File size: 112,152 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:12:50.214909Z"
    },
    "title": "When does Further Pre-training MLM Help? An Empirical Study on Task-Oriented Dialog Pre-training",
    "authors": [
        {
            "first": "Qi",
            "middle": [],
            "last": "Zhu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tsinghua University",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": ""
        },
        {
            "first": "Yuxian",
            "middle": [],
            "last": "Gu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tsinghua University",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": ""
        },
        {
            "first": "Lingxiao",
            "middle": [],
            "last": "Luo",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tsinghua University",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": ""
        },
        {
            "first": "Bing",
            "middle": [],
            "last": "Li",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Cheng",
            "middle": [],
            "last": "Li",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tsinghua University",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": ""
        },
        {
            "first": "Wei",
            "middle": [],
            "last": "Peng",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Huawei Technologies",
                "location": {
                    "settlement": "Shenzhen",
                    "country": "China"
                }
            },
            "email": ""
        },
        {
            "first": "Xiaoyan",
            "middle": [],
            "last": "Zhu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tsinghua University",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": ""
        },
        {
            "first": "Minlie",
            "middle": [],
            "last": "Huang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tsinghua University",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": "aihuang@tsinghua.edu.cn"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Further pre-training language models on indomain data (domain-adaptive pre-training, DAPT) or task-relevant data (task-adaptive pretraining, TAPT) before fine-tuning has been shown to improve downstream tasks' performances. However, in task-oriented dialog modeling, we observe that further pre-training MLM does not always boost the performance on a downstream task. We find that DAPT is beneficial in the low-resource setting, but as the fine-tuning data size grows, DAPT becomes less beneficial or even useless, and scaling the size of DAPT data does not help. Through Representational Similarity Analysis, we conclude that more data for fine-tuning yields greater change of the model's representations and thus reduces the influence of initialization. 1",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Further pre-training language models on indomain data (domain-adaptive pre-training, DAPT) or task-relevant data (task-adaptive pretraining, TAPT) before fine-tuning has been shown to improve downstream tasks' performances. However, in task-oriented dialog modeling, we observe that further pre-training MLM does not always boost the performance on a downstream task. We find that DAPT is beneficial in the low-resource setting, but as the fine-tuning data size grows, DAPT becomes less beneficial or even useless, and scaling the size of DAPT data does not help. Through Representational Similarity Analysis, we conclude that more data for fine-tuning yields greater change of the model's representations and thus reduces the influence of initialization. 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Pre-trained models such as BERT (Devlin et al., 2019) and GPT2 (Radford et al., 2019) have been used in a wide range of NLP tasks and achieved superior performance. These models usually follow the pre-train and fine-tune paradigm, which adopts unsupervised pre-training on large-scale corpora and supervised fine-tuning for downstream task adaption. However, the pre-training corpora are in the general domain, while the data of downstream tasks fall in more task-specific domains.",
                "cite_spans": [
                    {
                        "start": 32,
                        "end": 53,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 63,
                        "end": 85,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To bridge the data distribution gap, further pretraining has been applied and shows consistent improvements (Sun et al., 2019) . According to the training data used in this process, Gururangan et al. (2020) termed domain-adaptive pre-training (DAPT), which uses the data in the same domain of the target task and task-adaptive pre-training (TAPT), which uses much less unlabeled training data from the target task than DAPT. They found that DAPT masked LM leads to performance gains under both high-and low-resource settings and TAPT is beneficial with or without DAPT. DAPT has shown effectiveness for task-oriented dialog modeling. further pretrained BERT on 9 task-oriented dialog corpora and outperformed BERT on four downstream tasks, especially in the few-shot setting. Gu et al. (2020) further pre-trained GPT-2 on 13 dialog corpora ranging from chitchats to task-oriented dialogs, leading to better results on three task-oriented datasets.",
                "cite_spans": [
                    {
                        "start": 108,
                        "end": 126,
                        "text": "(Sun et al., 2019)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 564,
                        "end": 569,
                        "text": "DAPT.",
                        "ref_id": null
                    },
                    {
                        "start": 776,
                        "end": 792,
                        "text": "Gu et al. (2020)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "However, does further pre-training always help? Mehri et al. (2020) performed DAPT on 700M opendomain dialogs and TAPT, but the resulting model only outperforms BERT in 4 out of 7 task-oriented dialog datasets. We also observe that replacing BERT with TOD-BERT-mlm that is further pre-trained MLM on 101K task-oriented dialogs does not always bring a significant difference on downstream tasks. So far, however, there has been little discussion about when and why further pre-training on in-domain data can boost the performance on a downstream task and how the DAPT data size can affect this.",
                "cite_spans": [
                    {
                        "start": 48,
                        "end": 67,
                        "text": "Mehri et al. (2020)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 78,
                        "end": 82,
                        "text": "DAPT",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we conduct an empirical study on the effect of further pre-training BERT BASE on task-oriented dialogs. Our experiments are organized around the following research questions:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 RQ1 When can DAPT improve the performance on a downstream task? \u2022 RQ2 How does the amount of data for DAPT affect the performance on a downstream task? We evaluate further pre-trained models on five downstream tasks involving seven task-oriented dialog datasets. Our main findings are summarized as follows: (1) DAPT and TAPT do not always improve fine-tuning performance: the effect varies for different tasks, models, and fine-tuning data sizes. 2DAPT is more beneficial in the low-resource setting. As the fine-tuning data size grows, the model's representations change more, implying that the in-fluence of pre-training decays, thus the benefit of DAPT decreases or even vanishes. (3) Increasing the amount of data for DAPT mostly improves the performance in the relative low-resource setting.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We further pre-train BERT BASE uncased model using masked language modeling loss with 15% tokens masked. Our DAPT dataset consists of several multi-turn task-oriented dialog datasets, including Schema (Rastogi et al., 2020) , Taskmaster-1&2 (Byrne et al., 2019) , MetaLWOZ , MSR-E2E (Li et al., 2018) , SMD (Eric et al., 2017) , Frames (El Asri et al., 2017) , WOZ Camrest (Wen et al., 2017) , which has 103K dialogs (13M words) in total. To investigate RQ2, we also use 25%, 5% and 1% dialogs to perform DAPT. For TAPT, we use the training set of each downstream task. We use 95% dialogs for training and select the best checkpoint with the lowest MLM loss on the other 5% dialogs. To obtain a training sample D 1:t = {U 1 , S 1 , ..., U t } where U i , S i are user's utterance and system's utterance respectively, we randomly pick a dialog D and sample a turn t \u2208 [1, T ] uniformly, where T is the length of D. Then all the utterances are concatenated into a sequence as the model input:",
                "cite_spans": [
                    {
                        "start": 201,
                        "end": 223,
                        "text": "(Rastogi et al., 2020)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 241,
                        "end": 261,
