File size: 72,352 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
{
    "paper_id": "2022",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:13:20.477723Z"
    },
    "title": "On the Limits of Evaluating Embodied Agent Model Generalization Using Validation Sets",
    "authors": [
        {
            "first": "Hyounghun",
            "middle": [],
            "last": "Kim",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "UNC Chapel Hill",
                "location": {}
            },
            "email": "hyounghk@cs.unc.edu"
        },
        {
            "first": "Aishwarya",
            "middle": [],
            "last": "Padmakumar",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Amazon Alexa AI",
                "location": {}
            },
            "email": "padmakua@amazon.com"
        },
        {
            "first": "Di",
            "middle": [],
            "last": "Jin",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Amazon Alexa AI",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Mohit",
            "middle": [],
            "last": "Bansal",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "UNC Chapel Hill",
                "location": {}
            },
            "email": "mbansal@cs.unc.edu"
        },
        {
            "first": "Dilek",
            "middle": [],
            "last": "Hakkani-Tur",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Amazon Alexa AI",
                "location": {}
            },
            "email": "hakkanit@amazon.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Natural language guided embodied task completion is a challenging problem since it requires understanding natural language instructions, aligning them with egocentric visual observations, and choosing appropriate actions to execute in the environment to produce desired changes. We experiment with augmenting a transformer model for this task with modules that effectively utilize a wider field of view and learn to choose whether the next step requires a navigation or manipulation action. We observed that the proposed modules resulted in improved, and in fact state-of-the-art performance on an unseen validation set of a popular benchmark dataset, ALFRED. However, our best model selected using the unseen validation set underperforms on the unseen test split of ALFRED, indicating that performance on the unseen validation set may not in itself be a sufficient indicator of whether model improvements generalize to unseen test sets. We highlight this result as we believe it may be a wider phenomenon in machine learning tasks but primarily noticeable only in benchmarks that limit evaluations on test splits, and highlights the need to modify benchmark design to better account for variance in model performance.",
    "pdf_parse": {
        "paper_id": "2022",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Natural language guided embodied task completion is a challenging problem since it requires understanding natural language instructions, aligning them with egocentric visual observations, and choosing appropriate actions to execute in the environment to produce desired changes. We experiment with augmenting a transformer model for this task with modules that effectively utilize a wider field of view and learn to choose whether the next step requires a navigation or manipulation action. We observed that the proposed modules resulted in improved, and in fact state-of-the-art performance on an unseen validation set of a popular benchmark dataset, ALFRED. However, our best model selected using the unseen validation set underperforms on the unseen test split of ALFRED, indicating that performance on the unseen validation set may not in itself be a sufficient indicator of whether model improvements generalize to unseen test sets. We highlight this result as we believe it may be a wider phenomenon in machine learning tasks but primarily noticeable only in benchmarks that limit evaluations on test splits, and highlights the need to modify benchmark design to better account for variance in model performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Language guided embodied task completion is an important skill for embodied agents requiring them to follow natural language instructions to navigate in their environment and manipulate objects to complete tasks. Natural language is an easy medium for users to interact with embodied agents and effective use of natural language instructions can enable agents to navigate more easily in previously unexplored environments, and complete tasks involving novel combinations of object manipulations. Vision and language navigation benchmarks (Anderson et al., 2018; Thomason et al., 2019; Ku et al., 2020) provide an agent with natural language route instructions and evaluate their ability to follow these to navigate to a target location. It requires agents to have a deep understanding of natural language instructions, ground these in egocentric image observations and predict a sequence of actions in the environment. Other benchmarks study the manipulation and arrangement of objects (Bisk et al., 2016; Wang et al., 2016; Li et al., 2016; Bisk et al., 2018) -another crucial skill to complete many tasks that users may desire embodied agents to be able to complete. These tasks additionally require agents to reason about the states of objects and relations between them. Language guided embodied task completion benchmarks (Shridhar et al., 2020; Kim et al., 2020; Padmakumar et al., 2022) combine these skills -requiring agents to perform both navigation and object manipulation/arrangement following natural language instructions.",
                "cite_spans": [
                    {
                        "start": 538,
                        "end": 561,
                        "text": "(Anderson et al., 2018;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 562,
                        "end": 584,
                        "text": "Thomason et al., 2019;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 585,
                        "end": 601,
