query\" (highlighted in bold italic font) -relevant facets seen in the post body and our algorithm also generated e.g 'ClearCase Remote Client';",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative Evaluation",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 \"Facets unseen in Post\" (highlighted in underline) -facets unseen in the post body that our algorithm also generated e.g. 'Rational ClearCase SCM Adapter', 'rad', 'source control';",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative Evaluation",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 \"Facets unseen in Post and relevant for query\" (highlighted in bold underline) -relevant facets unseen in the post and our algorithm also generated e.g. 'dynamic views'.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative Evaluation",
                "sec_num": "6.2"
            },
            {
                "text": "In summary, 22 randomly chosen queries and respective 5 facets per query generated from Optimistic DFS were evaluated by the SME. On average, our system generated 89% \"Facets unseen in Post\", out of which 25% are relevant for queries. Among the 11% \"Facets seen in Post\", 82% of them are found to be relevant for queries.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Qualitative Evaluation",
                "sec_num": "6.2"
            },
            {
                "text": "TechQA Table 1 : DFS evaluation results using simulated user. \"Flat DFS\" refers to a DFS approach proposed by Mihindukulasooriya et al. (2020) . \"RoBERTa baseline\" is the baseline for (our IR baseline) Zhang et al. (2020) . ",
                "cite_spans": [
                    {
                        "start": 110,
                        "end": 142,
                        "text": "Mihindukulasooriya et al. (2020)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 202,
                        "end": 221,
                        "text": "Zhang et al. (2020)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 7,
                        "end": 14,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Metric",
                "sec_num": null
            },
            {
                "text": "In this paper, we propose Optimistic facet set selection, a new unsupervised approach for dynamic facet generation for interactive search. It outperforms existing state of the art on two publicly available benchmarks, one of which we are releasing as part of this work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "We believe this new dataset will be useful for the research community for training and evaluating interactive models. Currently, our proposed approach does not have an active learning component and does not explicitly learn from the user feedback (e.g. fine-tuning an NLP model). However, we think our approach will serve as a strong baseline for the future interactive search approaches.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "In future, we plan to investigate the following -",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "\u2022 how to leverage the proposed algorithm to generate facets automatically grouped by types.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "\u2022 how dynamic facets can be generated using language models as Knowledge Bases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "Our vision is to transform the interactive search experience into a learnable knowledge discovery process.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "https://stackoverflow.com",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Minimumeffort driven dynamic faceted search in structured databases",
                "authors": [
                    {
                        "first": "Haidong",
                        "middle": [],
                        "last": "Senjuti Basu Roy",
                        "suffix": ""
                    },
                    {
                        "first": "Gautam",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the International Conference on Information and Knowledge Management (CIKM 2008)",
                "volume": "",
                "issue": "",
                "pages": "13--22",
                "other_ids": {
                    "DOI": [
                        "10.1145/1458082.1458088"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Senjuti Basu Roy, Haidong Wang, Gautam Das, Ullas Nambiar, and Mukesh Mohania. 2008. Minimum- effort driven dynamic faceted search in structured databases. In Proceedings of the International Con- ference on Information and Knowledge Manage- ment (CIKM 2008), pages 13-22.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Beyond basic faceted search",
                "authors": [
                    {
                        "first": "Ori",
                        "middle": [],
                        "last": "Ben-Yitzhak",
                        "suffix": ""
                    },
                    {
                        "first": "Nadav",
                        "middle": [],
                        "last": "Golb",
                        "suffix": ""
                    },
                    {
                        "first": "Nadav",
                        "middle": [],
                        "last": "Har'el",
                        "suffix": ""
                    },
                    {
                        "first": "Ronny",
                        "middle": [],
                        "last": "Lempel",
                        "suffix": ""
                    },
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Neumann",
                        "suffix": ""
                    },
                    {
                        "first": "Shila",
                        "middle": [],
                        "last": "Ofek-Koifman",
                        "suffix": ""
                    },
                    {
                        "first": "Dafna",
                        "middle": [],
                        "last": "Sheinwald",
                        "suffix": ""
                    },
                    {
                        "first": "Eugene",
                        "middle": [],
                        "last": "Shekita",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Sznajder",
                        "suffix": ""
                    },
                    {
                        "first": "Sivan",
                        "middle": [],
                        "last": "Yogev",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the international conference on Web search and web data mining (WSDM 2008)",
                "volume": "",
                "issue": "",
                "pages": "33--44",
                "other_ids": {
