File size: 89,544 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:13:19.871174Z"
    },
    "title": "Finetuning Pretrained Transformers into Variational Autoencoders",
    "authors": [
        {
            "first": "Seongmin",
            "middle": [],
            "last": "Park",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "ActionPower Seoul",
                "location": {
                    "country": "Republic of Korea"
                }
            },
            "email": "seongmin.park@actionpower.kr"
        },
        {
            "first": "Jihwa",
            "middle": [],
            "last": "Lee",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "ActionPower Seoul",
                "location": {
                    "country": "Republic of Korea"
                }
            },
            "email": "jihwa.lee@actionpower.kr"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Text variational autoencoders (VAEs) are notorious for posterior collapse, a phenomenon where the model's decoder learns to ignore signals from the encoder. Because posterior collapse is known to be exacerbated by expressive decoders, Transformers have seen limited adoption as components of text VAEs. Existing studies that incorporate Transformers into text VAEs (Li et al., 2020; Fang et al., 2021) mitigate posterior collapse using massive pretraining, a technique unavailable to most of the research community without extensive computing resources. We present a simple two-phase training scheme to convert a sequence-to-sequence Transformer into a VAE with just finetuning. The resulting language model is competitive with massively pretrained Transformer-based VAEs in some internal metrics while falling short on others. To facilitate training we comprehensively explore the impact of common posterior collapse alleviation techniques in the literature. We release our code for reproducability 1 .",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Text variational autoencoders (VAEs) are notorious for posterior collapse, a phenomenon where the model's decoder learns to ignore signals from the encoder. Because posterior collapse is known to be exacerbated by expressive decoders, Transformers have seen limited adoption as components of text VAEs. Existing studies that incorporate Transformers into text VAEs (Li et al., 2020; Fang et al., 2021) mitigate posterior collapse using massive pretraining, a technique unavailable to most of the research community without extensive computing resources. We present a simple two-phase training scheme to convert a sequence-to-sequence Transformer into a VAE with just finetuning. The resulting language model is competitive with massively pretrained Transformer-based VAEs in some internal metrics while falling short on others. To facilitate training we comprehensively explore the impact of common posterior collapse alleviation techniques in the literature. We release our code for reproducability 1 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Properly tamed latent models offer explainable and interpolatable representations of observed data. Recent works have shown such models to be especially useful in unsupervised learning settings. adapt a generative latent text model for successful unsupervised text style transfer and machine translation. achieve superior language modeling performance against common conditional counterparts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "A popular variant of deep latent models is the variational autoencoder (VAE) (Kingma and Welling, 2014) . For each observed x, the model assumes the existence of a corresponding multidimensional latent vector z. Since the log evidence log p(x) is intractable for most interesting problems, the training process for VAEs opts instead to minimize the log evidence lower bound (ELBO): [log(p(x|z) )]\u2212D KL (q(z|x)||p(z)) (1) q(z|x) is a tractable, assumed posterior commonly modeled with a parametrized encoder q \u03c6 (z|x), while p(x|z) is the likelihood parametrized with a decoder p \u03b8 (x|z) that optimizes against reconstruction loss. While effective in theory, a common empirical challenge VAEs present during training is posterior collapse -a phenomenon where the decoder ignores the latent signal from z (and thus the originating input) during reconstruction. Posterior collapse can be diagnosed by checking if D KL (q(z|x)||p(z)) tends to zero during training.",
                "cite_spans": [
                    {
                        "start": 77,
                        "end": 103,
                        "text": "(Kingma and Welling, 2014)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 382,
                        "end": 393,
                        "text": "[log(p(x|z)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "E z\u223cq(z|x)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "After Bowman et al. (2016) adopted VAE for text, subsequent studies have been introduced with attempts to mitigate posterior collapse in VAE language models (LMs). However, the brittle training process of VAE LMs remains an unsolved problem. present a method to utilize deep Transformer (Vaswani et al., 2017) models as components of VAE LMs. Transformer-based VAEs tap into the state-of-the-art capabilities of Transformers while retaining representational advantages of VAE LMs. The paper mitigates posterior collapse by massive pretraining and a cyclical annealing schedule (Fu et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 6,
                        "end": 26,
                        "text": "Bowman et al. (2016)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 287,
                        "end": 309,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 577,
                        "end": 594,
                        "text": "(Fu et al., 2019)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "While the study presents a promising outlook for Transformer VAEs, the suggested method is not accessible to researchers who lack access to large, target-domain-specific corpora or the computing power for massive LM pretraining. Therefore, a demand arises for a way to finetune an existing Transformer model into a VAE LM with limited resources. Our research attempts to fill this gap in the literature, and makes the following contributions:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 We present a simple but reliable (as replicated across several datasets) scheme to teach latent structure to a pretrained Transformer model by just finetuning.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 We convert a pretrained sequence-to-sequence Transformer into a VAE, instead of using two separate encoder-only (Devlin et al., 2019) and decoder-only (Radford et al., 2019) Transformers as in previous literature. This eliminates the need to maintain separate tokenizers and configurations for encoder and decoder.",
