File size: 112,669 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:13:03.912455Z"
},
"title": "Evaluating the Effectiveness of Efficient Neural Architecture Search for Sentence-Pair Tasks",
"authors": [
{
"first": "Ansel",
"middle": [],
"last": "Maclaughlin",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Northeastern University",
"location": {
"settlement": "Boston",
"region": "MA"
}
},
"email": ""
},
{
"first": "Jwala",
"middle": [],
"last": "Dhamala",
"suffix": "",
"affiliation": {
"laboratory": "Amazon Alexa",
"institution": "",
"location": {
"settlement": "Cambridge",
"region": "MA"
}
},
"email": "jddhamal@amazon.com"
},
{
"first": "Anoop",
"middle": [],
"last": "Kumar",
"suffix": "",
"affiliation": {
"laboratory": "Amazon Alexa",
"institution": "",
"location": {
"settlement": "Cambridge",
"region": "MA"
}
},
"email": ""
},
{
"first": "Sriram",
"middle": [],
"last": "Venkatapathy",
"suffix": "",
"affiliation": {
"laboratory": "Amazon Alexa",
"institution": "",
"location": {
"settlement": "Cambridge",
"region": "MA"
}
},
"email": ""
},
{
"first": "Ragav",
"middle": [],
"last": "Venkatesan",
"suffix": "",
"affiliation": {},
"email": "ragavven@amazon.com"
},
{
"first": "Rahul",
"middle": [],
"last": "Gupta",
"suffix": "",
"affiliation": {
"laboratory": "Amazon Alexa",
"institution": "",
"location": {
"settlement": "Cambridge",
"region": "MA"
}
},
"email": "gupra@amazon.com"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Neural Architecture Search (NAS) methods, which automatically learn entire neural model or individual neural cell architectures, have recently achieved competitive or state-of-theart (SOTA) performance on variety of natural language processing and computer vision tasks, including language modeling, natural language inference, and image classification. In this work, we explore the applicability of a SOTA NAS algorithm, Efficient Neural Architecture Search (ENAS) (Pham et al., 2018) to two sentence pair tasks, paraphrase detection and semantic textual similarity. We use ENAS to perform a microlevel search and learn a task-optimized RNN cell architecture as a drop-in replacement for an LSTM. We explore the effectiveness of ENAS through experiments on three datasets (MRPC, SICK, STS-B), with two different models (ESIM, BiLSTM-Max), and two sets of embeddings (Glove, BERT). In contrast to prior work applying ENAS to NLP tasks, our results are mixed-we find that ENAS architectures sometimes, but not always, outperform LSTMs and perform similarly to random architecture search.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "Neural Architecture Search (NAS) methods, which automatically learn entire neural model or individual neural cell architectures, have recently achieved competitive or state-of-theart (SOTA) performance on variety of natural language processing and computer vision tasks, including language modeling, natural language inference, and image classification. In this work, we explore the applicability of a SOTA NAS algorithm, Efficient Neural Architecture Search (ENAS) (Pham et al., 2018) to two sentence pair tasks, paraphrase detection and semantic textual similarity. We use ENAS to perform a microlevel search and learn a task-optimized RNN cell architecture as a drop-in replacement for an LSTM. We explore the effectiveness of ENAS through experiments on three datasets (MRPC, SICK, STS-B), with two different models (ESIM, BiLSTM-Max), and two sets of embeddings (Glove, BERT). In contrast to prior work applying ENAS to NLP tasks, our results are mixed-we find that ENAS architectures sometimes, but not always, outperform LSTMs and perform similarly to random architecture search.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Neural Architecture Search (NAS) methods aim to automatically discover neural architectures that perform well on a given task and dataset. These methods search over a space of possible model architectures, looking for ones that perform well on the task and will generalize to unseen data. There has been substantial prior work on how to define the architecture search space, search over that space, and estimate model performance (Elsken et al., 2019) .",
"cite_spans": [
{
"start": 430,
"end": 451,
"text": "(Elsken et al., 2019)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Recent works, however, cast doubt on the quality and performance of NAS-optimized architectures (Sciuto et al., 2020; Li and Talwalkar, 2019) , showing that current methods fail to find the best performing architectures for a given task and perform similarly to random architecture search.",
"cite_spans": [
{
"start": 96,
"end": 117,
"text": "(Sciuto et al., 2020;",
"ref_id": "BIBREF21"
},
{
"start": 118,
"end": 141,
"text": "Li and Talwalkar, 2019)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this work, we explore applications of a SOTA NAS algorithm, ENAS (Pham et al., 2018) , to two sentence-pair tasks, paraphrase detection (PD) and semantic textual similarity (STS). We conduct a large set of experiments testing the effectiveness of ENAS-optimized RNN architectures across multiple models (ESIM, BiLSTM-Max), embeddings (BERT, Glove) and datasets (MRPC, SICK, STS-B). We are the first, to our knowledge, to apply ENAS to PD and STS, to explore applications across multiple embeddings and traditionally LSTM-based NLP models, and to conduct extensive SOTA HPT across multiple ENAS-RNN architecture candidates.",
"cite_spans": [
{
"start": 68,
"end": 87,
"text": "(Pham et al., 2018)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Our experiments suggest that baseline LSTM models, with appropriate hyperparameter tuning (HPT), can sometimes match or exceed the performance of models with ENAS-RNNs. We also observe that random architectures sampled from the ENAS search space offer a strong baseline, and can sometimes outperform ENAS-RNNs. Given these observations, we recommend that researchers (i) conduct extensive HPT (preferably using automated methods) across various candidate architectures for the fairest comparisons; (ii) compare the performances of ENAS-RNNs against both standard architectures like LSTMs and RNN cells randomly sampled from the ENAS search space; (iii) examine the computational (memory and runtime) requirements of ENAS methods alongside the gains observed.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "NAS methods have shown strong performance on many NLP and CV tasks, such as language model-ing and image classification (Zoph and Le, 2017; Pham et al., 2018; Luo et al., 2018; Liu et al., 2019) . Applications in NLP, such as NER (Jiang et al., 2019; Li et al., 2020) , translation (So et al., 2019 ), text classification (Wang et al., 2020) , and natural language inference (NLI) (Pasunuru and Bansal, 2019; Wang et al., 2020) have also been explored.",
