File size: 54,739 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
{
    "paper_id": "2022",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:13:25.584826Z"
    },
    "title": "The Document Vectors Using Cosine Similarity Revisited",
    "authors": [
        {
            "first": "Zhang",
            "middle": [],
            "last": "Bingyu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Research University Higher School of Economics / Moscow",
                "location": {
                    "country": "Russia"
                }
            },
            "email": ""
        },
        {
            "first": "Nikolay",
            "middle": [],
            "last": "Arefyev",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Research University Higher School of Economics / Moscow",
                "location": {
                    "country": "Russia"
                }
            },
            "email": "nick.arefyev@gmail.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The current state-of-the-art test accuracy (97.42%) on the IMDB movie reviews dataset was reported by Thongtan and Phienthrakul (2019) and achieved by the logistic regression classifier trained on the Document Vectors using Cosine Similarity (DV-ngrams-cosine) proposed in their paper and the Bag-of-Ngrams (BON) vectors scaled by Naive Bayesian weights. While large pre-trained Transformerbased models have shown SOTA results across many datasets and tasks, the aforementioned model has not been surpassed by them, despite being much simpler and pre-trained on the IMDB dataset only. In this paper, we describe an error in the evaluation procedure of this model, which was found when we were trying to analyze its excellent performance on the IMDB dataset. We further show that the previously reported test accuracy of 97.42% is invalid and should be corrected to 93.68%. We also analyze the model performance with different amounts of training data (subsets of the IMDB dataset) and compare it to the Transformer-based RoBERTa model. The results show that while RoBERTa has a clear advantage for larger training sets, the DV-ngramscosine performs better than RoBERTa when the labelled training set is very small (10 or 20 documents). Finally, we introduce a sub-sampling scheme based on Naive Bayesian weights for the training process of the DV-ngrams-cosine, which leads to faster training and better quality.",
    "pdf_parse": {
        "paper_id": "2022",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The current state-of-the-art test accuracy (97.42%) on the IMDB movie reviews dataset was reported by Thongtan and Phienthrakul (2019) and achieved by the logistic regression classifier trained on the Document Vectors using Cosine Similarity (DV-ngrams-cosine) proposed in their paper and the Bag-of-Ngrams (BON) vectors scaled by Naive Bayesian weights. While large pre-trained Transformerbased models have shown SOTA results across many datasets and tasks, the aforementioned model has not been surpassed by them, despite being much simpler and pre-trained on the IMDB dataset only. In this paper, we describe an error in the evaluation procedure of this model, which was found when we were trying to analyze its excellent performance on the IMDB dataset. We further show that the previously reported test accuracy of 97.42% is invalid and should be corrected to 93.68%. We also analyze the model performance with different amounts of training data (subsets of the IMDB dataset) and compare it to the Transformer-based RoBERTa model. The results show that while RoBERTa has a clear advantage for larger training sets, the DV-ngramscosine performs better than RoBERTa when the labelled training set is very small (10 or 20 documents). Finally, we introduce a sub-sampling scheme based on Naive Bayesian weights for the training process of the DV-ngrams-cosine, which leads to faster training and better quality.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The word2vec algorithm originally published by Mikolov et al. (2013) is among the most famous methods to train vector representations of words. Soon after the emergence of word2vec, a similar method to build vector representations of documents was originally proposed by Le and Mikolov (2014) and further studied by Mesnil et al. (2015) . It is known under different names, including Paragraph Vectors, Sentence Vectors, doc2vec, etc. This method jointly learns word embeddings and document embeddings such that a binary classifier can predict if a given word occurs in a particular document given only the corresponding embeddings. More formally, the following objective is minimized:",
                "cite_spans": [
                    {
                        "start": 47,
                        "end": 68,
                        "text": "Mikolov et al. (2013)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 271,
                        "end": 292,
                        "text": "Le and Mikolov (2014)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 316,
                        "end": 336,
                        "text": "Mesnil et al. (2015)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 384,
                        "end": 402,
                        "text": "Paragraph Vectors,",
                        "ref_id": null
                    },
                    {
                        "start": 403,
                        "end": 420,
                        "text": "Sentence Vectors,",
                        "ref_id": null
                    },
                    {
                        "start": 421,
                        "end": 429,
                        "text": "doc2vec,",
                        "ref_id": null
                    },
                    {
                        "start": 430,
                        "end": 434,
