File size: 82,073 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
{
    "paper_id": "2022",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:13:24.225358Z"
    },
    "title": "What GPT Knows About Who is Who",
    "authors": [
        {
            "first": "Xiaohan",
            "middle": [],
            "last": "Yang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harvard University",
                "location": {}
            },
            "email": "yang@g.harvard.edu"
        },
        {
            "first": "Eduardo",
            "middle": [],
            "last": "Peynetti",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harvard University",
                "location": {}
            },
            "email": "eduardo.peynetti@gmail.com"
        },
        {
            "first": "Vasco",
            "middle": [],
            "last": "Meerman",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harvard University",
                "location": {}
            },
            "email": "vmeerman@g.harvard.edu"
        },
        {
            "first": "Chris",
            "middle": [],
            "last": "Tanner",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Harvard University",
                "location": {}
            },
            "email": "christanner@g.harvard.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Coreference resolution-which is a crucial task for understanding discourse and language at large-has yet to witness widespread benefits from large language models (LLMs). Moreover, coreference resolution systems largely rely on supervised labels, which are highly expensive and difficult to annotate, thus making it ripe for prompt engineering. In this paper, we introduce a QA-based prompt-engineering method and discern generative, pre-trained LLMs' abilities and limitations toward the task of coreference resolution. Our experiments show that GPT-2 and GPT-Neo can return valid answers, but that their capabilities to identify coreferent mentions are limited and promptsensitive, leading to inconsistent results.",
    "pdf_parse": {
        "paper_id": "2022",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Coreference resolution-which is a crucial task for understanding discourse and language at large-has yet to witness widespread benefits from large language models (LLMs). Moreover, coreference resolution systems largely rely on supervised labels, which are highly expensive and difficult to annotate, thus making it ripe for prompt engineering. In this paper, we introduce a QA-based prompt-engineering method and discern generative, pre-trained LLMs' abilities and limitations toward the task of coreference resolution. Our experiments show that GPT-2 and GPT-Neo can return valid answers, but that their capabilities to identify coreferent mentions are limited and promptsensitive, leading to inconsistent results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Coreference resolution (CR) aims to identify and cluster all words (i.e., mentions) that refer to the same entity or event. Solving this task is essential for natural language understanding, as mismatched references will lead to bias. Recent improvements in CR have been incremental (Lee et al., 2017; Cattan et al., 2020) , compared to other NLP tasks that have demonstrated more real-world impact. One reason is the limited training corpora. For example, one of the primary datasets, ECB+ (Cybulska and Vossen, 2014) , contains only 984 documents, including 6,833 mentions and 2,741 clusters. Moreover, this dataset was built around 43 news topics ten years ago, potentially leading to generalization problems for the state-of-the-art (SOTA) models.",
                "cite_spans": [
                    {
                        "start": 283,
                        "end": 301,
                        "text": "(Lee et al., 2017;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 302,
                        "end": 322,
                        "text": "Cattan et al., 2020)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 491,
                        "end": 518,
                        "text": "(Cybulska and Vossen, 2014)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "When dealing with low-resource tasks, there is an emerging trend to perform prompt engineering with pre-trained LMs. Unlike fine-tuning (Brown et al., 2020; Wei et al., 2021) , prompt engineering does not update the pre-trained model's weights when completing the downstream task. Instead, one transforms the downstream task to match the original task of the pre-trained model (Liu et al., 2021) . For example, for machine translation, one can create prompts such as \"English: I love bread. French:\" and input them to a generative LM (e.g., . If the pre-trained model encountered similar patterns during training, it should be able to generate the translated French sentence. Nevertheless, to the best of our knowledge, there is scarce research on applying this approach to coreference resolution (Sanh et al., 2021) .",
                "cite_spans": [
                    {
                        "start": 136,
                        "end": 156,
                        "text": "(Brown et al., 2020;",
                        "ref_id": null
                    },
                    {
                        "start": 157,
                        "end": 174,
                        "text": "Wei et al., 2021)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 377,
                        "end": 395,
                        "text": "(Liu et al., 2021)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 797,
                        "end": 816,
                        "text": "(Sanh et al., 2021)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To better understand if pre-trained LMs can help resolve coreferences, we construct a QA-based prompting method and experiment with both GPT-2 (Radford et al., 2019) and GPT-Neo (Gao et al., 2020) . By using this prompting methodology, we measure if these models can predict whether two mentions are coreferent. For evaluation, we use the ECB+ dataset, which provides gold mentions and clustering labels. We compare the results with unsupervised and supervised coreference resolution models, including a classic rule-based system (Lee et al., 2011) , the seminal end-to-end neural model (Lee et al., 2017) , and a recent SOTA model (Cattan et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 143,