"cite_spans": [
{
"start": 120,
"end": 139,
"text": "(Zoph and Le, 2017;",
"ref_id": null
},
{
"start": 140,
"end": 158,
"text": "Pham et al., 2018;",
"ref_id": "BIBREF20"
},
{
"start": 159,
"end": 176,
"text": "Luo et al., 2018;",
"ref_id": "BIBREF13"
},
{
"start": 177,
"end": 194,
"text": "Liu et al., 2019)",
"ref_id": "BIBREF12"
},
{
"start": 230,
"end": 250,
"text": "(Jiang et al., 2019;",
"ref_id": "BIBREF9"
},
{
"start": 251,
"end": 267,
"text": "Li et al., 2020)",
"ref_id": "BIBREF11"
},
{
"start": 282,
"end": 298,
"text": "(So et al., 2019",
"ref_id": "BIBREF22"
},
{
"start": 322,
"end": 341,
"text": "(Wang et al., 2020)",
"ref_id": "BIBREF23"
},
{
"start": 381,
"end": 408,
"text": "(Pasunuru and Bansal, 2019;",
"ref_id": "BIBREF16"
},
{
"start": 409,
"end": 427,
"text": "Wang et al., 2020)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Current SOTA approaches focus on learning new cell architectures as replacements for LSTM or convolutional cells (Zoph and Le, 2017; Pham et al., 2018; Liu et al., 2019; Jiang et al., 2019; Li et al., 2020) or entire model architectures to replace hand-designed models such as the transformer or DenseNet (So et al., 2019; Pham et al., 2018) .",
"cite_spans": [
{
"start": 113,
"end": 132,
"text": "(Zoph and Le, 2017;",
"ref_id": null
},
{
"start": 133,
"end": 151,
"text": "Pham et al., 2018;",
"ref_id": "BIBREF20"
},
{
"start": 152,
"end": 169,
"text": "Liu et al., 2019;",
"ref_id": "BIBREF12"
},
{
"start": 170,
"end": 189,
"text": "Jiang et al., 2019;",
"ref_id": "BIBREF9"
},
{
"start": 190,
"end": 206,
"text": "Li et al., 2020)",
"ref_id": "BIBREF11"
},
{
"start": 305,
"end": 322,
"text": "(So et al., 2019;",
"ref_id": "BIBREF22"
},
{
"start": 323,
"end": 341,
"text": "Pham et al., 2018)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Recently, the superiority of NAS to random architecture search and traditional architectures with SOTA HPT methods has been called into question. Li and Talwalkar (2019) discuss reproducibility issues with current NAS methods and find that, on language modeling and image classification tasks, NAS algorithms perform similarly to random architecture search. Similarly, Sciuto et al. (2020) find minimal differences in performance between NAS and random search and that the popular weightsharing strategy (Pham et al., 2018) decreases performance. With this in perspective, we conduct a study to investigate the value added by ENAS to two NLP tasks, PD and STS, which, to our knowledge, have not been been explored in previous NAS literature.",
"cite_spans": [
{
"start": 146,
"end": 169,
"text": "Li and Talwalkar (2019)",
"ref_id": "BIBREF10"
},
{
"start": 369,
"end": 389,
"text": "Sciuto et al. (2020)",
"ref_id": "BIBREF21"
},
{
"start": 504,
"end": 523,
"text": "(Pham et al., 2018)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "In this work, we explore applications of ENAS to two sentence-pair tasks, PD and STS. We select ENAS because prior work (Pasunuru and Bansal, 2019; Wang et al., 2020) has shown promising results applying it to a closely-related task, NLI, with gains of up to 1.3% absolute over LSTMs and 1.6% over an RNN with a random architecture. Through our evaluations on PD and STS, we aim to study whether the ENAS methods used in prior work for NLI are generalizable and whether the results hold when applied to related tasks and datasets. ENAS models consist of two parts: 1) a search space over model architectures, i.e. child models, and 2) a controller that samples architectures from that search space. The primary contribution of ENAS is that all child models in the search space share their weights, so each child model does not have to be trained from scratch to evaluate it. Train-ing the child models and controller proceeds as follows -first, the controller is fixed, and the child models are trained together for one epoch on the dataset, sampling a new architecture from the controller to use for each minibatch. Then, the child model shared parameters are fixed, and the controller is updated -we sample child architectures from its policy and update the controller to maximize the expected reward on the dev set (e.g. dev set accuracy). This two-step process then repeats for a specified number of epochs. After training is complete, a number of child models are sampled from the controller and the best one is trained from scratch and evaluated on the test set. We refer the reader to Pham et al. (2018) for further details on ENAS.",
"cite_spans": [
{
"start": 120,
"end": 147,
"text": "(Pasunuru and Bansal, 2019;",
"ref_id": "BIBREF16"
},
{
"start": 148,
"end": 166,
"text": "Wang et al., 2020)",
"ref_id": "BIBREF23"
},
{
"start": 1592,
"end": 1610,
"text": "Pham et al. (2018)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Neural Architecture Search for Sentence-Pair Tasks",
"sec_num": "3"
},
{
"text": "In this work, we follow the setup of Pasunuru and Bansal (2019), using standard LSTM-based NLP models and replacing the LSTMs with RNN cells sampled from the ENAS controller. We leave the rest of the model architecture (e.g. attention, pooling, output layers) the same, so the child model search space consists of every possible ENAS-RNN architecture with the standard model architecture around it. As with standard ENAS training, the parameters of the ENAS-RNNs and standard model architecture (e.g. final output layer) are shared across all child models.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Neural Architecture Search for Sentence-Pair Tasks",
"sec_num": "3"
},