                "cite_spans": [
                    {
                        "start": 114,
                        "end": 135,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 153,
                        "end": 175,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 We conduct ablation studies and extensive experiments to gauge the effectiveness of commonly used posterior collapse mitigation methods in taming Transformer VAEs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The resulting model extends existing Transformer architectures and can be initialized from pretrained non-latent model checkpoints.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Most VAE LMs employ recurrent neural networks (RNNs) as encoders and decoders. This is in part because enforcing a latent bottleneck layer undermines the effectiveness of encoder-decoder cross-attention in Transformers, and in significant part due to the co-occurrence of posterior collapse and powerful and deep decoder layers. overcome such training difficulties by massively increasing the number of training samples (104,213,036 sentences) for LM pretraining. and Fang et al. (2021) also finds success with Transformer VAEs for text generation. To avoid posterior collapse, Fang et al. (2021) follow the exact cyclic KL mitigation approach as that of , while introduce noise to network input.",
                "cite_spans": [
                    {
                        "start": 468,
                        "end": 486,
                        "text": "Fang et al. (2021)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 578,
                        "end": 596,
                        "text": "Fang et al. (2021)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Background 2.1 Transformer Text VAEs",
                "sec_num": "2"
            },
            {
                "text": "This study identifies and explores the effect of popular posterior collapse mitigation methods in low-resource Transformer VAE training. We do not examine importance-weighted autoencoders (Burda et al., 2016) and semi-amortized autoencoders (Kim et al., 2018) to limit the scope of our experiments to unsophisticated prior distributions.",
                "cite_spans": [
                    {
                        "start": 188,
                        "end": 208,
                        "text": "(Burda et al., 2016)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 241,
                        "end": 259,
                        "text": "(Kim et al., 2018)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Techniques to mitigate posterior collapse",
                "sec_num": "2.2"
            },
            {
                "text": "Bowman et al. (2016) increases the KL term of the ELBO from zero to its full value during early stages of training, where the decoder learns to simply treat latent signal z as noise. Fu et al. (2019) extend this technique by cyclically manipulating the weight of the KL term. \u03b2-VAE (Higgins et al., 2017) and Yan et al. (2020) adopt a similar approach. We train the network without the KL term of the ELBO and retain encoder weights before jointly training the whole network. (Shen et al., 2020) Denoising text inputs by deleting random tokens motivate autoencoders (AEs) to learn better latent representations. Our study compares 0%, 15%, and 40% deletion noising schemes.",
                "cite_spans": [
                    {
                        "start": 183,
                        "end": 199,
                        "text": "Fu et al. (2019)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 282,
                        "end": 304,
                        "text": "(Higgins et al., 2017)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 476,
                        "end": 495,
                        "text": "(Shen et al., 2020)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "KL Weighting / Annealing",
                "sec_num": "2.2.1"
            },
            {
                "text": "KL-thresholding enforces a minimum \u03bb for each dimension of the KL term in the ELBO:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "KL thresholding (Kingma et al., 2016)",
                "sec_num": "2.2.4"
            },
            {
                "text": "L D KL = i max[\u03bb, D kl (q \u03c6 (z i |x)||p(z i ))] (2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "KL thresholding (Kingma et al., 2016)",
                "sec_num": "2.2.4"
            },
            {
                "text": "where z i is a single dimension of z.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "KL thresholding (Kingma et al., 2016)",
                "sec_num": "2.2.4"
            },
            {
                "text": "Instead of using the last hidden state as encoder output, averaging or taking the maximum of all encoder hidden states results in a more diverse latent representation. We experiment with both meanand max-pooling schemes from the encoder.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoder pooling (Long et al., 2019)",
                "sec_num": "2.2.5"
            },
            {
                "text": "We extend the T5 architecture (Raffel et al., 2020) into a VAE. We modify a popular pretrained T5 model (Wolf et al., 2020) that deviates minimally from the original Transformer (Figure 1 ).",
                "cite_spans": [
                    {
                        "start": 30,
                        "end": 51,
                        "text": "(Raffel et al., 2020)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 104,
                        "end": 123,
                        "text": "(Wolf et al., 2020)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 178,
                        "end": 187,
                        "text": "(Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Model architecture",
                "sec_num": "3"
            },
            {
                "text": "Hidden states from all layers of T5's encoder q \u03c6 (z|x) are mean-or max-pooled into a vector h pooled \u2208 R H , where H is the encoder's hidden dimension.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model architecture",