                        "text": "etc.",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "d\u2208D w\u2208W d [\u2212 log \u03c3(v T d v w ) \u2212 w \u2032 \u223cV log \u03c3(\u2212v T d v w \u2032 )]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(1) Here D denotes the set of documents, W d is the list of words that make up the document d, w \u2032 is a word randomly sampled from the full vocabulary V , also known as a negative sample (Goldberg and Levy, 2014) . Finally, v d and v w are the learnt embeddings of d and w. Intuitively, for each document, an embedding is learnt that has high similarity to the embeddings of those words that occur in this document and low similarity to the embeddings of some random words.",
                "cite_spans": [
                    {
                        "start": 187,
                        "end": 212,
                        "text": "(Goldberg and Levy, 2014)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Later Li et al. (2015) switched from single words to n-grams and observed significant improvements. Building on that, Thongtan and Phienthrakul (2019) studied different objective functions. They have found that the cosine similarity outperforms the dot product, which led to a modified model called the Document Vectors using Cosine Similarity (we will call it DV-ngrams-cosine for short). The new objective is:",
                "cite_spans": [
                    {
                        "start": 6,
                        "end": 22,
                        "text": "Li et al. (2015)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "d\u2208D u\u2208U d [\u2212 log \u03c3(\u03b1cos(v d , v u )) \u2212 u \u2032 \u223cV log \u03c3(\u2212\u03b1cos(v d , v u \u2032 ))],",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "where U d denotes the set of all n-grams in d, v u is the embedding of the n-gram u from d, v u \u2032 is the embedding of a randomly sampled n-gram, and \u03b1 is a hyperparameter.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In the same paper, the authors proposed an ensemble consisting of the document embeddings from DV-ngrams-cosine and the Bag-of-N-grams vectors scaled by Naive Bayesian weights (NBweighted BON for short). They concatenated these two representations and trained the logistic regression classifier on top. The ensemble was reported to have very high test accuracy (97.42%) on the IMDB movie reviews dataset (Maas et al. (2011) ). To the best of our knowledge, this accuracy remains the SOTA result on IMDB. Even large Transformerbased models pre-trained on a huge amount of texts, both in-domain and out-of-domain, have shown lower accuracy on this dataset (Yang et al., 2019; Suchin et al., 2020; Arefyev et al., 2021) .",
                "cite_spans": [
                    {
                        "start": 404,
                        "end": 423,
                        "text": "(Maas et al. (2011)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 654,
                        "end": 673,
                        "text": "(Yang et al., 2019;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 674,
                        "end": 694,
                        "text": "Suchin et al., 2020;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 695,
                        "end": 716,
                        "text": "Arefyev et al., 2021)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This extraordinary performance of such a simple model motivated us to thoroughly study the model and its implementation trying to understand the reasons behind its success. Unfortunately, during this study, we found a bug in the implementation of the evaluation procedure of the ensemble, which had made the estimation of the accuracy incorrect.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In our paper, we re-evaluate the ensemble as well as its individual components. We show that the originally reported test accuracy of the ensemble (97.42%) is incorrect and shall be corrected to 93.68%, which is only 0.55% higher than the accuracy on pure DV-ngrams-cosine embeddings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Additionally, we analyze how the amount of training data affects the performance of the ensemble, as well as its individual components, and also the Transformer-based RoBERTa model (Liu et al., 2020) , which has recently shown SOTA or near-SOTA results over a variety of tasks and datasets. Surprisingly, we have observed that DV-ngramscosine outperforms RoBERTa when the number of labelled training examples is small (10 or 20). We also ensemble RoBERTa with DV-ngrams-cosine, but only have achieved a marginal improvement. Finally, we propose a modification for the training process of DV-ngrams-cosine that results in faster training and better accuracy. The code reproducing our experiments is publicly available 1 .",
                "cite_spans": [
                    {
                        "start": 181,
                        "end": 199,
                        "text": "(Liu et al., 2020)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In the aforementioned ensemble proposed by Thongtan and Phienthrakul (2019) , the NBweighted BON and the DV-ngrams-cosine are concatenated and fed into the logistic regression classifier. However, we have found that in the original implementation the two vectors concatenated to obtain a single training or test example usually correspond to two different documents of the same 1 https://github.com/Bgzh/dv_cosine_revisited class (see details in Appendix A). Specifically, the DV-ngrams-cosine vectors and the BON vectors are built from two different files having different orders of examples. As a result, after the concatenation, each input to the logistic regression corresponds to a combination of two examples. Due to the special structure of the files, those examples are guaranteed to belong to the same class and the same subset. For instance, a positive example from the test set is concatenated with another positive example from the test set.",
                "cite_spans": [
                    {
                        "start": 43,
                        "end": 75,
                        "text": "Thongtan and Phienthrakul (2019)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Re-evaluation of the ensemble",
                "sec_num": "2"
            },