{
"text": "We evaluate ENAS on three sentence-pair datasets using two models and two sets of embeddings: ] which is fed through a feedforward layer and a final projection to single predicted value.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "3.1"
},
{
"text": "3.1.1",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "3.1"
},
{
"text": "\u2022 Feature-based BERT-base (Devlin et al., 2019) : Following Peters et al. 2019, we jointly encode the sentence pair (rather than encoding each separately). and learn a linear weighted combination of BERT's layers. BERT is frozen during training.",
"cite_spans": [
{
"start": 26,
"end": 47,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Embeddings",
"sec_num": "3.1.3"
},
{
"text": "\u2022 Glove (Pennington et al., 2014) : 300 dimensional vectors trained on Wikipedia and Gigaword. Embeddings are frozen during training. 1",
"cite_spans": [
{
"start": 8,
"end": 33,
"text": "(Pennington et al., 2014)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Embeddings",
"sec_num": "3.1.3"
},
{
"text": "We first benchmark LSTM implementations of both models. We adapt the BLM implementation from Pasunuru and Bansal (2019) and use the AllenNLP implementation of ESIM . To have the most competitive baselines possible, we perform extensive HPT, running 500 trials using a Tree-structured Parzen Estimator (TPE; Bergstra et al. (2011)). We tune the hidden dimension sizes, dropout rates, batch size, loss function (only for regression tasks: mean squared error or mean absolute error), learning rate, weight decay, grad norm, and random seed. See Appendix A.2 for full HPT experiment details. Note that we put emphasis on extensive, automated HPT and conduct hundreds of HPT trials (as opposed to only tens of trials typically used in prior work, e.g. Yogatama et al. (2015)). Given that we train BLM and ESIM on top of frozen embeddings, we use the ESIM + BERT results from Peters et al. (2019) as a baseline. Our reproduced results are in the same ballpark (Table 1 , rows 2-3), albeit with small deviations.",
"cite_spans": [
{
"start": 93,
"end": 119,
"text": "Pasunuru and Bansal (2019)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [
{
"start": 954,
"end": 962,
"text": "(Table 1",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "LSTM Baselines",
"sec_num": "3.2"
},
{
"text": "After finding the best hyperparameters for each dataset, embedding, model LSTM configuration, we run ENAS to search for a new RNN for each configuration. Following Pasunuru and Bansal (2019), we use 6 node ENAS-RNNs. We use Microsoft NNI's (Microsoft, 2020) ENAS implementation. We replace the BiLSTM in BLM and both BiLSTMs in ESIM with the ENAS BiRNNs (we use same architecture in both ESIM layers). We train ENAS for 150 epochs with early-stopping. For each dataset, embedding, model) configuration, we train the ENAS models with the same hyperparameters as the best corresponding LSTM model, except learning rate of 1e-4 and grad norm 0.25, which are used across all ENAS models 2 . We follow the hyperparameter configurations from Pham et al. (2018) for the ENAS controller.",
"cite_spans": [
{
"start": 240,
"end": 257,
"text": "(Microsoft, 2020)",
"ref_id": null
},
{
"start": 736,
"end": 754,
"text": "Pham et al. (2018)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "ENAS Training",
"sec_num": "3.3"
},
{
"text": "After training ENAS, we sample 10 architectures from the controller. Just as during ENAS training, we then use these architectures as drop-in replacements for LSTMs, replacing a model's BiLSTM layer(s) with ENAS BiRNN(s). We then train the models from scratch and repeat HPT, extending the original LSTM hyperparameter search space with a choice over the 10 sampled architectures. We run 200 trials of HPT. We note that, unlike the CUDA implementations for LSTMs, it is non-trivial to implement highly optimized arbitrary ENAS-RNN architectures. We discuss these limitations and the overall compute dedicated for HPT on LSTM and ENAS-RNN based models in Appendix A.2.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training Discovered Architectures",
"sec_num": "3.4"
},
{
"text": "In addition to experiments replacing all BiLSTM layers with ENAS BiRNNs, we also examine mixing ENAS-RNN and LSTM layers in the multilayer ESIM model. Specifically, we experiment with only replacing the 1st BiLSTM layer in ESIM with an ENAS BiRNN and only replacing the 2nd BiLSTM layer. These models have the same hyperparameter search space as the ESIM model with ENAS-RNNs in both layers (i.e. same possible ENAS-RNN architectures), but we tune and evaluate them separately (see Table 1 , rows 5-6, 11-12). Table 2 : Evaluation of how well ENAS-RNNs transfer to other datasets and compare to random search. We report pearson correlation for SICK-R and STS-B and accuracy for MRPC. In the RNN collumn, \"E\" stands for ENAS-RNN, \"L\" stands for LSTM, and \"RND\" for random RNN. For ESIM we use an ENAS or random RNN in the 1st layer and an LSTM in the 2nd layer. Table 1 lists the dev and test results for all datasets, embeddings, and models. We focus our discussion on the test results. On the whole, the results are mixed. BLM, ENAS outperforms BLM, LSTM across all datasets and embeddings by an average of 1.9%. ESIM, ENAS , on the other hand, fails to consistently outperform ESIM, LSTM . ESIM models with ENAS-RNNs in both layers lag behind LSTMs by 0.9%, on average. Focusing first on BLM, we find that BLM, ENAS outperforms BLM, LSTM by an average of 2.1% across all three datasets using BERT (row 8) and 1.7% using Glove (row 14). These results parallel those of Pasunuru and Bansal (2019) , who find that BLM, ENAS with ELMO embeddings outperforms BLM, LSTM on two NLI datasets and is on par on a third. However, both in our experiments and those of Pasunuru and Bansal (2019) , the 6 node ENAS-RNNs have more parameters than the corresponding LSTM models 3 , making it difficult to get a clear picture of the effects of just changing the RNN architecture. To 3 The exact ratio in number of parameters between 6 node ENAS-RNNs and LSTMs depends on the input and hidden dimensions control for this, in \u00a74.1 we conduct experiments comparing ENAS-RNNs to RNNs randomly sampled from the same search space.",
