File size: 44,967 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:13:01.154517Z"
},
"title": "Comparing Euclidean and Hyperbolic Embeddings on the WordNet Nouns Hypernymy Graph",
"authors": [
{
"first": "Sameer",
"middle": [],
"last": "Bansal",
"suffix": "",
"affiliation": {},
"email": "sbansal70@bloomberg.net"
},
{
"first": "Adrian",
"middle": [],
"last": "Benton",
"suffix": "",
"affiliation": {},
"email": "abenton10@bloomberg.net"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Nickel and Kiela (2017) present a new method for embedding tree nodes in the Poincar\u00e9 ball, and suggest that these hyperbolic embeddings are far more effective than Euclidean embeddings at embedding nodes in large, hierarchically structured graphs like the WordNet nouns hypernymy tree. This is especially true in low dimensions (Nickel and Kiela, 2017, Table 1). In this work, we seek to reproduce their experiments on embedding and reconstructing the WordNet nouns hypernymy graph. Counter to what they report, we find that Euclidean embeddings are able to represent this tree at least as well as Poincar\u00e9 embeddings, when allowed at least 50 dimensions. We note that this does not diminish the significance of their work given the impressive performance of hyperbolic embeddings in very low-dimensional settings. However, given the wide influence of their work, our aim here is to present an updated and more accurate comparison between the Euclidean and hyperbolic embeddings.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "Nickel and Kiela (2017) present a new method for embedding tree nodes in the Poincar\u00e9 ball, and suggest that these hyperbolic embeddings are far more effective than Euclidean embeddings at embedding nodes in large, hierarchically structured graphs like the WordNet nouns hypernymy tree. This is especially true in low dimensions (Nickel and Kiela, 2017, Table 1). In this work, we seek to reproduce their experiments on embedding and reconstructing the WordNet nouns hypernymy graph. Counter to what they report, we find that Euclidean embeddings are able to represent this tree at least as well as Poincar\u00e9 embeddings, when allowed at least 50 dimensions. We note that this does not diminish the significance of their work given the impressive performance of hyperbolic embeddings in very low-dimensional settings. However, given the wide influence of their work, our aim here is to present an updated and more accurate comparison between the Euclidean and hyperbolic embeddings.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Nickel and Kiela (2017) introduced a method for learning embeddings in hyperbolic space for large, hierarchically structured objects like the WordNet nouns hypernymy graph. This work convincingly shows that across a range of embedding dimensions, from as low as 5 to as high as 200, hyperbolic embeddings consistently outperformed their Euclidean counterparts (Nickel and Kiela, 2017, Table 1 ). Illustrating the difference in performance at the highest experimental setting of 200 dimensions, the mean average precision (MAP) score for hyperbolic embeddings was shown to be around 5 times that of Euclidean for embedding nouns in the WordNet hypernymy graph. 1 These experiments have been extremely influential, with the results on embedding the WordNet nouns hypernymy graph baselines often cited in later works on enhanced hyperbolic embeddings (De Sa et al., 2018; Ganea et al., 2018; Dhingra et al., 2018; L\u00f3pez et al., 1 The embeddings were evaluated on a reconstruction task where a MAP score closer to 1 indicates better performance. 2019 ; Balazevic et al., 2019; Feyisetan et al., 2019; Chami et al., 2020). 2 In this work, we reproduce the reconstruction error experiments on the WordNet noun hypernymy graph from Nickel and Kiela (2017) . Counter to what they report, we find that Euclidean word embeddings are as effective at encoding the WordNet nouns graph as hyperbolic embeddings when given at least 50 dimensions. In fact, Euclidean embeddings with \u2265 100 dimensions achieve lower reconstruction error over embeddings in the Lorentz model, an improved hyperbolic embedding method, which was published the following year (Nickel and Kiela, 2018) .",
"cite_spans": [
{
"start": 360,
"end": 384,
"text": "(Nickel and Kiela, 2017,",