                        "text": "(Byrne et al., 2019)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 283,
                        "end": 300,
                        "text": "(Li et al., 2018)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 307,
                        "end": 326,
                        "text": "(Eric et al., 2017)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 329,
                        "end": 358,
                        "text": "Frames (El Asri et al., 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 365,
                        "end": 391,
                        "text": "Camrest (Wen et al., 2017)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Further Pre-training",
                "sec_num": "2.1"
            },
            {
                "text": "\"[CLS] [USR] U 1 [SEP] [SYS] S 1 [SEP] ... [USR] U t [SEP]\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Further Pre-training",
                "sec_num": "2.1"
            },
            {
                "text": ", where [USR] and [SYS] are two special tokens prepended to user's and system's utterances respectively. See Appendix A for the hyper-parameter setting.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Further Pre-training",
                "sec_num": "2.1"
            },
            {
                "text": "We conduct comprehensive evaluations on 5 downstream tasks. Models on these tasks are adapted from TOD-BERT , DialoGLUE (Mehri et al., 2020) , or ConvLab-2 . See Appendix B for fine-tuning details.",
                "cite_spans": [
                    {
                        "start": 120,
                        "end": 140,
                        "text": "(Mehri et al., 2020)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "2.2"
            },
            {
                "text": "Intent Classification (IC) is a sequence classification problem, where models take an utterance as input and predict its intent. We use three datasets: HWU (Liu et al., 2019 ) that has 64 intents and 26K utterances, BANKING (Casanueva et al., 2020 ) that has 77 intents and 13K utterances, and OOS (Larson et al., 2019) that has 151 intents and 24K utterances. We pass the representation of [CLS] token to a linear layer for prediction.",
                "cite_spans": [
                    {
                        "start": 156,
                        "end": 173,
                        "text": "(Liu et al., 2019",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 224,
                        "end": 247,
                        "text": "(Casanueva et al., 2020",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "2.2"
            },
            {
                "text": "Slot Filling (SF) requires models to extract slots' values in an utterance, which is often formulated as a sequence tagging problem. We use REST8K dataset (Coope et al., 2020 ) that has 5 slots and 8K utterances. We add a linear layer on the top of the tokens' representations to predict BIO format tags.",
                "cite_spans": [
                    {
                        "start": 155,
                        "end": 174,
                        "text": "(Coope et al., 2020",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "2.2"
            },
            {
                "text": "Semantic Parsing (SP) aims at identifying both intents and slots' values in an utterance. We use TOP dataset (Gupta et al., 2018) that has 45K utterances spanning 25 intents and 36 slots and MultiWOZ 2.3 dataset (Han et al., 2020 ) that has 10K dialogs and 143K utterances spanning 7 domains, 13 intents, and 25 slots. We use two linear layers to predict intent and tokens' tags respectively.",
                "cite_spans": [
                    {
                        "start": 109,
                        "end": 129,
                        "text": "(Gupta et al., 2018)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 212,
                        "end": 229,
                        "text": "(Han et al., 2020",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "2.2"
            },
            {
                "text": "Dialog State Tracking (DST) is the task of recognizing user constraints throughout the conversation. We use MultiWOZ dataset version 2.1 ) that has 30 domain-slot pairs to track. We adopt two BERT-based models: TripPy (Heck et al., 2020) and TOD-DST . Both models use BERT to encode dialog history.",
                "cite_spans": [
                    {
                        "start": 218,
                        "end": 237,
                        "text": "(Heck et al., 2020)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "2.2"
            },
            {
                "text": "Dialog Act Prediction (DAP) is a multi-label sequence classification problem, where models predict the intents of the system response given the dialog history. We use two datasets: MultiWOZ and GSIM (Shah et al., 2018 ) that contains 6 intents and 3K dialogs. For each intent, we feed the representation of [CLS] token to a linear layer and predict whether the intent is in the response.",
                "cite_spans": [
                    {
                        "start": 199,
                        "end": 217,
                        "text": "(Shah et al., 2018",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "2.2"
            },
            {
                "text": "As for evaluation metrics, we use accuracy for intent prediction, macro-F1 for slot filling and dialog act prediction, exact-match for semantic parsing, and joint goal accuracy for dialog state tracking.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "2.2"
            },
            {
                "text": "Representational similarity analysis (RSA) is a technique to measure the similarity between models' representations (Laakso and Cottrell, 2000) . Following Merchant et al. 2020, we encode samples from a test dataset and randomly select the same n = 5000 tokens as stimuli, whose contextual representations at each layer are used to compute an n \u00d7 n pairwise cosine similarity matrix. The final similarity score between two models' representations at a certain layer is computed as the Pearson correlation between the flattened upper triangular of the two similarity matrices.",
                "cite_spans": [
                    {
                        "start": 116,
                        "end": 143,
                        "text": "(Laakso and Cottrell, 2000)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Representational Similarity Analysis",
                "sec_num": "2.3"
            },
            {
                "text": "We fine-tune BERT, TOD-BERT-mlm that is further pre-trained on 9 task-oriented Table 1 : Performance on downstream tasks. We report the means and standard deviations across three random seeds for BERT. Note that TOD-BERT-mlm has pre-trained on MultiWOZ dataset. A task is in red if further pretraining all outperform BERT by at least one standard deviation. The best task performances are boldfaced.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 79,
                        "end": 86,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Full Data Experiments",
                "sec_num": "3.1"
            },
            {
                "text": "datasets including MultiWOZ, and our further pretrained models on downstream tasks using the same hyper-parameters. The results are shown in Table 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 141,
                        "end": 148,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Full Data Experiments",
                "sec_num": "3.1"
            },
            {
                "text": "To measure the performance variance, we fine-tune BERT three times using different random seeds and report means and standard deviations. We evaluate the effect of DAPT, denoted by \u2206 DAPT , through averaging the improvements of the models with different DAPT data sizes (100%, 25%, 5%, 1%) compared with BERT. Similarly, \u2206 TAPT is the benefit of TAPT. We find that \u2206 DAPT and \u2206 TAPT sometimes are small or even negative, indicating that DAPT and TAPT does not always improve performances on downstream tasks. Consistently, TOD-BERTmlm does not always outperform BERT significantly. Only on tasks in red in Table 1 , the benefits of further pre-training are larger than the standard deviations of BERT. In some cases, interestingly, further pre-training can lead to inferior performance. Even on the same MultiWOZ dataset, further pre-training effects vary according to the model architectures used (TripPy, TOD-DST) and the downstream tasks (SP, DST, DAP). Compared with DAPT and DAPT+TAPT, TAPT obtains similar results but requires much lower training cost, which is worth trying before DAPT.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 606,
                        "end": 613,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Full Data Experiments",
                "sec_num": "3.1"
            },
            {
                "text": "3.2 RQ1: When can DAPT improve the performance on a downstream task?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Full Data Experiments",
                "sec_num": "3.1"
            },
            {