                        "end": 165,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 170,
                        "end": 196,
                        "text": "GPT-Neo (Gao et al., 2020)",
                        "ref_id": null
                    },
                    {
                        "start": 530,
                        "end": 548,
                        "text": "(Lee et al., 2011)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 587,
                        "end": 605,
                        "text": "(Lee et al., 2017)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 632,
                        "end": 653,
                        "text": "(Cattan et al., 2020)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Prompt-based learning Prompt-based learning is a fast-growing area in NLP, as it can reduce the need to fine-tune models and rely on supervised labels. According to the survey by Liu et al., over 120 papers have been published since 2019, which collectively demonstrates effectiveness toward many different tasks: text classification (Tam et al., 2021; Holtzman et al., 2021) , factual probing (Perez et al., 2021) , question-answering (Tsimpoukelli et al., 2021) , and more. Nevertheless, to the best of our knowledge, only one prompt-based learning paper concerned CR. Specifically, Sanh et al. introduces T0, a zero-shot generalization of T5 (Raffel et al., 2019) . The authors convert various supervised datasets into task-specific prompts, Figure 1 : An example of prompt-based learning for CR. The green block represents the prefix, which serves as the description of the CR task and remains unchanged throughout an experiment for all inputs x. The purple block is the unfilled prompt, which changes for each input x and serves as the prediction. Moreover, in each block, the yellow part is the prompting function while the blue and red parts are the original data x and y, respectively. including CR. Using the WSC dataset (Levesque et al., 2012) , they achieve over 60% accuracy. Although this result is not comparable with supervised state-of-the-art (SOTA) models, it still offers compelling results and suggests the model might contain CR knowledge without requiring supervised training on the task. However, since the WSC dataset only focuses on highly ambiguous pronouns, it is not as complete as the standard CR task that involves named and nominal mentions.",
                "cite_spans": [
                    {
                        "start": 334,
                        "end": 352,
                        "text": "(Tam et al., 2021;",
                        "ref_id": null
                    },
                    {
                        "start": 353,
                        "end": 375,
                        "text": "Holtzman et al., 2021)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 394,
                        "end": 414,
                        "text": "(Perez et al., 2021)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 436,
                        "end": 463,
                        "text": "(Tsimpoukelli et al., 2021)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 645,
                        "end": 666,
                        "text": "(Raffel et al., 2019)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 1230,
                        "end": 1253,
                        "text": "(Levesque et al., 2012)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 745,
                        "end": 753,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Traditional CR Models Similar to other NLP tasks, most CR models can be categorized as being either unsupervised or supervised. A commonly used unsupervised model is the Multi-Pass Sieve model (Lee et al., 2011) . This rule-based system extracts entity mentions and clusters them by applying 13 \"filters\" in successive manner. Amongst supervised models, e2e-coref (Lee et al., 2017) is the seminal end-to-end neural model. This model performs within-document CR and was trained on the OntoNotes (CoNLL-2012) dataset. Building on this architecture, Cattan et al. (2020) performs cross-document CR for entities and events by training on the ECB+ dataset and using RoBERTa as an encoder. Although supervised models offer significant improvements over unsupervised models, they are expensive to train; most SOTA models have O(n 4 ) complexity, where n is the length of each document.",
                "cite_spans": [
                    {
                        "start": 193,
                        "end": 211,
                        "text": "(Lee et al., 2011)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 364,
                        "end": 382,
                        "text": "(Lee et al., 2017)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "This section introduces our prompt-based learning method for CR. Typically, CR models can be broken down into three sub-tasks: (1) detecting mentions; (2) predicting whether two given mentions are coreferent or not; (3) and clustering mentions accordingly. The crux of CR research centers around the second part, which is also our focus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "Building on the approach introduced by Sanh et al. 2021, we define our input x as [text, m 1 , m 2 ] and output y as a binary label. Specifically, m 1 and m 2 are a pair of gold mentions in a document, and the text are the sentences containing those mentions. For example, in Figure 1, within each green box, the successive blue parts are text, m 1 , m 2 , respectively. We define a prompting function f , which takes x as input and produces a question prompt q x (Equation 1). Further details about f are in Appendix A.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 276,
                        "end": 282,