"ref_id": "BIBREF9"
},
{
"start": 660,
"end": 661,
"text": "1",
"ref_id": null
},
{
"start": 848,
"end": 868,
"text": "(De Sa et al., 2018;",
"ref_id": "BIBREF2"
},
{
"start": 869,
"end": 888,
"text": "Ganea et al., 2018;",
"ref_id": "BIBREF7"
},
{
"start": 889,
"end": 910,
"text": "Dhingra et al., 2018;",
"ref_id": "BIBREF4"
},
{
"start": 911,
"end": 926,
"text": "L\u00f3pez et al., 1",
"ref_id": null
},
{
"start": 1042,
"end": 1046,
"text": "2019",
"ref_id": null
},
{
"start": 1049,
"end": 1072,
"text": "Balazevic et al., 2019;",
"ref_id": "BIBREF0"
},
{
"start": 1073,
"end": 1096,
"text": "Feyisetan et al., 2019;",
"ref_id": "BIBREF6"
},
{
"start": 1097,
"end": 1119,
"text": "Chami et al., 2020). 2",
"ref_id": null
},
{
"start": 1225,
"end": 1248,
"text": "Nickel and Kiela (2017)",
"ref_id": "BIBREF9"
},
{
"start": 1637,
"end": 1661,
"text": "(Nickel and Kiela, 2018)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [
{
"start": 385,
"end": 392,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The inability to reproduce the reported Euclidean experiments has been raised in several issues in the associated GitHub repository. 3 This has also been acknowledged by the authors of the original study, who suggest that the original Euclidean embeddings were regularized in a way that may have hurt performance. 4 However, the published manuscript has not been updated to reflect these problems with reproducing the Euclidean embedding baselines. As such, we hope that our reproduction will serve as a useful reference for those who are interested in exploring hyperbolic embeddings.",
"cite_spans": [
{
"start": 133,
"end": 134,
"text": "3",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We use the source code released by the authors to carry out all experiments in this study, reusing the data processing, model training, and evaluation pipelines.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental Setup",
"sec_num": "2"
},
{
"text": "Dataset. Following Nickel and Kiela (2017), we embed the WordNet noun hierarchy (Fellbaum, 1998, WordNet-Nouns) in both Euclidean and hyperbolic space. Though the original study also published results on additional datasets, we restrict our focus to WordNet-Nouns, which exhibited a considerable gap in performance between embeddings.",
"cite_spans": [
{
"start": 80,
"end": 111,
"text": "(Fellbaum, 1998, WordNet-Nouns)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental Setup",
"sec_num": "2"
},
{
"text": "Model training. Other than learning rate, we retain the default hyperparameters specified in the released source code, and train embeddings for 1,500 epochs. The learning rate is tuned in the range 10 [\u22122,3] independently for each class of embeddings ( Figure 1 ) with dimensionality fixed to 20, and selection based on loss after 200 epochs. We selected a learning rate of 0.5 for Euclidean and 5.0 for both Poincar\u00e9 and Lorentz embeddings. In our initial experiments, we found that other hyperparameters, such as number of negative samples, also affected embeddings performance, but were less influential than learning rate. See Appendix A for details on the exact version of the codebase used in our experiments and how it was called. See the original study (Nickel and Kiela, 2017) for additional details on model training and evaluation.",
"cite_spans": [
{
"start": 761,
"end": 785,
"text": "(Nickel and Kiela, 2017)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [
{
"start": 253,
"end": 261,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Experimental Setup",
"sec_num": "2"
},
{
"text": "Evaluation. Embeddings are evaluated under the original reconstruction error setting. For each hypernym pair < u, v > in the tree, rank all non-hypernyms along with v by distance from u in the embedded space. The fidelity to which a set of embeddings represents the tree is evaluated according to mean average precision (MAP) and mean rank (MR) of the positive example, v, averaged across rankings. We focus on reconstruction error experiments as they are meant to highlight the capacity of each embedding space. The ability to generalize out of sample is an orthogonal question, however which we don't address in this work. This is mostly since the source code to reproduce these results from Nickel and Kiela (2017) has not yet been released, and