                "text": "Since further pre-training does not help in some cases, we want to explore when DAPT can improve the performance on a downstream task. We first show that DAPT does improve the model's LM ability on downstream datasets (Figure 1) , and TAPT can more efficiently improve this ability. This means that further pre-training does reduce the data distribution gap (for LM) between pre-training and fine-tuning but does not guarantee task performance improvement. A possible hypothesis is that further pretraining encodes shallow domain knowledge that has obvious influence only when there are insufficient labeled data providing taskspecific knowledge for fine-tuning. By further pre-training, a model learns the co-occurrence of words and their context, which can be viewed as a kind of statistics feature of the target domain. When the fine-tuning data are deficient, this general domain knowledge can alleviate the lack of taskspecific knowledge. However, models can learn to encode task-specific knowledge directly through fine-tuning when there are sufficient labeled data and thus rely less on further pre-training.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 218,
                        "end": 228,
                        "text": "(Figure 1)",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Full Data Experiments",
                "sec_num": "3.1"
            },
            {
                "text": "To verify the hypothesis, we use RSA to assess the representation similarity between fine-tuned models and their initializations for different finetuning data sizes. As illustrated in Figure 2 , for both BERT and the full data DAPT model, the RSA similarity decreases as the fine-tuning data size grows, especially on the top layers. We ob- Table 2 : Comparison of full and 10% data fine-tuning. We use the same 10% data and average the performance of 3 runs using different random seeds. The RSA similarity averaged across layers is between full data DAPT model and its fine-tuned counterpart. We also report which DAPT data size performs best as \"best DAPT\". serve similar trends for all tasks, supporting that less fine-tuning data highlights the importance of pre-training. We also fine-tune the models with and without DAPT in the low-resource setting. Table 2 compares the average performance gain of DAPT (\u2206 DAPT ) and RSA similarity of full data DAPT model and its fine-tuned counterpart (averaged across layers) with full data and low-resource fine-tuning. In the low-resource setting, RSA similarity increases, and DAPT is more beneficial in most cases, which means the knowledge learned through DAPT is more useful when the fine-tuning data are deficient.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 184,
                        "end": 192,
                        "text": "Figure 2",
                        "ref_id": null
                    },
                    {
                        "start": 341,
                        "end": 348,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Full Data Experiments",
                "sec_num": "3.1"
            },
            {
                "text": "3.3 RQ2: How does the amount of data for DAPT affect the performance on a downstream task?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Full Data Experiments",
                "sec_num": "3.1"
            },
            {
                "text": "We have shown that models can encode general domain knowledge after DAPT and improve the per- formance on a downstream task in the low-resource setting. However, how much gain can we obtain by enlarging the DAPT data? To investigate this question, we perform DAPT with 1%, 5%, 25%, and 100% data, ranging from 1020 dialogs to 102K dialogs. From Figure 1 , we can see that the more data used in DAPT, the stronger language model on downstream datasets we can get. We also show the change of the model's representation caused by further pre-training in Figure 3 . Like fine-tuning, using more data for DAPT brings greater change, and the trend is similar for all tasks. It is also worth noting that compared with DAPT, TAPT changes the model more efficiently in the target dataset. However, change brought by enlarging DAPT data does not guarantee performance improvement. We compare how much data the best DAPT model used in both full data and low-resource finetuning. As shown in Table 2 , including more data for DAPT may not always improve downstream task performance. Nevertheless, when there are less fine-tuning data, the best model needs more data for DAPT.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 345,
                        "end": 353,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 551,
                        "end": 559,
                        "text": "Figure 3",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 980,
                        "end": 987,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Full Data Experiments",
                "sec_num": "3.1"
            },
            {
                "text": "In this work, we conduct an empirical study to investigate the effect of further pre-training MLM on task-oriented dialogs. Different from earlier findings (Sun et al., 2019; Gururangan et al., 2020) , neither DAPT nor TAPT always improves performances on downstream tasks in our experiments. In the low-resource setting, however, DAPT is more helpful, and the size of DAPT data needed to perform best increases. Through RSA, we find that as the fine-tuning data grows, the impact of model initialization fades away, which could be the explanation. We also show that although further pre-training can improve the model's LM ability on downstream datasets, this may not contribute much to downstream tasks under pre-train and fine-tune paradigm, calling for novel pre-training objectives and effective ways to use pre-trained models.",
                "cite_spans": [
                    {
                        "start": 156,
                        "end": 174,
                        "text": "(Sun et al., 2019;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 175,
                        "end": 199,
                        "text": "Gururangan et al., 2020)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "4"
            },
            {
                "text": "In this section, we present a detailed description of the data we use for further pre-training.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Dataset Description",
                "sec_num": null
            },
            {
                "text": "We use the pure text of several multi-turn task-oriented dialog datasets for DAPT, including Schema 2 (Rastogi et al., 2020), Taskmaster-1&2 3 (Byrne et al., 2019) , MetaLWOZ 4 , MSR-E2E 5 (Li et al., 2018) , Frames 6 (El Asri et al., 2017) , SMD 7 (Eric et al., 2017) , WOZ 8 , and Camrest 9 (Wen et al., 2017) . Table 3 shows the corpus statistics of each dataset. Note that for Schema, we only use its train set as the corpus, and for other datasets, we combine their train, dev, and test sets. For validation, to evaluate the pre-training performance on each corpus separately, we split 5% of the dialogs from each corpus and compute masked language modeling losses on them respectively. For DAPT, we merge the other 95% of each corpus. To reduce the gap between pre-training and fine-tuning, we remove system side utterances at the beginning and the end in each dialog to ensure that the first sentence and the last sentence of each dialog are both from the user side.",
                "cite_spans": [
                    {
                        "start": 143,
                        "end": 163,
                        "text": "(Byrne et al., 2019)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 189,
                        "end": 206,
                        "text": "(Li et al., 2018)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 222,
                        "end": 240,
                        "text": "Asri et al., 2017)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 249,
                        "end": 268,
                        "text": "(Eric et al., 2017)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 291,
                        "end": 311,
                        "text": "9 (Wen et al., 2017)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Adaptive Pre-Training (DAPT):",
                "sec_num": null
            },
            {
                "text": "Task Adaptive Pre-Training (TAPT): We use the pure text of each downstream task dataset for TAPT and delete the system side utterances at the beginning and the end of each dialog. Similar to DAPT, we use 95% dialogs for training and 5% for validation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Adaptive Pre-Training (DAPT):",
                "sec_num": null
            },
            {
                "text": "In this section, we describe the hyper-parameters we use for further pre-training and how we choose 2 https://github.com/google-research-d atasets/dstc8-schema-guided-dialogue 3 https://github.com/google-research-d atasets/Taskmaster 4 https://www.microsoft.com/en-us/rese arch/project/metalwoz/ 5 https://github.com/xiul-msr/e2e_dial og_challenge 6 https://www.microsoft.com/en-us/rese arch/project/frames-dataset/#!download 7 https://nlp.stanford.edu/blog/a-newmulti-turn-multi-domain-task-oriented-di alogue-dataset/ 8 https://github.com/nmrksic/neural-be lief-tracker/tree/master/data/woz 9 https://github.com/zhangzthu/ConvLab 2-Pretraining/tree/pretraining/data/camr est them in our experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.2 Hyper-Parameters",