                        "text": "Ku et al., 2020)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 986,
                        "end": 1005,
                        "text": "(Bisk et al., 2016;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1006,
                        "end": 1024,
                        "text": "Wang et al., 2016;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 1025,
                        "end": 1041,
                        "text": "Li et al., 2016;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 1042,
                        "end": 1060,
                        "text": "Bisk et al., 2018)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1327,
                        "end": 1350,
                        "text": "(Shridhar et al., 2020;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1351,
                        "end": 1368,
                        "text": "Kim et al., 2020;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1369,
                        "end": 1393,
                        "text": "Padmakumar et al., 2022)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we explore a challenging navigation and manipulation benchmark, AL-FRED (Shridhar et al., 2020) , where an agent has to learn to follow complex hierarchical natural language instructions to complete tasks by navigating in a virtual environment and manipulating objects to produce desired state changes. The ALFRED benchmark provides a training dataset of action trajectories taken by an embodied agent in a variety of simulated indoor rooms paired with hierarchical natural language instructions describing the task to be accomplished and the steps to be taken to do so. For validation and testing of models, there are two splits each -seen and unseen splits. The seen validation and testing splits consist of instructions set in the same rooms as those in the training set, while the unseen splits consist of instructions set in rooms the agent has never seen before, with rooms in the unseen test set being different from those in the train and unseen validation set. Performance on the unseen validation and test sets are considered to be the best indicators of whether a model can really solve the task as the agent must operate in a completely novel floorplan, and cannot rely for example on memorized locations of large objects such as a fridge or a sink. Additionally, the ground truth action sequences are not publicly available for the seen and unseen test sets, and participants must submit prediction acted sequences on the test sets to an evaluation server where they are privately evaluated to obtain test performance. The evaluation server limits the number of submissions that can be made from an account to one per week to discourage directly tuning hyperparameters of a model on the test set. It is expected that following standard procedure in training machine learning models, one may use the validation sets to evaluate models trained with different hyperparameters, or ablating different components on the validation sets and only evaluate the best model on the test sets. Since ideally we would want a model to perform well on the unseen test set, it is reasonable to use success rate on the unseen validation set as a metric to choose which model is to be submitted for evaluation on the unseen test set.",
                "cite_spans": [
                    {
                        "start": 87,
                        "end": 110,
                        "text": "(Shridhar et al., 2020)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "One technique previously demonstrated to improve performance on ALFRED is the use of a multi-view setup (Nguyen et al., 2021; Kim et al., 2021) where an agent turns or moves its head in place at every time step to obtain additional views before deciding what action to take. In contrast to current models that simply concatenate features from each view, we use view-action matching -explicitly aligning embeddings of actions with embeddings of corresponding views -and using a score from fusing these aligned embeddings to select the next action to be taken. This is inspired by a dominant paradigm for modeling visual navigation tasks called viewpoint selection (Fried et al., 2018) where an agent predicts the next action by examining the resultant views each of those would produce and selecting the desired future view. Viewpoint selection is possible in some simulators such as R2R where the environment does not get altered by the agent's actions and the agent's movement is confined to a fixed grid. The ALFRED dataset uses the AI2-THOR simulator which supports a wider action space, physics modeling for movement and a more dynamic environment including irreversible actions. Hence, it is not possible to obtain the view that would result from an action without taking it, preventing direct application of viewpoint selection. Additionally, the agent must decide at each time step whether to perform navigation or manip-ulation actions. In contrast to prior work that uses a single classifier layer over all possible actions treating them equally, we propose a gate module which gives a higher weight to actions of a more relevant action type.",
                "cite_spans": [
                    {
                        "start": 104,
                        "end": 125,
                        "text": "(Nguyen et al., 2021;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 126,
                        "end": 143,
                        "text": "Kim et al., 2021)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 663,
                        "end": 683,