            {
                "text": "In Appendix B.3 we provide an analysis that shows the reasons of high performance of this concatenation of two representations. From this analysis it follows that most examples from IMDB are correctly classified with high confidence (a large logit) using any of two representations, i.e. they are easy examples. Less than 10% of examples are classified incorrectly by each representation (hard examples), but they often obtain low confidence (a logit near zero). Hard examples are more often combined with easy examples just because of their dominance. In these cases, the logit from the easy example often outweigh the logit from the hard one resulting in the correct final prediction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Re-evaluation of the ensemble",
                "sec_num": "2"
            },
            {
                "text": "Thus, in both the training and the test sets, hard examples are often combined with simpler examples, making the classification task easier. In this process, the knowledge of the true labels is implicitly exploited to combine the examples this way, in both training and testing. This leads to an incorrect estimation of the classification accuracy for future examples.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Re-evaluation of the ensemble",
                "sec_num": "2"
            },
            {
                "text": "After fixing this issue, we have observed that the combination of different representations of the same document leads to the test accuracy of 93.68% instead of 97.42% originally reported. Compared to the pure DV-ngrams-cosine embeddings, the ensemble improves the test accuracy by 0.55%, not 4.29% reported previously. This improvement also better agrees with the improvements of less than 1% observed by Li et al. (2015) for similar ensembles with the predecessor model DV-ngram. As a sanity check, Appendix B additionally reports the accuracy for different schemes of combining the two representations, showing that higher accuracy can be achieved only by those schemes that exploit the knowledge of the test labels.",
                "cite_spans": [
                    {
                        "start": 406,
                        "end": 422,
                        "text": "Li et al. (2015)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Re-evaluation of the ensemble",
                "sec_num": "2"
            },
            {
                "text": "In his section we further analyze the performance of the ensemble described above, comparing it to its individual components as well as to the recently introduced Transformer-based RoBERTa model (Liu et al., 2020) . We study the performance of these models depending on the number of labelled examples in the training set. For a more fair comparison, the most important hyperparameters of each model were tuned on the validation set, employing the train/validation/test split of the IMDB dataset provided by (Suchin et al., 2020) . Subsets of different sizes from 10 to 20000 examples were randomly sampled from the training set. The logistic regression classifier was trained on these subsets using the DV-ngram-cosine embeddings, the NB-weighted BON vectors, or their concatenation as its input representation.",
                "cite_spans": [
                    {
                        "start": 195,
                        "end": 213,
                        "text": "(Liu et al., 2020)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 508,
                        "end": 529,
                        "text": "(Suchin et al., 2020)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Further analysis of performance",
                "sec_num": "3"
            },
            {
                "text": "We tuned the L2-regularization strength C of the classifier individually for each subset of the training set. Additionally, we multiplied the DV-ngramcosine embeddings before concatenating them to the BON vectors in order to balance the magnitudes of the two representations, which may help the classifier to benefit from both representations. The scaling factor was also selected on the validation set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Further analysis of performance",
                "sec_num": "3"
            },
            {
                "text": "The pre-trained RoBERTa base model 2 was finetuned on a part (10 out of 30) of the same subsets of the training set, using the validation set for early stopping. We used a batch size of 32, with a maximum learning rate of 1e-5, recommended by fairseq 3 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Further analysis of performance",
                "sec_num": "3"
            },
            {
                "text": "As shown in Fig. 1 , the fine-tuned RoBERTa model usually achieves higher test accuracy. But when the number of labelled training examples is very small (10 or 20), the logistic regression on the DV-ngrams-cosine embeddings shows higher mean test accuracy and lower standard deviation. This result corroborated the notion that small models can be a better choice when the data are scarce.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 12,
                        "end": 18,
                        "text": "Fig. 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Further analysis of performance",
                "sec_num": "3"
            },
            {
                "text": "On the other hand, logistic regression on the BON vectors performs significantly worse than all other models across all training set sizes. Finally, we don't observe any significant improvements from the ensembling when the training set size is less than 20k, as the difference is within one standard deviation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Further analysis of performance",
                "sec_num": "3"
            },
            {