                "sec_num": null
            },
            {
                "text": "In DAPT, we further pre-train the BERT BASE uncased model from the official checkpoint in (Devlin et al., 2019) with masked language modeling loss. We use 100%, 25%, 5% and 1% dialogs to perform DAPT respectively. For each setting, we search the hyper-parameters and select the best model according to MLM loss on valid set. We use Adam optimizer with \u03b2 1 = 0.9, \u03b2 2 = 0.999, = 1e \u2212 6, L2 weight decay of 0.01, and linear decay of the learning rate. We search maximum learning rate in {5e-5, 1e-4, 3e-4}, warmup proportion in {0, 0.06, 0.1}, batch size in {64, 256}, max sequence length in {256, 512}, training steps in {5K, 10K, 20K, 40K}. For other hyper-parameters, we keep them the same as (Devlin et al., 2019) . We further pretrain our model on a single Quadro RTX 6000 GPU. It takes 0.3 hours to finish 1K steps pre-training.",
                "cite_spans": [
                    {
                        "start": 90,
                        "end": 111,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 694,
                        "end": 715,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Adaptive Pre-Training (DAPT):",
                "sec_num": null
            },
            {
                "text": "Task Adaptive Pre-Training (TAPT): In TAPT, we search the hyper-parameters as in DAPT except that we search training steps in {500, 1K, 2K, 5K, 10K}.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Adaptive Pre-Training (DAPT):",
                "sec_num": null
            },
            {
                "text": "B Fine-Tuning Details",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Adaptive Pre-Training (DAPT):",
                "sec_num": null
            },
            {
                "text": "In our experiments, we use seven downstream datasets across five tasks, including HWU 10 (Liu et al., 2019), BANKING 11 (Casanueva et al., 2020) , (Heck et al., 2020) from DialoGLUE (Mehri et al., 2020) ( \u2020) and the DST model from TOD-BERT (Wu et al., 2020) ( \u2021).",
                "cite_spans": [
                    {
                        "start": 120,
                        "end": 144,
                        "text": "(Casanueva et al., 2020)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 147,
                        "end": 166,
                        "text": "(Heck et al., 2020)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 182,
                        "end": 207,
                        "text": "(Mehri et al., 2020) ( \u2020)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B.1 Dataset Description",
                "sec_num": null
            },
            {
                "text": "OOS 12 (Larson et al., 2019) , REST8K 13 (Larson et al., 2019) , TOP 14 (Gupta et al., 2018) , MultiWOZ 2.1 15 (Eric et al., 2019) , MultiWOZ 2.3 16 (Han et al., 2020) and GSIM 17 (Shah et al., 2018) . All these datasets are publicly available and can be downloaded directly from the Internet. The datasets information is shown in Table 4 .",
                "cite_spans": [
                    {
                        "start": 7,
                        "end": 28,
                        "text": "(Larson et al., 2019)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 41,
                        "end": 62,
                        "text": "(Larson et al., 2019)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 72,
                        "end": 92,
                        "text": "(Gupta et al., 2018)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 111,
                        "end": 130,
                        "text": "(Eric et al., 2019)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 149,
                        "end": 167,
                        "text": "(Han et al., 2020)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 180,
                        "end": 199,
                        "text": "(Shah et al., 2018)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 331,
                        "end": 338,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "B.1 Dataset Description",
                "sec_num": null
            },
            {
                "text": "For different downstream tasks, we adopt taskspecific model architectures from the three works as listed below and replaced the pre-trained BERT BASE with our model. Note that for multiturn dialog inputs, we reverse the utterances as described in Section 2.1. We keep the original hyper-parameters in each work unchanged when fine-tuning the model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B.2 Model Architectures for Downstream Tasks",
                "sec_num": null
            },
            {
                "text": "12 https://github.com/clinc/oos-eval 13 https://github.com/PolyAI-LDN/task-s pecific-datasets 14 http://fb.me/semanticparsingdialog 15 https://github.com/budzianowski/mult iwoz 16 https://github.com/budzianowski/mult iwoz 17 https://github.com/google-research-d atasets/simulated-dialogue DialoGLUE DialoGLUE (Mehri et al., 2020) is a benchmark for the language understanding of task-oriented dialogs. Apart from the datasets, Di-aloGLUE also provides the model architectures built on the pre-trained BERT model for different tasks. The datasets on which we adopt model architectures from DialoGLUE is marked as \u2020 in Table  4 .",
                "cite_spans": [
                    {
                        "start": 309,
                        "end": 329,
                        "text": "(Mehri et al., 2020)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 617,
                        "end": 625,
                        "text": "Table  4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "B.2 Model Architectures for Downstream Tasks",
                "sec_num": null
            },
            {
                "text": "TOD-BERT TOD-BERT ) is a recent model for task-oriented dialogs understanding. We use their models for dialog state tracking and dialog act prediction, marked as \u2021 in Table 4 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 167,
                        "end": 174,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "B.2 Model Architectures for Downstream Tasks",
                "sec_num": null
            },
            {
                "text": "Convlab-2 Convlab-2 is an open-source toolkit that helps researchers build, evaluate and diagnose task-oriented dialog systems. We mark the dataset on which we use the model architecture from Convlab-2 as \u2666 in Table 4. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 210,
                        "end": 218,
                        "text": "Table 4.",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "B.2 Model Architectures for Downstream Tasks",
                "sec_num": null
            },
            {
                "text": "Codes are available at https://github.com/zqw erty/ToDDAPT.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/xliuhw/NLU-Evalua tion-Data 11 https://github.com/PolyAI-LDN/task-s pecific-datasets",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was supported by the National Science Foundation for Distinguished Young Scholars (with No. 62125604) and the NSFC projects (Key project with No. 61936010 and regular project with No. 61876096). This work was also supported by the Guoqiang Institute of Tsinghua University, with Grant No. 2019GQG1 and 2020GQG0005. We would like to thank colleagues from HUAWEI for their constant support and valuable discussion.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Taskmaster-1: Toward a realistic and diverse dialog dataset",
                "authors": [
                    {
                        "first": "Bill",
                        "middle": [],
                        "last": "Byrne",
                        "suffix": ""
                    },
                    {
                        "first": "Karthik",
                        "middle": [],
                        "last": "Krishnamoorthi",
                        "suffix": ""
                    },
                    {
                        "first": "Chinnadhurai",
                        "middle": [],
                        "last": "Sankar",
                        "suffix": ""
                    },
                    {
                        "first": "Arvind",
                        "middle": [],
                        "last": "Neelakantan",
                        "suffix": ""
                    },
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Goodrich",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Duckworth",
                        "suffix": ""
                    },
                    {
                        "first": "Semih",
                        "middle": [],
                        "last": "Yavuz",
                        "suffix": ""
                    },
                    {