                        "text": "(Fried et al., 2018)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We follow standard experimental procedure training our modified models on the train split and using success rate on the unseen validation split to compare to baselines and perform ablation studies. On this set, the proposed model equipped with the aforementioned modules outperforms the stateof-the-art multi-view setup approaches and the ablation study shows each proposed module helps improve the model's performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "However, we observe an unexpected and large performance gap between the unseen validation and test data splits. Our model outperforms stateof-the-art baseline models on the unseen validation split, but performs worse than them on the unseen test split. We hypothesize that it may be possible to overfit hyperparameters and design choices to one set of unseen environments (the unseen validation) and hence success on one such set of unseen environments is insufficient to guarantee that a model will generalize to another set of unseen environments (the unseen test). We report this finding as we believe this situation is likely more common during development on machine learning benchmarks, but such intermediate results are unlikely to be published. Instead after a poor result on a test set, it is likely that researchers continue further model modifications until a model setting is obtained that performs well on the test set. We believe that such models are likely overfitting to the test set of the benchmark and may not generalize well to a new test set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we focus on improving models for the ALFRED (Shridhar et al., 2020) benchmark. ALFRED is built using the AI2-THOR simulator (Kolve et al., 2017) which consists of 120 indoor scenes across 4 types of rooms. Scenes also contain a diverse set of objects that are rearranged in different configurations for each trajectory in the dataset. In ALFRED, a agent is given a high level natural language goal statement (\"Put a chilled pan on the counter\") as well as step by step natural language instructions corresponding to subgoals to be completed in order for achieving the goal (\"Turn around and cross the room and then go right and turn to the left to face the stove ... Put the pan down on the counter to the right of the toaster\"). An agent has access to all these instructions at the start of the task and then has to iteratively predict navigation and manipulation actions in the environment based on egocentric image observations to complete subgoals in order. An agent must predict between a discrete set of possible navigation and manipulation actions, and predict a segmentation mask for the object to be manipulated if a manipulation action is predicted. The performance for an agent is evaluated by comparing the final states of the objects at the end of the action trajectory executed by the agent to the states of the objects at the end of the ground truth trajectory.",
                "cite_spans": [
                    {
                        "start": 59,
                        "end": 82,
                        "text": "(Shridhar et al., 2020)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 139,
                        "end": 159,
                        "text": "(Kolve et al., 2017)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset & Environment",
                "sec_num": "2"
            },
            {
                "text": "We employ a vision-language transformer, LXMERT (Tan and Bansal, 2019) as the base architecture for our model. We encode the language input using a learned word embedding and transformer layer, and action history using a linear layer. Following Pashevich et al. 2021, we extract image features using a faster R-CNN (Ren et al., 2015) pretrained on images from the AI2-THOR simulator, and average-pool features of regions into a single vector. The visual and action features are first combined via a liner layer, and then fused with language features through a cross modal transformer layer. View-Action Matching. We collect the multiple views (front, left, right, up, down) and go through the aforementioned process to obtain a feature V i from the cross modal transformer for each view, and compute its matching score M i with the corresponding action embedding A i using a feedforward network. Action-Type Gate. We additionally learn a gate vector using a linear layer over features of all views at the current time step to better distinguish between navigation and non-navigation actions. This layer is trained to predict high weights for actions of the same type as the ground truth action and low weights otherwise. The predicted weights are multiplied pointwise with match scores M i and the action with the highest resultant score is selected. For example, if the ground truth action at a particular time step is Move forward, the gate will ensure that a prediction of ToggleOff which is a non-navigation action will receive a higher loss than a prediction of Turn Right, which is also an incorrect action but of the same type as the ground truth action (navigation).",
                "cite_spans": [
                    {
                        "start": 48,
                        "end": 70,
                        "text": "(Tan and Bansal, 2019)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "Loss. The model is trained via cross-entropy losses for action (teacher-forcing) and object type.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": "3"
            },
            {
                "text": "Implementation & Training Details. We use 2 language and 2 cross-modal LXMERT layers for the model, and use 768 as the hidden size. We use AdamW (Loshchilov and Hutter, 2018) as the optimizer with the learning rate 1 \u00d7 10 \u22125 . All of the experiments are run on AWS 'p3.16xlarge' EC2 instances running Ubuntu 18.04. We employ PyTorch (Paszke et al., 2017) to build our models. Data Splits. Following Shridhar et al. 2020, we train our models on the train split and use success rate on the unseen validation split to perform model selection, and determine whether our model changes are likely to improve over existing state of the art models. We used the validation splits to evaluate the efficacy of variants of the transformer architecture, number of layers and number of epochs of training to use. We then submitted predictions from the best performing model on the unseen validation split to the evaluation server to obtain scores on the test sets. Evaluation Metrics. We report two evaluation