                "text": "It is important to notice that the DV-ngramscosine embeddings were pre-trained on the indomain examples from the whole IMDB dataset, while RoBERTa was pre-trained on a huge but general-domain corpus. It is likely that the domain adaptation techniques (Suchin et al., 2020) will help RoBERTa when the number of labelled examples is small. However, for our study, we decided to compare the most standard approaches to training the corresponding models.",
                "cite_spans": [
                    {
                        "start": 251,
                        "end": 272,
                        "text": "(Suchin et al., 2020)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Further analysis of performance",
                "sec_num": "3"
            },
            {
                "text": "In this section, we improve the training procedure of DV-ngrams-cosine by applying a sub-sampling procedure based on the Naive Bayesian weights of ngrams (NB Sub-Sampling) in order to make the model focus more on sentiment-related ngrams while building the document embeddings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NB Sub-Sampling",
                "sec_num": "4"
            },
            {
                "text": "Inspired by the previous works (Wang and Manning (2012), Arefyev et al. (2021)), we trained a multinomial Naive Bayesian Classifier and exploited its weights to calculate the importance of each ngram f i for the final classification task:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NB Sub-Sampling",
                "sec_num": "4"
            },
            {
                "text": "h i = | log p(f i |y = 1) \u2212 log p(f i |y = 0)| (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NB Sub-Sampling",
                "sec_num": "4"
            },
            {
                "text": "In each epoch we put an ngram into training with the probability",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NB Sub-Sampling",
                "sec_num": "4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p(f i ) = min(exp(h i /n a )/n b , 1),",
                        "eq_num": "(4)"
                    }
                ],
                "section": "NB Sub-Sampling",
                "sec_num": "4"
            },
            {
                "text": "Test Accuracy % Models trained on the original training set of IMDB (25K) NB-weighted BON 91.29 DV-ngrams-cosine 93.13 DV-ngrams-cosine + NB-weighted BON (Thongtan and Phienthrakul, 2019) #97.42 DV-ngrams-cosine + NB-weighted BON (re-evaluated) 93.68 Models trained using the train/dev split from (Suchin et al., 2020) where n a and n b are the hyperparameters. The choices are purely empirical. We tried different combinations of n a and n b and found 2 and 3 (respectively) to be the best in them. The comparison of the training process with and without NB sub-sampling is shown in Fig. 2 (refer to Appendix C for details of the experiments and the accuracy on the validation set).",
                "cite_spans": [
                    {
                        "start": 154,
                        "end": 187,
                        "text": "(Thongtan and Phienthrakul, 2019)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 226,
                        "end": 244,
                        "text": "BON (re-evaluated)",
                        "ref_id": null
                    },
                    {
                        "start": 297,
                        "end": 318,
                        "text": "(Suchin et al., 2020)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 584,
                        "end": 590,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "The runs with NB sub-sampling progress faster and show a distinct advantage after 2500 steps. After 30k steps, the runs with NB sub-sampling stagnated and kept fluctuating in a small region; the vanilla runs stagnated after 50k steps, in a lower area. It is also worth noticing that although the labels of the training set are used during pre-training for sub-sampling, we did not observe any significant overfitting due to that. Neither the validation score nor the test score showed a tendency to decay long after reaching the plateau, indicating that this sub-sampling scheme can be used as an add-on to the original model, boosting its performance while not creating additional overfitting trouble.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "The ensemble proposed in (Thongtan and Phienthrakul (2019)) and described in Section 2 combines two different representations of documents, which are the DV-ngrams-cosine embeddings and the NB-weighted BON vectors. However, we have observed in Section 3 that the BON vectors are quite weak on their own, while RoBERTa outperforms all other models unless the number of examples is very small. Thus, it is interesting if DVngram-cosine can help RoBERTa. In this section, we combine the DV-ngrams-cosine (with or without NB sub-sampling) with the output of the last hidden layer of RoBERTa, and test on the IMDB dataset. Again, the train/validation/test splits by Suchin et al. (2020) were used. A scaling factor on the DV-ngrams-cosine and the hyperparameter C in the logistic regression were tuned on the validation set.",
                "cite_spans": [
                    {
                        "start": 661,
                        "end": 681,
                        "text": "Suchin et al. (2020)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ensemble DV-ngrams-cosine and RoBERTa",
                "sec_num": "5"
            },
            {
                "text": "The results are shown in Table 1 . Although RoBERTa is a much stronger model than DVngram-cosine, combining them has shown a small improvement of 0.13-0.15%.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 25,
                        "end": 32,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Ensemble DV-ngrams-cosine and RoBERTa",
                "sec_num": "5"
            },
            {
                "text": "The ensemble featuring the DV-ngrams-cosine reported by Thongtan and Phienthrakul (2019) was re-evaluated. The test accuracy of this ensemble on the IMDB dataset was corrected from 97.42% to 93.68%. The DV-ngrams-cosine embeddings with the logistic regression on top were compared with RoBERTa using different amounts of training data.",