                "sec_num": "3"
            },
            {
                "text": "Assumed prior q(z)'s mean \u00b5 and log variance \u03c3 vectors of dimension L is obtained from h pooled :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model architecture",
                "sec_num": "3"
            },
            {
                "text": "\u00b5 = h pooled W \u00b5 , log\u03c3 = h pooled W \u03c3 (3) where W \u00b5 , W \u03c3 \u2208 R L .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model architecture",
                "sec_num": "3"
            },
            {
                "text": "As in a standard VAE, a stochastic latent vector z is sampled using the reparameterization trick to enable back-propagation through sampling:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model architecture",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "z = \u00b5 + \u03c3 , \u223c N (0, 1)",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Model architecture",
                "sec_num": "3"
            },
            {
                "text": "We pass z into the decoder p \u03b8 (x|z) as the only component of decoder's cross attention. Our Figure 1 : Transformer VAE architecture. A \"bottleneck\" step (W \u03c3 and W \u00b5 ) is placed between the encoder and the decoder of T5. Latent information from pooled encoder hidden states is captured in the bottleneck layer before being passed to the decoder. The network is optimized against regularization loss in the bottleneck and reconstruction loss at the decoder. method injects z into every layer of the decoder as in previous literature Fang et al., 2021) , but deviates in two important ways: first, we pass z as the sole key and value of encoder-decoder cross attention, instead of self-attention; second, we project z into the correct dimension (L \u00d7 A \u00d7 S, where L is the decoder layer count, A is the number of attention heads, and S is the embedding dimension per head) with a feed-forward network, instead of taking a copy of z to inject to each decoder layer.",
                "cite_spans": [
                    {
                        "start": 533,
                        "end": 551,
                        "text": "Fang et al., 2021)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 93,
                        "end": 101,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Model architecture",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "(K ca , V ca ) = (zW proj , zW proj )",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Model architecture",
                "sec_num": "3"
            },
            {
                "text": "where W proj \u2208 R L\u00d7A\u00d7S and K ca and V ca are key and value in decoder cross-attention.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model architecture",
                "sec_num": "3"
            },
            {
                "text": "During preliminary experiments, posterior collapse was observed in all training schemes without encoder warmup training. The decoder learns to ignore the initially noisy input signal from the encoder. Thus, we compose our finetuning method in two separate phases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "Phase 1 -Encoder warmup: Weight of KL loss is set to zero, making our model's objective function similar to that of an AE. Different input denoising percentages, encoder pooling strategies, latent dimension sizes, and decoder freezing configurations are compared.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "Phase 2 -Full finetuning: KL loss is reinstated and full VAE training are conducted. We compare different input denoising percentages, encoder pooling strategies, KL annealing schedules, and KL thresholds.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "We run our proposed two-phase finetuning training scheme on four standard VAE LM benchmark datasets: PTB (Marcus et al., 1993) , SNLI (Bowman et al., 2016), Yahoo (Yang et al., 2017) , and Yelp (Shen et al., 2017) .",
                "cite_spans": [
                    {
                        "start": 105,
                        "end": 126,
                        "text": "(Marcus et al., 1993)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 163,
                        "end": 182,
                        "text": "(Yang et al., 2017)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 194,
                        "end": 213,
                        "text": "(Shen et al., 2017)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "Following and Li et al. 2019, we perform intrinsic evaluation of our proposed Transformer VAE architecture. We report perplexity (PPL), KL-divergence between model posterior and assumed posterior (KL), and negative ELBO on the test set. To assess the quality of learned latent codes, we also report mutual information (MI) (Hoffman and Johnson, 2016) and the number of active units (AU) (Burda et al., 2016) . MI measures the dependence of latent codes to encoder input. AU measures the covariance between encoder input and latent codes.",
                "cite_spans": [
                    {
                        "start": 387,
                        "end": 407,
                        "text": "(Burda et al., 2016)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "Experimental hyperparameters such as specific annealing schedules and training epochs per phase are detailed in the appendix.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "We find that freezing the decoder and the memory projection layer W proj while training with an AE objective is crucial in learning meaningful encoder outputs. Denoising is important for datasets with longer inputs (Yahoo, Yelp), but not critical in datasets with shorter input lengths (PTB, SNLI). Mean-pooling encoder hidden states presents a trade-off between MI and AU. Max-pooling consistently learns more informative encoder representations. Changes in MI and AU during training is illustrated in Figure 2 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 503,
                        "end": 511,
                        "text": "Figure 2",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Phase 1",
                "sec_num": "5.1"
            },
            {
                "text": "Latent dimensions of 64 and 128 were also tested. Increasing the latent dimension did not necessarily boost representational quality in terms",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phase 1",