metrics from Shridhar et al. (2020) on validation and test splits. Success rate (SR) measures the fraction of episodes whether the predicted model trajectory results in all object state changes produced by the ground truth action trajectory. Goal Condition Success Rate (GC) measures the fraction of such desired state changes across all episodes that were accomplished by model-predicted trajectories. Model Comparison. Recently, the best performing models on the ALFRED benchmark make use of semantic map representations of the environment (Blukis et al., 2021) . However, these rely on pre-exploration of the environment to build a semantic map, rather than utilizing language instruc- tions to directly navigate to target objects. Therefore, we focus on comparing our model with other multi-view setup models that are the state-of-theart among non-SLAM models. LWIT (Nguyen et al., 2021) predicts an initial actions from an selected instruction alone and integrates the actions sequence with visual information to generate final actions to take. ABP (Kim et al., 2021) factorizes the model into interactive perception and action policy modules for adapting to two different tasks (the former needs a pixel-level and the latter requires a global information). However, although they employ multi-view setup, the information from each view collapses into one integrated feature. On the other hand, our model exploit each view directly to keep the useful clues without any loss.",
                "cite_spans": [
                    {
                        "start": 145,
                        "end": 174,
                        "text": "(Loshchilov and Hutter, 2018)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 333,
                        "end": 354,
                        "text": "(Paszke et al., 2017)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1538,
                        "end": 1559,
                        "text": "(Blukis et al., 2021)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 1861,
                        "end": 1887,
                        "text": "LWIT (Nguyen et al., 2021)",
                        "ref_id": null
                    },
                    {
                        "start": 2050,
                        "end": 2068,
                        "text": "(Kim et al., 2021)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "We first evaluate the utility of each modeling change on the unseen validation set of ALFRED. As shown Table 1 , we gain 4.6% on success rate from adding a wider field of view, an additional 2.5% from view-action matching and a further 2% from action type gating. We observe a variance of 3% in success rate of the same type of model trained with different random seeds so we consider a 4.6% improvement to be sufficiently large to be unlikely from pure variance.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 103,
                        "end": 110,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "Sub-Goal Performance. Considering the proportion of GotoLocation to the total number of sub-goal tasks (i.e., 48%) and its role of bridging other sub-goal tasks, navigation is very crucial ability for a agent to successfully perform this challenging ALFRED task. As shown in Table 2 , our full view-action matching (VAM) model improves the performance of GotoLocation task by 5.1% while also improves performance for some of other sub-goal tasks. This performance boost could attribute to the agent's ability to figure out where to go (View-Action Matching) and what to do (Action-Type Gate).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 275,
                        "end": 282,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "Validation-Test Performance Gap. When we compare to other baselines in Table 3 , although our model outperforms other state-of-the-art models on the unseen validation split by a large margin, its performance on the unseen test split is poorer, whereas the reverse trend is seen with ABP (Kim et al., 2021) . This suggests that good performance from a model on an unseen validation set may not be a good method to determine whether model changes are likely to generalize to another unseen test set.",
                "cite_spans": [
                    {
                        "start": 287,
                        "end": 305,
                        "text": "(Kim et al., 2021)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 71,
                        "end": 78,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "This lack of generalization is more likely in current embodied learning tasks such as vision-andlanguage navigation or embodied task completion in comparison to other machine learning tasks due to the way unseen test sets are defined in embodied learning tasks. While ALFRED in particular does not introduce new object categories at test time, both validation and test unseen environments are visually different, by design from the training environment and from each other. When we compare models on the validation set, we hope that an increase in performance denotes a model that is more capable of generalizing to any unseen environment. However, it may only be the case that the model only generalizes better to the particular visual differences present in the unseen validation environment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "When the benchmark limits access to the test set, as in ALFRED, when dealing with a model that demonstrates variance when trained with different random seeds, hyperparameters and across training epochs, it is natural to choose the setting that results in the highest performance on the unseen validation set. However, a different setting may in fact be optimal for the unseen test set due to visual differences. While such a design is likely significantly more computationally expensive, it may be necessary to redesign benchmarks to take an average of performance from a few different variants of a model to reliably rank different modelling methods, instead of using scores from individual runs. We may also want to re-evaluate the value of keeping a test set private, as in the case of ALFRED that avoids prevents allowing models to overfit on the test set, but also makes it difficult to analyze the robustness of model performance between the validation and test sets. We would also like to encourage the reviewing community to enable the publication of modelling techniques whose performance is in the same ball- Table 3 : Success rate (%) on the ALFRED evaluation splits (GC: Goal-Condition). Our model outperforms the state-of-the-art multi-view setup models on validation splits but not test splits.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1119,