                        "first": "Amit",
                        "middle": [],
                        "last": "Dubey",
                        "suffix": ""
                    },
                    {
                        "first": "Kyu-Young",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Cedilnik",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "4516--4525",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1459"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai Sankar, Arvind Neelakantan, Ben Goodrich, Daniel Duckworth, Semih Yavuz, Amit Dubey, Kyu-Young Kim, and Andy Cedilnik. 2019. Taskmaster-1: To- ward a realistic and diverse dialog dataset. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 4516- 4525, Hong Kong, China. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Efficient intent detection with dual sentence encoders",
                "authors": [
                    {
                        "first": "I\u00f1igo",
                        "middle": [],
                        "last": "Casanueva",
                        "suffix": ""
                    },
                    {
                        "first": "Tadas",
                        "middle": [],
                        "last": "Tem\u010dinas",
                        "suffix": ""
                    },
                    {
                        "first": "Daniela",
                        "middle": [],
                        "last": "Gerz",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Henderson",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Vuli\u0107",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I\u00f1igo Casanueva, Tadas Tem\u010dinas, Daniela Gerz, Matthew Henderson, and Ivan Vuli\u0107. 2020. Efficient intent detection with dual sentence encoders. ArXiv, abs/2003.04807.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Span-ConveRT: Few-shot span extraction for dialog with pretrained conversational representations",
                "authors": [
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Coope",
                        "suffix": ""
                    },
                    {
                        "first": "Tyler",
                        "middle": [],
                        "last": "Farghly",
                        "suffix": ""
                    },
                    {
                        "first": "Daniela",
                        "middle": [],
                        "last": "Gerz",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Vuli\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Henderson",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "107--121",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.11"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Samuel Coope, Tyler Farghly, Daniela Gerz, Ivan Vuli\u0107, and Matthew Henderson. 2020. Span-ConveRT: Few-shot span extraction for dialog with pretrained conversational representations. In Proceedings of the 58th Annual Meeting of the Association for Com- putational Linguistics, pages 107-121, Online. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Frames: a corpus for adding memory to goal-oriented dialogue systems",
                "authors": [
                    {
                        "first": "Layla",
                        "middle": [
                            "El"
                        ],
                        "last": "Asri",
                        "suffix": ""
                    },
                    {
                        "first": "Hannes",
                        "middle": [],
                        "last": "Schulz",
                        "suffix": ""
                    },
                    {
                        "first": "Shikhar",
                        "middle": [],
                        "last": "Sharma",
                        "suffix": ""
                    },
                    {
                        "first": "Jeremie",
                        "middle": [],
                        "last": "Zumer",
                        "suffix": ""
                    },
                    {
                        "first": "Justin",
                        "middle": [],
                        "last": "Harris",
                        "suffix": ""
                    },
                    {
                        "first": "Emery",
                        "middle": [],
                        "last": "Fine",
                        "suffix": ""
                    },
                    {
                        "first": "Rahul",
                        "middle": [],
                        "last": "Mehrotra",
                        "suffix": ""
                    },
                    {
                        "first": "Kaheer",
                        "middle": [],
                        "last": "Suleman",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "207--219",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-5526"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Layla El Asri, Hannes Schulz, Shikhar Sharma, Jeremie Zumer, Justin Harris, Emery Fine, Rahul Mehrotra, and Kaheer Suleman. 2017. Frames: a corpus for adding memory to goal-oriented dialogue systems. In Proceedings of the 18th Annual SIG- dial Meeting on Discourse and Dialogue, pages 207- 219, Saarbr\u00fccken, Germany. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Multiwoz 2.1: Multi-domain dialogue state corrections and state tracking baselines",
                "authors": [
                    {
                        "first": "Mihail",
                        "middle": [],
                        "last": "Eric",
                        "suffix": ""
                    },
                    {
                        "first": "Rahul",
                        "middle": [],
                        "last": "Goel",
                        "suffix": ""
                    },
                    {
                        "first": "Shachi",
                        "middle": [],
                        "last": "Paul",
                        "suffix": ""
                    },
                    {
                        "first": "Abhishek",
                        "middle": [],
                        "last": "Sethi",
                        "suffix": ""
                    },
                    {
                        "first": "Sanchit",
                        "middle": [],
                        "last": "Agarwal",
                        "suffix": ""
                    },
                    {
                        "first": "Shuyag",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Dilek",
                        "middle": [],
                        "last": "Hakkani-Tur",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyag Gao, and Dilek Hakkani- Tur. 2019. Multiwoz 2.1: Multi-domain dialogue state corrections and state tracking baselines. ArXiv, abs/1907.01669.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "MultiWOZ 2.1: A consolidated multi-domain dialogue dataset with state corrections and state tracking baselines",
                "authors": [
                    {
                        "first": "Mihail",
                        "middle": [],
                        "last": "Eric",
                        "suffix": ""
                    },
                    {
                        "first": "Rahul",
                        "middle": [],
                        "last": "Goel",
                        "suffix": ""
                    },
                    {
                        "first": "Shachi",
                        "middle": [],
                        "last": "Paul",
                        "suffix": ""
                    },
                    {
                        "first": "Abhishek",
                        "middle": [],
                        "last": "Sethi",
                        "suffix": ""
                    },
                    {
                        "first": "Sanchit",
                        "middle": [],
                        "last": "Agarwal",
                        "suffix": ""
                    },
                    {
                        "first": "Shuyang",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Adarsh",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "Anuj",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Ku",
                        "suffix": ""
                    },
                    {
                        "first": "Dilek",
                        "middle": [],
                        "last": "Hakkani-Tur",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 12th Language Resources and Evaluation Conference",
                "volume": "",
                "issue": "",
                "pages": "422--428",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyang Gao, Adarsh Kumar, Anuj Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020. MultiWOZ 2.1: A consolidated multi-domain dia- logue dataset with state corrections and state track- ing baselines. In Proceedings of the 12th Lan- guage Resources and Evaluation Conference, pages 422-428, Marseille, France. European Language Re- sources Association.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Key-value retrieval networks for task-oriented dialogue",
                "authors": [