                        "text": "Figure",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "q x = f (x) (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "Moreover, to allow the model to understand the task, we use few-shot learning (Triantafillou et al., 2017) by constructing a filled prefix. In particular, we select k examples, A, from the training dataset and feed these examples into the same prompting function f . Then, we append the true label ('Yes' or 'No') to the outputs, yielding the filled prefix q A (Equation 2). To be clear, each individual prefix q i\u2208k constitutes a single green box in Figure 1 .",
                "cite_spans": [
                    {
                        "start": 78,
                        "end": 106,
                        "text": "(Triantafillou et al., 2017)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 451,
                        "end": 459,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "q A = f (A) (2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "Last, adding the unfilled prompt q x to the filled prefix q A will give us the full prompt for data point x. This allows us to get a prediction z without updating any parameters \u03b8 in the pre-trained LM.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "z = P (q A + q x ; \u03b8)",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "Since we use pre-trained LMs directly, without fine-tuning, we do not have control over its output; the model can generate invalid answers beyond our desired outputs, 'Yes' or 'No'. Therefore, we repeat the process m times to get a more robust predictionz. To mitigate the bias of one specific f , we average the output of n different prompt formulas to get the final prediction (Equation 4).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "y = n i=1z i n (4) 4 Experimental Setup",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "Datasets We use the ECB+ dataset (Cybulska and Vossen, 2014) as our input source, which contains both within-and cross-document coreference information for both event and entity mentions. This dataset consists of 984 documents around 43 news topics, among which 196 documents are in the development set. After preprocessing the data, as described in Appendix B, our development set consists of 172 documents.",
                "cite_spans": [
                    {
                        "start": 33,
                        "end": 60,
                        "text": "(Cybulska and Vossen, 2014)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "To generate a prefix x 0 , we experiment with three data sources: the training sets of WSC (Levesque et al., 2012) and ECB+ (Cybulska and Vossen, 2014) , and a simple dataset that we manually generated. The WSC dataset was used in the research most similar to ours, T0 (Sanh et al., 2021 ), which we compare against while using much smaller pretrained LMs (i.e., GPT-2 and GPT-Neo). As mentioned, ECB+ provides more natural and comprehensive references than WSC. Our manually generated dataset uses 10 very simple examples -allowing one to discern the impact on performance.",
                "cite_spans": [
                    {
                        "start": 91,
                        "end": 114,
                        "text": "(Levesque et al., 2012)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 124,
                        "end": 151,
                        "text": "(Cybulska and Vossen, 2014)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 269,
                        "end": 287,
                        "text": "(Sanh et al., 2021",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "When using the ECB+ dataset, we only considered pairs of mentions that are within the same or successive sentences. When evaluating our model, we considered all mention-pair combinations, [m 1 , m 2 ], within said sentences. Relying on the gold mentions, we obtain a dataset with 17832 candidate mention pairs, among which 7.86% are positive samples. Finally, we apply 5 prompt functions from Sanh et al. to generate the full prompts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "Models We used three traditional CR models as baselines: Multi-Pass Sieve (Lee et al., 2011) , the seminal end-to-end neural model (e2e-coref ) (Lee et al., 2017) , and a SOTA extension (the Streamlining model) (Cattan et al., 2020) . Respectively, these models represent three categories: a rulesbased model, a supervised model trained on a different dataset, and a supervised model trained on the same dataset. In terms of implementations, we use the CoreNLP toolkit for the Multi-Pass Sieve model (Manning et al., 2014) and AllenNLP (Gardner et al., 2018) for e2e-coref. Since there is no publicly available pre-trained Streamlining model (Cattan et al., 2020) , we fully train the model from scratch using a V100 GPU on Google Colab. To fairly compare with other models, we set a 0.5 threshold for the pairwise scorer in the Streamlining model. We evaluate all models by their mention pairwise scorers, not their clustering decisions.",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 92,
                        "text": "(Lee et al., 2011)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 144,
                        "end": 162,
                        "text": "(Lee et al., 2017)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 211,
                        "end": 232,
                        "text": "(Cattan et al., 2020)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 500,
                        "end": 522,
                        "text": "(Manning et al., 2014)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 642,
                        "end": 663,
                        "text": "(Cattan et al., 2020)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "Limited by our computational resources, we choose GPT-2 and GPT-Neo-125M as our pretrained LMs 1 . During inference, the output token length is set to 1, since our expected output is one word (i.e., 'Yes' or 'No') . To generate more robust results, the repetition parameter m is set to 5. We ran our text generative models with multiple temperature settings ranging from 0 to 1, none of which produced significant changes. We settled on using a value of 0.7, to limit the greediness of the generated responses. In terms of few-shot learning, we experimented with k \u2208 {0, 2, 4, 10} and display the results from the 4-shot setting since it produces the best accuracy. To reduce bias introduced by prefixes, we ensure each prefix has equally-balanced samples. For example, for the 4-shot setting, the filled prefix will have 2 positive examples and 2 negative examples.",
