File size: 112,152 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:12:50.214909Z"
},
"title": "When does Further Pre-training MLM Help? An Empirical Study on Task-Oriented Dialog Pre-training",
"authors": [
{
"first": "Qi",
"middle": [],
"last": "Zhu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Tsinghua University",
"location": {
"settlement": "Beijing",
"country": "China"
}
},
"email": ""
},
{
"first": "Yuxian",
"middle": [],
"last": "Gu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Tsinghua University",
"location": {
"settlement": "Beijing",
"country": "China"
}
},
"email": ""
},
{
"first": "Lingxiao",
"middle": [],
"last": "Luo",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Tsinghua University",
"location": {
"settlement": "Beijing",
"country": "China"
}
},
"email": ""
},
{
"first": "Bing",
"middle": [],
"last": "Li",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Cheng",
"middle": [],
"last": "Li",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Tsinghua University",
"location": {
"settlement": "Beijing",
"country": "China"
}
},
"email": ""
},
{
"first": "Wei",
"middle": [],
"last": "Peng",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Huawei Technologies",
"location": {
"settlement": "Shenzhen",
"country": "China"
}
},
"email": ""
},
{
"first": "Xiaoyan",
"middle": [],
"last": "Zhu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Tsinghua University",
"location": {
"settlement": "Beijing",
"country": "China"
}
},
"email": ""
},
{
"first": "Minlie",
"middle": [],
"last": "Huang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Tsinghua University",
"location": {
"settlement": "Beijing",
"country": "China"
}
},
"email": "aihuang@tsinghua.edu.cn"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Further pre-training language models on indomain data (domain-adaptive pre-training, DAPT) or task-relevant data (task-adaptive pretraining, TAPT) before fine-tuning has been shown to improve downstream tasks' performances. However, in task-oriented dialog modeling, we observe that further pre-training MLM does not always boost the performance on a downstream task. We find that DAPT is beneficial in the low-resource setting, but as the fine-tuning data size grows, DAPT becomes less beneficial or even useless, and scaling the size of DAPT data does not help. Through Representational Similarity Analysis, we conclude that more data for fine-tuning yields greater change of the model's representations and thus reduces the influence of initialization. 1",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "Further pre-training language models on indomain data (domain-adaptive pre-training, DAPT) or task-relevant data (task-adaptive pretraining, TAPT) before fine-tuning has been shown to improve downstream tasks' performances. However, in task-oriented dialog modeling, we observe that further pre-training MLM does not always boost the performance on a downstream task. We find that DAPT is beneficial in the low-resource setting, but as the fine-tuning data size grows, DAPT becomes less beneficial or even useless, and scaling the size of DAPT data does not help. Through Representational Similarity Analysis, we conclude that more data for fine-tuning yields greater change of the model's representations and thus reduces the influence of initialization. 1",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Pre-trained models such as BERT (Devlin et al., 2019) and GPT2 (Radford et al., 2019) have been used in a wide range of NLP tasks and achieved superior performance. These models usually follow the pre-train and fine-tune paradigm, which adopts unsupervised pre-training on large-scale corpora and supervised fine-tuning for downstream task adaption. However, the pre-training corpora are in the general domain, while the data of downstream tasks fall in more task-specific domains.",
"cite_spans": [
{
"start": 32,
"end": 53,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF3"
},
{
"start": 63,
"end": 85,
"text": "(Radford et al., 2019)",
"ref_id": "BIBREF21"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "To bridge the data distribution gap, further pretraining has been applied and shows consistent improvements (Sun et al., 2019) . According to the training data used in this process, Gururangan et al. (2020) termed domain-adaptive pre-training (DAPT), which uses the data in the same domain of the target task and task-adaptive pre-training (TAPT), which uses much less unlabeled training data from the target task than DAPT. They found that DAPT masked LM leads to performance gains under both high-and low-resource settings and TAPT is beneficial with or without DAPT. DAPT has shown effectiveness for task-oriented dialog modeling. further pretrained BERT on 9 task-oriented dialog corpora and outperformed BERT on four downstream tasks, especially in the few-shot setting. Gu et al. (2020) further pre-trained GPT-2 on 13 dialog corpora ranging from chitchats to task-oriented dialogs, leading to better results on three task-oriented datasets.",
"cite_spans": [
{
"start": 108,
"end": 126,
"text": "(Sun et al., 2019)",
"ref_id": "BIBREF24"
},
{
"start": 564,
"end": 569,
"text": "DAPT.",
"ref_id": null
},
{
"start": 776,
"end": 792,
"text": "Gu et al. (2020)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "However, does further pre-training always help? Mehri et al. (2020) performed DAPT on 700M opendomain dialogs and TAPT, but the resulting model only outperforms BERT in 4 out of 7 task-oriented dialog datasets. We also observe that replacing BERT with TOD-BERT-mlm that is further pre-trained MLM on 101K task-oriented dialogs does not always bring a significant difference on downstream tasks. So far, however, there has been little discussion about when and why further pre-training on in-domain data can boost the performance on a downstream task and how the DAPT data size can affect this.",
"cite_spans": [
{
"start": 48,
"end": 67,
"text": "Mehri et al. (2020)",
"ref_id": "BIBREF18"
},
{
"start": 78,
"end": 82,
"text": "DAPT",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this paper, we conduct an empirical study on the effect of further pre-training BERT BASE on task-oriented dialogs. Our experiments are organized around the following research questions:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 RQ1 When can DAPT improve the performance on a downstream task? \u2022 RQ2 How does the amount of data for DAPT affect the performance on a downstream task? We evaluate further pre-trained models on five downstream tasks involving seven task-oriented dialog datasets. Our main findings are summarized as follows: (1) DAPT and TAPT do not always improve fine-tuning performance: the effect varies for different tasks, models, and fine-tuning data sizes. 2DAPT is more beneficial in the low-resource setting. As the fine-tuning data size grows, the model's representations change more, implying that the in-fluence of pre-training decays, thus the benefit of DAPT decreases or even vanishes. (3) Increasing the amount of data for DAPT mostly improves the performance in the relative low-resource setting.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We further pre-train BERT BASE uncased model using masked language modeling loss with 15% tokens masked. Our DAPT dataset consists of several multi-turn task-oriented dialog datasets, including Schema (Rastogi et al., 2020) , Taskmaster-1&2 (Byrne et al., 2019) , MetaLWOZ , MSR-E2E (Li et al., 2018) , SMD (Eric et al., 2017) , Frames (El Asri et al., 2017) , WOZ Camrest (Wen et al., 2017) , which has 103K dialogs (13M words) in total. To investigate RQ2, we also use 25%, 5% and 1% dialogs to perform DAPT. For TAPT, we use the training set of each downstream task. We use 95% dialogs for training and select the best checkpoint with the lowest MLM loss on the other 5% dialogs. To obtain a training sample D 1:t = {U 1 , S 1 , ..., U t } where U i , S i are user's utterance and system's utterance respectively, we randomly pick a dialog D and sample a turn t \u2208 [1, T ] uniformly, where T is the length of D. Then all the utterances are concatenated into a sequence as the model input:",