"cite_spans": [
{
"start": 1470,
"end": 1496,
"text": "Pasunuru and Bansal (2019)",
"ref_id": "BIBREF16"
},
{
"start": 1658,
"end": 1684,
"text": "Pasunuru and Bansal (2019)",
"ref_id": "BIBREF16"
},
{
"start": 1868,
"end": 1869,
"text": "3",
"ref_id": null
}
],
"ref_spans": [
{
"start": 482,
"end": 489,
"text": "Table 1",
"ref_id": "TABREF2"
},
{
"start": 510,
"end": 517,
"text": "Table 2",
"ref_id": null
},
{
"start": 861,
"end": 868,
"text": "Table 1",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Training Discovered Architectures",
"sec_num": "3.4"
},
{
"text": "Examining ESIM, the results are mixed. ESIM models with ENAS-RNNs in both layers (rows 4, 10) are worse than ESIM, LSTM on 4 of 6 dataset, embedding configurations. The best ESIM, ENAS performance is actually achieved using a mix of ENAS-RNNs and LSTMs across different layers. In fact, the only configurations in which ESIM, ENAS outperforms ESIM, LSTM across all three datasets is BERT, ENAS / LSTM) (row 5), where we only replace the first LSTM layer with an ENAS-RNN. The gains, however, are modest compared to those of the BLM model, improving over ESIM, LSTM by 0.73% on average. Further, changing the embeddings to Glove Glove, ENAS / LSTM) (row 11), ESIM, ENAS underperforms ESIM, LSTM across all 3 datasets by nearly 2% on average. Since we do not observe similar performance gains with ESIM as with BLM, we hypothesize that optimization of specific RNN architectures might matter less as model complexity (e.g. number of layers) increases. We suggest future work further examine the importance of ENAS as it relates to model complexity, especially on tasks where an RNN's architecture might have a higher impact on modeling performance.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results",
"sec_num": "4"
},
{
"text": "In addition to comparisons to LSTMs, we evaluate two common claims about NAS methods: 1) NAS outperforms random search (Pham et al., 2018; Zoph and Le, 2017; Luo et al., 2018; Liu et al., 2019) 2) NAS architectures are transferable to related datasets and tasks (Zoph and Le, 2017; Liu et al., 2019; Luo et al., 2018) . We choose two configurations to evaluate these claims: (i) Glove, BLM and (ii) BERT, ESIM, ENAS / LSTM with ENAS-RNNs only in the first layer, keeping the second BiLSTM layer. We chose these configurations since they perform well relative to LSTMs and, between them, cover all embeddings and models.",
"cite_spans": [
{
"start": 119,
"end": 138,
"text": "(Pham et al., 2018;",
"ref_id": "BIBREF20"
},
{
"start": 139,
"end": 157,
"text": "Zoph and Le, 2017;",
"ref_id": null
},
{
"start": 158,
"end": 175,
"text": "Luo et al., 2018;",
"ref_id": "BIBREF13"
},
{
"start": 176,
"end": 193,
"text": "Liu et al., 2019)",
"ref_id": "BIBREF12"
},
{
"start": 262,
"end": 281,
"text": "(Zoph and Le, 2017;",
"ref_id": null
},
{
"start": 282,
"end": 299,
"text": "Liu et al., 2019;",
"ref_id": "BIBREF12"
},
{
"start": 300,
"end": 317,
"text": "Luo et al., 2018)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Random & Transfer Architectures",
"sec_num": "4.1"
},
{
"text": "For claim #1, we first randomly sample 10 RNN architectures from the ENAS search space. Then, just as for the ENAS-RNNs, we perform 200 HPT trials, replacing the 10 ENAS-RNN candidates with the 10 randomly sampled RNN candidates. For claim #2, we test the transferability of SICK-R and MRPC cells to/from each other. We do not evaluate the transferability of STS-B cells, since STS-B contains data from SICK-R and MRPC. We again perform 200 HPT trials, but with the different dataset's ENAS-RNN cells in the search space. Table 2 shows our results. We again focus on test results. For claim #1, we find mixed results, with ENAS outperforming random search by an average of 1.33% in the configuration BERT, ESIM, ENAS / LSTM (rows 1-4), but performing worse or on par with random on GLOVE, BLM (rows 5-8) (average 0.9% decrease). These results contrast those of Pham et al. (2018); Pasunuru and Bansal (2019), who report gains over random search on language modeling (25.4% decrease in perplexity) and NLI datasets (1.53% increase in accuracy). We hypothesize that these differences are due, in part, to our emphasis on creating strong baselines by searching over multiple architectures and performing extensive HPT for all models and settings.",
"cite_spans": [],
"ref_spans": [
{
"start": 522,
"end": 529,
"text": "Table 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Random & Transfer Architectures",
"sec_num": "4.1"
},
{
"text": "For claim #2, we find that transfer architectures underperform dataset-specific ENAS architectures by 0.58% and random architectures by 0.7%, on average. Only one architecture (row 1, SICK to MRPC) outperforms either of the corresponding random or dataset-specific architectures. Together with our findings for claim #1, these results cast further doubt on the ability of ENAS to find the best architecture for a specific task, its superiority to well-tuned random architectures, and the transferability of its discovered architectures.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Random & Transfer Architectures",
"sec_num": "4.1"
},
{
"text": "Unlike prior work applying ENAS to NLP, we find that ENAS-RNNs only outperform LSTMs and random search on some dataset, embedding, model) configurations. Our findings parallel recent work (Li and Talwalkar, 2019; Sciuto et al., 2020) which question the effectiveness of current NAS methods and their superiority to random architecture search and SOTA HPT methods. Given our mixed results, we recommend researchers: (i) extensively tune hyperparameters for standard (e.g. LSTM) and randomly sampled architectures to create strong baselines; (ii) benchmark ENAS performance across multiple simple and complex model architectures (e.g. BLM & ESIM); (iii) present computational requirements alongside gains observed with ENAS methods. ",
"cite_spans": [
{
"start": 188,
"end": 212,
"text": "(Li and Talwalkar, 2019;",
"ref_id": "BIBREF10"
},
{
"start": 213,
"end": 233,
"text": "Sciuto et al., 2020)",