                "cite_spans": [
                    {
                        "start": 56,
                        "end": 88,
                        "text": "Thongtan and Phienthrakul (2019)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "In this comparison, the DV-ngrams-cosine has surprisingly outperformed RoBERTa for a small number of training examples (10 or 20 documents). A sub-sampling scheme based on the Naive Bayesian weights was introduced to the training process of the DV-ngrams-cosine, resulting in faster training and better quality.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "132",
                "sec_num": null
            },
            {
                "text": "https://pytorch.org/hub/huggingface_ pytorch-transformers/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/pytorch/fairseq/ blob/main/examples/roberta/README. custom_classification.md",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We are grateful to our anonymous reviewers. This research was partially supported by the Basic Research Program at the HSE University.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Nb-mlm -efficient domain adaptation of masked language models for sentiment analysis",
                "authors": [
                    {
                        "first": "Nikolay",
                        "middle": [],
                        "last": "Arefyev",
                        "suffix": ""
                    },
                    {
                        "first": "Dmitry",
                        "middle": [],
                        "last": "Kharchev",
                        "suffix": ""
                    },
                    {
                        "first": "Artem",
                        "middle": [],
                        "last": "Shelmanov",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "EMNLP",
                "volume": "",
                "issue": "",
                "pages": "9114--9124",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nikolay Arefyev, Dmitry Kharchev, and Artem Shel- manov. 2021. Nb-mlm -efficient domain adaptation of masked language models for sentiment analysis. EMNLP, pages 9114-9124.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "word2vec explained: deriving mikolov et al.'s negative-sampling word-embedding method",
                "authors": [
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoav Goldberg and Omer Levy. 2014. word2vec ex- plained: deriving mikolov et al.'s negative-sampling word-embedding method. CoRR.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Distributed representations of sentences and documents. ICML",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Quoc",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "1188--1196",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "V. Quoc Le and Tomas Mikolov. 2014. Distributed representations of sentences and documents. ICML, pages 1188-1196.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Learning document embeddings by predicting n-grams for sentiment classification of long movie reviews",
                "authors": [
                    {
                        "first": "Bofang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoyong",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Deyuan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhe",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bofang Li, Tao Liu, Xiaoyong Du, Deyuan Zhang, and Zhe Zhao. 2015. Learning document embeddings by predicting n-grams for sentiment classification of long movie reviews. CoRR.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Ro{bert}a: A robustly optimized {bert} pretraining approach",
                "authors": [
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfei",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2020. Ro{bert}a: A robustly optimized {bert} pretraining approach.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Learning word vectors for sentiment analysis",
                "authors": [
                    {
                        "first": "Andrew",
                        "middle": [
                            "L"
                        ],
                        "last": "Maas",
                        "suffix": ""
                    },
                    {
                        "first": "Raymond",
                        "middle": [
                            "E"
                        ],
                        "last": "Daly",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [
                            "T"
                        ],
                        "last": "Pham",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [
                            "Y"
                        ],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Potts",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "142--150",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. 2011. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pages 142-150, Portland, Oregon, USA. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Ensemble of generative and discriminative techniques for sentiment analysis of movie reviews",
                "authors": [
                    {
                        "first": "Gr\u00e9goire",
                        "middle": [],
                        "last": "Mesnil",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "Marc'aurelio",
                        "middle": [],
                        "last": "Ranzato",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gr\u00e9goire Mesnil, Tomas Mikolov, Marc'Aurelio Ran- zato, and Yoshua Bengio. 2015. Ensemble of gen- erative and discriminative techniques for sentiment analysis of movie reviews. international conference on learning representations.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Efficient estimation of word representations in vector space",
                "authors": [
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "Kai",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Greg",