                "cite_spans": [
                    {
                        "start": 199,
                        "end": 213,
                        "text": "'Yes' or 'No')",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "Yes/No Predictions 0-shot 5% 2-shot 93.7% 4-shot 96.2% 10-shot 98% We first question if GPT-based models can produce valid answers. In Figure 1 , we observe that GPT-2 predicts 'Yes' or 'No' for over 93.7% samples when at least 2 filled prefixes are provided.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 135,
                        "end": 143,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "However, although the answers are valid, they are inaccurate. In Figure 2 , we plot the distribution of predicted labels for each model, where the red bars denote the distribution of positive examples (ground truth), and the blue bars denote negative ones (ground truth). Traditional CR models generally predict low values for negative examples, indicated by blue bars being concentrated at 0. As for positive examples, e2e-coref shows better precision since more positive examples are classified correctly at 1. Yet, GPT-2 seems to be both sensitive to prompts and unstable over the repetitions of each prompt. Furthermore, GPT-Neo's predictions are inaccurate and no better than random, even though it predicts consistent results for multiple runs with the same prompt.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 65,
                        "end": 73,
                        "text": "Figure 2",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "Similar conclusions can be drawn from Table 2 , where GPT-based models have the lowest AUC and F1 scores. Specifically, the extremely low precision causes the bad results. Since the ECB+ dataset is highly imbalanced, random predictions from GPTbased models will lead to a low precision, reflecting the proportion of positive samples. For completeness, we also perform an experiment on the WSC dataset (see GPT-2 wsc ), which is a test dataset used by Sanh et al. (2021) . GPT-2 also fails on this task, as its mean prediction averaged across different prompts is always \"Yes\" . POS and Entity Types While the overall performance indicates that GPT models are comparable to a random model, we hypothesize that for some subset of mention pairs, GPT might perform better.",
                "cite_spans": [
                    {
                        "start": 451,
                        "end": 469,
                        "text": "Sanh et al. (2021)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 38,
                        "end": 45,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "5"
            },
            {
                "text": "To investigate, we conducted experiments based on part-of-speech (POS) tags and named-entity types. Figure 3 shows that both GPT-2 and GPT-Neo can capture coreferent relationships relatively better when the second mention is a pronoun. Moreover, this trend is stronger when the first mention is a pronoun or a proper noun. Nonetheless, e2e-coref performs better than both GPT models across all POS tags, and the gap is widest when the second mention is a nominal noun phrase. As for named entities, Figure 4 shows that both GPT-2 and GPT-Neo perform better in precision when one mention is of type PERSON. Moreover, GPT-Neo can identify coreferent relationships more precisely if the second mention is Non-GPE locations (i.e., LOC). However, their precision scores are far lower than the scores from classical CR models. In particular, both the multi-pass sieve model and e2e-coref model reach the highest precision when a mention is a PRODUCT object (e.g., vehicle, food) or a NORP object (e.g., nationality, religious or political group). Mention Similarity In addition to inspecting how performance varies with mention types, we also considered how performance is affected by mentions' similarity. Using pre-trained BERT (Devlin et al., 2018) , we encode each mention into span representations by averaging its tokens' last hidden states. Then, we measure cosine similarity between mention pairs. Figure 5 shows that F1 scores generally improve as the semantic similarity increases. Although, the multi-pass sieve model maintains a low F1 because it is a rule-based model that tends to predict False for most samples -which yields a high accuracy for unbalanced datasets. The e2e-coref model performs well on mentions that are not so similar, while the performance of Streamlining model improves drastically as similarity is greater than 50%. However, both GPT-2 and GPT-NEO yield low F1 (approximately 0.2) for mention pairs with less than 70% similarity. When considering mentions of higher similarity, GPT-based models can achieve over 0.4 F1 score.",
                "cite_spans": [
                    {
                        "start": 1224,
                        "end": 1245,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 100,
                        "end": 108,
                        "text": "Figure 3",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 499,
                        "end": 507,
                        "text": "Figure 4",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 1400,
                        "end": 1408,
                        "text": "Figure 5",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Acc Prec",
                "sec_num": null
            },
            {
                "text": "In this paper, we rely on prompt-based learning to analyze how much GPT-like models know about coreference resolution. Despite the popularity of prompting in recent NLP research, we find that LLMs perform poorly on this task without finetuning. Nonetheless, these models achieve relatively better performance for specific types of mentions, including pronouns and person objects, and mention pairs with high similarity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "A Prompt formulas Figure 6 : Prompt Formulas. We experiment with these 5 prompt formulas mentioned in Sanh et al. (2021) . Here, each block is one formula and the parts highlighted in blue are [text, m 1 , m 2 ] respectively.",
