File size: 88,668 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:33:53.646702Z"
    },
    "title": "A Proposal: Interactively Learning to Summarise Timelines by Reinforcement Learning",
    "authors": [
        {
            "first": "Yuxuan",
            "middle": [],
            "last": "Ye",
            "suffix": "",
            "affiliation": {
                "laboratory": "Intelligent Systems Laboratory",
                "institution": "University of Bristol",
                "location": {}
            },
            "email": "yuxuan.ye@bristol.ac.uk"
        },
        {
            "first": "Edwin",
            "middle": [],
            "last": "Simpson",
            "suffix": "",
            "affiliation": {
                "laboratory": "Intelligent Systems Laboratory",
                "institution": "University of Bristol",
                "location": {}
            },
            "email": "edwin.simpson@bristol.ac.uk"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Timeline Summarisation (TLS) aims to generate a concise, time-ordered list of events described in sources such as news articles. However, current systems do not provide an adequate way to adapt to new domains nor to focus on the aspects of interest to a particular user. Therefore, we propose a method for interactively learning abstractive TLS using Reinforcement Learning (RL). We define a compound reward function and use RL to finetune an abstractive Multi-document Summarisation (MDS) model, which avoids the need to train using reference summaries. One of the sub-reward functions will be learned interactively from user feedback to ensure the consistency between users' demands and the generated timeline. The other sub-reward functions contribute to topical coherence and linguistic fluency. We plan experiments to evaluate whether our approach could generate accurate and precise timelines tailored for each user.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Timeline Summarisation (TLS) aims to generate a concise, time-ordered list of events described in sources such as news articles. However, current systems do not provide an adequate way to adapt to new domains nor to focus on the aspects of interest to a particular user. Therefore, we propose a method for interactively learning abstractive TLS using Reinforcement Learning (RL). We define a compound reward function and use RL to finetune an abstractive Multi-document Summarisation (MDS) model, which avoids the need to train using reference summaries. One of the sub-reward functions will be learned interactively from user feedback to ensure the consistency between users' demands and the generated timeline. The other sub-reward functions contribute to topical coherence and linguistic fluency. We plan experiments to evaluate whether our approach could generate accurate and precise timelines tailored for each user.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Notable events often happen over a long period. For example, COVID-19 caused immeasurable damage around the world, lasting for more than a year. When reviewing different aspects of the disaster, the huge number of reports and news articles makes it difficult to trace the development of events such as outbreaks, policy interventions and vaccination efforts. TLS can solve this problem by identifying significant dates and summarising events of sub-topics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Most prior TLS works focused on producing extractive timelines, which copies the original sentences from input documents (Martschat and Markert, 2018; Nguyen et al., 2014; Yan et al., 2011) . Irrelevant and repeated information may be extracted in this process, decreasing the quality of the generated timelines. Abstractive timeline summari-sation methods can address this problem (Steen and Markert, 2019; Barros et al., 2019) but few neural network models have been proposed due to the lack of reference timelines for supervised learning. Producing reference timelines by human requires expertise to capture important temporal information and sub-events from the source documents, thus it is extremely expensive. In MDS tasks, researchers have tried heuristics-based and unsupervised methods to address the reference data shortage problem (Ryang and Abekawa, 2012; Rioux et al., 2014) . However, their results on some evaluation metrics, like ROUGE-2, only reached half of the upper bound. Gao et al. (2018) showed that interactive learning could improve the performance of an MDS system via leveraging users' preference, which is relatively easy to obtain, and does not require reference summaries. Therefore, we take inspiration from their work to propose an interaction-based abstractive TLS framework.",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 150,
                        "text": "(Martschat and Markert, 2018;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 151,
                        "end": 171,
                        "text": "Nguyen et al., 2014;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 172,
                        "end": 189,
                        "text": "Yan et al., 2011)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 382,
                        "end": 407,
                        "text": "(Steen and Markert, 2019;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 408,
                        "end": 428,
                        "text": "Barros et al., 2019)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 842,
                        "end": 867,
                        "text": "(Ryang and Abekawa, 2012;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 868,
                        "end": 887,
                        "text": "Rioux et al., 2014)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 993,
                        "end": 1010,
                        "text": "Gao et al. (2018)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Martschat and Markert (2018) treated the TLS task as an MDS task and proposed a modular summarisation method, which achieved the state of the art and is adaptable. However, its adaptation requires abstracting mathematical constraints from concrete requirements. This contrasts with interactive learning (IL), which greatly decreases the cognitive burden for humans by receiving user feedback to refine summaries (Gao et al., 2018; Lin et al., 2010) . Comparing to traditional approaches, interaction enables the model to learn from the users, thus it is possible to accurately tailor and refine timeline summaries according to users' demands.",
                "cite_spans": [
                    {
                        "start": 412,
                        "end": 430,
                        "text": "(Gao et al., 2018;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 431,
                        "end": 448,