                        "end": 1126,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "park as existing state-of-the-art models, but novel in some way, as opposed to solely relying on a model achieving a top score on a leaderboard as a criterion for publication, as this limits the development that could be made using these alternative modeling approaches.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "We attempted to improve a transformer model for embodied task completion by enabling it to effectively uses multiple views via view-action matching and action-type gating. Our view-action matching module computes a matching score between each a view and the embedding of the action used to generate it, and the gate module gives a higher weight to a more appropriate action type. While our model outperformed relevant baselines on the ALFRED unseen validation split, the trend was reversed on the unseen test split, suggesting that it may not be possible to over-utilize a validation split when making model selection choices so that the resultant model does not perform well on the test split. We choose to publish this result as we believe this phenomenon is likely more common than reported with machine learning benchmarks, but only noticeable to researchers when working on a benchmark with limited access to the test set. We additionally hope that our work encourages the publication of promising modelling approaches that do not work as reliably as expected, so that these can act as a guide to researchers to better inform their future directions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            }
        ],
        "back_matter": [
            {
                "text": "We thank the reviewers for their helpful comments. This work was partially done while Hyounghun Kim was interning at Amazon Alexa AI and later extended at UNC, where it was supported by NSF Award 1840131 and DARPA KAIROS Grant FA8750-19-2-1004. The views contained in this article are those of the authors and not of the funding agency.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Vision-andlanguage navigation: Interpreting visually-grounded navigation instructions in real environments",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Anderson",
                        "suffix": ""
                    },
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Damien",
                        "middle": [],
                        "last": "Teney",
                        "suffix": ""
                    },
                    {
                        "first": "Jake",
                        "middle": [],
                        "last": "Bruce",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "Niko",
                        "middle": [],
                        "last": "S\u00fcnderhauf",
                        "suffix": ""
                    },
                    {
                        "first": "Ian",
                        "middle": [],
                        "last": "Reid",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Gould",
                        "suffix": ""
                    },
                    {
                        "first": "Anton",
                        "middle": [],
                        "last": "Van Den",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hengel",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition",
                "volume": "",
                "issue": "",
                "pages": "3674--3683",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko S\u00fcnderhauf, Ian Reid, Stephen Gould, and Anton van den Hengel. 2018. Vision-and- language navigation: Interpreting visually-grounded navigation instructions in real environments. In Pro- ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3674-3683.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Towards a dataset for human computer communication via grounded language acquisition",
                "authors": [
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Bisk",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Marcu",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Wong",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Workshops at the Thirtieth AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yonatan Bisk, Daniel Marcu, and William Wong. 2016. Towards a dataset for human computer communica- tion via grounded language acquisition. In Work- shops at the Thirtieth AAAI Conference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Learning interpretable spatial operations in a rich 3d blocks world",
                "authors": [
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Bisk",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kevin",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Shih",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Marcu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yonatan Bisk, Kevin J Shih, Yejin Choi, and Daniel Marcu. 2018. Learning interpretable spatial opera- tions in a rich 3d blocks world. In Thirty-Second AAAI Conference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A persistent spatial semantic representation for high-level natural language instruction execution",
                "authors": [
                    {
                        "first": "Valts",
                        "middle": [],
                        "last": "Blukis",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Paxton",
                        "suffix": ""
                    },