"cite_spans": [
{
"start": 201,
"end": 223,
"text": "(Rastogi et al., 2020)",
"ref_id": "BIBREF22"
},
{
"start": 241,
"end": 261,
"text": "(Byrne et al., 2019)",
"ref_id": "BIBREF0"
},
{
"start": 283,
"end": 300,
"text": "(Li et al., 2018)",
"ref_id": "BIBREF16"
},
{
"start": 307,
"end": 326,
"text": "(Eric et al., 2017)",
"ref_id": "BIBREF7"
},
{
"start": 329,
"end": 358,
"text": "Frames (El Asri et al., 2017)",
"ref_id": null
},
{
"start": 365,
"end": 391,
"text": "Camrest (Wen et al., 2017)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Further Pre-training",
"sec_num": "2.1"
},
{
"text": "\"[CLS] [USR] U 1 [SEP] [SYS] S 1 [SEP] ... [USR] U t [SEP]\"",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Further Pre-training",
"sec_num": "2.1"
},
{
"text": ", where [USR] and [SYS] are two special tokens prepended to user's and system's utterances respectively. See Appendix A for the hyper-parameter setting.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Further Pre-training",
"sec_num": "2.1"
},
{
"text": "We conduct comprehensive evaluations on 5 downstream tasks. Models on these tasks are adapted from TOD-BERT , DialoGLUE (Mehri et al., 2020) , or ConvLab-2 . See Appendix B for fine-tuning details.",
"cite_spans": [
{
"start": 120,
"end": 140,
"text": "(Mehri et al., 2020)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation",
"sec_num": "2.2"
},
{
"text": "Intent Classification (IC) is a sequence classification problem, where models take an utterance as input and predict its intent. We use three datasets: HWU (Liu et al., 2019 ) that has 64 intents and 26K utterances, BANKING (Casanueva et al., 2020 ) that has 77 intents and 13K utterances, and OOS (Larson et al., 2019) that has 151 intents and 24K utterances. We pass the representation of [CLS] token to a linear layer for prediction.",
"cite_spans": [
{
"start": 156,
"end": 173,
"text": "(Liu et al., 2019",
"ref_id": "BIBREF17"
},
{
"start": 224,
"end": 247,
"text": "(Casanueva et al., 2020",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation",
"sec_num": "2.2"
},
{
"text": "Slot Filling (SF) requires models to extract slots' values in an utterance, which is often formulated as a sequence tagging problem. We use REST8K dataset (Coope et al., 2020 ) that has 5 slots and 8K utterances. We add a linear layer on the top of the tokens' representations to predict BIO format tags.",
"cite_spans": [
{
"start": 155,
"end": 174,
"text": "(Coope et al., 2020",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation",
"sec_num": "2.2"
},
{
"text": "Semantic Parsing (SP) aims at identifying both intents and slots' values in an utterance. We use TOP dataset (Gupta et al., 2018) that has 45K utterances spanning 25 intents and 36 slots and MultiWOZ 2.3 dataset (Han et al., 2020 ) that has 10K dialogs and 143K utterances spanning 7 domains, 13 intents, and 25 slots. We use two linear layers to predict intent and tokens' tags respectively.",
"cite_spans": [
{
"start": 109,
"end": 129,
"text": "(Gupta et al., 2018)",
"ref_id": "BIBREF9"
},
{
"start": 212,
"end": 229,
"text": "(Han et al., 2020",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation",
"sec_num": "2.2"
},
{
"text": "Dialog State Tracking (DST) is the task of recognizing user constraints throughout the conversation. We use MultiWOZ dataset version 2.1 ) that has 30 domain-slot pairs to track. We adopt two BERT-based models: TripPy (Heck et al., 2020) and TOD-DST . Both models use BERT to encode dialog history.",
"cite_spans": [
{
"start": 218,
"end": 237,
"text": "(Heck et al., 2020)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation",
"sec_num": "2.2"
},
{
"text": "Dialog Act Prediction (DAP) is a multi-label sequence classification problem, where models predict the intents of the system response given the dialog history. We use two datasets: MultiWOZ and GSIM (Shah et al., 2018 ) that contains 6 intents and 3K dialogs. For each intent, we feed the representation of [CLS] token to a linear layer and predict whether the intent is in the response.",
"cite_spans": [
{
"start": 199,
"end": 217,
"text": "(Shah et al., 2018",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation",
"sec_num": "2.2"
},
{
"text": "As for evaluation metrics, we use accuracy for intent prediction, macro-F1 for slot filling and dialog act prediction, exact-match for semantic parsing, and joint goal accuracy for dialog state tracking.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation",
"sec_num": "2.2"
},
{
"text": "Representational similarity analysis (RSA) is a technique to measure the similarity between models' representations (Laakso and Cottrell, 2000) . Following Merchant et al. 2020, we encode samples from a test dataset and randomly select the same n = 5000 tokens as stimuli, whose contextual representations at each layer are used to compute an n \u00d7 n pairwise cosine similarity matrix. The final similarity score between two models' representations at a certain layer is computed as the Pearson correlation between the flattened upper triangular of the two similarity matrices.",
"cite_spans": [
{
"start": 116,
"end": 143,
"text": "(Laakso and Cottrell, 2000)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Representational Similarity Analysis",
"sec_num": "2.3"
},
{
"text": "We fine-tune BERT, TOD-BERT-mlm that is further pre-trained on 9 task-oriented Table 1 : Performance on downstream tasks. We report the means and standard deviations across three random seeds for BERT. Note that TOD-BERT-mlm has pre-trained on MultiWOZ dataset. A task is in red if further pretraining all outperform BERT by at least one standard deviation. The best task performances are boldfaced.",
"cite_spans": [],
"ref_spans": [
{
"start": 79,
"end": 86,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Full Data Experiments",
"sec_num": "3.1"
},
{
"text": "datasets including MultiWOZ, and our further pretrained models on downstream tasks using the same hyper-parameters. The results are shown in Table 1 .",
"cite_spans": [],
"ref_spans": [
{
"start": 141,
"end": 148,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Full Data Experiments",
"sec_num": "3.1"
},
{