                        "text": "Lin et al., 2010)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we propose an interaction-based abstractive timeline summarisation framework using deep RL. By learning a reward signal from user feedback, we can fine-tune a pretrained MDS model for the TLS task via a small number of interactive learning rounds. Therefore, our frame- work should be capable of generating timeline summaries with high text quality after enough episodes of training. And we plan both simulation and realuser experiments to evaluate the framework on two benchmark TLS datasets, Timeline17 and Crisis (Tran et al., 2015) .",
                "cite_spans": [
                    {
                        "start": 531,
                        "end": 550,
                        "text": "(Tran et al., 2015)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The workflow of our model ( Figure 1 ) mainly follows the event detection method, CLUST (Ghalandari and Ifrim, 2020), which identifies subevents first and then generates summaries for them. Due to the RL-based interactive learning process in the framework, our model can be automatically adapted to new topics and adjusted by users' interests.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 28,
                        "end": 36,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "1. Firstly, we embed source documents into vectors and cluster them in vector space. Each cluster represents a sub-event in a large topic;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "2. In the next step, we assign a date to each cluster. And they will be ranked by a metric to identify important sub-events;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "3. Then it comes to our RL-based interactive learning process.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(a) An abstractive MDS model will generate summaries for each sub-event. All summaries will be ordered by date to form a timeline. (b) The user can preview the timeline in this step and respond by expressing prefer-ences over keywords or by comparing the new summary to an earlier version. (c) Using a reward function that evaluates the consistency between the produced timeline and those user preferences, offline RL then tunes the model and starts another round of interactive learning.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our main contribution is a proposed interactive method for generating timelines for news, which adapts to user feedback through RL fine-tuning.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Extractive Timeline Summarisation Prior extractive methods (Martschat and Markert, 2018; Ghalandari, 2017) defined several objective functions to assess the quality of timelines, including coverage of summaries and temporal information. These methods greedily select one sentence in each iteration to maximise the combined objective function. Our reward function is also modular but lacks monotonicity and submodularity, hence we use RL instead of a greedy algorithm.",
                "cite_spans": [
                    {
                        "start": 59,
                        "end": 88,
                        "text": "(Martschat and Markert, 2018;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 89,
                        "end": 106,
                        "text": "Ghalandari, 2017)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Interactive Summarisation Instead of producing reference texts by crowdsourcing, obtaining information (e.g., keywords) via user interaction can be more practical to obtain training data. Liu et al. (2012) outperformed previous extractive MDS approaches on ROUGE-based metrics by querying topic words from users. Gao et al. (2018) collected pairwise comparisons between summaries from simulated users, which are then used to train a ranker without any reference data, and fixed the efficiency issue of IL. Due to the similarity between the MDS and TLS task, IL is expected to solve the reference timelines shortage problem as well, without increasing many computation expenses. So we introduce interaction into an RL-based TLS model for the first time.",
                "cite_spans": [
                    {
                        "start": 188,
                        "end": 205,
                        "text": "Liu et al. (2012)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 313,
                        "end": 330,
                        "text": "Gao et al. (2018)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Reinforcement Learning in Natural Language Generation (NLG) Recent research on applying RL on NLG tasks has received some success. Some prior works on dialogue systems (Song et al., 2020; Mesgar et al., 2020) utilized RL-based fine-tuning method to ensure the factual consistency of the response. In automatic summarisation (Gao et al., 2018 , IL is applied to learn a reward function from users, so that RL agents could learn a policy to summarise text indirectly under users' guidance. However, for the TLS task, we are the first to use RL to generate summaries for key dates.",
                "cite_spans": [
                    {
                        "start": 168,
                        "end": 187,
                        "text": "(Song et al., 2020;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 188,
                        "end": 208,
                        "text": "Mesgar et al., 2020)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 324,
                        "end": 341,
                        "text": "(Gao et al., 2018",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "All components of our method shown in Figure 1 will be introduced below.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 38,
                        "end": 46,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3"
            },
            {
                "text": "Clustering For each input document, we use the sentence-transformer (Reimers and Gurevych, 2019) based on DistilRoBERTa (Liu et al., 2019) to embed its sentences. Then we represent the document by the mean of the sentence vectors expecting that dense vectors could capture more information in text than TF-IDF vectors, as used in Steen and Markert (2019) and Ghalandari and Ifrim (2020) .",
                "cite_spans": [
                    {
                        "start": 120,
                        "end": 138,
                        "text": "(Liu et al., 2019)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 330,
                        "end": 354,
                        "text": "Steen and Markert (2019)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 359,
                        "end": 386,
                        "text": "Ghalandari and Ifrim (2020)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Event Detection Timeline Summarisation",
                "sec_num": "3.1"
            },
            {
                "text": "Next, we use Affinity Propagation (AP) (Frey and Dueck, 2007) to cluster all the documents. AP is an unsupervised method, which automatically determines the number of clusters. AP uses an affinity matrix A, constructed by the Euclidean distance of each pair of document vectors.",