                "sec_num": "5.1"
            },
            {
                "text": "PPL\u2193 KL -ELBO\u2193 MI\u2191 AU\u2191 Optimus (\u03bb = 0.5) 23.11 17.45 301.21 8.85 32 GPT-2 (Radford et al., 2019) 22.00 ----Encoder pretraining (\u03bb = 3) and . KLT denotes KL thresholding with \u03bb = 3. Our models are finetuned from a pretrained 6-layer T5, except the deep variant with 12 layers.",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 96,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "of AU percentage. For latent dimensions of 32 and 64, 90% of latent dimension units were activated in best-performing models. For latent dimension of 128, around 60% of latent units were active. Another interesting observation is that KL divergence on the validation set, although not part of the AE training objective, plateaus after repeated training. We regard this phenomenon as the signal of convergence in terms of representation quality. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "We observe, as in previous literature, a trade-off between language modeling PPL and representation quality metrics (MI and AU). This trade-off is exacerbated when using KL thresholding. While KL thresholding does significantly increase latent representation capabilities, it is not in itself sufficient in preventing posterior collapse.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phase 2",
                "sec_num": "5.2"
            },
            {
                "text": "Denoising and encoder pooling configurations display the same characteristics as in Phase 1. No version of the experiment existed where cyclical annealing schedule was able to prevent posterior collapse, a result not in accordance with . Figure 3 illustrates the training progression of Phase 2. We also experimented with increasing model depth from 6 layers to 12 layers. Our proposed two-phase training scheme prevents posterior collapse for deeper models as well, resulting in higher performance in most metrics compared to 6-layer models. Results are reported in Table 1 . Note that lower PPL does not necessarily indicate better language modeling capabilities, since models with collapsed posterior display better PPL.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 238,
                        "end": 246,
                        "text": "Figure 3",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 567,
                        "end": 574,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Phase 2",
                "sec_num": "5.2"
            },
            {
                "text": "Rows with KL above zero indicate successful aversion of posterior collapse. In the literature, no consensus yet exists on the optimal value of KL in training VAEs. Overall, we find that a denoising scheme between 0.15 and 0.4 in both phases, coupled with a low (0.5) KL threshold strikes a good balance between reconstruction and latent representation quality.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phase 2",
                "sec_num": "5.2"
            },
            {
                "text": "This paper explores common methods in the literature for combatting posterior collapse, and the extent to which they help in teaching latent information to pretrained Transformer models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "6"
            },
            {
                "text": "Comprehensive experiments show that commonly employed posterior collapse mitigation techniques provide meaningful benefits in transforming existing language models into latent-aware architectures. Among the tested procedures, we find that 's two-step training, coupled with Shen et al. (2020) 's denoising through token deletion, was the most impactful in mitigating posterior collapse. However, language models obtained via only finetuning exhibit consistent trade-offs between their latent representation metrics (MI, AU) and language model metrics (PPL). Optimizing our model to be competitive with massively pretrained baselines in one of the two metrics results in the model falling behind in the other.",
                "cite_spans": [
                    {
                        "start": 274,
                        "end": 292,
                        "text": "Shen et al. (2020)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "6"
            },
            {
                "text": "We also find that increasing training epochs further improves the impact of tested techniques, a result consistent with previous literature on largescale text VAE pretraining.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "6"
            },
            {
                "text": "From our experiments, we identify several questions to be answered by future research. The impact of homogenizing finetuning (as suggested in this paper) and original pretraining objectives on language model metrics has to be further explored. While the original T5 architecture was also pretrained with a self-supervised denoising scheme, the model employs mask tokens for denoising, contrary to simple token deletions suggested by this paper.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "6"
            },
            {
                "text": "Our findings also highlight the need for an established heuristic to interpret the quality of latent representations learned by language models. The research community has yet to decide on the optimal value of KL-divergence between the assumed prior and the model posterior to target during text VAE training. Empirical guidelines to dictate even a vague threshold for the KL-divergence, below which we declare the occurrence of posterior collapse, will help both training and evaluation of latent-aware language models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "6"
            },
            {
                "text": "A Phase 2 results on PTB, Yelp, and SNLI Model PPL\u2193 KL -ELBO\u2193 MI\u2191 AU\u2191 Optimus (\u03bb = 0.5) 26.69 15.72 96.82 7.64 32 GPT-2 (Radford et al., 2019) 24.23 ----Encoder pretraining (\u03bb = 3) Model PPL\u2193 KL -ELBO\u2193 MI\u2191 AU\u2191 Optimus (\u03bb = 0.5) 22.79 15.09 344.10 9.13 32 GPT-2 (Radford et al., 2019) 23.40 ----Encoder pretraining (\u03bb = 3) (Li et al., Model PPL\u2193 KL -ELBO\u2193 MI\u2191 AU\u2191 Optimus (\u03bb = 0.5) 16.67 16.35 38.50 8.89 32 GPT-2 (Radford et al., 2019) 20.24 ----Encoder pretraining (\u03bb = 3) ",