the particular folds of heldout edges are also not provided. As such, we leave reproduction of the link prediction evaluation of Euclidean vs. hyperbolic embeddings to future work. 5 3 Results Table 1 shows the MAP and MR results for the WordNet-Nouns hierarchy reconstruction task. There are clear differences between the reproduced and reported performance for Euclidean embeddings. In the 50 dimensions setting, the reproduced Euclidean embeddings achieve a MAP score of 88.9 compared to 14 in the original study, and an MR score of 1.8 compared to 1,281. In fact, this MR score for Euclidean embed- 5 At the time of writing, there is an open GitHub issue to provide more details on the out of sample, link prediction evaluation https://github.com/ facebookresearch/poincare-embeddings/ issues/10. dings at 50 dimensions is better than that achieved by Poincar\u00e9 and Lorentz embeddings even with 200 dimensions. With greater than 50 dimensions, Euclidean embeddings outperform both Lorentz and Poincar\u00e9 embeddings according to MR and MAP. In contrast, the performance of hyperbolic embeddings remain stable across dimensionality and are similar between reproduced and reported results. The improved reconstruction error of Lorentz embeddings in prior work is likely due to a more comprehensive hyperparameter search.",
"cite_spans": [
{
"start": 694,
"end": 717,
"text": "Nickel and Kiela (2017)",
"ref_id": "BIBREF9"
},
{
"start": 930,
"end": 931,
"text": "5",
"ref_id": null
},
{
"start": 1352,
"end": 1353,
"text": "5",
"ref_id": null
}
],
"ref_spans": [
{
"start": 942,
"end": 949,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Experimental Setup",
"sec_num": "2"
},
{
"text": "We also found that performance is robust to random seed for all methods, with a standard deviation of less than a point for both MAP and MR score when training 50-dimensional Euclidean, Poincar\u00e9, or Lorentz embeddings (Table 2) Kiela, 2017, 2018) and our reproduction with Euclidean embeddings constrained to unit norm are similar.",
"cite_spans": [
{
"start": 228,
"end": 246,
"text": "Kiela, 2017, 2018)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 218,
"end": 227,
"text": "(Table 2)",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Experimental Setup",
"sec_num": "2"
},
{
"text": "faithfully than similarly trained hyperbolic embeddings with at least 50 dimensions. In this section, we discuss possible reasons for the discrepancy between reported and reproduced Euclidean embeddings performance. We first posed this question to the authors themselves (Nickel and Kiela, 2017) who clarified on GitHub that the difference in performance for Euclidean embeddings in their published manuscript was due to a regularization method used at the time. They further added that in the released code they \"disabled this regularization by default and it turned out to work better\". 6 Follow-up questions regarding the details of this regularization method have yet to be addressed, at the time of writing. 7",
"cite_spans": [
{
"start": 271,
"end": 295,
"text": "(Nickel and Kiela, 2017)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental Setup",
"sec_num": "2"
},
{
"text": "We speculate that the authors may have normalized the Euclidean embeddings to constrain them to lie within a unit 2-norm ball, similar to how Poincar\u00e9 embeddings are trained (Nickel and Kiela, 2017, Section 3.1) . Note that while projection into the unit ball is necessary to learn valid Poincar\u00e9 embeddings, Euclidean embeddings require no such constraint. The released source code actually supports projecting Euclidean embeddings into the unit ball after each iteration, but this is disabled by default, with the argument max norm set to None. 8 To test whether this constraint has an effect on embedding quality, we train Euclidean embeddings constrained to the unit ball by setting max norm to 1. Table 3 shows that reconstruction scores for Euclidean embeddings constrained to the unit ball are much closer to those published in Nickel 6 Author response regarding difference in Euclidean performance https://github.com/ facebookresearch/poincare-embeddings/ issues/35#issuecomment-685261354",
"cite_spans": [
{
"start": 174,
"end": 211,
"text": "(Nickel and Kiela, 2017, Section 3.1)",
"ref_id": null
},
{
"start": 842,
"end": 843,