                    {
                        "first": "Dieter",
                        "middle": [],
                        "last": "Fox",
                        "suffix": ""
                    },
                    {
                        "first": "Animesh",
                        "middle": [],
                        "last": "Garg",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Artzi",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "5th Annual Conference on Robot Learning",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and Yoav Artzi. 2021. A persistent spatial semantic representation for high-level natural language instruc- tion execution. In 5th Annual Conference on Robot Learning.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Speaker-follower models for vision-and-language navigation",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Fried",
                        "suffix": ""
                    },
                    {
                        "first": "Ronghang",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Volkan",
                        "middle": [],
                        "last": "Cirik",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Rohrbach",
                        "suffix": ""
                    },
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Andreas",
                        "suffix": ""
                    },
                    {
                        "first": "Louis-Philippe",
                        "middle": [],
                        "last": "Morency",
                        "suffix": ""
                    },
                    {
                        "first": "Taylor",
                        "middle": [],
                        "last": "Berg-Kirkpatrick",
                        "suffix": ""
                    },
                    {
                        "first": "Kate",
                        "middle": [],
                        "last": "Saenko",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    },
                    {
                        "first": "Trevor",
                        "middle": [],
                        "last": "Darrell",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "NeurIPS",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. 2018. Speaker-follower models for vision-and-language navigation. In NeurIPS.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Agent with the big picture: Perceiving surroundings for interactive instruction following",
                "authors": [
                    {
                        "first": "Byeonghwi",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Suvaansh",
                        "middle": [],
                        "last": "Bhambri",
                        "suffix": ""
                    },
                    {
                        "first": "Pratap",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Roozbeh",
                        "middle": [],
                        "last": "Mottaghi",
                        "suffix": ""
                    },
                    {
                        "first": "Jonghyun",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Embodied AI Workshop CVPR",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Byeonghwi Kim, Suvaansh Bhambri, Kunal Pratap Singh, Roozbeh Mottaghi, and Jonghyun Choi. 2021. Agent with the big picture: Perceiving surroundings for interactive instruction following. In Embodied AI Workshop CVPR.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Arramon: A joint navigation-assembly instruction interpretation task in dynamic environments",
                "authors": [
                    {
                        "first": "Hyounghun",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Abhaysinh",
                        "middle": [],
                        "last": "Zala",
                        "suffix": ""
                    },
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Burri",
                        "suffix": ""
                    },
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
                "volume": "",
                "issue": "",
                "pages": "3910--3927",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hyounghun Kim, Abhaysinh Zala, Graham Burri, Hao Tan, and Mohit Bansal. 2020. Arramon: A joint navigation-assembly instruction interpretation task in dynamic environments. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pages 3910-3927.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "AI2-THOR: An Interactive 3D Environment for Visual AI. arXiv",
                "authors": [
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Kolve",
                        "suffix": ""
                    },
                    {
                        "first": "Roozbeh",
                        "middle": [],
                        "last": "Mottaghi",
                        "suffix": ""
                    },
                    {
                        "first": "Winson",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Eli",
                        "middle": [],
                        "last": "Van-Derbilt",
                        "suffix": ""
                    },
                    {
                        "first": "Luca",
                        "middle": [],
                        "last": "Weihs",
                        "suffix": ""
                    },
                    {
                        "first": "Alvaro",
                        "middle": [],
                        "last": "Herrasti",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Gordon",
                        "suffix": ""
                    },
                    {
                        "first": "Yuke",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Abhinav",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "Ali",
                        "middle": [],
                        "last": "Farhadi",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli Van- derBilt, Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. 2017. AI2-THOR: An Interactive 3D Environment for Vi- sual AI. arXiv.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Room-across-room: Multilingual vision-and-language navigation with dense spatiotemporal grounding",