"text": "To measure the performance variance, we fine-tune BERT three times using different random seeds and report means and standard deviations. We evaluate the effect of DAPT, denoted by \u2206 DAPT , through averaging the improvements of the models with different DAPT data sizes (100%, 25%, 5%, 1%) compared with BERT. Similarly, \u2206 TAPT is the benefit of TAPT. We find that \u2206 DAPT and \u2206 TAPT sometimes are small or even negative, indicating that DAPT and TAPT does not always improve performances on downstream tasks. Consistently, TOD-BERTmlm does not always outperform BERT significantly. Only on tasks in red in Table 1 , the benefits of further pre-training are larger than the standard deviations of BERT. In some cases, interestingly, further pre-training can lead to inferior performance. Even on the same MultiWOZ dataset, further pre-training effects vary according to the model architectures used (TripPy, TOD-DST) and the downstream tasks (SP, DST, DAP). Compared with DAPT and DAPT+TAPT, TAPT obtains similar results but requires much lower training cost, which is worth trying before DAPT.",
"cite_spans": [],
"ref_spans": [
{
"start": 606,
"end": 613,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Full Data Experiments",
"sec_num": "3.1"
},
{
"text": "3.2 RQ1: When can DAPT improve the performance on a downstream task?",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Full Data Experiments",
"sec_num": "3.1"
},
{
"text": "Since further pre-training does not help in some cases, we want to explore when DAPT can improve the performance on a downstream task. We first show that DAPT does improve the model's LM ability on downstream datasets (Figure 1) , and TAPT can more efficiently improve this ability. This means that further pre-training does reduce the data distribution gap (for LM) between pre-training and fine-tuning but does not guarantee task performance improvement. A possible hypothesis is that further pretraining encodes shallow domain knowledge that has obvious influence only when there are insufficient labeled data providing taskspecific knowledge for fine-tuning. By further pre-training, a model learns the co-occurrence of words and their context, which can be viewed as a kind of statistics feature of the target domain. When the fine-tuning data are deficient, this general domain knowledge can alleviate the lack of taskspecific knowledge. However, models can learn to encode task-specific knowledge directly through fine-tuning when there are sufficient labeled data and thus rely less on further pre-training.",
"cite_spans": [],
"ref_spans": [
{
"start": 218,
"end": 228,
"text": "(Figure 1)",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Full Data Experiments",
"sec_num": "3.1"
},
{
"text": "To verify the hypothesis, we use RSA to assess the representation similarity between fine-tuned models and their initializations for different finetuning data sizes. As illustrated in Figure 2 , for both BERT and the full data DAPT model, the RSA similarity decreases as the fine-tuning data size grows, especially on the top layers. We ob- Table 2 : Comparison of full and 10% data fine-tuning. We use the same 10% data and average the performance of 3 runs using different random seeds. The RSA similarity averaged across layers is between full data DAPT model and its fine-tuned counterpart. We also report which DAPT data size performs best as \"best DAPT\". serve similar trends for all tasks, supporting that less fine-tuning data highlights the importance of pre-training. We also fine-tune the models with and without DAPT in the low-resource setting. Table 2 compares the average performance gain of DAPT (\u2206 DAPT ) and RSA similarity of full data DAPT model and its fine-tuned counterpart (averaged across layers) with full data and low-resource fine-tuning. In the low-resource setting, RSA similarity increases, and DAPT is more beneficial in most cases, which means the knowledge learned through DAPT is more useful when the fine-tuning data are deficient.",
"cite_spans": [],
"ref_spans": [
{
"start": 184,
"end": 192,
"text": "Figure 2",
"ref_id": null
},
{
"start": 341,
"end": 348,
"text": "Table 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Full Data Experiments",
"sec_num": "3.1"
},
{
"text": "3.3 RQ2: How does the amount of data for DAPT affect the performance on a downstream task?",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Full Data Experiments",
"sec_num": "3.1"
},
{
"text": "We have shown that models can encode general domain knowledge after DAPT and improve the per- formance on a downstream task in the low-resource setting. However, how much gain can we obtain by enlarging the DAPT data? To investigate this question, we perform DAPT with 1%, 5%, 25%, and 100% data, ranging from 1020 dialogs to 102K dialogs. From Figure 1 , we can see that the more data used in DAPT, the stronger language model on downstream datasets we can get. We also show the change of the model's representation caused by further pre-training in Figure 3 . Like fine-tuning, using more data for DAPT brings greater change, and the trend is similar for all tasks. It is also worth noting that compared with DAPT, TAPT changes the model more efficiently in the target dataset. However, change brought by enlarging DAPT data does not guarantee performance improvement. We compare how much data the best DAPT model used in both full data and low-resource finetuning. As shown in Table 2 , including more data for DAPT may not always improve downstream task performance. Nevertheless, when there are less fine-tuning data, the best model needs more data for DAPT.",
"cite_spans": [],
"ref_spans": [
{
"start": 345,
"end": 353,
"text": "Figure 1",
"ref_id": "FIGREF0"
},
{
"start": 551,
"end": 559,
"text": "Figure 3",
"ref_id": "FIGREF1"
},
{
"start": 980,
"end": 987,
"text": "Table 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Full Data Experiments",
"sec_num": "3.1"
},
{
"text": "In this work, we conduct an empirical study to investigate the effect of further pre-training MLM on task-oriented dialogs. Different from earlier findings (Sun et al., 2019; Gururangan et al., 2020) , neither DAPT nor TAPT always improves performances on downstream tasks in our experiments. In the low-resource setting, however, DAPT is more helpful, and the size of DAPT data needed to perform best increases. Through RSA, we find that as the fine-tuning data grows, the impact of model initialization fades away, which could be the explanation. We also show that although further pre-training can improve the model's LM ability on downstream datasets, this may not contribute much to downstream tasks under pre-train and fine-tune paradigm, calling for novel pre-training objectives and effective ways to use pre-trained models.",
"cite_spans": [
{
"start": 156,
"end": 174,
"text": "(Sun et al., 2019;",
"ref_id": "BIBREF24"
},
{
"start": 175,
"end": 199,
"text": "Gururangan et al., 2020)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "4"
},
{
"text": "In this section, we present a detailed description of the data we use for further pre-training.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A.1 Dataset Description",
"sec_num": null
},
{