                "cite_spans": [
                    {
                        "start": 120,
                        "end": 142,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 261,
                        "end": 283,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 322,
                        "end": 333,
                        "text": "(Li et al.,",
                        "ref_id": null
                    },
                    {
                        "start": 413,
                        "end": 435,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "6"
            },
            {
                "text": "For all experiments we used a AdamW optimizer (Loshchilov and Hutter, 2019 ) with a starting learning rate of 1 \u00d7 10 \u22123 , \u03b2 1 = 0.9, \u03b2 2 = 0.999, and = 1 \u00d7 10 \u22123 . The linear KL annealing schedule we used was as follows:",
                "cite_spans": [
                    {
                        "start": 46,
                        "end": 74,
                        "text": "(Loshchilov and Hutter, 2019",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Experimental details",
                "sec_num": null
            },
            {
                "text": "KL weight = current global step steps per epoch * 50",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Experimental details",
                "sec_num": null
            },
            {
                "text": "Our slower, linear KL annealing schedule of 0 to 1 over 50 epochs yielded better empirical results than the linear schdule used in Li et al. (2019) (0 to 1 over 10 epochs). We attribute this result to the small number of training samples in our experiments. We train for 5 epochs on Phase 1, and 3 epochs on Phase 2. While further training leads to increased MI and AU, we limit the number of epochs to confer to the spirit of this study, which is to learn latent representations with minimal training. The 5 epoch limit on Phase 1 was empirically determined as the point where encoder MI begins to plateau. Most experiments were conducted with z dimension of 32 for comparison with previous literature.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Experimental details",
                "sec_num": null
            },
            {
                "text": "https://github.com/seongminp/ transformers-into-vaes",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Generating sentences from a continuous space",
                "authors": [
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Vilnis",
                        "suffix": ""
                    },
                    {
                        "first": "Oriol",
                        "middle": [],
                        "last": "Vinyals",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Dai",
                        "suffix": ""
                    },
                    {
                        "first": "Rafal",
                        "middle": [],
                        "last": "Jozefowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Samy",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "10--21",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Samuel Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio. 2016. Generating sentences from a continuous space. In Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning, pages 10-21.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Importance weighted autoencoders",
                "authors": [
                    {
                        "first": "Yuri",
                        "middle": [],
                        "last": "Burda",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Roger",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Grosse",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "ICLR (Poster)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yuri Burda, Roger B Grosse, and Ruslan Salakhutdinov. 2016. Importance weighted autoencoders. In ICLR (Poster).",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Transformerbased conditional variational autoencoder for controllable story generation",
                "authors": [
                    {
                        "first": "Le",
                        "middle": [],
                        "last": "Fang",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Zeng",
                        "suffix": ""
                    },
                    {
                        "first": "Chaochun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Liefeng",
                        "middle": [],
                        "last": "Bo",
                        "suffix": ""
                    },
                    {
                        "first": "Wen",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Changyou",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2101.00828"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Le Fang, Tao Zeng, Chaochun Liu, Liefeng Bo, Wen Dong, and Changyou Chen. 2021. Transformer- based conditional variational autoencoder for controllable story generation. arXiv preprint arXiv:2101.00828.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Cyclical annealing schedule: A simple approach to mitigating kl vanishing",
                "authors": [
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Fu",
                        "suffix": ""
                    },
                    {
                        "first": "Chunyuan",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Asli",
                        "middle": [],
                        "last": "Celikyilmaz",
                        "suffix": ""
                    },
                    {
                        "first": "Lawrence",
                        "middle": [],
                        "last": "Carin",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "240--250",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence Carin. 2019. Cycli- cal annealing schedule: A simple approach to mit- igating kl vanishing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 240-250.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "A probabilistic formulation of unsupervised text style transfer",
                "authors": [
                    {
                        "first": "Junxian",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Xinyi",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Neubig",
                        "suffix": ""
                    },
                    {
                        "first": "Taylor",