                        "middle": [],
                        "last": "Corrado",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Dean",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representa- tions in vector space. CoRR.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Don't stop pretraining: Adapt language models to domains and tasks",
                "authors": [
                    {
                        "first": "Gururangan",
                        "middle": [],
                        "last": "Suchin",
                        "suffix": ""
                    },
                    {
                        "first": "Marasovi\u0107",
                        "middle": [],
                        "last": "Ana",
                        "suffix": ""
                    },
                    {
                        "first": "Swayamdipta",
                        "middle": [],
                        "last": "Swabha",
                        "suffix": ""
                    },
                    {
                        "first": "Lo",
                        "middle": [],
                        "last": "Kyle",
                        "suffix": ""
                    },
                    {
                        "first": "Beltagy",
                        "middle": [],
                        "last": "Iz",
                        "suffix": ""
                    },
                    {
                        "first": "Downey",
                        "middle": [],
                        "last": "Doug",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "8342--8360",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gururangan Suchin, Marasovi\u0107 Ana, Swayamdipta Swabha, Lo Kyle, Beltagy Iz, Downey Doug, and Noah Smith A. 2020. Don't stop pretraining: Adapt language models to domains and tasks. ACL, pages 8342-8360.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Sentiment classification using document embeddings trained with cosine similarity",
                "authors": [
                    {
                        "first": "Tan",
                        "middle": [],
                        "last": "Thongtan",
                        "suffix": ""
                    },
                    {
                        "first": "Tanasanee",
                        "middle": [],
                        "last": "Phienthrakul",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop",
                "volume": "",
                "issue": "",
                "pages": "407--414",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tan Thongtan and Tanasanee Phienthrakul. 2019. Sen- timent classification using document embeddings trained with cosine similarity. In Proceedings of the 57th Annual Meeting of the Association for Com- putational Linguistics: Student Research Workshop, pages 407-414, Florence, Italy. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Baselines and bigrams: Simple, good sentiment and topic classification",
                "authors": [
                    {
                        "first": "Sida",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "90--94",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sida Wang and Christopher Manning. 2012. Baselines and bigrams: Simple, good sentiment and topic clas- sification. In Proceedings of the 50th Annual Meet- ing of the Association for Computational Linguistics (Volume 2: Short Papers), pages 90-94, Jeju Island, Korea. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Xlnet: Generalized autoregressive pretraining for language understanding",
                "authors": [
                    {
                        "first": "Zhilin",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Zihang",
                        "middle": [],
                        "last": "Dai",
                        "suffix": ""
                    },
                    {
                        "first": "Yiming",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [
                            "Jaime"
                        ],
                        "last": "Carbonell",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Quoc Le",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ADVANCES IN NEURAL IN-FORMATION PROCESSING SYSTEMS 32 (NIPS 2019)",
                "volume": "",
                "issue": "",
                "pages": "5754--5764",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhilin Yang, Zihang Dai, Yiming Yang, G. Jaime Car- bonell, Ruslan Salakhutdinov, and V. Quoc Le. 2019. Xlnet: Generalized autoregressive pretraining for lan- guage understanding. ADVANCES IN NEURAL IN- FORMATION PROCESSING SYSTEMS 32 (NIPS 2019), pages 5754-5764.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "text": "The performance of different models on training sets of different sizes. The mean values and standard deviations were calculated over 10 random subsets for RoBERTa and 30 random subsets for other models for each training set size. BON in the legend implies NBweighted BON.",
                "type_str": "figure",
                "num": null
            },
            "FIGREF1": {
                "uris": null,
                "text": "Training process with and without NB subsampling. The test accuracy of the logistic regression built on top of the document vectors is plotted. The mean values and standard deviations were calculated over 3 runs for each type.",
                "type_str": "figure",
                "num": null
            },
            "TABREF0": {
                "text": "Test results on the IMDB dataset. # indicates incorrect previously reported results.",
                "type_str": "table",
                "content": "<table><tr><td>(20K/5K)</td><td/></tr><tr><td>DV-ngrams-cosine with NB sub-sampling RoBERTa DV-ngrams-cosine + RoBERTa DV-ngrams-cosine with NB sub-sampling + RoBERTa</td><td>93.36 95.79 95.92 95.94</td></tr><tr><td>Table 1:</td><td/></tr></table>",
                "num": null,
                "html": null
            }
        }
    }
}