"text": "We use the pure text of several multi-turn task-oriented dialog datasets for DAPT, including Schema 2 (Rastogi et al., 2020), Taskmaster-1&2 3 (Byrne et al., 2019) , MetaLWOZ 4 , MSR-E2E 5 (Li et al., 2018) , Frames 6 (El Asri et al., 2017) , SMD 7 (Eric et al., 2017) , WOZ 8 , and Camrest 9 (Wen et al., 2017) . Table 3 shows the corpus statistics of each dataset. Note that for Schema, we only use its train set as the corpus, and for other datasets, we combine their train, dev, and test sets. For validation, to evaluate the pre-training performance on each corpus separately, we split 5% of the dialogs from each corpus and compute masked language modeling losses on them respectively. For DAPT, we merge the other 95% of each corpus. To reduce the gap between pre-training and fine-tuning, we remove system side utterances at the beginning and the end in each dialog to ensure that the first sentence and the last sentence of each dialog are both from the user side.",
"cite_spans": [
{
"start": 143,
"end": 163,
"text": "(Byrne et al., 2019)",
"ref_id": "BIBREF0"
},
{
"start": 189,
"end": 206,
"text": "(Li et al., 2018)",
"ref_id": "BIBREF16"
},
{
"start": 222,
"end": 240,
"text": "Asri et al., 2017)",
"ref_id": "BIBREF4"
},
{
"start": 249,
"end": 268,
"text": "(Eric et al., 2017)",
"ref_id": "BIBREF7"
},
{
"start": 291,
"end": 311,
"text": "9 (Wen et al., 2017)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Domain Adaptive Pre-Training (DAPT):",
"sec_num": null
},
{
"text": "Task Adaptive Pre-Training (TAPT): We use the pure text of each downstream task dataset for TAPT and delete the system side utterances at the beginning and the end of each dialog. Similar to DAPT, we use 95% dialogs for training and 5% for validation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Domain Adaptive Pre-Training (DAPT):",
"sec_num": null
},
{
"text": "In this section, we describe the hyper-parameters we use for further pre-training and how we choose 2 https://github.com/google-research-d atasets/dstc8-schema-guided-dialogue 3 https://github.com/google-research-d atasets/Taskmaster 4 https://www.microsoft.com/en-us/rese arch/project/metalwoz/ 5 https://github.com/xiul-msr/e2e_dial og_challenge 6 https://www.microsoft.com/en-us/rese arch/project/frames-dataset/#!download 7 https://nlp.stanford.edu/blog/a-newmulti-turn-multi-domain-task-oriented-di alogue-dataset/ 8 https://github.com/nmrksic/neural-be lief-tracker/tree/master/data/woz 9 https://github.com/zhangzthu/ConvLab 2-Pretraining/tree/pretraining/data/camr est them in our experiments.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A.2 Hyper-Parameters",
"sec_num": null
},
{
"text": "In DAPT, we further pre-train the BERT BASE uncased model from the official checkpoint in (Devlin et al., 2019) with masked language modeling loss. We use 100%, 25%, 5% and 1% dialogs to perform DAPT respectively. For each setting, we search the hyper-parameters and select the best model according to MLM loss on valid set. We use Adam optimizer with \u03b2 1 = 0.9, \u03b2 2 = 0.999, = 1e \u2212 6, L2 weight decay of 0.01, and linear decay of the learning rate. We search maximum learning rate in {5e-5, 1e-4, 3e-4}, warmup proportion in {0, 0.06, 0.1}, batch size in {64, 256}, max sequence length in {256, 512}, training steps in {5K, 10K, 20K, 40K}. For other hyper-parameters, we keep them the same as (Devlin et al., 2019) . We further pretrain our model on a single Quadro RTX 6000 GPU. It takes 0.3 hours to finish 1K steps pre-training.",
"cite_spans": [
{
"start": 90,
"end": 111,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF3"
},
{
"start": 694,
"end": 715,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Domain Adaptive Pre-Training (DAPT):",
"sec_num": null
},
{
"text": "Task Adaptive Pre-Training (TAPT): In TAPT, we search the hyper-parameters as in DAPT except that we search training steps in {500, 1K, 2K, 5K, 10K}.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Domain Adaptive Pre-Training (DAPT):",
"sec_num": null
},
{
"text": "B Fine-Tuning Details",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Domain Adaptive Pre-Training (DAPT):",
"sec_num": null
},
{
"text": "In our experiments, we use seven downstream datasets across five tasks, including HWU 10 (Liu et al., 2019), BANKING 11 (Casanueva et al., 2020) , (Heck et al., 2020) from DialoGLUE (Mehri et al., 2020) ( \u2020) and the DST model from TOD-BERT (Wu et al., 2020) ( \u2021).",
"cite_spans": [
{
"start": 120,
"end": 144,
"text": "(Casanueva et al., 2020)",
"ref_id": "BIBREF1"
},
{
"start": 147,
"end": 166,
"text": "(Heck et al., 2020)",
"ref_id": "BIBREF12"
},
{
"start": 182,
"end": 207,
"text": "(Mehri et al., 2020) ( \u2020)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "B.1 Dataset Description",
"sec_num": null
},
{
"text": "OOS 12 (Larson et al., 2019) , REST8K 13 (Larson et al., 2019) , TOP 14 (Gupta et al., 2018) , MultiWOZ 2.1 15 (Eric et al., 2019) , MultiWOZ 2.3 16 (Han et al., 2020) and GSIM 17 (Shah et al., 2018) . All these datasets are publicly available and can be downloaded directly from the Internet. The datasets information is shown in Table 4 .",
"cite_spans": [
{
"start": 7,
"end": 28,
"text": "(Larson et al., 2019)",
"ref_id": "BIBREF14"
},
{
"start": 41,
"end": 62,
"text": "(Larson et al., 2019)",
"ref_id": "BIBREF14"
},
{
"start": 72,
"end": 92,
"text": "(Gupta et al., 2018)",
"ref_id": "BIBREF9"
},
{
"start": 111,
"end": 130,
"text": "(Eric et al., 2019)",
"ref_id": "BIBREF5"
},
{
"start": 149,
"end": 167,
"text": "(Han et al., 2020)",
"ref_id": "BIBREF11"
},
{
"start": 180,
"end": 199,
"text": "(Shah et al., 2018)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [
{
"start": 331,
"end": 338,
"text": "Table 4",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "B.1 Dataset Description",
"sec_num": null
},
{
"text": "For different downstream tasks, we adopt taskspecific model architectures from the three works as listed below and replaced the pre-trained BERT BASE with our model. Note that for multiturn dialog inputs, we reverse the utterances as described in Section 2.1. We keep the original hyper-parameters in each work unchanged when fine-tuning the model.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "B.2 Model Architectures for Downstream Tasks",
"sec_num": null
},
{
"text": "12 https://github.com/clinc/oos-eval 13 https://github.com/PolyAI-LDN/task-s pecific-datasets 14 http://fb.me/semanticparsingdialog 15 https://github.com/budzianowski/mult iwoz 16 https://github.com/budzianowski/mult iwoz 17 https://github.com/google-research-d atasets/simulated-dialogue DialoGLUE DialoGLUE (Mehri et al., 2020) is a benchmark for the language understanding of task-oriented dialogs. Apart from the datasets, Di-aloGLUE also provides the model architectures built on the pre-trained BERT model for different tasks. The datasets on which we adopt model architectures from DialoGLUE is marked as \u2020 in Table 4 .",
"cite_spans": [
{
"start": 309,
"end": 329,
"text": "(Mehri et al., 2020)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [
{
"start": 617,
"end": 625,
"text": "Table 4",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "B.2 Model Architectures for Downstream Tasks",
"sec_num": null
},
{
"text": "TOD-BERT TOD-BERT ) is a recent model for task-oriented dialogs understanding. We use their models for dialog state tracking and dialog act prediction, marked as \u2021 in Table 4 .",
"cite_spans": [],
"ref_spans": [
{
"start": 167,
"end": 174,
"text": "Table 4",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "B.2 Model Architectures for Downstream Tasks",