                        "middle": [],
                        "last": "Berg-Kirkpatrick",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Junxian He, Xinyi Wang, Graham Neubig, and Taylor Berg-Kirkpatrick. 2019. A probabilistic formulation of unsupervised text style transfer. In International Conference on Learning Representations.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "beta-vae: Learning basic visual concepts with a constrained variational framework",
                "authors": [
                    {
                        "first": "Irina",
                        "middle": [],
                        "last": "Higgins",
                        "suffix": ""
                    },
                    {
                        "first": "Lo\u00efc",
                        "middle": [],
                        "last": "Matthey",
                        "suffix": ""
                    },
                    {
                        "first": "Arka",
                        "middle": [],
                        "last": "Pal",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Burgess",
                        "suffix": ""
                    },
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Glorot",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Botvinick",
                        "suffix": ""
                    },
                    {
                        "first": "Shakir",
                        "middle": [],
                        "last": "Mohamed",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Lerchner",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "5th International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Irina Higgins, Lo\u00efc Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. 2017. beta-vae: Learning basic visual concepts with a constrained variational framework. In 5th International Con- ference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Elbo surgery: yet another way to carve up the variational evidence lower bound",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Matthew",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew J Johnson",
                        "middle": [],
                        "last": "Hoffman",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Workshop in Advances in Approximate Bayesian Inference, NIPS",
                "volume": "1",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew D Hoffman and Matthew J Johnson. 2016. Elbo surgery: yet another way to carve up the vari- ational evidence lower bound. In Workshop in Ad- vances in Approximate Bayesian Inference, NIPS, volume 1.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Semi-amortized variational autoencoders",
                "authors": [
                    {
                        "first": "Yoon",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Wiseman",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Miller",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 35th International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "2678--2687",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoon Kim, Sam Wiseman, Andrew Miller, David Son- tag, and Alexander Rush. 2018. Semi-amortized variational autoencoders. In Proceedings of the 35th International Conference on Machine Learning, vol- ume 80 of Proceedings of Machine Learning Re- search, pages 2678-2687. PMLR.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Auto-Encoding Variational Bayes",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Diederik",
                        "suffix": ""
                    },
                    {
                        "first": "Max",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Welling",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "2nd International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diederik P. Kingma and Max Welling. 2014. Auto- Encoding Variational Bayes. In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Con- ference Track Proceedings.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Improved variational inference with inverse autoregressive flow",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Durk",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "Rafal",
                        "middle": [],
                        "last": "Salimans",
                        "suffix": ""
                    },
                    {
                        "first": "Xi",
                        "middle": [],
                        "last": "Jozefowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Max",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Welling",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "29",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. 2016. Improved variational inference with inverse autore- gressive flow. In Advances in Neural Information Processing Systems, volume 29. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "A surprisingly effective fix for deep latent variable modeling of text",
                "authors": [
                    {
                        "first": "Bohan",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Junxian",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Neubig",
                        "suffix": ""
                    },
                    {
                        "first": "Taylor",
                        "middle": [],
                        "last": "Berg-Kirkpatrick",
                        "suffix": ""
                    },
                    {
                        "first": "Yiming",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "3603--3614",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1370"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Bohan Li, Junxian He, Graham Neubig, Taylor Berg- Kirkpatrick, and Yiming Yang. 2019. A surprisingly effective fix for deep latent variable modeling of text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 3603- 3614, Hong Kong, China. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Optimus: Organizing sentences via pre-trained modeling of a latent space",
                "authors": [
                    {