                "authors": [
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Ku",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Anderson",
                        "suffix": ""
                    },
                    {
                        "first": "Roma",
                        "middle": [],
                        "last": "Patel",
                        "suffix": ""
                    },
                    {
                        "first": "Eugene",
                        "middle": [],
                        "last": "Ie",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Baldridge",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "4392--4412",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexander Ku, Peter Anderson, Roma Patel, Eugene Ie, and Jason Baldridge. 2020. Room-across-room: Mul- tilingual vision-and-language navigation with dense spatiotemporal grounding. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4392-4412.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Spatial references and perspective in natural language instructions for collaborative manipulation",
                "authors": [
                    {
                        "first": "Shen",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Rosario",
                        "middle": [],
                        "last": "Scalise",
                        "suffix": ""
                    },
                    {
                        "first": "Henny",
                        "middle": [],
                        "last": "Admoni",
                        "suffix": ""
                    },
                    {
                        "first": "Stephanie",
                        "middle": [],
                        "last": "Rosenthal",
                        "suffix": ""
                    },
                    {
                        "first": "Siddhartha",
                        "middle": [
                            "S"
                        ],
                        "last": "Srinivasa",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN)",
                "volume": "",
                "issue": "",
                "pages": "44--51",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shen Li, Rosario Scalise, Henny Admoni, Stephanie Rosenthal, and Siddhartha S Srinivasa. 2016. Spa- tial references and perspective in natural language instructions for collaborative manipulation. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pages 44-51. IEEE.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Decoupled weight decay regularization",
                "authors": [
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Loshchilov",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Hutter",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ilya Loshchilov and Frank Hutter. 2018. Decoupled weight decay regularization. In International Confer- ence on Learning Representations.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Look wide and interpret twice: Improving performance on interactive instructionfollowing tasks. IJCAI",
                "authors": [
                    {
                        "first": "Masanori",
                        "middle": [],
                        "last": "Van-Quang Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Takayuki",
                        "middle": [],
                        "last": "Suganuma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Okatani",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Van-Quang Nguyen, Masanori Suganuma, and Takayuki Okatani. 2021. Look wide and interpret twice: Improving performance on interactive instruction- following tasks. IJCAI.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Gokhan Tur, and Dilek Hakkani-Tur. 2022. Teach: Task-driven embodied agents that chat",
                "authors": [
                    {
                        "first": "Aishwarya",
                        "middle": [],
                        "last": "Padmakumar",
                        "suffix": ""
                    },
                    {
                        "first": "Jesse",
                        "middle": [],
                        "last": "Thomason",
                        "suffix": ""
                    },
                    {
                        "first": "Ayush",
                        "middle": [],
                        "last": "Shrivastava",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Lange",
                        "suffix": ""
                    },
                    {
                        "first": "Anjali",
                        "middle": [],
                        "last": "Narayan-Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Spandana",
                        "middle": [],
                        "last": "Gella",
                        "suffix": ""
                    },
                    {
                        "first": "Robinson",
                        "middle": [],
                        "last": "Piramuthu",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aishwarya Padmakumar, Jesse Thomason, Ayush Shri- vastava, Patrick Lange, Anjali Narayan-Chen, Span- dana Gella, Robinson Piramuthu, Gokhan Tur, and Dilek Hakkani-Tur. 2022. Teach: Task-driven em- bodied agents that chat. AAAI.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Episodic Transformer for Vision-and-Language Navigation",
                "authors": [
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Pashevich",
                        "suffix": ""
                    },
                    {
                        "first": "Cordelia",
                        "middle": [],
                        "last": "Schmid",
                        "suffix": ""
                    },
                    {