"sec_num": null
},
{
"text": "Convlab-2 Convlab-2 is an open-source toolkit that helps researchers build, evaluate and diagnose task-oriented dialog systems. We mark the dataset on which we use the model architecture from Convlab-2 as \u2666 in Table 4. ",
"cite_spans": [],
"ref_spans": [
{
"start": 210,
"end": 218,
"text": "Table 4.",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "B.2 Model Architectures for Downstream Tasks",
"sec_num": null
},
{
"text": "Codes are available at https://github.com/zqw erty/ToDDAPT.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://github.com/xliuhw/NLU-Evalua tion-Data 11 https://github.com/PolyAI-LDN/task-s pecific-datasets",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "This work was supported by the National Science Foundation for Distinguished Young Scholars (with No. 62125604) and the NSFC projects (Key project with No. 61936010 and regular project with No. 61876096). This work was also supported by the Guoqiang Institute of Tsinghua University, with Grant No. 2019GQG1 and 2020GQG0005. We would like to thank colleagues from HUAWEI for their constant support and valuable discussion.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Taskmaster-1: Toward a realistic and diverse dialog dataset",
"authors": [
{
"first": "Bill",
"middle": [],
"last": "Byrne",
"suffix": ""
},
{
"first": "Karthik",
"middle": [],
"last": "Krishnamoorthi",
"suffix": ""
},
{
"first": "Chinnadhurai",
"middle": [],
"last": "Sankar",
"suffix": ""
},
{
"first": "Arvind",
"middle": [],
"last": "Neelakantan",
"suffix": ""
},
{
"first": "Ben",
"middle": [],
"last": "Goodrich",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Duckworth",
"suffix": ""
},
{
"first": "Semih",
"middle": [],
"last": "Yavuz",
"suffix": ""
},
{
"first": "Amit",
"middle": [],
"last": "Dubey",
"suffix": ""
},
{
"first": "Kyu-Young",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Cedilnik",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "4516--4525",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1459"
]
},
"num": null,
"urls": [],
"raw_text": "Bill Byrne, Karthik Krishnamoorthi, Chinnadhurai Sankar, Arvind Neelakantan, Ben Goodrich, Daniel Duckworth, Semih Yavuz, Amit Dubey, Kyu-Young Kim, and Andy Cedilnik. 2019. Taskmaster-1: To- ward a realistic and diverse dialog dataset. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 4516- 4525, Hong Kong, China. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Efficient intent detection with dual sentence encoders",
"authors": [
{
"first": "I\u00f1igo",
"middle": [],
"last": "Casanueva",
"suffix": ""
},
{
"first": "Tadas",
"middle": [],
"last": "Tem\u010dinas",
"suffix": ""
},
{
"first": "Daniela",
"middle": [],
"last": "Gerz",
"suffix": ""
},
{
"first": "Matthew",
"middle": [],
"last": "Henderson",
"suffix": ""
},
{
"first": "Ivan",
"middle": [],
"last": "Vuli\u0107",
"suffix": ""
}
],
"year": 2020,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "I\u00f1igo Casanueva, Tadas Tem\u010dinas, Daniela Gerz, Matthew Henderson, and Ivan Vuli\u0107. 2020. Efficient intent detection with dual sentence encoders. ArXiv, abs/2003.04807.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Span-ConveRT: Few-shot span extraction for dialog with pretrained conversational representations",
"authors": [
{
"first": "Samuel",
"middle": [],
"last": "Coope",
"suffix": ""
},
{
"first": "Tyler",
"middle": [],
"last": "Farghly",
"suffix": ""
},
{
"first": "Daniela",
"middle": [],
"last": "Gerz",
"suffix": ""
},
{
"first": "Ivan",
"middle": [],
"last": "Vuli\u0107",
"suffix": ""
},
{
"first": "Matthew",
"middle": [],
"last": "Henderson",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "107--121",
"other_ids": {
"DOI": [
"10.18653/v1/2020.acl-main.11"
]
},
"num": null,
"urls": [],
"raw_text": "Samuel Coope, Tyler Farghly, Daniela Gerz, Ivan Vuli\u0107, and Matthew Henderson. 2020. Span-ConveRT: Few-shot span extraction for dialog with pretrained conversational representations. In Proceedings of the 58th Annual Meeting of the Association for Com- putational Linguistics, pages 107-121, Online. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4171--4186",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1423"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Frames: a corpus for adding memory to goal-oriented dialogue systems",
"authors": [
{
"first": "Layla",
"middle": [
"El"
],
"last": "Asri",
"suffix": ""
},
{
"first": "Hannes",
"middle": [],
"last": "Schulz",
"suffix": ""
},
{
"first": "Shikhar",
"middle": [],
"last": "Sharma",
"suffix": ""
},
{
"first": "Jeremie",
"middle": [],
"last": "Zumer",
"suffix": ""
},
{
"first": "Justin",
"middle": [],
"last": "Harris",
"suffix": ""
},
{
"first": "Emery",
"middle": [],
"last": "Fine",
"suffix": ""
},
{
"first": "Rahul",
"middle": [],
"last": "Mehrotra",
"suffix": ""
},
{
"first": "Kaheer",
"middle": [],
"last": "Suleman",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue",
"volume": "",
"issue": "",
"pages": "207--219",
"other_ids": {
"DOI": [
"10.18653/v1/W17-5526"
]
},
"num": null,
"urls": [],
"raw_text": "Layla El Asri, Hannes Schulz, Shikhar Sharma, Jeremie Zumer, Justin Harris, Emery Fine, Rahul Mehrotra, and Kaheer Suleman. 2017. Frames: a corpus for adding memory to goal-oriented dialogue systems. In Proceedings of the 18th Annual SIG- dial Meeting on Discourse and Dialogue, pages 207- 219, Saarbr\u00fccken, Germany. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Multiwoz 2.1: Multi-domain dialogue state corrections and state tracking baselines",
"authors": [
{
"first": "Mihail",
"middle": [],
"last": "Eric",
"suffix": ""
},
{
"first": "Rahul",
"middle": [],
"last": "Goel",
"suffix": ""
},
{
"first": "Shachi",
"middle": [],
"last": "Paul",
"suffix": ""
},
{
"first": "Abhishek",
"middle": [],
"last": "Sethi",
"suffix": ""
},
{
"first": "Sanchit",
"middle": [],
"last": "Agarwal",
"suffix": ""
},
{
"first": "Shuyag",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Dilek",
"middle": [],
"last": "Hakkani-Tur",
"suffix": ""
}
],
"year": 2019,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyag Gao, and Dilek Hakkani- Tur. 2019. Multiwoz 2.1: Multi-domain dialogue state corrections and state tracking baselines. ArXiv, abs/1907.01669.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "MultiWOZ 2.1: A consolidated multi-domain dialogue dataset with state corrections and state tracking baselines",
"authors": [
{
"first": "Mihail",
"middle": [],
"last": "Eric",
"suffix": ""
},
{
"first": "Rahul",
"middle": [],
"last": "Goel",
"suffix": ""
},
{
"first": "Shachi",
"middle": [],
"last": "Paul",
"suffix": ""
},
{
"first": "Abhishek",
"middle": [],
"last": "Sethi",
"suffix": ""
},
{
"first": "Sanchit",
"middle": [],
"last": "Agarwal",
"suffix": ""
},
{
"first": "Shuyang",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Adarsh",
"middle": [],
"last": "Kumar",
"suffix": ""
},
{
"first": "Anuj",
"middle": [],
"last": "Goyal",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Ku",
"suffix": ""
},
{
"first": "Dilek",
"middle": [],
"last": "Hakkani-Tur",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 12th Language Resources and Evaluation Conference",
"volume": "",
"issue": "",