                "cite_spans": [
                    {
                        "start": 39,
                        "end": 61,
                        "text": "(Frey and Dueck, 2007)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Event Detection Timeline Summarisation",
                "sec_num": "3.1"
            },
            {
                "text": "To detect events accurately, we add constraints to the clustering algorithm. If two reports were published too apart from each other, although, with a small distance in vector space, they should be considered to belong to two similar but different sub-topics. In our model, we keep the setting of prior work (Steen and Markert, 2019 ). If d i and d j were published no more than t day(s) apart,",
                "cite_spans": [
                    {
                        "start": 308,
                        "end": 332,
                        "text": "(Steen and Markert, 2019",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Event Detection Timeline Summarisation",
                "sec_num": "3.1"
            },
            {
                "text": "A i,j = \u2212 d i \u2212 d j 1/2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Event Detection Timeline Summarisation",
                "sec_num": "3.1"
            },
            {
                "text": "Date Assignment By clustering all the documents, reports describing the same event are gathered. However, temporal information is equally as important as summaries in TLS, which differs from MDS. Martschat and Markert (2018) and adapted MDS methods to make them temporally sensitive. Both received outstanding results. In our work, we use HeidelTime (Str\u00f6tgen and Gertz, 2015) to identify and count date expressions in documents. Following Ghalandari and Ifrim (2020), we assign each cluster with the most frequently mentioned date in it.",
                "cite_spans": [
                    {
                        "start": 196,
                        "end": 224,
                        "text": "Martschat and Markert (2018)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 350,
                        "end": 376,
                        "text": "(Str\u00f6tgen and Gertz, 2015)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Event Detection Timeline Summarisation",
                "sec_num": "3.1"
            },
            {
                "text": "Cluster Ranking Some clusters contain less important information than others. According to Ghalandari and Ifrim (2020), the importance of a cluster is in proportion to the number of sentences that mentions the assigned date to some extent. To capture useful information, we use the same setting and only summarise the top-k important clusters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Event Detection Timeline Summarisation",
                "sec_num": "3.1"
            },
            {
                "text": "Cluster Summarisation & Timeline Construction Summarising the sub-topic of a key date can be regarded as an MDS task, as each event has multiple sources. We plan to fine-tune an abstractive MDS model for this task, which will be introduced later. After all the top-k clusters are summarised, we combine all the summaries by date to generate a timeline. We follow the setting of Ghalandari and Ifrim (2020), which skips a cluster when its date is already used by another prior cluster. Every time the timeline is generated, the user can preview it and provide several types of feedback such as keywords and dates that must be included or excluded, and expressing preferences against previous version of the timeline. Given these feedback, we can renew our reward function and finetune the summariser via hundreds of RL episodes. Then we can produce a new timeline to start another round of interactive learning. After several interactive learning rounds, our model would be able to generate and tailor a high-quality timeline for the user.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Event Detection Timeline Summarisation",
                "sec_num": "3.1"
            },
            {
                "text": "AR-F1 AR-F2 CLUST 0.082 0.02 PEGASUS-Multi News 0.089 0.019 PEGASUS We use PEGASUS to solve the MDS task on each cluster. PE-GASUS is an abstractive summariser providing various fine-tuned versions. PEGASUS-Multi News is fine-tuned on Multi-News (Fabbri et al., 2019) to summarise news articles. We found that PEGASUS-Multi News outperforms the state-ofthe-art extractive event detection method, CLUST (Ghalandari and Ifrim, 2020), when applying it directly on clusters without fine-tuning (Table 1) . Therefore, it provides a strong basis for our following work. PEGASUS-RL Although PEGASUS is powerful enough to generate high-quality summaries, we still need RL to ensure the summaries are topically coherent and linguistically fluent. The PEGASUS model generates summaries token-by-token. When the last token, i.e. eos , is generated, the reward component will assess the quality of the summary and produce a reward signal to update the summarising policy (Figure 3 ). This whole process will tune the parameters of PEGASUS so that it enhances the quality of the generated summary as well.",
                "cite_spans": [
                    {
                        "start": 235,
                        "end": 267,
                        "text": "Multi-News (Fabbri et al., 2019)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 490,
                        "end": 499,
                        "text": "(Table 1)",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 959,
                        "end": 968,
                        "text": "(Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "Action and Reward Function Let D = (d 1 , d individually. And S = (t 1 , t 2 , . . . , t |S| ) is the summary generated for cluster D. Our goal is to finetune a single model to generate a summary S, for each cluster D that is linguistically fluent and topi-cally coherent with any d i and consistent with any piece of feedback p i , m i , n i . We regard each token generation process in Figure 3 as an action of PEGASUS. Our model is expected to generate a summary with topical coherence, linguistic fluency and consistency with the user's demands for each cluster. Thus, a compound reward function is proposed, which consists of four sub-reward functions: R 1 guarantees topical coherence with the cluster, R 2 enforces consistency with each piece of individual user feedback, R 3 and R 4 contribute to the linguistic fluency of the produced summaries. The reward of the cluster D is the weighted sum of them.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 35,
                        "end": 43,
                        "text": "(d 1 , d",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 388,