"ref_id": "BIBREF21"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
},
{
"text": "All models were implemented with Pytorch and run on Amazon p3 instances (16GB Nvidia V100).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A Implementation Details",
"sec_num": null
},
{
"text": "Experiments with BERT used the Huggingface Transformers library (Wolf et al., 2019) . Experiments with Glove vectors used 300 dimensional vectors trained on Wikipedia 2014 + Gigaword 5 4 . Glove vectors weren't updated training, and outof-vocabulary tokens were replaced with the token \"[UNK]\" with an embedding of all 0s (\u2248 6% of tokens are OOV). In initial experiments, we found no differences between our all-0 embeddings and embeddings randomly initialized according to a Gaussian distribution.",
"cite_spans": [
{
"start": 64,
"end": 83,
"text": "(Wolf et al., 2019)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "A.1 Embeddings",
"sec_num": null
},
{
"text": "All HPT was run using Microsoft NNI's parallel implementation of TPE 5 with concurrency 8. Table 3 contains the search space for our experiments. Table 5 contains the best hyperparameter settings for all of our experiments.",
"cite_spans": [],
"ref_spans": [
{
"start": 146,
"end": 153,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "A.2 Hyperparameter Tuning",
"sec_num": null
},
{
"text": "In order for a model to fit on a single GPU (16GB Nvidia V100), we had to limit the search space slightly for models using both ENAS-RNNs and BERT embeddings. This is because the ENAS-RNN search space contains weight matrices W h ,j",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A.2.1 Memory Limitations for HPT with ENAS-RNNs",
"sec_num": null
},
{
"text": "between each pair of nodes , j in the RNN search space DAG, which greatly expands memory usage (see Pham et al. (2018) , sections 2.1 and Appendix A). For both BLM and ESIM models, hidden dimensions were limited to [384, 512, 768] . Further, for ESIM models with ENAS-RNNs in both layers, the batch size was also limited to [16, 32] .",
"cite_spans": [
{
"start": 100,
"end": 118,
"text": "Pham et al. (2018)",
"ref_id": "BIBREF20"
},
{
"start": 215,
"end": 220,
"text": "[384,",
"ref_id": null
},
{
"start": 221,
"end": 225,
"text": "512,",
"ref_id": null
},
{
"start": 226,
"end": 230,
"text": "768]",
"ref_id": null
},
{
"start": 324,
"end": 328,
"text": "[16,",
"ref_id": null
},
{
"start": 329,
"end": 332,
"text": "32]",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "A.2.1 Memory Limitations for HPT with ENAS-RNNs",
"sec_num": null
},
{
"text": "Since our ENAS-RNNs are, similar to prior NAS research code, implemented using a Python for-loop over time steps, the implementation is significantly slower (\u2248 25x) than the cuda-optimized LSTM equivalent. Thus, due to computational limits, we only perform 200 trials of HPT for the models with ENAS-RNNs (vs. 500 for models with LSTMs). Though the number of HPT trials is lower than for LSTMs, due to their slow speed, the total compute time devoted to tuning the ENAS-RNN models is roughly 10x+ higher. As an example, Table 4 shows the total compute time dedicated to HPT for BLM models (both LSTM-based models and ENAS-RNN based models), measured as the total number of hours spent on a single p3.16xlarge instance 6 to finish all HPT trials. Note, the models with ENAS-RNNs are not always exactly 10x slower than the LSTM equivalent -since we are also searching over batch size during HPT, runtimes can vary significantly.",
"cite_spans": [],
"ref_spans": [
{
"start": 520,
"end": 527,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "A.2.2 Timing limitations for HPT with ENAS-RNNs",
"sec_num": null
},
{
"text": "As noted in \u00a73.3, we train the ENAS child models BLM, ESIM using the same parameters as the corresponding best LSTM model for the given configuration dataset, embeddings, model . For the configuration STS-B, BERT, ESIM , the corresponding ENAS child models would not fit on a single GPU (16GB Nvidia V100). This is due to the large memory footprint of ENAS as discussed in A.2. Thus, for STS-B, BERT, ESIM we decrease the batch size from 64 to 32 and the hidden dimensions from 1152 to 768. Table 4 : Compute time spent on HPT for BLM models (both LSTM-based models and ENAS-RNN based models). Compute time measured as total number of hours on a single p3.16xlarge instance. All HPT was run using Microsoft NNI's parallel implementation of TPE 7 with concurrency 8 (one trial running on each of the 8 GPUs in the p3.16xlarge instance).",
"cite_spans": [],
"ref_spans": [
{
"start": 491,
"end": 498,
"text": "Table 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "A.3 Memory Limitations for Training ENAS",
"sec_num": null
},
{
"text": "As described in \u00a73.3, when training the ESIM child models jointly with the ENAS controller, we replace both of ESIM's BiLSTMs with the sampled ENAS-RNN architectures. We do this for each dataset, embedding configuration, thus running 6 total instances of ENAS (3 datasets * 2 embeddings). After the ENAS training is complete, we sample 10 ENAS-RNN architectures from the trained controller. However, when training ESIM models from scratch, as described in \u00a73.4, we experiment with 1) replacing both LSTM layers with the ENAS-RNN architecture (same as during ENAS training) 2) only replacing the 1st layer 3) only replacing the 2nd layer. We treat each ESIM layer configuration as its own model and tune its hyperparameters separately. Thus, for example, for the configuration (SICK-R, BERT, ESIM) we perform 200 trails of HPT for the configuration with ENAS-RNNs in both layers, 200 trials of HPT for the configuration with an ENAS-RNN in layer 1 and an LSTM in layer 2, and finally 200 trials of HPT for the configuration with an LSTM in layer 1 and an ENAS-RNN in layer 2. Note, however, that these three separate instances of HPT share the same search space over ENAS-RNN architectures -all three are searching over the same 10 ENAS-RNNs sampled from the same controller. In total, we run 18 different instances of HPT (3 datasets * 2 embeddings * 3 layer configs). The results from each configuration are presented separately in Table 1 (in the main portion of the paper).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A.4 ESIM: Differences Between Training Child Models with ENAS and Training Models from Scratch",