"pages": "422--428",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyang Gao, Adarsh Kumar, Anuj Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020. MultiWOZ 2.1: A consolidated multi-domain dia- logue dataset with state corrections and state track- ing baselines. In Proceedings of the 12th Lan- guage Resources and Evaluation Conference, pages 422-428, Marseille, France. European Language Re- sources Association.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Key-value retrieval networks for task-oriented dialogue",
"authors": [
{
"first": "Mihail",
"middle": [],
"last": "Eric",
"suffix": ""
},
{
"first": "Lakshmi",
"middle": [],
"last": "Krishnan",
"suffix": ""
},
{
"first": "Francois",
"middle": [],
"last": "Charette",
"suffix": ""
},
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue",
"volume": "",
"issue": "",
"pages": "37--49",
"other_ids": {
"DOI": [
"10.18653/v1/W17-5506"
]
},
"num": null,
"urls": [],
"raw_text": "Mihail Eric, Lakshmi Krishnan, Francois Charette, and Christopher D. Manning. 2017. Key-value retrieval networks for task-oriented dialogue. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue, pages 37-49, Saarbr\u00fccken, Germany. Association for Computational Linguistics.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "A tailored pre-training model for task-oriented dialog generation. ArXiv, abs",
"authors": [
{
"first": "Jing",
"middle": [],
"last": "Gu",
"suffix": ""
},
{
"first": "Qingyang",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Chongruo",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Weiyan",
"middle": [],
"last": "Shi",
"suffix": ""
},
{
"first": "Zhou",
"middle": [],
"last": "Yu",
"suffix": ""
}
],
"year": 2004,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jing Gu, Qingyang Wu, Chongruo Wu, Weiyan Shi, and Zhou Yu. 2020. A tailored pre-training model for task-oriented dialog generation. ArXiv, abs/2004.13835.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Semantic parsing for technical support questions",
"authors": [
{
"first": "Abhirut",
"middle": [],
"last": "Gupta",
"suffix": ""
},
{
"first": "Anupama",
"middle": [],
"last": "Ray",
"suffix": ""
},
{
"first": "Gargi",
"middle": [],
"last": "Dasgupta",
"suffix": ""
},
{
"first": "Gautam",
"middle": [],
"last": "Singh",
"suffix": ""
},
{
"first": "Pooja",
"middle": [],
"last": "Aggarwal",
"suffix": ""
},
{
"first": "Prateeti",
"middle": [],
"last": "Mohapatra",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 27th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "3251--3259",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Abhirut Gupta, Anupama Ray, Gargi Dasgupta, Gau- tam Singh, Pooja Aggarwal, and Prateeti Mohapatra. 2018. Semantic parsing for technical support ques- tions. In Proceedings of the 27th International Con- ference on Computational Linguistics, pages 3251- 3259, Santa Fe, New Mexico, USA. Association for Computational Linguistics.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Don't stop pretraining: Adapt language models to domains and tasks",
"authors": [
{
"first": "Ana",
"middle": [],
"last": "Suchin Gururangan",
"suffix": ""
},
{
"first": "Swabha",
"middle": [],
"last": "Marasovi\u0107",
"suffix": ""
},
{
"first": "Kyle",
"middle": [],
"last": "Swayamdipta",
"suffix": ""
},
{
"first": "Iz",
"middle": [],
"last": "Lo",
"suffix": ""
},
{
"first": "Doug",
"middle": [],
"last": "Beltagy",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Downey",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Smith",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "8342--8360",
"other_ids": {
"DOI": [
"10.18653/v1/2020.acl-main.740"
]
},
"num": null,
"urls": [],
"raw_text": "Suchin Gururangan, Ana Marasovi\u0107, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and Noah A. Smith. 2020. Don't stop pretraining: Adapt language models to domains and tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8342-8360, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Multiwoz 2.3: A multi-domain task-oriented dataset enhanced with annotation corrections and coreference annotation",
"authors": [
{
"first": "Ting",
"middle": [],
"last": "Han",
"suffix": ""
},
{
"first": "Ximing",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Ryuichi",
"middle": [],
"last": "Takanobu",
"suffix": ""
},
{
"first": "Yixin",
"middle": [],
"last": "Lian",
"suffix": ""
},
{
"first": "Chongxuan",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Peng",
"suffix": ""
},
{
"first": "Minlie",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2020,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ting Han, Ximing Liu, Ryuichi Takanobu, Yixin Lian, Chongxuan Huang, Wei Peng, and Minlie Huang. 2020. Multiwoz 2.3: A multi-domain task-oriented dataset enhanced with annotation corrections and co- reference annotation. ArXiv, abs/2010.05594.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "TripPy: A triple copy strategy for value independent neural dialog state tracking",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "Heck",
"suffix": ""
},
{
"first": "Nurul",
"middle": [],
"last": "Carel Van Niekerk",
"suffix": ""
},
{
"first": "Christian",
"middle": [],
"last": "Lubis",
"suffix": ""
},
{
"first": "Hsien-Chin",
"middle": [],
"last": "Geishauser",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Milica",
"middle": [],
"last": "Moresi",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Gasic",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
"volume": "",
"issue": "",
"pages": "35--44",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Heck, Carel van Niekerk, Nurul Lubis, Chris- tian Geishauser, Hsien-Chin Lin, Marco Moresi, and Milica Gasic. 2020. TripPy: A triple copy strategy for value independent neural dialog state tracking. In Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 35-44, 1st virtual meeting. Association for Computational Linguistics.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Content and cluster analysis: assessing representational similarity in neural systems",
"authors": [
{
"first": "Aarre",
"middle": [],
"last": "Laakso",
"suffix": ""
},
{
"first": "Garrison",
"middle": [],
"last": "Cottrell",
"suffix": ""
}
],
"year": 2000,
"venue": "Philosophical psychology",
"volume": "13",
"issue": "1",
"pages": "47--76",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Aarre Laakso and Garrison Cottrell. 2000. Content and cluster analysis: assessing representational sim- ilarity in neural systems. Philosophical psychology, 13(1):47-76.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "An evaluation dataset for intent classification and out-of-scope prediction",
"authors": [
{
"first": "Stefan",
"middle": [],
"last": "Larson",
"suffix": ""
},
{
"first": "Anish",
"middle": [],
"last": "Mahendran",
"suffix": ""
},
{
"first": "Joseph",
"middle": [
"J"
],
"last": "Peper",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Clarke",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Parker",
"middle": [],
"last": "Hill",
"suffix": ""
},
{
"first": "Jonathan",
"middle": [
"K"
],
"last": "Kummerfeld",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Leach",
"suffix": ""
},
{
"first": "Michael",
"middle": [
"A"
],
"last": "Laurenzano",
"suffix": ""
},
{
"first": "Lingjia",
"middle": [],
"last": "Tang",
"suffix": ""
},
{
"first": "Jason",
"middle": [],