                        "end": 396,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "R C = \u03b3 1 R 1 + \u03b3 2 R 2 + \u03b3 2 R 3 + \u03b3 4 R 4 (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "where \u03b3 1,2,3,4 are the normalization factors that sum to one. The whole training signal R is the sum of k selected clusters' rewards.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "Topical coherence sub-reward (R 1 and R 2 ) Topical coherence is the pivotal property of a summary. We measure how topically coherent the summary S is with a cluster D by their cosine similarity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "R 1 = cos ( S, D)",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "R 2 is the core reward function in the fine-tuning process, which will be updated in each interactive learning round. We embed all the keywords in M and N to dense vectors and measure their topic coherence by cosine similarities. Due to N represents the words that the user wants to exclude, we set its reward to be negative. To accommodate pairwise preference labels, we learn a ranking function using a random utility model (Thurstone, 1927; Mosteller, 2006) . This provides a scoring function that should also be added to R 2 .",
                "cite_spans": [
                    {
                        "start": 426,
                        "end": 443,
                        "text": "(Thurstone, 1927;",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 444,
                        "end": 460,
                        "text": "Mosteller, 2006)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "R 2 = w 1 score( S, P ) + w 2 m i \u2208M cos ( S, m i ) \u2212 w 3 n i \u2208N cos ( S, n i ) (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "where w 1,2,3 are the normalization factors.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "Linguistic fluency sub-reward (R 3 and R 4 ) Prior work (Mesgar et al., 2020) has shown that applying RL to improve evaluation metrics' results might lead to decreasing in linguistic quality. To avoid that, we apply two sub-reward functions to our model. R 3 utilizes a language model which has been fine-tuned on a similar news dataset:",
                "cite_spans": [
                    {
                        "start": 56,
                        "end": 77,
                        "text": "(Mesgar et al., 2020)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "R 3 = \u03b1 \u2212 N (S) \u03b1 (4)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "where N (\u2022) is the Negative Log-likelihood loss function, and \u03b1 is the maximum of N (\u2022) so that it can normalize R 3 . R 4 reduces repeated words in summaries, by penalizing repeated unigrams:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "R 4 = 1 \u2212 #repeated tokens in summary #tokens in summary (5)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "Training In this work, RL attempts to learn a policy P \u03b8 that generates a summary maximizing the expectation of the reward function.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "L = E S\u223cP \u03b8 [R(S, (C, F ))]",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "However, RL is known for high variance issue when sampling the gradient. To solve this problem, we plan to run several hundred episodes of RL to increase the size of the sample and reduce the variance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "In addition, according to Mnih et al. (2016) and Mesgar et al. (2020) , we can tune the policy function by actor-critic, which could further reduce variance in learning. In actor-critic algorithm, the policy function P \u03b8 is regarded as the actor, and we define the residual of temporal difference \u03a8 t to be the critic. Although \u03a8 t is a biased estimation of the reward function R, we can reduce the variance via replacing the reward function R in the policy gradient equation (7) by \u03a8 t , as in the following:",
                "cite_spans": [
                    {
                        "start": 26,
                        "end": 44,
                        "text": "Mnih et al. (2016)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 49,
                        "end": 69,
                        "text": "Mesgar et al. (2020)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "g = E t=0 \u03a8 t \u2207 \u03b8 log P \u03b8 (a t |s t )",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "4 Plan for Evaluation",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "As a kind of summarisation task, correctly extracting temporal information is the special challenge of TLS, which makes the evaluation more complex as well. In our work, we plan to evaluate our model by the suitable evaluation metrics proposed by Martschat and Markert (2017) .",
                "cite_spans": [
                    {
                        "start": 247,
                        "end": 275,
                        "text": "Martschat and Markert (2017)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "Concatenation ROUGE Discard all dates and concatenate all summaries in the reference and the output timeline. Evaluate ROUGE on two concatenated texts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "Alignment ROUGE Align the output timeline with the reference by the similarity and distance of their dates and apply ROUGE on them. Aligned summaries with distant dates will be penalized. User feedback will be generated through mixed simulations, as in and studies with real users. Simulations will rely on references, from which keywords and dates can be extracted. Pairwise preferences can be simulated by comparing two summaries to a reference using ROUGE and selecting the highest-scoring summary. The system will be tested with different feedback types (keywords, dates, inclusion/exclusion, and preferences) to determine whether these forms of interaction are feasible to improve the summaries. However, the simulated user labels will be noisy, so we intend to evaluate with real users once we have developed a working system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Timeline17",
                "sec_num": null
            },
            {
                "text": "We propose an interactive method to summarise timelines without reference data. In each interactive learning round, we first update the reward function, and then use RL to fine-tune a huge neural network model. Then the model will generate summaries for each of the important sub-events, which are identified by textual similarity to the articles in the corpus. All the summaries will be ordered by their assigned dates to form a timeline. The user can preview the timeline and give feedback to start another round of interactive learning. Part of our method has been implemented, including PEGA-SUS to summarise event clusters but without RL or user feedback. Given the current experiment results, we can expect better performance after the interaction part implemented. The challenge remains in RL and designing suitable modes of interaction. We will move forward to our planned experiments and report our results in future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Summary",