                    "DOI": [
                        "10.1145/1341531.1341539"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ori Ben-yitzhak, Nadav Golb, Nadav Har'el, Ronny Lempel, Andreas Neumann, Shila Ofek-koifman, Dafna Sheinwald, Eugene Shekita, Benjamin Szna- jder, and Sivan Yogev. 2008. Beyond basic faceted search. In Proceedings of the international confer- ence on Web search and web data mining (WSDM 2008), pages 33-44.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Zhang. 2020. The TechQA dataset",
                "authors": [
                    {
                        "first": "Vittorio",
                        "middle": [],
                        "last": "Castelli",
                        "suffix": ""
                    },
                    {
                        "first": "Rishav",
                        "middle": [],
                        "last": "Chakravarti",
                        "suffix": ""
                    },
                    {
                        "first": "Saswati",
                        "middle": [],
                        "last": "Dana",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Ferritto",
                        "suffix": ""
                    },
                    {
                        "first": "Radu",
                        "middle": [],
                        "last": "Florian",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Franz",
                        "suffix": ""
                    },
                    {
                        "first": "Dinesh",
                        "middle": [],
                        "last": "Garg",
                        "suffix": ""
                    },
                    {
                        "first": "Dinesh",
                        "middle": [],
                        "last": "Khandelwal",
                        "suffix": ""
                    },
                    {
                        "first": "Scott",
                        "middle": [],
                        "last": "Mccarley",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Mccawley",
                        "suffix": ""
                    },
                    {
                        "first": "Mohamed",
                        "middle": [],
                        "last": "Nasr",
                        "suffix": ""
                    },
                    {
                        "first": "Lin",
                        "middle": [],
                        "last": "Pan",
                        "suffix": ""
                    },
                    {
                        "first": "Cezar",
                        "middle": [],
                        "last": "Pendus",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Pitrelli",
                        "suffix": ""
                    },
                    {
                        "first": "Saurabh",
                        "middle": [],
                        "last": "Pujar",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Andrzej",
                        "middle": [],
                        "last": "Sakrajda",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1269--1278",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vittorio Castelli, Rishav Chakravarti, Saswati Dana, Anthony Ferritto, Radu Florian, Martin Franz, Di- nesh Garg, Dinesh Khandelwal, Scott McCarley, Michael McCawley, Mohamed Nasr, Lin Pan, Cezar Pendus, John Pitrelli, Saurabh Pujar, Salim Roukos, Andrzej Sakrajda, Avi Sil, Rosario Uceda-Sosa, Todd Ward, and Rong Zhang. 2020. The TechQA dataset. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pages 1269-1278, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Automatic Extraction of Useful Facet Hierarchies from Text Databases",
                "authors": [
                    {
                        "first": "Wisam",
                        "middle": [],
                        "last": "Dakka",
                        "suffix": ""
                    },
                    {
                        "first": "Panos",
                        "middle": [],
                        "last": "Ipeirotis",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the IEEE 24th International Conference on Data Engineering (ICDE 2008)",
                "volume": "",
                "issue": "",
                "pages": "466--475",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICDE.2008.4497455"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wisam Dakka and Panos Ipeirotis. 2008. Automatic Extraction of Useful Facet Hierarchies from Text Databases. In Proceedings of the IEEE 24th In- ternational Conference on Data Engineering (ICDE 2008), pages 466 -475.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Dynamic Faceted Search for Discovery-driven Analysis",
                "authors": [
                    {
                        "first": "Debabrata",
                        "middle": [],
                        "last": "Dash",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Rao",
                        "suffix": ""
                    },
                    {
                        "first": "Nimrod",
                        "middle": [],
                        "last": "Megiddo",
                        "suffix": ""
                    },
                    {
                        "first": "Anastasia",
                        "middle": [],
                        "last": "Ailamaki",
                        "suffix": ""
                    },
                    {
                        "first": "Guy",
                        "middle": [
                            "M"
                        ],
                        "last": "Lohman",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the International Conference on Information and Knowledge Management (CIKM 2008)",
                "volume": "",
                "issue": "",
                "pages": "3--12",
                "other_ids": {
                    "DOI": [
                        "10.1145/1458082.1458087"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Debabrata Dash, Jun Rao, Nimrod Megiddo, Anas- tasia Ailamaki, and Guy M. Lohman. 2008. Dy- namic Faceted Search for Discovery-driven Analy- sis. In Proceedings of the International Conference on Information and Knowledge Management (CIKM 2008), pages 3-12.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Generating query substitutions",
                "authors": [
                    {
                        "first": "Rosie",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Rey",
                        "suffix": ""
                    },
                    {
                        "first": "Omid",
                        "middle": [],