"last": "Mars",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "1311--1316",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1131"
]
},
"num": null,
"urls": [],
"raw_text": "Stefan Larson, Anish Mahendran, Joseph J. Peper, Christopher Clarke, Andrew Lee, Parker Hill, Jonathan K. Kummerfeld, Kevin Leach, Michael A. Laurenzano, Lingjia Tang, and Jason Mars. 2019. An evaluation dataset for intent classification and out-of-scope prediction. In Proceedings of the 2019 Conference on Empirical Methods in Natu- ral Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1311-1316, Hong Kong, China. Association for Computational Linguistics.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Results of the multi-domain task-completion dialog challenge",
"authors": [
{
"first": "Jinchao",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Baolin",
"middle": [],
"last": "Peng",
"suffix": ""
},
{
"first": "Sungjin",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Jianfeng",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Ryuichi",
"middle": [],
"last": "Takanobu",
"suffix": ""
},
{
"first": "Qi",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Minlie",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Hannes",
"middle": [],
"last": "Schulz",
"suffix": ""
},
{
"first": "Adam",
"middle": [],
"last": "Atkinson",
"suffix": ""
},
{
"first": "Mahmoud",
"middle": [],
"last": "Adada",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 34th AAAI Conference on Artificial Intelligence, Eighth Dialog System Technology Challenge Workshop",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jinchao Li, Baolin Peng, Sungjin Lee, Jianfeng Gao, Ryuichi Takanobu, Qi Zhu, Minlie Huang, Hannes Schulz, Adam Atkinson, and Mahmoud Adada. 2020. Results of the multi-domain task-completion dialog challenge. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, Eighth Dialog System Technology Challenge Workshop.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Microsoft dialogue challenge: Building end-to-end task-completion dialogue systems",
"authors": [
{
"first": "Xiujun",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Yu",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Siqi",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Sarah",
"middle": [],
"last": "Panda",
"suffix": ""
},
{
"first": "Jingjing",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Jianfeng",
"middle": [],
"last": "Gao",
"suffix": ""
}
],
"year": 2018,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiujun Li, Yu Wang, Siqi Sun, Sarah Panda, Jingjing Liu, and Jianfeng Gao. 2018. Microsoft dialogue challenge: Building end-to-end task-completion dia- logue systems. ArXiv, abs/1807.11125.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Benchmarking natural language understanding services for building conversational agents",
"authors": [
{
"first": "Xingkun",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Arash",
"middle": [],
"last": "Eshghi",
"suffix": ""
},
{
"first": "Pawel",
"middle": [],
"last": "Swietojanski",
"suffix": ""
},
{
"first": "Verena",
"middle": [],
"last": "Rieser",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Tenth International Workshop on Spoken Dialogue Systems Technology (IWSDS)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xingkun Liu, Arash Eshghi, Pawel Swietojanski, and Verena Rieser. 2019. Benchmarking natural lan- guage understanding services for building conver- sational agents. In Proceedings of the Tenth In- ternational Workshop on Spoken Dialogue Systems Technology (IWSDS), Ortigia, Siracusa (SR), Italy. Springer.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Dialoglue: A natural language understanding benchmark for task-oriented dialogue",
"authors": [
{
"first": "Shikib",
"middle": [],
"last": "Mehri",
"suffix": ""
},
{
"first": "Mihail",
"middle": [],
"last": "Eric",
"suffix": ""
},
{
"first": "Dilek",
"middle": [],
"last": "Hakkani-Tur",
"suffix": ""
}
],
"year": 2020,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shikib Mehri, Mihail Eric, and Dilek Hakkani-Tur. 2020. Dialoglue: A natural language understand- ing benchmark for task-oriented dialogue. ArXiv, abs/2009.13570.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "What happens to BERT embeddings during fine-tuning?",
"authors": [
{
"first": "Amil",
"middle": [],
"last": "Merchant",
"suffix": ""
},
{
"first": "Elahe",
"middle": [],
"last": "Rahimtoroghi",
"suffix": ""
},
{
"first": "Ellie",
"middle": [],
"last": "Pavlick",
"suffix": ""
},
{
"first": "Ian",
"middle": [],
"last": "Tenney",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP",
"volume": "",
"issue": "",
"pages": "33--44",
"other_ids": {
"DOI": [
"10.18653/v1/2020.blackboxnlp-1.4"
]
},
"num": null,
"urls": [],
"raw_text": "Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick, and Ian Tenney. 2020. What happens to BERT em- beddings during fine-tuning? In Proceedings of the Third BlackboxNLP Workshop on Analyzing and In- terpreting Neural Networks for NLP, pages 33-44, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Neural belief tracker: Data-driven dialogue state tracking",
"authors": [
{
"first": "Nikola",
"middle": [],
"last": "Mrk\u0161i\u0107",
"suffix": ""
},
{
"first": "\u00d3",
"middle": [],
"last": "Diarmuid",
"suffix": ""
},
{
"first": "Tsung-Hsien",
"middle": [],
"last": "S\u00e9aghdha",
"suffix": ""
},
{
"first": "Blaise",
"middle": [],
"last": "Wen",
"suffix": ""
},
{
"first": "Steve",
"middle": [],
"last": "Thomson",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Young",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1777--1788",
"other_ids": {
"DOI": [
"10.18653/v1/P17-1163"
]
},
"num": null,
"urls": [],
"raw_text": "Nikola Mrk\u0161i\u0107, Diarmuid \u00d3 S\u00e9aghdha, Tsung-Hsien Wen, Blaise Thomson, and Steve Young. 2017. Neu- ral belief tracker: Data-driven dialogue state track- ing. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Vol- ume 1: Long Papers), pages 1777-1788, Vancouver, Canada. Association for Computational Linguistics.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Language models are unsupervised multitask learners",
"authors": [
{
"first": "Alec",
"middle": [],
"last": "Radford",
"suffix": ""
},
{
"first": "Jeff",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Rewon",
"middle": [],
"last": "Child",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Luan",
"suffix": ""
},
{
"first": "Dario",
"middle": [],
"last": "Amodei",
"suffix": ""
},
{
"first": "Ilya",
"middle": [],
"last": "Sutskever",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. Techni- cal report, OpenAi.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Towards scalable multi-domain conversational agents: The schema-guided dialogue dataset",
"authors": [
{
"first": "Abhinav",
"middle": [],
"last": "Rastogi",
"suffix": ""
},
{
"first": "Xiaoxue",
"middle": [],
"last": "Zang",
"suffix": ""
},
{
"first": "Srinivas",
"middle": [],
"last": "Sunkara",
"suffix": ""
},
{
"first": "Raghav",
"middle": [],
"last": "Gupta",
"suffix": ""
},
{
"first": "Pranav",
"middle": [],
"last": "Khaitan",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
"volume": "34",
"issue": "",
"pages": "8689--8696",
"other_ids": {
"DOI": [
"10.1609/aaai.v34i05.6394"
]
},
"num": null,
"urls": [],