                "sec_num": "5"
            },
            {
                "text": ", otherwise it will be assigned by 0.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Natsum: Narrative abstractive summarization through cross-document timeline generation",
                "authors": [
                    {
                        "first": "Cristina",
                        "middle": [],
                        "last": "Barros",
                        "suffix": ""
                    },
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Lloret",
                        "suffix": ""
                    },
                    {
                        "first": "Estela",
                        "middle": [],
                        "last": "Saquete",
                        "suffix": ""
                    },
                    {
                        "first": "Borja",
                        "middle": [],
                        "last": "Navarro-Colorado",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Information Processing & Management",
                "volume": "56",
                "issue": "5",
                "pages": "1775--1793",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cristina Barros, Elena Lloret, Estela Saquete, and Borja Navarro-Colorado. 2019. Natsum: Narrative abstractive summarization through cross-document timeline generation. Information Processing & Management, 56(5):1775-1793.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Predicting relevant news events for timeline summaries",
                "authors": [
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Giang Binh Tran",
                        "suffix": ""
                    },
                    {
                        "first": "Dat Quoc",
                        "middle": [],
                        "last": "Alrifai",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 22nd International Conference on World Wide Web",
                "volume": "",
                "issue": "",
                "pages": "91--92",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Giang Binh Tran, Mohammad Alrifai, and Dat Quoc Nguyen. 2013. Predicting relevant news events for timeline summaries. In Proceedings of the 22nd International Conference on World Wide Web, pages 91-92.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Learning towards abstractive timeline summarization",
                "authors": [
                    {
                        "first": "Xiuying",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Zhangming",
                        "middle": [],
                        "last": "Chan",
                        "suffix": ""
                    },
                    {
                        "first": "Shen",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Meng-Hsuan",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Dongyan",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "IJCAI",
                "volume": "",
                "issue": "",
                "pages": "4939--4945",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiuying Chen, Zhangming Chan, Shen Gao, Meng- Hsuan Yu, Dongyan Zhao, and Rui Yan. 2019. Learning towards abstractive timeline summariza- tion. In IJCAI, pages 4939-4945.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Multi-news: A large-scale multi-document summarization dataset and abstractive hierarchical model",
                "authors": [
                    {
                        "first": "Irene",
                        "middle": [],
                        "last": "Alexander R Fabbri",
                        "suffix": ""
                    },
                    {
                        "first": "Tianwei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Suyi",
                        "middle": [],
                        "last": "She",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dragomir R Radev",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1906.01749"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R Radev. 2019. Multi-news: A large-scale multi-document summarization dataset and abstractive hierarchical model. arXiv preprint arXiv:1906.01749.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Clustering by passing messages between data points. science",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Brendan",
                        "suffix": ""
                    },
                    {
                        "first": "Delbert",
                        "middle": [],
                        "last": "Frey",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dueck",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "315",
                "issue": "",
                "pages": "972--976",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Brendan J Frey and Delbert Dueck. 2007. Clustering by passing messages between data points. science, 315(5814):972-976.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "April: Interactively learning to summarise by combining active preference learning and reinforcement learning",
                "authors": [
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Christian",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Meyer",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1808.09658"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yang Gao, Christian M Meyer, and Iryna Gurevych. 2018. April: Interactively learning to summarise by combining active preference learning and reinforce- ment learning. arXiv preprint arXiv:1808.09658.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Reward learning for efficient reinforcement learning in extractive document summarisation",
                "authors": [
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Christian",
                        "suffix": ""
                    },
                    {
                        "first": "Mohsen",
                        "middle": [],
                        "last": "Meyer",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Mesgar",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.12894"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yang Gao, Christian M Meyer, Mohsen Mesgar, and Iryna Gurevych. 2019. Reward learning for efficient reinforcement learning in extractive document sum- marisation. arXiv preprint arXiv:1907.12894.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Revisiting the centroid-based method: A strong baseline for multi-document summarization",
                "authors": [
                    {
                        "first": "Ghalandari",
                        "middle": [],