                    {
                        "first": "Mihail",
                        "middle": [],
                        "last": "Eric",
                        "suffix": ""
                    },
                    {
                        "first": "Lakshmi",
                        "middle": [],
                        "last": "Krishnan",
                        "suffix": ""
                    },
                    {
                        "first": "Francois",
                        "middle": [],
                        "last": "Charette",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "37--49",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-5506"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mihail Eric, Lakshmi Krishnan, Francois Charette, and Christopher D. Manning. 2017. Key-value retrieval networks for task-oriented dialogue. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, pages 37-49, Saarbr\u00fccken, Germany. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "A tailored pre-training model for task-oriented dialog generation. ArXiv, abs",
                "authors": [
                    {
                        "first": "Jing",
                        "middle": [],
                        "last": "Gu",
                        "suffix": ""
                    },
                    {
                        "first": "Qingyang",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Chongruo",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Weiyan",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    },
                    {
                        "first": "Zhou",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jing Gu, Qingyang Wu, Chongruo Wu, Weiyan Shi, and Zhou Yu. 2020. A tailored pre-training model for task-oriented dialog generation. ArXiv, abs/2004.13835.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Semantic parsing for technical support questions",
                "authors": [
                    {
                        "first": "Abhirut",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "Anupama",
                        "middle": [],
                        "last": "Ray",
                        "suffix": ""
                    },
                    {
                        "first": "Gargi",
                        "middle": [],
                        "last": "Dasgupta",
                        "suffix": ""
                    },
                    {
                        "first": "Gautam",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Pooja",
                        "middle": [],
                        "last": "Aggarwal",
                        "suffix": ""
                    },
                    {
                        "first": "Prateeti",
                        "middle": [],
                        "last": "Mohapatra",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3251--3259",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Abhirut Gupta, Anupama Ray, Gargi Dasgupta, Gau- tam Singh, Pooja Aggarwal, and Prateeti Mohapatra. 2018. Semantic parsing for technical support ques- tions. In Proceedings of the 27th International Con- ference on Computational Linguistics, pages 3251- 3259, Santa Fe, New Mexico, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Don't stop pretraining: Adapt language models to domains and tasks",
                "authors": [
                    {
                        "first": "Ana",
                        "middle": [],
                        "last": "Suchin Gururangan",
                        "suffix": ""
                    },
                    {
                        "first": "Swabha",
                        "middle": [],
                        "last": "Marasovi\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Kyle",
                        "middle": [],
                        "last": "Swayamdipta",
                        "suffix": ""
                    },
                    {
                        "first": "Iz",
                        "middle": [],
                        "last": "Lo",
                        "suffix": ""
                    },
                    {
                        "first": "Doug",
                        "middle": [],
                        "last": "Beltagy",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Downey",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "8342--8360",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.740"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Suchin Gururangan, Ana Marasovi\u0107, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and Noah A. Smith. 2020. Don't stop pretraining: Adapt language models to domains and tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8342-8360, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Multiwoz 2.3: A multi-domain task-oriented dataset enhanced with annotation corrections and coreference annotation",
                "authors": [
                    {
                        "first": "Ting",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Ximing",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Ryuichi",
                        "middle": [],
                        "last": "Takanobu",
                        "suffix": ""
                    },
                    {
                        "first": "Yixin",
                        "middle": [],
                        "last": "Lian",
                        "suffix": ""
                    },
                    {
                        "first": "Chongxuan",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Minlie",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ting Han, Ximing Liu, Ryuichi Takanobu, Yixin Lian, Chongxuan Huang, Wei Peng, and Minlie Huang. 2020. Multiwoz 2.3: A multi-domain task-oriented dataset enhanced with annotation corrections and co- reference annotation. ArXiv, abs/2010.05594.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "TripPy: A triple copy strategy for value independent neural dialog state tracking",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Heck",
                        "suffix": ""
                    },
                    {
                        "first": "Nurul",
                        "middle": [],
                        "last": "Carel Van Niekerk",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Lubis",
                        "suffix": ""
                    },
                    {
                        "first": "Hsien-Chin",
                        "middle": [],
                        "last": "Geishauser",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Milica",
                        "middle": [],
                        "last": "Moresi",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gasic",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "35--44",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael Heck, Carel van Niekerk, Nurul Lubis, Chris- tian Geishauser, Hsien-Chin Lin, Marco Moresi, and Milica Gasic. 2020. TripPy: A triple copy strategy for value independent neural dialog state tracking. In Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 35-44, 1st virtual meeting. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Content and cluster analysis: assessing representational similarity in neural systems",
                "authors": [
                    {
                        "first": "Aarre",
                        "middle": [],
                        "last": "Laakso",
                        "suffix": ""
                    },
                    {
                        "first": "Garrison",
                        "middle": [],
                        "last": "Cottrell",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Philosophical psychology",
                "volume": "13",
                "issue": "1",
                "pages": "47--76",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aarre Laakso and Garrison Cottrell. 2000. Content and cluster analysis: assessing representational sim- ilarity in neural systems. Philosophical psychology, 13(1):47-76.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "An evaluation dataset for intent classification and out-of-scope prediction",
                "authors": [
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Larson",
                        "suffix": ""
                    },
                    {
                        "first": "Anish",
                        "middle": [],
                        "last": "Mahendran",
                        "suffix": ""
                    },
                    {
                        "first": "Joseph",
                        "middle": [
                            "J"
                        ],
                        "last": "Peper",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Clarke",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Parker",
                        "middle": [],
                        "last": "Hill",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [
                            "K"
                        ],
                        "last": "Kummerfeld",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Leach",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [
                            "A"
                        ],