"raw_text": "Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta, and Pranav Khaitan. 2020. To- wards scalable multi-domain conversational agents: The schema-guided dialogue dataset. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8689-8696.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Building a conversational agent overnight with dialogue self-play",
"authors": [
{
"first": "Pararth",
"middle": [],
"last": "Shah",
"suffix": ""
},
{
"first": "Dilek",
"middle": [],
"last": "Hakkani-T\u00fcr",
"suffix": ""
},
{
"first": "Gokhan",
"middle": [],
"last": "T\u00fcr",
"suffix": ""
},
{
"first": "Abhinav",
"middle": [],
"last": "Rastogi",
"suffix": ""
},
{
"first": "Ankur",
"middle": [],
"last": "Bapna",
"suffix": ""
},
{
"first": "Neha",
"middle": [],
"last": "Nayak",
"suffix": ""
},
{
"first": "Larry",
"middle": [],
"last": "Heck",
"suffix": ""
}
],
"year": 2018,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Pararth Shah, Dilek Hakkani-T\u00fcr, Gokhan T\u00fcr, Ab- hinav Rastogi, Ankur Bapna, Neha Nayak, and Larry Heck. 2018. Building a conversational agent overnight with dialogue self-play. ArXiv, abs/1801.04871.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "How to fine-tune bert for text classification?",
"authors": [
{
"first": "Chi",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Xipeng",
"middle": [],
"last": "Qiu",
"suffix": ""
},
{
"first": "Yige",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Xuanjing",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2019,
"venue": "China National Conference on Chinese Computational Linguistics",
"volume": "",
"issue": "",
"pages": "194--206",
"other_ids": {
"DOI": [
"10.1007/978-3-030-32381-3_16"
]
},
"num": null,
"urls": [],
"raw_text": "Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. 2019. How to fine-tune bert for text classification? In China National Conference on Chinese Computa- tional Linguistics, pages 194-206. Springer.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "A networkbased end-to-end trainable task-oriented dialogue system",
"authors": [
{
"first": "David",
"middle": [],
"last": "Tsung-Hsien Wen",
"suffix": ""
},
{
"first": "Nikola",
"middle": [],
"last": "Vandyke",
"suffix": ""
},
{
"first": "Milica",
"middle": [],
"last": "Mrk\u0161i\u0107",
"suffix": ""
},
{
"first": "Lina",
"middle": [
"M"
],
"last": "Ga\u0161i\u0107",
"suffix": ""
},
{
"first": "Pei-Hao",
"middle": [],
"last": "Rojas-Barahona",
"suffix": ""
},
{
"first": "Stefan",
"middle": [],
"last": "Su",
"suffix": ""
},
{
"first": "Steve",
"middle": [],
"last": "Ultes",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Young",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "438--449",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tsung-Hsien Wen, David Vandyke, Nikola Mrk\u0161i\u0107, Milica Ga\u0161i\u0107, Lina M. Rojas-Barahona, Pei-Hao Su, Stefan Ultes, and Steve Young. 2017. A network- based end-to-end trainable task-oriented dialogue system. In Proceedings of the 15th Conference of the European Chapter of the Association for Compu- tational Linguistics: Volume 1, Long Papers, pages 438-449, Valencia, Spain. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "TOD-BERT: Pre-trained natural language understanding for task-oriented dialogue",
"authors": [
{
"first": "Chien-Sheng",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "C",
"middle": [
"H"
],
"last": "Steven",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Hoi",
"suffix": ""
},
{
"first": "Caiming",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Xiong",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "917--929",
"other_ids": {
"DOI": [
"10.18653/v1/2020.emnlp-main.66"
]
},
"num": null,
"urls": [],
"raw_text": "Chien-Sheng Wu, Steven C.H. Hoi, Richard Socher, and Caiming Xiong. 2020. TOD-BERT: Pre-trained natural language understanding for task-oriented di- alogue. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 917-929, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "ConvLab-2: An open-source toolkit for building, evaluating, and diagnosing dialogue systems",
"authors": [
{
"first": "Qi",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Zheng",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Yan",
"middle": [],
"last": "Fang",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Ryuichi",
"middle": [],
"last": "Takanobu",
"suffix": ""
},
{
"first": "Jinchao",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Baolin",
"middle": [],
"last": "Peng",
"suffix": ""
},
{
"first": "Jianfeng",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Xiaoyan",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Minlie",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
"volume": "",
"issue": "",
"pages": "142--149",
"other_ids": {
"DOI": [
"10.18653/v1/2020.acl-demos.19"
]
},
"num": null,
"urls": [],
"raw_text": "Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi Takanobu, Jinchao Li, Baolin Peng, Jianfeng Gao, Xiaoyan Zhu, and Minlie Huang. 2020. ConvLab- 2: An open-source toolkit for building, evaluating, and diagnosing dialogue systems. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 142-149, Online. Association for Computa- tional Linguistics.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"type_str": "figure",
"text": "Masked LM prediction accuracy of BERT, DAPT with different data sizes, and TAPT models.",
"uris": null,
"num": null
},
"FIGREF1": {
"type_str": "figure",
"text": "RSA on OOS test set between BERT and further pre-training: 1%, 5%, 25%, and 100% data DAPT, TAPT, and TAPT after full data DAPT.",
"uris": null,
"num": null
},
"TABREF1": {
"text": "Figure 2: RSA on OOS test set for BERT and DAPT model with 1%, 10%, and 100% fine-tuning data sizes.",
"html": null,
"content": "<table><tr><td/><td/><td>\u2206 DAPT</td><td>RSA avg.</td><td>best DAPT</td></tr><tr><td colspan=\"5\">Fine-tune data 100% 10% 100% 10% 100% 10%</td></tr><tr><td/><td>HWU</td><td colspan=\"2\">-0.22 0.46 0.73 0.83</td><td>5%</td><td>5%</td></tr><tr><td>IC</td><td colspan=\"3\">BANKING -0.21 -0.53 0.74 0.82</td><td>5% 25%</td></tr><tr><td/><td>OOS</td><td colspan=\"2\">0.42 1.02 0.69 0.77</td><td>1% 25%</td></tr><tr><td colspan=\"5\">SF REST8K 0.63 0.63 0.73 0.79 100% 25%</td></tr><tr><td>SP</td><td colspan=\"3\">TOP MultiWOZ 0.79 2.44 0.57 0.70 -0.21 0.35 0.71 0.72</td><td>1% 1% 100% 5%</td></tr><tr><td>DST</td><td colspan=\"4\">TripPy TOD-DST 1.27 3.67 0.39 0.49 25% 100% -0.08 1.44 0.52 0.56 1% 5%</td></tr><tr><td>DAP</td><td colspan=\"4\">MultiWOZ 0.76 0.35 0.26 0.45 25% 100% GSIM 0.10 0.28 0.66 0.69 5% 25%</td></tr></table>",
"num": null,
"type_str": "table"
},
"TABREF3": {
"text": "Statistics of pre-training corpus from datasets.",
"html": null,
"content": "<table><tr><td>The Schema corpus (marked with *) is obtained from</td></tr><tr><td>the train set and others are obtained by merging train,</td></tr><tr><td>dev, and test set.</td></tr></table>",
"num": null,
"type_str": "table"
},
"TABREF5": {
"text": "Downstream datasets information and the model architecture we used for each dataset. The sizes of train/dev/test sets are the number of dialogs. Note that we mark MultiWOZ 2.1 in dialog state tracking with two symbols, \u2020 and \u2021, because we adopt two model architectures on this dataset: TripPy",
"html": null,
"content": "<table/>",
"num": null,
"type_str": "table"
}
}
}
} |