                        "last": "Demian Gholipour",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1708.07690"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Demian Gholipour Ghalandari. 2017. Revisiting the centroid-based method: A strong baseline for multi-document summarization. arXiv preprint arXiv:1708.07690.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Examining the state-of-the-art in news timeline summarization",
                "authors": [
                    {
                        "first": "Gholipour",
                        "middle": [],
                        "last": "Demian",
                        "suffix": ""
                    },
                    {
                        "first": "Georgiana",
                        "middle": [],
                        "last": "Ghalandari",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ifrim",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2005.10107"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Demian Gholipour Ghalandari and Georgiana Ifrim. 2020. Examining the state-of-the-art in news timeline summarization. arXiv preprint arXiv:2005.10107.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Putting the user in the loop: interactive maximal marginal relevance for query-focused summarization",
                "authors": [
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Nitin",
                        "middle": [],
                        "last": "Madnani",
                        "suffix": ""
                    },
                    {
                        "first": "Bonnie",
                        "middle": [],
                        "last": "Dorr",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Human Language Technologies: The",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jimmy Lin, Nitin Madnani, and Bonnie Dorr. 2010. Putting the user in the loop: interactive maximal marginal relevance for query-focused summariza- tion. In Human Language Technologies: The 2010",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Annual Conference of the North American Chapter of the Association for Computational Linguistics",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "305--308",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Annual Conference of the North American Chap- ter of the Association for Computational Linguistics, pages 305-308.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Query-oriented multi-document summarization via unsupervised deep learning",
                "authors": [
                    {
                        "first": "Yan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Sheng-Hua",
                        "middle": [],
                        "last": "Zhong",
                        "suffix": ""
                    },
                    {
                        "first": "Wenjie",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yan Liu, Sheng-hua Zhong, and Wenjie Li. 2012. Query-oriented multi-document summarization via unsupervised deep learning. In Proceedings of the AAAI Conference on Artificial Intelligence, vol- ume 26.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Roberta: A robustly optimized bert pretraining approach",
                "authors": [
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfei",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.11692"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining ap- proach. arXiv preprint arXiv:1907.11692.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Improving rouge for timeline summarization",
                "authors": [
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Martschat",
                        "suffix": ""
                    },
                    {
                        "first": "Katja",
                        "middle": [],
                        "last": "Markert",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "285--290",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sebastian Martschat and Katja Markert. 2017. Improv- ing rouge for timeline summarization. In Proceed- ings of the 15th Conference of the European Chap- ter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 285-290.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A temporally sensitive submodularity framework for timeline summarization",
                "authors": [
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Martschat",
                        "suffix": ""
                    },
                    {
                        "first": "Katja",
                        "middle": [],
                        "last": "Markert",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.07949"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sebastian Martschat and Katja Markert. 2018. A temporally sensitive submodularity framework for timeline summarization. arXiv preprint arXiv:1810.07949.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Generating persona-consistent dialogue responses using deep reinforcement learning",
                "authors": [
                    {
                        "first": "Mohsen",
                        "middle": [],
                        "last": "Mesgar",
                        "suffix": ""
                    },
                    {
                        "first": "Edwin",
                        "middle": [],
                        "last": "Simpson",
                        "suffix": ""
                    },
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2005.00036"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mohsen Mesgar, Edwin Simpson, Yue Wang, and Iryna Gurevych. 2020. Generating persona-consistent di- alogue responses using deep reinforcement learning. arXiv preprint arXiv:2005.00036.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Asynchronous methods for deep reinforcement learning",
                "authors": [
                    {
                        "first": "Volodymyr",
                        "middle": [],
                        "last": "Mnih",
                        "suffix": ""
                    },
                    {
                        "first": "Adria",
                        "middle": [
                            "Puigdomenech"
                        ],
                        "last": "Badia",
                        "suffix": ""
                    },
                    {
                        "first": "Mehdi",
                        "middle": [],
                        "last": "Mirza",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Graves",
                        "suffix": ""
                    },
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Lillicrap",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Harley",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Silver",
                        "suffix": ""
                    },
                    {
                        "first": "Koray",
                        "middle": [],
                        "last": "Kavukcuoglu",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "International conference on machine learning",
                "volume": "",
                "issue": "",