"text": "6",
"ref_id": null
}
],
"ref_spans": [
{
"start": 702,
"end": 709,
"text": "Table 3",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Constraining Euclidean Embedding Norm",
"sec_num": null
},
{
"text": "7 Question seeking further information regarding regularization https://github.com/ facebookresearch/poincare-embeddings/ issues/35#issuecomment-685261354 and a relevant comment in issuecomment-735209781.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Constraining Euclidean Embedding Norm",
"sec_num": null
},
{
"text": "8 L2 normalization disabled by default: https://github.com/facebookresearch/ poincare-embeddings/blob/4c7316b/hype/ manifolds/euclidean.py#L16.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Constraining Euclidean Embedding Norm",
"sec_num": null
},
{
"text": "and Kiela (2017, 2018) than unconstrained Euclidean embeddings.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Constraining Euclidean Embedding Norm",
"sec_num": null
},
{
"text": "Varying Norm Constraints To explore the impact of norm constraints, we conduct further experiments on training 100 dimensional Euclidean embeddings. We vary the max norm setting between 1 and 10, allowing the Euclidean embeddings to grow larger during training. As an alternative method for controlling the norm of the embeddings, we also vary the strength of an L2 penalty as an additional term in the loss. MAP and MR scores improve as the max norm setting is increased, the norm constraint is relaxed (Table 4 ). In fact, setting max norm to 5 yields Euclidean embeddings that achieve similar reconstruction performance as unconstrained embeddings.",
"cite_spans": [],
"ref_spans": [
{
"start": 504,
"end": 512,
"text": "(Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Constraining Euclidean Embedding Norm",
"sec_num": null
},
{
"text": "We found that including an L2 regularization penalty in the loss has little effect on the final reconstruction scores. Thus, although we suspect unnecessary renormalization of the Euclidean embeddings may have caused the poor reconstruction performance reported in prior work, we defer to the authors of the original study for confirmation. Table 4 : MAP and MR for 100 dimensional embeddings. We include results with no regularization or constraints (row 1) and with L2 regularization of varying degree. max norm = k means that embeddings are projected back into a radius k 2-norm ball after each iteration. N&K refers to best published results from Kiela (2017, 2018) .",
"cite_spans": [
{
"start": 651,
"end": 669,
"text": "Kiela (2017, 2018)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 341,
"end": 348,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "Constraining Euclidean Embedding Norm",
"sec_num": null
},
{
"text": "In our reproduction of the experiments in Table 1 of Nickel and Kiela (2017) , we find that Euclidean actually outperform Poincar\u00e9 embeddings when allowed a moderate number of dimensions. This is a realistic number of dimensions for typical non-contextual word embeddings, and a far lower dimensionality than subword token embeddings used in pretrained transformer language models. For example, released GloVe embeddings range from 50 to 300 dimensions (Pennington et al., 2014) and BERT base uses 768-dimensional subword embeddings (Devlin et al., 2019) . Nevertheless, the strong performance of hyperbolic embeddings in very low dimensions (less than 20) highlights their main strength: succinctly embedding nodes in hierarchically structured graphs with tight limitations on embedding size.",
"cite_spans": [
{
"start": 53,
"end": 76,
"text": "Nickel and Kiela (2017)",
"ref_id": "BIBREF9"
},
{
"start": 453,
"end": 478,
"text": "(Pennington et al., 2014)",
"ref_id": "BIBREF11"
},
{
"start": 533,
"end": 554,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [
{
"start": 42,
"end": 49,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
},
{
"text": "However, part of Nickel and Kiela (2017)'s impact came from the astounding gains from hyperbolic embeddings over Euclidean across a wide range of embedding widths. Subsequent application of Poincar\u00e9 embeddings often report mixed results when using non-Euclidean vs. Euclidean embeddings in downstream tasks (Dhingra et al., 2018; L\u00f3pez et al., 2019) . We hope that this reproduction will serve as a valuable reference for others who are just beginning to explore hyperbolic embeddings.",