                "cite_spans": [
                    {
                        "start": 102,
                        "end": 120,
                        "text": "Sanh et al. (2021)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 18,
                        "end": 26,
                        "text": "Figure 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "The original ECB+ dataset is in XML format, where everything is tokenized. Moreover, the information about gold mentions and gold clusters is related to token ids. However, we cannot easily get the plain text by joining tokens with a space character. If we do so, we will get strange looking text as shown below.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Data Preprocessing",
                "sec_num": null
            },
            {
                "text": "http : / / www . accesshollywood . com / lindsaylohan -leaves -betty -ford -checks -into -maliburehab article 80744 Lindsay Lohan Leaves Betty Ford , Checks Into Malibu Rehab First Published : June 13 , 2013 4 : 59 PM EDT Lindsay Lohan has left the Betty Ford Center and is moving to a rehab facility in Malibu , Calif . , Access Hollywood has confirmed .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Data Preprocessing",
                "sec_num": null
            },
            {
                "text": "In this example, we can see objects like urls, datetime and punctuation are not in the right format. Since we are using the text as an input to the prompt function, we need to properly format them to align with normal text that GPTs are trained on. Moreover, as gold mention and gold clusters are based on original token ids in ECB+, when we parsed and re-formatted the data, we could match these ids again. Continuing with the previous example, our parsing algorithm cleans up the previous text to be something as follows. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Data Preprocessing",
                "sec_num": null
            },
            {
                "text": "Here are additional results for our experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "C Additional Results",
                "sec_num": null
            },
            {
                "text": "Experiments on Prefix The aggregate results from few shot learning are displayed in Table 3 . Our results show that 4-shots learning performs the best for both GPT-2 and GPT-NEO in terms of accuracy. Unexpectedly, as we increase the size of examples, the result does not improve accordingly. Given 10 examples in prefix, the model tend to predict \"yes\" more easily. One possible explanation might be that we have balanced examples in prefix while the actual querying data only have around 8% positive samples.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 84,
                        "end": 91,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "C Additional Results",
                "sec_num": null
            },
            {
                "text": "F1 AUC 2-shots 0.39 0.08 0.64 0.14 0.50 4-shots 0.51 0.08 0.51 0.14 0.51 10-shots 0.19 0.08 0.90 0.15 0.51 Moreover, we experiment with various datasets for prefix as discussed in section 4. The results in Table 4 shows that prefix does have an impact on the results. The prefix generated from ECB+ dataset performs slightly better than others regarding to AUC. This is understandable because we evaluate on the ECB+ development set. Beyond our expectation, WSC-prefix result in a perfect recall and a super bad accuracy, which means that this prefix lead models to generate \"yes\" regardless of the context. This result further proves that GPT-2 is very sensitive to prompts.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 206,
                        "end": 213,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Acc Prec Recall",
                "sec_num": null
            },
            {
                "text": "Our code can be found at https://github.com/ AwesomeCoref/prompt-coref",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Streamlining crossdocument coreference resolution: Evaluation and modeling",
                "authors": [
                    {
                        "first": "Arie",
                        "middle": [],
                        "last": "Cattan",
                        "suffix": ""
                    },
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Eirew",
                        "suffix": ""
                    },
                    {
                        "first": "Gabriel",
                        "middle": [],
                        "last": "Stanovsky",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Ido",
                        "middle": [],
                        "last": "Dagan",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2009.11032"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Arie Cattan, Alon Eirew, Gabriel Stanovsky, Mandar Joshi, and Ido Dagan. 2020. Streamlining cross- document coreference resolution: Evaluation and modeling. arXiv preprint arXiv:2009.11032.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Using a sledgehammer to crack a nut? lexical diversity and event coreference resolution",
                "authors": [
                    {
                        "first": "Agata",
                        "middle": [],
                        "last": "Cybulska",
                        "suffix": ""
                    },
                    {
                        "first": "Piek",
                        "middle": [],
                        "last": "Vossen",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)",
                "volume": "",
                "issue": "",
                "pages": "4545--4552",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Agata Cybulska and Piek Vossen. 2014. Using a sledge- hammer to crack a nut? lexical diversity and event coreference resolution. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14), pages 4545-4552, Reyk- javik, Iceland. European Language Resources Asso- ciation (ELRA).",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.04805"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understand- ing. arXiv preprint arXiv:1810.04805.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "The pile: An 800gb dataset of diverse text for language modeling",