                        "last": "Laurenzano",
                        "suffix": ""
                    },
                    {
                        "first": "Lingjia",
                        "middle": [],
                        "last": "Tang",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Mars",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "1311--1316",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1131"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Stefan Larson, Anish Mahendran, Joseph J. Peper, Christopher Clarke, Andrew Lee, Parker Hill, Jonathan K. Kummerfeld, Kevin Leach, Michael A. Laurenzano, Lingjia Tang, and Jason Mars. 2019. An evaluation dataset for intent classification and out-of-scope prediction. In Proceedings of the 2019 Conference on Empirical Methods in Natu- ral Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1311-1316, Hong Kong, China. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Results of the multi-domain task-completion dialog challenge",
                "authors": [
                    {
                        "first": "Jinchao",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Baolin",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Sungjin",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Ryuichi",
                        "middle": [],
                        "last": "Takanobu",
                        "suffix": ""
                    },
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Minlie",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Hannes",
                        "middle": [],
                        "last": "Schulz",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Atkinson",
                        "suffix": ""
                    },
                    {
                        "first": "Mahmoud",
                        "middle": [],
                        "last": "Adada",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 34th AAAI Conference on Artificial Intelligence, Eighth Dialog System Technology Challenge Workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jinchao Li, Baolin Peng, Sungjin Lee, Jianfeng Gao, Ryuichi Takanobu, Qi Zhu, Minlie Huang, Hannes Schulz, Adam Atkinson, and Mahmoud Adada. 2020. Results of the multi-domain task-completion dialog challenge. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, Eighth Dialog System Technology Challenge Workshop.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Microsoft dialogue challenge: Building end-to-end task-completion dialogue systems",
                "authors": [
                    {
                        "first": "Xiujun",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Siqi",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Sarah",
                        "middle": [],
                        "last": "Panda",
                        "suffix": ""
                    },
                    {
                        "first": "Jingjing",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiujun Li, Yu Wang, Siqi Sun, Sarah Panda, Jingjing Liu, and Jianfeng Gao. 2018. Microsoft dialogue challenge: Building end-to-end task-completion dia- logue systems. ArXiv, abs/1807.11125.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Benchmarking natural language understanding services for building conversational agents",
                "authors": [
                    {
                        "first": "Xingkun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Arash",
                        "middle": [],
                        "last": "Eshghi",
                        "suffix": ""
                    },
                    {
                        "first": "Pawel",
                        "middle": [],
                        "last": "Swietojanski",
                        "suffix": ""
                    },
                    {
                        "first": "Verena",
                        "middle": [],
                        "last": "Rieser",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Tenth International Workshop on Spoken Dialogue Systems Technology (IWSDS)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and Verena Rieser. 2019. Benchmarking natural lan- guage understanding services for building conver- sational agents. In Proceedings of the Tenth In- ternational Workshop on Spoken Dialogue Systems Technology (IWSDS), Ortigia, Siracusa (SR), Italy. Springer.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Dialoglue: A natural language understanding benchmark for task-oriented dialogue",
                "authors": [
                    {
                        "first": "Shikib",
                        "middle": [],
                        "last": "Mehri",
                        "suffix": ""
                    },
                    {
                        "first": "Mihail",
                        "middle": [],
                        "last": "Eric",
                        "suffix": ""
                    },
                    {
                        "first": "Dilek",
                        "middle": [],
                        "last": "Hakkani-Tur",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shikib Mehri, Mihail Eric, and Dilek Hakkani-Tur. 2020. Dialoglue: A natural language understand- ing benchmark for task-oriented dialogue. ArXiv, abs/2009.13570.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "What happens to BERT embeddings during fine-tuning?",
                "authors": [
                    {
                        "first": "Amil",
                        "middle": [],
                        "last": "Merchant",
                        "suffix": ""
                    },
                    {
                        "first": "Elahe",
                        "middle": [],
                        "last": "Rahimtoroghi",
                        "suffix": ""
                    },
                    {
                        "first": "Ellie",
                        "middle": [],
                        "last": "Pavlick",
                        "suffix": ""
                    },
                    {
                        "first": "Ian",
                        "middle": [],
                        "last": "Tenney",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP",
                "volume": "",
                "issue": "",
                "pages": "33--44",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.blackboxnlp-1.4"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and Ian Tenney. 2020. What happens to BERT em- beddings during fine-tuning? In Proceedings of the Third BlackboxNLP Workshop on Analyzing and In- terpreting Neural Networks for NLP, pages 33-44, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Neural belief tracker: Data-driven dialogue state tracking",
                "authors": [
                    {
                        "first": "Nikola",
                        "middle": [],
                        "last": "Mrk\u0161i\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "\u00d3",
                        "middle": [],
                        "last": "Diarmuid",
                        "suffix": ""
                    },
                    {
                        "first": "Tsung-Hsien",
                        "middle": [],
                        "last": "S\u00e9aghdha",
                        "suffix": ""
                    },
                    {
                        "first": "Blaise",
                        "middle": [],
                        "last": "Wen",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Thomson",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1777--1788",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-1163"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nikola Mrk\u0161i\u0107, Diarmuid \u00d3 S\u00e9aghdha, Tsung-Hsien Wen, Blaise Thomson, and Steve Young. 2017. Neu- ral belief tracker: Data-driven dialogue state track- ing. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Vol- ume 1: Long Papers), pages 1777-1788, Vancouver, Canada. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Language models are unsupervised multitask learners",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. Techni- cal report, OpenAi.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Towards scalable multi-domain conversational agents: The schema-guided dialogue dataset",
                "authors": [
                    {
                        "first": "Abhinav",
                        "middle": [],
                        "last": "Rastogi",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoxue",
                        "middle": [],
                        "last": "Zang",
                        "suffix": ""
                    },
                    {
                        "first": "Srinivas",
                        "middle": [],
                        "last": "Sunkara",
                        "suffix": ""
                    },
                    {
                        "first": "Raghav",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "Pranav",
                        "middle": [],
                        "last": "Khaitan",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "34",
                "issue": "",
                "pages": "8689--8696",