"cite_spans": [
{
"start": 307,
"end": 329,
"text": "(Dhingra et al., 2018;",
"ref_id": "BIBREF4"
},
{
"start": 330,
"end": 349,
"text": "L\u00f3pez et al., 2019)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
},
{
"text": "Nickel and Kiela (2017) has been cited over 500 times (source: www.semanticscholar.org).3 https://github.com/facebookresearch/ poincare-embeddings/issues/35 ; 68 ; 72 4 Author response on GitHub github.com/ facebookresearch/poincare-embeddings/ issues/35#issuecomment-685174866",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "AnalysisIn Section 3, we show it is possible to learn Euclidean embeddings that can reconstruct WordNet-Nouns more",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "We thank Maximilian Nickel and Douwe Kiela for their helpful feedback while carrying out this study and for making the source code available. We also thank the workshop organizers for providing an avenue for such work to be published and the anonymous reviewers whose feedback helped us improve this work. Thanks also to the GitHub users who reported similar issues in the source code repository, which motivated us to publish this study.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
},
{
"text": "Sample call to train embeddings and run reconstruction evaluation:# ## P a r a m e t e r s LR= 0 . 5 DIM=20 MANIFOLD=\" e u c l i d e a n \" We use the poincare-embeddings implementation https://github. com/facebookresearch/ poincare-embeddings at commit 4c7316b14dce3b89e6a2d0c7994d418dffb42c94.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A Call to Poincar\u00e9 Embedding Trainer",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Multi-relational poincar\u00e9 graph embeddings",
"authors": [
{
"first": "Ivana",
"middle": [],
"last": "Balazevic",
"suffix": ""
},
{
"first": "Carl",
"middle": [],
"last": "Allen",
"suffix": ""
},
{
"first": "Timothy",
"middle": [],
"last": "Hospedales",
"suffix": ""
}
],
"year": 2019,
"venue": "Proc. NeurIPS",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ivana Balazevic, Carl Allen, and Timothy Hospedales. 2019. Multi-relational poincar\u00e9 graph embeddings. In Proc. NeurIPS.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Lowdimensional hyperbolic knowledge graph embeddings",
"authors": [
{
"first": "Ines",
"middle": [],
"last": "Chami",
"suffix": ""
},
{
"first": "Adva",
"middle": [],
"last": "Wolf",
"suffix": ""
},
{
"first": "Da-Cheng",
"middle": [],
"last": "Juan",
"suffix": ""
},
{
"first": "Frederic",
"middle": [],
"last": "Sala",
"suffix": ""
},
{
"first": "Sujith",
"middle": [],
"last": "Ravi",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "R\u00e9",
"suffix": ""
}
],
"year": 2020,
"venue": "Proc. ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher R\u00e9. 2020. Low- dimensional hyperbolic knowledge graph embed- dings. In Proc. ACL.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Representation tradeoffs for hyperbolic embeddings",
"authors": [
{
"first": "Albert",
"middle": [],
"last": "Christopher De Sa",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Gu",
"suffix": ""
},
{
"first": "Frederic",
"middle": [],
"last": "R\u00e9",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Sala",
"suffix": ""
}
],
"year": 2018,
"venue": "Proc. MLR",
"volume": "80",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christopher De Sa, Albert Gu, Christopher R\u00e9, and Frederic Sala. 2018. Representation tradeoffs for hy- perbolic embeddings. Proc. MLR, 80:4460.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proc. NAACL",
"volume": "",
"issue": "",
"pages": "4171--4186",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understand- ing. In Proc. NAACL, pages 4171-4186.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Embedding text in hyperbolic spaces",
"authors": [
{
"first": "Bhuwan",
"middle": [],
"last": "Dhingra",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Shallue",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Norouzi",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Dai",
"suffix": ""
},
{
"first": "George",
"middle": [],
"last": "Dahl",
"suffix": ""
}
],
"year": 2018,
"venue": "Proc. (TextGraphs-12)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/W18-1708"