                        "last": "Madani",
                        "suffix": ""
                    },
                    {
                        "first": "Wiley",
                        "middle": [],
                        "last": "Greiner",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 15th International Conference on World Wide Web (WWW '06)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rosie Jones, Benjamin Rey, Omid Madani, and Wiley Greiner. 2006. Generating query substitutions. In Proceedings of the 15th International Conference on World Wide Web (WWW '06).",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Dynamic faceted navigation in decision making using semantic web technology",
                "authors": [
                    {
                        "first": "Hak-Jin",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Yongjun",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Wooju",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Taimao",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Decision Support Systems",
                "volume": "61",
                "issue": "",
                "pages": "59--68",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.dss.2014.01.010"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hak-Jin Kim, Yongjun Zhu, Wooju Kim, and Taimao Sun. 2014. Dynamic faceted navigation in decision making using semantic web technology. In Decision Support Systems, volume 61, pages 59 -68.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Extending Faceted Search to the Open-Domain Web",
                "authors": [
                    {
                        "first": "Weize",
                        "middle": [],
                        "last": "Kong",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Weize Kong. 2016. Extending Faceted Search to the Open-Domain Web. Ph.D. thesis, College of Infor- mation and Computer Sciences, University of Mas- sachusetts Amherst, MA, USA.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Mining anchor text for query refinement",
                "authors": [
                    {
                        "first": "Reiner",
                        "middle": [],
                        "last": "Kraft",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Zien",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 13th International Conference on World Wide Web (WWW '04)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Reiner Kraft and Jason Zien. 2004. Mining anchor text for query refinement. In Proceedings of the 13th In- ternational Conference on World Wide Web (WWW '04).",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Roberta: A robustly optimized bert pretraining approach",
                "authors": [
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfei",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.11692"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining ap- proach. arXiv preprint arXiv:1907.11692.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Query suggestion using hitting time",
                "authors": [
                    {
                        "first": "Qiaozhu",
                        "middle": [],
                        "last": "Mei",
                        "suffix": ""
                    },
                    {
                        "first": "Dengyong",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Kenneth",
                        "middle": [],
                        "last": "Church",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the 17th ACM conference on Information and knowledge management (CIKM '08)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Qiaozhu Mei, Dengyong Zhou, and Kenneth Church. 2008. Query suggestion using hitting time. In Pro- ceedings of the 17th ACM conference on Informa- tion and knowledge management (CIKM '08).",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Dynamic faceted search for technical support exploiting induced knowledge",
                "authors": [
                    {
                        "first": "Nandana",
                        "middle": [],
                        "last": "Mihindukulasooriya",
                        "suffix": ""
                    },
                    {
                        "first": "Ruchi",
                        "middle": [],
                        "last": "Mahindru",
                        "suffix": ""
                    },
                    {
                        "first": "Md",
                        "middle": [],
                        "last": "Faisal Mahbub",
                        "suffix": ""
                    },
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Chowdhury",
                        "suffix": ""
                    },
                    {
                        "first": "Nicolas",
                        "middle": [
                            "Rodolfo"
                        ],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "Gaetano",
                        "middle": [],
                        "last": "Fauceglia",
                        "suffix": ""
                    },
                    {
                        "first": "Sarthak",
                        "middle": [],
                        "last": "Rossiello",
                        "suffix": ""
                    },
                    {
                        "first": "Alfio",
                        "middle": [],
                        "last": "Dash",
                        "suffix": ""
                    },
                    {
                        "first": "Shu",
                        "middle": [],
                        "last": "Gliozzo",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Tao",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "International Semantic Web Conference",
                "volume": "",
                "issue": "",
                "pages": "683--699",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nandana Mihindukulasooriya, Ruchi Mahindru, Md Faisal Mahbub Chowdhury, Yu Deng, Nico- las Rodolfo Fauceglia, Gaetano Rossiello, Sarthak Dash, Alfio Gliozzo, and Shu Tao. 2020. Dynamic faceted search for technical support exploiting induced knowledge. In International Semantic Web Conference, pages 683-699. Springer, Cham.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "The probabilistic relevance framework: Bm25 and beyond",
                "authors": [
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Robertson",
                        "suffix": ""
                    },
                    {
                        "first": "Hugo",
                        "middle": [],