"sec_num": null
},
{
"text": "Search Space Table 6 shows the architectures of all RNNs used in our experiments (ENAS-RNNs, transferred ENAS-RNNs, random RNNs). Each architecture is numbered 1-26. Table 5 , which displays the hyperparameter settings for each model and configuration, lists which RNN architecture each configuration uses. Note, some of the architectures are the same across different model configurations. This is due to two reasons:",
"cite_spans": [],
"ref_spans": [
{
"start": 13,
"end": 20,
"text": "Table 6",
"ref_id": null
},
{
"start": 166,
"end": 173,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "A.5 RNN Architectures Sampled from ENAS",
"sec_num": null
},
{
"text": "\u2022 As discussed in \u00a73.4 and \u00a7A.4, we experiment with mixing ENAS-RNN and LSTM layers in the multi-layer ESIM model. The ESIM models with ENAS RNNs in both layers share the same possible ENAS-RNN architectures as the corresponding ESIM models with an ENAS-RNN only in the 1st layer or 2nd layer.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A.5 RNN Architectures Sampled from ENAS",
"sec_num": null
},
{
"text": "\u2022 We sampled 10 total random architectures from the ENAS-RNN search space then used those same 10 architectures in the search spaces for all dataset, model, embedding configurations. Thus, some configurations might use the same architecture.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "A.5 RNN Architectures Sampled from ENAS",
"sec_num": null
},
{
"text": "For MRPC and STS-B, we use the data provided by Glue 8 . For SICK-R, we use the data provided by SemEval-2014 Task 1 9 . We use scikit-learn 10 to split the provided SICK-R training data into train and dev splits. For our experiments with BERT, we use the Bert-Tokenizer from the Huggingface Transformers library (Wolf et al., 2019) . We cap each sentencepair at a certain number of total wordpiece tokens (SICK: 64, MRPC: 128, STS-B: 128). For our experiments with Glove, we use spacy 11 (Honnibal and Montani, 2017) to tokenize each sentence. We cap each sentence at a certain number of tokens (SICK: 30, MRPC: 46, Table 5 : Hyperparameter values used for all experiments. In the RNN collumn, \"E\" stands for ENAS-RNN, \"L\" stands for LSTM, \"R\" for random RNN, and \"T\" for transfer. All floating point values have been rounded to 4 significant figures after the decimal point. Variational dropout is applied before each RNN layer. For models with RNNs from the ENAS search space (all models except those with LSTMs), the column 'Architecture #' displays which RNN architecture it uses. The number corresponds to the row number in Table 6 . For ESIM models, the two hidden dimension values refer to (RNN layer 1, RNN layer 2) and the two dropout numbers refer to standard dropout (applied after the 'enhancement' layer, in the final MLP layer). For BLM models, the two dropout numbers refer to standard dropout applied (after the RNN layer, before the final projection)",
"cite_spans": [
{
"start": 313,
"end": 332,
"text": "(Wolf et al., 2019)",
"ref_id": "BIBREF24"
},
{
"start": 489,
"end": 517,
"text": "(Honnibal and Montani, 2017)",
"ref_id": null
},
{
"start": 596,
"end": 606,
"text": "(SICK: 30,",
"ref_id": null
},
{
"start": 607,
"end": 616,
"text": "MRPC: 46,",
"ref_id": null
}
],
"ref_spans": [
{
"start": 617,
"end": 624,
"text": "Table 5",
"ref_id": null
},
{
"start": 1130,
"end": 1137,
"text": "Table 6",
"ref_id": null
}
],
"eq_spans": [],
"section": "A.6 Datasets",
"sec_num": null
},
{
"text": "Our initial experiments found that static Glove embeddings outperformed non-static ones.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Training is unstable with the higher learning rates found during HPT for our LSTM models and those suggested inPasunuru and Bansal (2019);Pham et al. (2018)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://nlp.stanford.edu/data/glove.6B. zip 5 https://nni.readthedocs.io/en/latest/ CommunitySharings/ParallelizingTpeSearch. html",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://aws.amazon.com/ec2/ instance-types/p3/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://gluebenchmark.com/faq 9 http://alt.qcri.org/semeval2014/ task1/ 10 https://scikit-learn.org/stable/ modules/generated/sklearn.model_ selection.train_test_split.html, dev size: 0.1, random state: 011 https://spacy.io/models/en#en_core_ web_md",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": " Table 5 by the column 'Architecture #'. Node # Input refers to the index of the previous node used as input to the current node. Node # Op refers to the elementwise operation applied at each node (Relu, Tanh, Sigmoid, Identity). Please see Pham et al. (2018) for more details on the ENAS RNN search space.",
"cite_spans": [
{
"start": 241,
"end": 259,
"text": "Pham et al. (2018)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [
{
"start": 1,
"end": 8,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "annex",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Algorithms for hyper-parameter optimization",
"authors": [
{
"first": "James",
"middle": [],
"last": "Bergstra",
"suffix": ""
},
{
"first": "R\u00e9mi",
"middle": [],
"last": "Bardenet",
"suffix": ""
},
{
"first": "Yoshua",
"middle": [],
"last": "Bengio",
"suffix": ""
},
{
"first": "Bal\u00e1zs",
"middle": [],
"last": "K\u00e9gl",
"suffix": ""
}
],
"year": 2011,
"venue": "NIPS",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "James Bergstra, R\u00e9mi Bardenet, Yoshua Bengio, and Bal\u00e1zs K\u00e9gl. 2011. Algorithms for hyper-parameter optimization. In NIPS.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "SemEval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Cer",
"suffix": ""
},
{
"first": "Mona",
"middle": [],
"last": "Diab",
"suffix": ""
},
{
"first": "Eneko",
"middle": [],
"last": "Agirre",
"suffix": ""
},
{
"first": "I\u00f1igo",
"middle": [],
"last": "Lopez-Gazpio",
"suffix": ""
},
{
"first": "Lucia",
"middle": [],