                        "first": "Chunyuan",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Yuan",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Baolin",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Xiujun",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Yizhe",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "4678--4699",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiu- jun Li, Yizhe Zhang, and Jianfeng Gao. 2020. Opti- mus: Organizing sentences via pre-trained modeling of a latent space. In Proceedings of the 2020 Con- ference on Empirical Methods in Natural Language Processing (EMNLP), pages 4678-4699.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "A transformerbased variational autoencoder for sentence generation",
                "authors": [
                    {
                        "first": "Danyang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Gongshen",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "2019 International Joint Conference on Neural Networks (IJCNN)",
                "volume": "",
                "issue": "",
                "pages": "1--7",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Danyang Liu and Gongshen Liu. 2019. A transformer- based variational autoencoder for sentence genera- tion. In 2019 International Joint Conference on Neu- ral Networks (IJCNN), pages 1-7. IEEE.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Preventing posterior collapse in sequence vaes with pooling. arXiv e-prints",
                "authors": [
                    {
                        "first": "Teng",
                        "middle": [],
                        "last": "Long",
                        "suffix": ""
                    },
                    {
                        "first": "Yanshuai",
                        "middle": [],
                        "last": "Cao",
                        "suffix": ""
                    },
                    {
                        "first": "Jackie Chi Kit",
                        "middle": [],
                        "last": "Cheung",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Teng Long, Yanshuai Cao, and Jackie Chi Kit Cheung. 2019. Preventing posterior collapse in sequence vaes with pooling. arXiv e-prints, pages arXiv- 1911.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Decoupled weight decay regularization",
                "authors": [
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Loshchilov",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Hutter",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In International Con- ference on Learning Representations.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Building a large annotated corpus of English: The Penn Treebank",
                "authors": [
                    {
                        "first": "Mitchell",
                        "middle": [
                            "P"
                        ],
                        "last": "Marcus",
                        "suffix": ""
                    },
                    {
                        "first": "Beatrice",
                        "middle": [],
                        "last": "Santorini",
                        "suffix": ""
                    },
                    {
                        "first": "Mary",
                        "middle": [
                            "Ann"
                        ],
                        "last": "Marcinkiewicz",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Computational Linguistics",
                "volume": "19",
                "issue": "2",
                "pages": "313--330",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a large annotated corpus of English: The Penn Treebank. Computa- tional Linguistics, 19(2):313-330.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Language models are unsupervised multitask learners",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Exploring the limits of transfer learning with a unified text-totext transformer",
                "authors": [
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Raffel",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Roberts",
                        "suffix": ""
                    },
                    {
                        "first": "Katherine",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Sharan",
                        "middle": [],
                        "last": "Narang",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Matena",
                        "suffix": ""
                    },
                    {
                        "first": "Yanqi",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [
                            "J"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Journal of Machine Learning Research",
                "volume": "21",
                "issue": "140",
                "pages": "1--67",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Colin Raffel, Noam Shazeer, Adam Roberts, Kather- ine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to- text transformer. Journal of Machine Learning Re- search, 21(140):1-67.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Style transfer from non-parallel text by cross-alignment",
                "authors": [
                    {
                        "first": "Tianxiao",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Lei",
                        "suffix": ""
                    },
                    {
                        "first": "Regina",
                        "middle": [],
                        "last": "Barzilay",
                        "suffix": ""
                    },
                    {
                        "first": "Tommi",
                        "middle": [],
                        "last": "Jaakkola",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS'17",
                "volume": "",
                "issue": "",
                "pages": "6833--6844",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2017. Style transfer from non-parallel text by cross-alignment. In Proceedings of the 31st Inter- national Conference on Neural Information Process- ing Systems, NIPS'17, page 6833-6844, Red Hook, NY, USA. Curran Associates Inc.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Educating text autoencoders: Latent representation guidance via denoising",
                "authors": [
                    {
                        "first": "Tianxiao",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Jonas",
                        "middle": [],
                        "last": "Mueller",
                        "suffix": ""
                    },
                    {
                        "first": "Regina",
                        "middle": [],
                        "last": "Barzilay",