                "authors": [
                    {
                        "first": "Leo",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Stella",
                        "middle": [],
                        "last": "Biderman",
                        "suffix": ""
                    },
                    {
                        "first": "Sid",
                        "middle": [],
                        "last": "Black",
                        "suffix": ""
                    },
                    {
                        "first": "Laurence",
                        "middle": [],
                        "last": "Golding",
                        "suffix": ""
                    },
                    {
                        "first": "Travis",
                        "middle": [],
                        "last": "Hoppe",
                        "suffix": ""
                    },
                    {
                        "first": "Charles",
                        "middle": [],
                        "last": "Foster",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Phang",
                        "suffix": ""
                    },
                    {
                        "first": "Horace",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Anish",
                        "middle": [],
                        "last": "Thite",
                        "suffix": ""
                    },
                    {
                        "first": "Noa",
                        "middle": [],
                        "last": "Nabeshima",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2101.00027"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Leo Gao, Stella Biderman, Sid Black, Laurence Gold- ing, Travis Hoppe, Charles Foster, Jason Phang, Ho- race He, Anish Thite, Noa Nabeshima, et al. 2020. The pile: An 800gb dataset of diverse text for lan- guage modeling. arXiv preprint arXiv:2101.00027.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Allennlp: A deep semantic natural language processing platform",
                "authors": [
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    },
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Grus",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Neumann",
                        "suffix": ""
                    },
                    {
                        "first": "Oyvind",
                        "middle": [],
                        "last": "Tafjord",
                        "suffix": ""
                    },
                    {
                        "first": "Pradeep",
                        "middle": [],
                        "last": "Dasigi",
                        "suffix": ""
                    },
                    {
                        "first": "Nelson",
                        "middle": [
                            "F"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [
                            "E"
                        ],
                        "last": "Peters",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Schmitz",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E. Peters, Michael Schmitz, and Luke Zettlemoyer. 2018. Allennlp: A deep semantic natural language processing platform. CoRR, abs/1803.07640.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Surface form competition: Why the highest probability answer isn't always right",
                "authors": [
                    {
                        "first": "Ari",
                        "middle": [],
                        "last": "Holtzman",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "West",
                        "suffix": ""
                    },
                    {
                        "first": "Vered",
                        "middle": [],
                        "last": "Schwartz",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2104.08315"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ari Holtzman, Peter West, Vered Schwartz, Yejin Choi, and Luke Zettlemoyer. 2021. Surface form competi- tion: Why the highest probability answer isn't always right. arXiv preprint arXiv:2104.08315.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Span-BERT: Improving Pre-training by Representing and Predicting Spans",
                "authors": [
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [
                            "S"
                        ],
                        "last": "Weld",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "8",
                "issue": "",
                "pages": "64--77",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. 2020. Span- BERT: Improving Pre-training by Representing and Predicting Spans. Transactions of the Association for Computational Linguistics, 8:64-77.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Stanford's multi-pass sieve coreference resolution system at the conll-2011 shared task",
                "authors": [
                    {
                        "first": "Heeyoung",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Yves",
                        "middle": [],
                        "last": "Peirsman",
                        "suffix": ""
                    },
                    {
                        "first": "Angel",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Nathanael",
                        "middle": [],
                        "last": "Chambers",
                        "suffix": ""
                    },
                    {
                        "first": "Mihai",
                        "middle": [],
                        "last": "Surdeanu",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 15th conference on computational natural language learning: Shared task",
                "volume": "",
                "issue": "",
                "pages": "28--34",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mihai Surdeanu, and Dan Ju- rafsky. 2011. Stanford's multi-pass sieve coreference resolution system at the conll-2011 shared task. In Proceedings of the 15th conference on computational natural language learning: Shared task, pages 28-34. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "End-to-end neural coreference resolution",