                "other_ids": {
                    "DOI": [
                        "10.1609/aaai.v34i05.6394"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. To- wards scalable multi-domain conversational agents: The schema-guided dialogue dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8689-8696.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Building a conversational agent overnight with dialogue self-play",
                "authors": [
                    {
                        "first": "Pararth",
                        "middle": [],
                        "last": "Shah",
                        "suffix": ""
                    },
                    {
                        "first": "Dilek",
                        "middle": [],
                        "last": "Hakkani-T\u00fcr",
                        "suffix": ""
                    },
                    {
                        "first": "Gokhan",
                        "middle": [],
                        "last": "T\u00fcr",
                        "suffix": ""
                    },
                    {
                        "first": "Abhinav",
                        "middle": [],
                        "last": "Rastogi",
                        "suffix": ""
                    },
                    {
                        "first": "Ankur",
                        "middle": [],
                        "last": "Bapna",
                        "suffix": ""
                    },
                    {
                        "first": "Neha",
                        "middle": [],
                        "last": "Nayak",
                        "suffix": ""
                    },
                    {
                        "first": "Larry",
                        "middle": [],
                        "last": "Heck",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pararth Shah, Dilek Hakkani-T\u00fcr, Gokhan T\u00fcr, Ab- hinav Rastogi, Ankur Bapna, Neha Nayak, and Larry Heck. 2018. Building a conversational agent overnight with dialogue self-play. ArXiv, abs/1801.04871.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "How to fine-tune bert for text classification?",
                "authors": [
                    {
                        "first": "Chi",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Xipeng",
                        "middle": [],
                        "last": "Qiu",
                        "suffix": ""
                    },
                    {
                        "first": "Yige",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Xuanjing",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "China National Conference on Chinese Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "194--206",
                "other_ids": {
                    "DOI": [
                        "10.1007/978-3-030-32381-3_16"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune bert for text classification? In China National Conference on Chinese Computa- tional Linguistics, pages 194-206. Springer.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "A networkbased end-to-end trainable task-oriented dialogue system",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Tsung-Hsien Wen",
                        "suffix": ""
                    },
                    {
                        "first": "Nikola",
                        "middle": [],
                        "last": "Vandyke",
                        "suffix": ""
                    },
                    {
                        "first": "Milica",
                        "middle": [],
                        "last": "Mrk\u0161i\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Lina",
                        "middle": [
                            "M"
                        ],
                        "last": "Ga\u0161i\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Pei-Hao",
                        "middle": [],
                        "last": "Rojas-Barahona",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Ultes",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "438--449",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tsung-Hsien Wen, David Vandyke, Nikola Mrk\u0161i\u0107, Milica Ga\u0161i\u0107, Lina M. Rojas-Barahona, Pei-Hao Su, Stefan Ultes, and Steve Young. 2017. A network- based end-to-end trainable task-oriented dialogue system. In Proceedings of the 15th Conference of the European Chapter of the Association for Compu- tational Linguistics: Volume 1, Long Papers, pages 438-449, Valencia, Spain. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "TOD-BERT: Pre-trained natural language understanding for task-oriented dialogue",
                "authors": [
                    {
                        "first": "Chien-Sheng",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "H"
                        ],
                        "last": "Steven",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Hoi",
                        "suffix": ""
                    },
                    {
                        "first": "Caiming",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "917--929",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.66"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Chien-Sheng Wu, Steven C.H. Hoi, Richard Socher, and Caiming Xiong. 2020. TOD-BERT: Pre-trained natural language understanding for task-oriented di- alogue. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 917-929, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "ConvLab-2: An open-source toolkit for building, evaluating, and diagnosing dialogue systems",
                "authors": [
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Zheng",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yan",
                        "middle": [],
                        "last": "Fang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Ryuichi",
                        "middle": [],
                        "last": "Takanobu",
                        "suffix": ""
                    },
                    {
                        "first": "Jinchao",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Baolin",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoyan",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Minlie",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "142--149",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-demos.19"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi Takanobu, Jinchao Li, Baolin Peng, Jianfeng Gao, Xiaoyan Zhu, and Minlie Huang. 2020. ConvLab- 2: An open-source toolkit for building, evaluating, and diagnosing dialogue systems. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 142-149, Online. Association for Computa- tional Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "Masked LM prediction accuracy of BERT, DAPT with different data sizes, and TAPT models.",
                "uris": null,
                "num": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "text": "RSA on OOS test set between BERT and further pre-training: 1%, 5%, 25%, and 100% data DAPT, TAPT, and TAPT after full data DAPT.",
                "uris": null,
                "num": null
            },
            "TABREF1": {
                "text": "Figure 2: RSA on OOS test set for BERT and DAPT model with 1%, 10%, and 100% fine-tuning data sizes.",
                "html": null,
                "content": "<table><tr><td/><td/><td>\u2206 DAPT</td><td>RSA avg.</td><td>best DAPT</td></tr><tr><td colspan=\"5\">Fine-tune data 100% 10% 100% 10% 100% 10%</td></tr><tr><td/><td>HWU</td><td colspan=\"2\">-0.22 0.46 0.73 0.83</td><td>5%</td><td>5%</td></tr><tr><td>IC</td><td colspan=\"3\">BANKING -0.21 -0.53 0.74 0.82</td><td>5% 25%</td></tr><tr><td/><td>OOS</td><td colspan=\"2\">0.42 1.02 0.69 0.77</td><td>1% 25%</td></tr><tr><td colspan=\"5\">SF REST8K 0.63 0.63 0.73 0.79 100% 25%</td></tr><tr><td>SP</td><td colspan=\"3\">TOP MultiWOZ 0.79 2.44 0.57 0.70 -0.21 0.35 0.71 0.72</td><td>1% 1% 100% 5%</td></tr><tr><td>DST</td><td colspan=\"4\">TripPy TOD-DST 1.27 3.67 0.39 0.49 25% 100% -0.08 1.44 0.52 0.56 1% 5%</td></tr><tr><td>DAP</td><td colspan=\"4\">MultiWOZ 0.76 0.35 0.26 0.45 25% 100% GSIM 0.10 0.28 0.66 0.69 5% 25%</td></tr></table>",
                "num": null,
                "type_str": "table"
            },
            "TABREF3": {
                "text": "Statistics of pre-training corpus from datasets.",
                "html": null,
                "content": "<table><tr><td>The Schema corpus (marked with *) is obtained from</td></tr><tr><td>the train set and others are obtained by merging train,</td></tr><tr><td>dev, and test set.</td></tr></table>",
                "num": null,
                "type_str": "table"
            },
            "TABREF5": {
                "text": "Downstream datasets information and the model architecture we used for each dataset. The sizes of train/dev/test sets are the number of dialogs. Note that we mark MultiWOZ 2.1 in dialog state tracking with two symbols, \u2020 and \u2021, because we adopt two model architectures on this dataset: TripPy",
                "html": null,
                "content": "<table/>",
                "num": null,
                "type_str": "table"
            }
        }
    }
}