                        "suffix": ""
                    },
                    {
                        "first": "Tommi",
                        "middle": [],
                        "last": "Jaakkola",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "8719--8729",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianxiao Shen, Jonas Mueller, Regina Barzilay, and Tommi Jaakkola. 2020. Educating text autoen- coders: Latent representation guidance via denois- ing. In International Conference on Machine Learn- ing, pages 8719-8729. PMLR.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "30",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141 ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Pro- cessing Systems, volume 30. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Transformers: State-of-the-art natural language processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "Remi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    },
                    {
                        "first": "Morgan",
                        "middle": [],
                        "last": "Funtowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Joe",
                        "middle": [],
                        "last": "Davison",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Shleifer",
                        "suffix": ""
                    },
                    {
                        "first": "Clara",
                        "middle": [],
                        "last": "Patrick Von Platen",
                        "suffix": ""
                    },
                    {
                        "first": "Yacine",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Jernite",
                        "suffix": ""
                    },
                    {
                        "first": "Canwen",
                        "middle": [],
                        "last": "Plu",
                        "suffix": ""
                    },
                    {
                        "first": "Teven",
                        "middle": [
                            "Le"
                        ],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Sylvain",
                        "middle": [],
                        "last": "Scao",
                        "suffix": ""
                    },
                    {
                        "first": "Mariama",
                        "middle": [],
                        "last": "Gugger",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Drame",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "38--45",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-demos.6"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Trans- formers: State-of-the-art natural language process- ing. In Proceedings of the 2020 Conference on Em- pirical Methods in Natural Language Processing: System Demonstrations, pages 38-45, Online. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Re-balancing variational autoencoder loss for molecule sequence generation",
                "authors": [
                    {
                        "first": "Chaochao",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    },
                    {
                        "first": "Sheng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Jinyu",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Tingyang",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Junzhou",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB '20",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1145/3388440.3412458"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Chaochao Yan, Sheng Wang, Jinyu Yang, Tingyang Xu, and Junzhou Huang. 2020. Re-balancing variational autoencoder loss for molecule sequence generation. In Proceedings of the 11th ACM International Con- ference on Bioinformatics, Computational Biology and Health Informatics, BCB '20, New York, NY, USA. Association for Computing Machinery.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Improved variational autoencoders for text modeling using dilated convolutions",
                "authors": [
                    {
                        "first": "Zichao",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhiting",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "Taylor",
                        "middle": [],
                        "last": "Berg-Kirkpatrick",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 34th International Conference on Machine Learning",
                "volume": "70",
                "issue": "",
                "pages": "3881--3890",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and Taylor Berg-Kirkpatrick. 2017. Improved varia- tional autoencoders for text modeling using dilated convolutions. In Proceedings of the 34th Interna- tional Conference on Machine Learning -Volume 70, ICML'17, page 3881-3890. JMLR.org.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "text": "Phase 1 training on Yahoo. Labels are in the form {pooling strategy}_{denoise percent-age}_{decoder frozen}.",
                "type_str": "figure",
                "num": null
            },
            "FIGREF1": {
                "uris": null,
                "text": "Phase 2 training on Yahoo. Labels are in the form {KL threshold}_{denoise percentage}. Encoder hidden states in plotted experiments were max-pooled.",
                "type_str": "figure",
                "num": null
            },
            "TABREF1": {
                "type_str": "table",
                "content": "<table/>",
                "text": "Phase 2 results on Yahoo. Due to space constraints, we report experimental results on other datasets in the appendix. Results on baselines are quoted from",
                "html": null,
                "num": null
            },
            "TABREF3": {
                "type_str": "table",
                "content": "<table/>",
                "text": "Phase 2 results on PTB",
                "html": null,
                "num": null
            },
            "TABREF5": {
                "type_str": "table",
                "content": "<table/>",
                "text": "Phase 2 results on Yelp.",
                "html": null,
                "num": null
            },
            "TABREF7": {
                "type_str": "table",
                "content": "<table/>",
                "text": "Phase 2 results on SNLI.",
                "html": null,
                "num": null
            }
        }
    }
}