                        "first": "Chen",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "ICCV",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexander Pashevich, Cordelia Schmid, and Chen Sun. 2021. Episodic Transformer for Vision-and- Language Navigation. In ICCV.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Automatic differentiation in PyTorch",
                "authors": [
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Paszke",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Gross",
                        "suffix": ""
                    },
                    {
                        "first": "Soumith",
                        "middle": [],
                        "last": "Chintala",
                        "suffix": ""
                    },
                    {
                        "first": "Gregory",
                        "middle": [],
                        "last": "Chanan",
                        "suffix": ""
                    },
                    {
                        "first": "Edward",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Zachary",
                        "middle": [],
                        "last": "Devito",
                        "suffix": ""
                    },
                    {
                        "first": "Zeming",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Alban",
                        "middle": [],
                        "last": "Desmaison",
                        "suffix": ""
                    },
                    {
                        "first": "Luca",
                        "middle": [],
                        "last": "Antiga",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Lerer",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "NIPS Autodiff Workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Faster r-cnn: Towards real-time object detection with region proposal networks",
                "authors": [
                    {
                        "first": "Kaiming",
                        "middle": [],
                        "last": "Shaoqing Ren",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Ross",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Girshick",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "NIPS",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shaoqing Ren, Kaiming He, Ross B Girshick, and Jian Sun. 2015. Faster r-cnn: Towards real-time object detection with region proposal networks. In NIPS.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks",
                "authors": [
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Shridhar",
                        "suffix": ""
                    },
                    {
                        "first": "Jesse",
                        "middle": [],
                        "last": "Thomason",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Gordon",
                        "suffix": ""
                    },
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Bisk",
                        "suffix": ""
                    },
                    {
                        "first": "Winson",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Roozbeh",
                        "middle": [],
                        "last": "Mottaghi",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Dieter",
                        "middle": [],
                        "last": "Fox",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. 2020. ALFRED: A Benchmark for Interpreting Grounded Instructions for Everyday Tasks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Lxmert: Learning cross-modality encoder representations from transformers",
                "authors": [
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hao Tan and Mohit Bansal. 2019. Lxmert: Learning cross-modality encoder representations from trans- formers. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Vision-and-dialog navigation",
                "authors": [
                    {
                        "first": "Jesse",
                        "middle": [],
                        "last": "Thomason",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Murray",
                        "suffix": ""
                    },
                    {
                        "first": "Maya",
                        "middle": [],
                        "last": "Cakmak",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Conference on Robot Learning (CoRL)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jesse Thomason, Michael Murray, Maya Cakmak, and Luke Zettlemoyer. 2019. Vision-and-dialog naviga- tion. In Conference on Robot Learning (CoRL).",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Learning language games through interaction",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Sida",
                        "suffix": ""
                    },
                    {
                        "first": "Percy",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher D",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "2368--2378",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sida I Wang, Percy Liang, and Christopher D Manning. 2016. Learning language games through interaction. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2368-2378.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF2": {
                "content": "<table/>",
                "type_str": "table",
                "html": null,
                "text": "Success rate (%) of the sub-goal tasks on the ALFRED validation unseen split.",
                "num": null
            },
            "TABREF3": {
                "content": "<table><tr><td>Split</td><td>Model</td><td>SR</td><td colspan=\"2\">Seen</td><td>GC</td><td>Unseen SR GC</td></tr><tr><td/><td>LWIT</td><td colspan=\"5\">33.70 43.10 9.70 23.10</td></tr><tr><td>Val</td><td>ABP</td><td colspan=\"5\">42.93 50.45 12.55 25.19</td></tr><tr><td/><td colspan=\"3\">VAM (Ours) 40.9</td><td colspan=\"2\">47.9</td><td>13.8</td><td>28.1</td></tr></table>",
                "type_str": "table",
                "html": null,
                "text": "Test LWIT 29.16 38.82 8.37 19.13 ABP 44.55 51.13 15.43 24.76 VAM (Ours) 35.42 43.98 8.57 20.69",
                "num": null
            }
        }
    }
}