                "pages": "1928--1937",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn- chronous methods for deep reinforcement learning. In International conference on machine learning, pages 1928-1937. PMLR.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Remarks on the method of paired comparisons: I. the least squares solution assuming equal standard deviations and equal correlations",
                "authors": [
                    {
                        "first": "Frederick",
                        "middle": [],
                        "last": "Mosteller",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Selected Papers of Frederick Mosteller",
                "volume": "",
                "issue": "",
                "pages": "157--162",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Frederick Mosteller. 2006. Remarks on the method of paired comparisons: I. the least squares solution as- suming equal standard deviations and equal corre- lations. In Selected Papers of Frederick Mosteller, pages 157-162. Springer.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Ranking multidocument event descriptions for building thematic timelines",
                "authors": [
                    {
                        "first": "Kiem-Hieu",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Tannier",
                        "suffix": ""
                    },
                    {
                        "first": "V\u00e9ronique",
                        "middle": [],
                        "last": "Moriceau",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers",
                "volume": "",
                "issue": "",
                "pages": "1208--1217",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kiem-Hieu Nguyen, Xavier Tannier, and V\u00e9ronique Moriceau. 2014. Ranking multidocument event de- scriptions for building thematic timelines. In Pro- ceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Techni- cal Papers, pages 1208-1217.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Sentencebert: Sentence embeddings using siamese bertnetworks",
                "authors": [
                    {
                        "first": "Nils",
                        "middle": [],
                        "last": "Reimers",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1908.10084"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nils Reimers and Iryna Gurevych. 2019. Sentence- bert: Sentence embeddings using siamese bert- networks. arXiv preprint arXiv:1908.10084.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Fear the reaper: A system for automatic multidocument summarization with reinforcement learning",
                "authors": [
                    {
                        "first": "Cody",
                        "middle": [],
                        "last": "Rioux",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Sadid",
                        "suffix": ""
                    },
                    {
                        "first": "Yllias",
                        "middle": [],
                        "last": "Hasan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Chali",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "681--690",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cody Rioux, Sadid A Hasan, and Yllias Chali. 2014. Fear the reaper: A system for automatic multi- document summarization with reinforcement learn- ing. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pages 681-690.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Framework of automatic text summarization using reinforcement learning",
                "authors": [
                    {
                        "first": "Seonggi",
                        "middle": [],
                        "last": "Ryang",
                        "suffix": ""
                    },
                    {
                        "first": "Takeshi",
                        "middle": [],
                        "last": "Abekawa",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 2012",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Seonggi Ryang and Takeshi Abekawa. 2012. Frame- work of automatic text summarization using rein- forcement learning. In Proceedings of the 2012",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Natural Language Processing and Computational Natural Language Learning",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "256--265",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pages 256-265.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Interactive text ranking with bayesian optimization: A case study on community qa and summarization",
                "authors": [
                    {
                        "first": "Edwin",
                        "middle": [],
                        "last": "Simpson",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "8",
                "issue": "",
                "pages": "759--775",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Edwin Simpson, Yang Gao, and Iryna Gurevych. 2020. Interactive text ranking with bayesian optimization: A case study on community qa and summarization. Transactions of the Association for Computational Linguistics, 8:759-775.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Generating persona consistent dialogues by exploiting natural language inference",
                "authors": [
                    {
                        "first": "Haoyu",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Nan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jingwen",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Ting",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "34",
                "issue": "",
                "pages": "8878--8885",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Haoyu Song, Wei-Nan Zhang, Jingwen Hu, and Ting Liu. 2020. Generating persona consistent dialogues by exploiting natural language inference. In Pro- ceedings of the AAAI Conference on Artificial Intel- ligence, volume 34, pages 8878-8885.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Abstractive timeline summarization",
                "authors": [
                    {
                        "first": "Julius",
                        "middle": [],
                        "last": "Steen",
                        "suffix": ""
                    },
                    {
                        "first": "Katja",
                        "middle": [],
                        "last": "Markert",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2nd Workshop on New Frontiers in Summarization",
                "volume": "",
                "issue": "",
                "pages": "21--31",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Julius Steen and Katja Markert. 2019. Abstractive time- line summarization. In Proceedings of the 2nd Work- shop on New Frontiers in Summarization, pages 21- 31.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "A baseline temporal tagger for all languages",