                "authors": [
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Luheng",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle- moyer. 2017. End-to-end neural coreference resolu- tion.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "The winograd schema challenge",
                "authors": [
                    {
                        "first": "Hector",
                        "middle": [],
                        "last": "Levesque",
                        "suffix": ""
                    },
                    {
                        "first": "Ernest",
                        "middle": [],
                        "last": "Davis",
                        "suffix": ""
                    },
                    {
                        "first": "Leora",
                        "middle": [],
                        "last": "Morgenstern",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hector Levesque, Ernest Davis, and Leora Morgenstern. 2012. The winograd schema challenge. In Thir- teenth International Conference on the Principles of Knowledge Representation and Reasoning.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Pretrain, prompt, and predict: A systematic survey of prompting methods in natural language processing",
                "authors": [
                    {
                        "first": "Pengfei",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Weizhe",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Jinlan",
                        "middle": [],
                        "last": "Fu",
                        "suffix": ""
                    },
                    {
                        "first": "Zhengbao",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Hiroaki",
                        "middle": [],
                        "last": "Hayashi",
                        "suffix": ""
                    },
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Neubig",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. 2021. Pre- train, prompt, and predict: A systematic survey of prompting methods in natural language processing. ArXiv, abs/2107.13586.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Roberta: A robustly optimized bert pretraining approach",
                "authors": [
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfei",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.11692"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining ap- proach. arXiv preprint arXiv:1907.11692.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "The stanford corenlp natural language processing toolkit",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "Mihai",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Surdeanu",
                        "suffix": ""
                    },
                    {
                        "first": "Jenny",
                        "middle": [
                            "Rose"
                        ],
                        "last": "Bauer",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Finkel",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Bethard",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mc-Closky",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations",
                "volume": "",
                "issue": "",
                "pages": "55--60",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard, and David Mc- Closky. 2014. The stanford corenlp natural language processing toolkit. In Proceedings of 52nd annual meeting of the association for computational linguis- tics: system demonstrations, pages 55-60.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "True few-shot learning with language models",
                "authors": [
                    {
                        "first": "Ethan",
                        "middle": [],
                        "last": "Perez",
                        "suffix": ""
                    },
                    {
                        "first": "Douwe",
                        "middle": [],
                        "last": "Kiela",
                        "suffix": ""
                    },
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2105.11447"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021. True few-shot learning with language models. arXiv preprint arXiv:2105.11447.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Language models are unsupervised multitask learners",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "OpenAI blog",
                "volume": "1",
                "issue": "8",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. 2019. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
                "authors": [
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Raffel",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Roberts",
                        "suffix": ""
                    },
                    {
                        "first": "Katherine",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Sharan",
                        "middle": [],
                        "last": "Narang",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Matena",
                        "suffix": ""
                    },
                    {
                        "first": "Yanqi",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Peter J",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.10683"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text trans- former. arXiv preprint arXiv:1910.10683.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "2021. Improving and simplifying pattern exploiting training 2021",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Tam",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Menon",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Srivastava",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2103.11955"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "D Tam, RR Menon, M Bansal, S Srivastava, and C Raf- fel. 2021. Improving and simplifying pattern exploit- ing training 2021. arXiv preprint arXiv:2103.11955.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Few-shot learning through an information retrieval lens",