]
},
"num": null,
"urls": [],
"raw_text": "Bhuwan Dhingra, Christopher Shallue, Mohammad Norouzi, Andrew Dai, and George Dahl. 2018. Embedding text in hyperbolic spaces. In Proc. (TextGraphs-12).",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "WordNet: An Electronic Lexical Database",
"authors": [
{
"first": "Christiane",
"middle": [],
"last": "Fellbaum",
"suffix": ""
}
],
"year": 1998,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Leveraging hierarchical representations for preserving privacy and utility in text",
"authors": [
{
"first": "Oluwaseyi",
"middle": [],
"last": "Feyisetan",
"suffix": ""
},
{
"first": "Tom",
"middle": [],
"last": "Diethe",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Drake",
"suffix": ""
}
],
"year": 2019,
"venue": "Proc. ICDM",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Oluwaseyi Feyisetan, Tom Diethe, and Thomas Drake. 2019. Leveraging hierarchical representations for preserving privacy and utility in text. In Proc. ICDM.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Hyperbolic neural networks",
"authors": [
{
"first": "Octavian",
"middle": [],
"last": "Ganea",
"suffix": ""
},
{
"first": "Gary",
"middle": [],
"last": "B\u00e9cigneul",
"suffix": ""
},
{
"first": "Thomas",
"middle": [],
"last": "Hofmann",
"suffix": ""
}
],
"year": 2018,
"venue": "Proc. NeurIPS",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Octavian Ganea, Gary B\u00e9cigneul, and Thomas Hof- mann. 2018. Hyperbolic neural networks. In Proc. NeurIPS.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Fine-grained entity typing in hyperbolic space",
"authors": [
{
"first": "Federico",
"middle": [],
"last": "L\u00f3pez",
"suffix": ""
},
{
"first": "Benjamin",
"middle": [],
"last": "Heinzerling",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Strube",
"suffix": ""
}
],
"year": 2019,
"venue": "Proc",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.18653/v1/W19-4319"
]
},
"num": null,
"urls": [],
"raw_text": "Federico L\u00f3pez, Benjamin Heinzerling, and Michael Strube. 2019. Fine-grained entity typing in hyper- bolic space. In Proc. (RepL4NLP-2019).",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Poincar\u00e9 embeddings for learning hierarchical representations",
"authors": [
{
"first": "Maximillian",
"middle": [],
"last": "Nickel",
"suffix": ""
},
{
"first": "Douwe",
"middle": [],
"last": "Kiela",
"suffix": ""
}
],
"year": 2017,
"venue": "Proc. NeurIPS",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maximillian Nickel and Douwe Kiela. 2017. Poincar\u00e9 embeddings for learning hierarchical representa- tions. In Proc. NeurIPS.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Learning continuous hierarchies in the lorentz model of hyperbolic geometry",
"authors": [
{
"first": "Maximillian",
"middle": [],
"last": "Nickel",
"suffix": ""
},
{
"first": "Douwe",
"middle": [],
"last": "Kiela",
"suffix": ""
}
],
"year": 2018,
"venue": "Proc. ICML",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maximillian Nickel and Douwe Kiela. 2018. Learning continuous hierarchies in the lorentz model of hyper- bolic geometry. In Proc. ICML.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Glove: Global vectors for word representation",
"authors": [
{
"first": "Jeffrey",
"middle": [],
"last": "Pennington",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Christopher D",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "Proc. EMNLP",
"volume": "",
"issue": "",
"pages": "1532--1543",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word rep- resentation. In Proc. EMNLP, pages 1532-1543.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"text": "MAP of Euclidean, Poincar\u00e9, and Lorentz 20dimensional embeddings as a function of learning rate. MAP scores for Poincar\u00e9 and Lorentz embeddings are very similar up to a learning rate of 10.0.",
"type_str": "figure",
"num": null,
"uris": null
},
"TABREF1": {
"html": null,
"type_str": "table",
"num": null,
"content": "<table/>",
"text": "Mean and standard deviation of MAP and MR for 50-dimensional embeddings across three different random restarts."
},
"TABREF3": {
"html": null,
"type_str": "table",
"num": null,
"content": "<table/>",
"text": "MAP and MR for reconstructing the WordNet-Nouns hypernymy graph. Results from N&K"
}
}
}
} |