                "authors": [
                    {
                        "first": "Jannik",
                        "middle": [],
                        "last": "Str\u00f6tgen",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Gertz",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 conference on empirical methods in natural language processing",
                "volume": "",
                "issue": "",
                "pages": "541--547",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jannik Str\u00f6tgen and Michael Gertz. 2015. A baseline temporal tagger for all languages. In Proceedings of the 2015 conference on empirical methods in natural language processing, pages 541-547.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "A law of comparative judgment",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Louis L Thurstone",
                        "suffix": ""
                    }
                ],
                "year": 1927,
                "venue": "Psychological review",
                "volume": "34",
                "issue": "4",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Louis L Thurstone. 1927. A law of comparative judg- ment. Psychological review, 34(4):273.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Timeline summarization from relevant headlines",
                "authors": [
                    {
                        "first": "Giang",
                        "middle": [],
                        "last": "Tran",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Alrifai",
                        "suffix": ""
                    },
                    {
                        "first": "Eelco",
                        "middle": [],
                        "last": "Herder",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "European Conference on Information Retrieval",
                "volume": "",
                "issue": "",
                "pages": "245--256",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Giang Tran, Mohammad Alrifai, and Eelco Herder. 2015. Timeline summarization from relevant head- lines. In European Conference on Information Re- trieval, pages 245-256. Springer.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Leveraging learning to rank in an optimization framework for timeline summarization",
                "authors": [
                    {
                        "first": "Tuan",
                        "middle": [
                            "A"
                        ],
                        "last": "Giang Binh Tran",
                        "suffix": ""
                    },
                    {
                        "first": "Nam-Khanh",
                        "middle": [],
                        "last": "Tran",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Tran",
                        "suffix": ""
                    },
                    {
                        "first": "Nattiya",
                        "middle": [],
                        "last": "Alrifai",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kanhabua",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "SIGIR 2013 Workshop on Time-aware Information Access",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Giang Binh Tran, Tuan A Tran, Nam-Khanh Tran, Mohammad Alrifai, and Nattiya Kanhabua. 2013. Leveraging learning to rank in an optimization framework for timeline summarization. In SIGIR 2013 Workshop on Time-aware Information Access (TAIA.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Evolutionary timeline summarization: a balanced optimization framework via iterative substitution",
                "authors": [
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaojun",
                        "middle": [],
                        "last": "Wan",
                        "suffix": ""
                    },
                    {
                        "first": "Jahna",
                        "middle": [],
                        "last": "Otterbacher",
                        "suffix": ""
                    },
                    {
                        "first": "Liang",
                        "middle": [],
                        "last": "Kong",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoming",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Yan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval",
                "volume": "",
                "issue": "",
                "pages": "745--754",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rui Yan, Xiaojun Wan, Jahna Otterbacher, Liang Kong, Xiaoming Li, and Yan Zhang. 2011. Evolutionary timeline summarization: a balanced optimization framework via iterative substitution. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, pages 745-754.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Pegasus: Pre-training with extracted gap-sentences for abstractive summarization",
                "authors": [
                    {
                        "first": "Jingqing",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yao",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Saleh",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "11328--11339",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe- ter Liu. 2020. Pegasus: Pre-training with extracted gap-sentences for abstractive summarization. In In- ternational Conference on Machine Learning, pages 11328-11339. PMLR.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "uris": null,
                "text": "The workflow of our event detection timeline summarisation method",
                "num": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "uris": null,
                "text": "A view of interaction process",
                "num": null
            },
            "FIGREF2": {
                "type_str": "figure",
                "uris": null,
                "text": "A view of our RL method",
                "num": null
            },
            "TABREF0": {
                "content": "<table><tr><td>: Performance of two methods evaluated by</td></tr><tr><td>Alignment ROUGE-1 and Alignment ROUGE-2.</td></tr></table>",
                "text": "",
                "num": null,
                "html": null,
                "type_str": "table"
            },
            "TABREF1": {
                "content": "<table/>",
                "text": "2 , . . . , d |D| ) be a document cluster describing the same sub-topic. P = (p 1 , p 2 , . . . , p |P | ) denotes the preferences between different versions of the generated timelines. Assuming that p 1 , p 2 , . . . , p |P | are several different pairwise labels, collected over a number of rounds, comparing several different versions of the timeline. The words, dates and keyphrases that the user wants to include and exclude are marked as M = (m 1 , m 2 , . . . , m |M | ) and N = (n 1 , n 2 , . . . , n |N | )",
                "num": null,
                "html": null,
                "type_str": "table"
            }
        }
    }
}