"last": "Specia",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)",
"volume": "",
"issue": "",
"pages": "1--14",
"other_ids": {
"DOI": [
"10.18653/v1/S17-2001"
]
},
"num": null,
"urls": [],
"raw_text": "Daniel Cer, Mona Diab, Eneko Agirre, I\u00f1igo Lopez- Gazpio, and Lucia Specia. 2017. SemEval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 1-14, Vancouver, Canada. Association for Computational Linguistics.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Enhanced LSTM for natural language inference",
"authors": [
{
"first": "Qian",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Xiaodan",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Zhen-Hua",
"middle": [],
"last": "Ling",
"suffix": ""
},
{
"first": "Si",
"middle": [],
"last": "Wei",
"suffix": ""
},
{
"first": "Hui",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Diana",
"middle": [],
"last": "Inkpen",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "1657--1668",
"other_ids": {
"DOI": [
"10.18653/v1/P17-1152"
]
},
"num": null,
"urls": [],
"raw_text": "Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. 2017. Enhanced LSTM for natural language inference. In Proceedings of the 55th Annual Meeting of the Association for Com- putational Linguistics (Volume 1: Long Papers), pages 1657-1668, Vancouver, Canada. Association for Computational Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Supervised learning of universal sentence representations from natural language inference data",
"authors": [
{
"first": "Alexis",
"middle": [],
"last": "Conneau",
"suffix": ""
},
{
"first": "Douwe",
"middle": [],
"last": "Kiela",
"suffix": ""
},
{
"first": "Holger",
"middle": [],
"last": "Schwenk",
"suffix": ""
},
{
"first": "Lo\u00efc",
"middle": [],
"last": "Barrault",
"suffix": ""
},
{
"first": "Antoine",
"middle": [],
"last": "Bordes",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "670--680",
"other_ids": {
"DOI": [
"10.18653/v1/D17-1070"
]
},
"num": null,
"urls": [],
"raw_text": "Alexis Conneau, Douwe Kiela, Holger Schwenk, Lo\u00efc Barrault, and Antoine Bordes. 2017. Supervised learning of universal sentence representations from natural language inference data. In Proceedings of the 2017 Conference on Empirical Methods in Nat- ural Language Processing, pages 670-680, Copen- hagen, Denmark. Association for Computational Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4171--4186",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1423"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Automatically constructing a corpus of sentential paraphrases",
"authors": [
{
"first": "B",
"middle": [],
"last": "William",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dolan",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Brockett",
"suffix": ""
}
],
"year": 2005,
"venue": "IWP@IJCNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "William B. Dolan and Chris Brockett. 2005. Automati- cally constructing a corpus of sentential paraphrases. In IWP@IJCNLP.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Neural architecture search: A survey",
"authors": [
{
"first": "Thomas",
"middle": [],
"last": "Elsken",
"suffix": ""
},
{
"first": "Jan",
"middle": [
"Hendrik"
],
"last": "Metzen",
"suffix": ""
},
{
"first": "Frank",
"middle": [],
"last": "Hutter",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture search: A survey. JMLR.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Allennlp: A deep semantic natural language processing platform",
"authors": [
{
"first": "Matt",
"middle": [],
"last": "Gardner",
"suffix": ""
},
{
"first": "Joel",
"middle": [],
"last": "Grus",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Neumann",
"suffix": ""
},
{
"first": "Oyvind",
"middle": [],
"last": "Tafjord",
"suffix": ""
},
{
"first": "Pradeep",
"middle": [],
"last": "Dasigi",
"suffix": ""
},
{
"first": "Nelson",
"middle": [
"F"
],
"last": "Liu",
"suffix": ""
},
{
"first": "Matthew",
"middle": [
"E"
],
"last": "Peters",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Schmitz",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2018,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E. Peters, Michael Schmitz, and Luke Zettle- moyer. 2018. Allennlp: A deep semantic natural language processing platform. ArXiv, abs/1803.07640. ESIM implementation https:",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "2017. spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing",
"authors": [
{
"first": "Matthew",
"middle": [],
"last": "Honnibal",
"suffix": ""
},
{
"first": "Ines",
"middle": [],
"last": "Montani",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language understanding with Bloom embed- dings, convolutional neural networks and incremen- tal parsing. To appear.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Improved differentiable architecture search for language modeling and named entity recognition",
"authors": [
{
"first": "Yufan",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Chi",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "Tong",
"middle": [],
"last": "Xiao",
"suffix": ""
},
{
"first": "Chunliang",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Jingbo",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "3585--3590",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1367"
]
},
"num": null,
"urls": [],
"raw_text": "Yufan Jiang, Chi Hu, Tong Xiao, Chunliang Zhang, and Jingbo Zhu. 2019. Improved differentiable ar- chitecture search for language modeling and named entity recognition. In Proceedings of the 2019 Con- ference on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 3585-3590, Hong Kong, China. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Random search and reproducibility for neural architecture search",
"authors": [
{
"first": "Liam",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Ameet",
"middle": [],
"last": "Talwalkar",
"suffix": ""
}
],
"year": 2019,
"venue": "UAI",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Liam Li and Ameet Talwalkar. 2019. Random search and reproducibility for neural architecture search. In UAI.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Learning architectures from an extended search space for language modeling",
"authors": [