                "authors": [
                    {
                        "first": "Eleni",
                        "middle": [],
                        "last": "Triantafillou",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Zemel",
                        "suffix": ""
                    },
                    {
                        "first": "Raquel",
                        "middle": [],
                        "last": "Urtasun",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eleni Triantafillou, Richard Zemel, and Raquel Urta- sun. 2017. Few-shot learning through an information retrieval lens.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Multimodal few-shot learning with frozen language models",
                "authors": [
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Tsimpoukelli",
                        "suffix": ""
                    },
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Menick",
                        "suffix": ""
                    },
                    {
                        "first": "Serkan",
                        "middle": [],
                        "last": "Cabi",
                        "suffix": ""
                    },
                    {
                        "first": "Ali",
                        "middle": [],
                        "last": "Eslami",
                        "suffix": ""
                    },
                    {
                        "first": "Oriol",
                        "middle": [],
                        "last": "Vinyals",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Hill",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Thirty-Fifth Conference on Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maria Tsimpoukelli, Jacob Menick, Serkan Cabi, SM Ali Eslami, Oriol Vinyals, and Felix Hill. 2021. Multimodal few-shot learning with frozen language models. In Thirty-Fifth Conference on Neural Infor- mation Processing Systems.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Finetuned language models are zero-shot learners",
                "authors": [
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "Maarten",
                        "middle": [],
                        "last": "Bosma",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Vincent",
                        "suffix": ""
                    },
                    {
                        "first": "Kelvin",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Adams",
                        "middle": [
                            "Wei"
                        ],
                        "last": "Guu",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Nan",
                        "middle": [],
                        "last": "Lester",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Andrew",
                        "suffix": ""
                    },
                    {
                        "first": "Quoc V",
                        "middle": [],
                        "last": "Dai",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2109.01652"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An- drew M Dai, and Quoc V Le. 2021. Finetuned lan- guage models are zero-shot learners. arXiv preprint arXiv:2109.01652.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "uris": null,
                "type_str": "figure",
                "text": "Distribution of predicted values"
            },
            "FIGREF1": {
                "num": null,
                "uris": null,
                "type_str": "figure",
                "text": "Model's precision over various types of noun phrases, including pronouns, proper nouns and nominal nouns. Each bar's hue intensity denotes the data density."
            },
            "FIGREF2": {
                "num": null,
                "uris": null,
                "type_str": "figure",
                "text": "GPT-2's performance on different namedentity types. We use colors to denote performance and the text to show data density in each category."
            },
            "FIGREF3": {
                "num": null,
                "uris": null,
                "type_str": "figure",
                "text": "Different models' F1 score over various level of mention similarities based on BERT embedding."
            },
            "TABREF0": {
                "type_str": "table",
                "html": null,
                "content": "<table/>",
                "num": null,
                "text": ""
            },
            "TABREF2": {
                "type_str": "table",
                "html": null,
                "content": "<table/>",
                "num": null,
                "text": "Performance of different models."
            },
            "TABREF3": {
                "type_str": "table",
                "html": null,
                "content": "<table/>",
                "num": null,
                "text": "http://www.accesshollywood.com/lindsaylohan-leaves-betty-ford-checks-into-maliburehab article 80744 [EOS] Lindsay Lohan Leaves Betty Ford, Checks Into Malibu Rehab First Published: June 13, 2013 4: 59 PM EDT [EOS] Lindsay Lohan has left the Betty Ford Center and is moving to a rehab facility in Malibu, Calif., Access Hollywood has confirmed. [EOS]"
            },
            "TABREF4": {
                "type_str": "table",
                "html": null,
                "content": "<table><tr><td/><td colspan=\"2\">Acc Prec Recall</td><td>F1 AUC</td></tr><tr><td colspan=\"2\">simple 0.61 0.08</td><td colspan=\"2\">0.36 0.13 0.50</td></tr><tr><td>WSC</td><td>0.08 0.08</td><td colspan=\"2\">1.00 0.15 0.50</td></tr><tr><td>ecb+</td><td>0.54 0.08</td><td colspan=\"2\">0.48 0.14 0.51</td></tr></table>",
                "num": null,
                "text": ": n-shot performance from the text generative models"
            },
            "TABREF5": {
                "type_str": "table",
                "html": null,
                "content": "<table/>",
                "num": null,
                "text": "Average results from each dataset that is used for the experiments"
            }
        }
    }
}