                        "last": "Zaragoza",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Foundations and Trends in Information Retrieval",
                "volume": "3",
                "issue": "",
                "pages": "333--389",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen Robertson and Hugo Zaragoza. 2009. The probabilistic relevance framework: Bm25 and be- yond. Foundations and Trends in Information Re- trieval, 3:333-389.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Faceted Search",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Tunkelang",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Synthesis Lectures on Information Concepts, Retrieval, and Services",
                "volume": "1",
                "issue": "",
                "pages": "1--80",
                "other_ids": {
                    "DOI": [
                        "10.2200/S00190ED1V01Y200904ICR005"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel Tunkelang. 2009. Faceted Search. In Synthe- sis Lectures on Information Concepts, Retrieval, and Services, volume 1, pages 1-80. Morgan & Claypool Publishers.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Dynamic Facet Ordering for Faceted Product Search Engines",
                "authors": [
                    {
                        "first": "Damir",
                        "middle": [],
                        "last": "Vandic",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [
                            "S"
                        ],
                        "last": "Aanen",
                        "suffix": ""
                    },
                    {
                        "first": "Flavius",
                        "middle": [],
                        "last": "Frasincar",
                        "suffix": ""
                    },
                    {
                        "first": "Uzay",
                        "middle": [],
                        "last": "Kaymak",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "IEEE Transactions on Knowledge and Data Engineering",
                "volume": "29",
                "issue": "",
                "pages": "1004--1016",
                "other_ids": {
                    "DOI": [
                        "10.1109/TKDE.2017.2652461"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Damir Vandic, Steven S. Aanen, Flavius Frasincar, and Uzay Kaymak. 2018. Dynamic Facet Ordering for Faceted Product Search Engines. In IEEE Trans- actions on Knowledge and Data Engineering, vol- ume 29, pages 1004 -1016.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Query expansion using local and global document analysis",
                "authors": [
                    {
                        "first": "Jinxi",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "W. Bruce",
                        "middle": [],
                        "last": "Croft",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proceedings of the 19th Annual International ACM SI-GIR Conference on Research and Development in Information Retrieval (SIGIR '96)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jinxi Xu and W. Bruce Croft. 1996. Query expansion using local and global document analysis. In Pro- ceedings of the 19th Annual International ACM SI- GIR Conference on Research and Development in Information Retrieval (SIGIR '96).",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Multi-stage pre-training for low-resource domain adaptation",
                "authors": [
                    {
                        "first": "Rong",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Revanth",
                        "middle": [],
                        "last": "Gangi Reddy",
                        "suffix": ""
                    },
                    {
                        "first": "Md",
                        "middle": [],
                        "last": "Arafat Sultan",
                        "suffix": ""
                    },
                    {
                        "first": "Vittorio",
                        "middle": [],
                        "last": "Castelli",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Ferritto",
                        "suffix": ""
                    },
                    {
                        "first": "Radu",
                        "middle": [],
                        "last": "Florian",
                        "suffix": ""
                    },
                    {
                        "first": "Efsun",
                        "middle": [],
                        "last": "Sarioglu Kayi",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Avi",
                        "middle": [],
                        "last": "Sil",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "5461--5468",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rong Zhang, Revanth Gangi Reddy, Md Arafat Sul- tan, Vittorio Castelli, Anthony Ferritto, Radu Flo- rian, Efsun Sarioglu Kayi, Salim Roukos, Avi Sil, and Todd Ward. 2020. Multi-stage pre-training for low-resource domain adaptation. In Proceedings of the 2020 Conference on Empirical Methods in Nat- ural Language Processing (EMNLP), pages 5461- 5468, Online. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "A survey of faceted search",
                "authors": [
                    {
                        "first": "Bweijunl",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoyu",
                        "middle": [],
                        "last": "Fu Boqin",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Journal of Web engineering",
                "volume": "12",
                "issue": "1&2",
                "pages": "41--064",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bweijunl Zheng, Wei Zhang, and Xiaoyu Fu Boqin Feng. 2013. A survey of faceted search. Journal of Web engineering, 12(1&2):041-064.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Example of static facets used to organize a set of book titles in a digital library."
            },
            "FIGREF1": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "is a list of n documents in search results for the initial query, q 0 returned by initial traditional IR component/search engine."
            },
            "FIGREF2": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Minimum Rank (R min ) for Facet Set"
            },
            "FIGREF3": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "Question Answer Pair Example"
            },
            "TABREF2": {
                "num": null,
                "content": "<table/>",
                "type_str": "table",
                "html": null,
                "text": "Qualitative evaluation of Optimistic DFS output on the Stackoverflow dataset."
            }
        }
    }
}