{
"first": "Yinqiao",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Chi",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "Yuhao",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Nuo",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Yufan",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Tong",
"middle": [],
"last": "Xiao",
"suffix": ""
},
{
"first": "Jingbo",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Tongran",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "6629--6639",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yinqiao Li, Chi Hu, Yuhao Zhang, Nuo Xu, Yufan Jiang, Tong Xiao, Jingbo Zhu, Tongran Liu, and changliang li. 2020. Learning architectures from an extended search space for language modeling. In Proceedings of the 58th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 6629- 6639, Online. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Darts: Differentiable architecture search",
"authors": [
{
"first": "Hanxiao",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Karen",
"middle": [],
"last": "Simonyan",
"suffix": ""
},
{
"first": "Yiming",
"middle": [],
"last": "Yang",
"suffix": ""
}
],
"year": 2019,
"venue": "ICLR",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. Darts: Differentiable architecture search. In ICLR.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Neural architecture optimization",
"authors": [
{
"first": "Renqian",
"middle": [],
"last": "Luo",
"suffix": ""
},
{
"first": "Fei",
"middle": [],
"last": "Tian",
"suffix": ""
},
{
"first": "Tao",
"middle": [],
"last": "Qin",
"suffix": ""
},
{
"first": "Tie-Yan",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Renqian Luo, Fei Tian, Tao Qin, and Tie-Yan Liu. 2018. Neural architecture optimization. In NeurIPS.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "A SICK cure for the evaluation of compositional distributional semantic models",
"authors": [
{
"first": "Marco",
"middle": [],
"last": "Marelli",
"suffix": ""
},
{
"first": "Stefano",
"middle": [],
"last": "Menini",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Baroni",
"suffix": ""
},
{
"first": "Luisa",
"middle": [],
"last": "Bentivogli",
"suffix": ""
},
{
"first": "Raffaella",
"middle": [],
"last": "Bernardi",
"suffix": ""
},
{
"first": "Roberto",
"middle": [],
"last": "Zamparelli",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014)",
"volume": "",
"issue": "",
"pages": "216--223",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto Zampar- elli. 2014. A SICK cure for the evaluation of com- positional distributional semantic models. In Pro- ceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014), pages 216-223, Reykjavik, Iceland. European Lan- guages Resources Association (ELRA).",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Continual and multi-task architecture search",
"authors": [
{
"first": "Ramakanth",
"middle": [],
"last": "Pasunuru",
"suffix": ""
},
{
"first": "Mohit",
"middle": [],
"last": "Bansal",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1911--1922",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1185"
]
},
"num": null,
"urls": [],
"raw_text": "Ramakanth Pasunuru and Mohit Bansal. 2019. Con- tinual and multi-task architecture search. In Pro- ceedings of the 57th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 1911- 1922, Florence, Italy. Association for Computational Linguistics. Github Repository: https://github. com/ramakanth-pasunuru/CAS-MAS.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Glove: Global vectors for word representation",
"authors": [
{
"first": "Jeffrey",
"middle": [],
"last": "Pennington",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "1532--1543",
"other_ids": {
"DOI": [
"10.3115/v1/D14-1162"
]
},
"num": null,
"urls": [],
"raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word rep- resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process- ing (EMNLP), pages 1532-1543, Doha, Qatar. Asso- ciation for Computational Linguistics.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Deep contextualized word representations",
"authors": [
{
"first": "Matthew",
"middle": [],
"last": "Peters",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Neumann",
"suffix": ""
},
{
"first": "Mohit",
"middle": [],
"last": "Iyyer",
"suffix": ""
},
{
"first": "Matt",
"middle": [],
"last": "Gardner",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "2227--2237",
"other_ids": {
"DOI": [
"10.18653/v1/N18-1202"
]
},
"num": null,
"urls": [],
"raw_text": "Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word rep- resentations. In Proceedings of the 2018 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long Papers), pages 2227-2237, New Orleans, Louisiana. Association for Computational Linguistics.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "To tune or not to tune? adapting pretrained representations to diverse tasks",
"authors": [
{
"first": "Matthew",
"middle": [
"E"
],
"last": "Peters",
"suffix": ""
},
{
"first": "Sebastian",
"middle": [],
"last": "Ruder",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)",
"volume": "",
"issue": "",
"pages": "7--14",
"other_ids": {
"DOI": [
"10.18653/v1/W19-4302"
]
},
"num": null,
"urls": [],
"raw_text": "Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. 2019. To tune or not to tune? adapting pre- trained representations to diverse tasks. In Proceed- ings of the 4th Workshop on Representation Learn- ing for NLP (RepL4NLP-2019), pages 7-14, Flo- rence, Italy. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Efficient neural architecture search via parameter sharing",
"authors": [
{
"first": "Hieu",
"middle": [],
"last": "Pham",
"suffix": ""
},
{
"first": "Melody",
"middle": [
"Y"
],
"last": "Guan",
"suffix": ""
},
{
"first": "Barret",
"middle": [],
"last": "Zoph",
"suffix": ""
},
{
"first": "Quoc",
"middle": [
"V"
],
"last": "Le",
"suffix": ""
},
{
"first": "Jeff",
"middle": [],
"last": "Dean",
"suffix": ""
}
],
"year": 2018,
"venue": "ICML",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. 2018. Efficient neural architecture search via parameter sharing. In ICML.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Evaluating the search phase of neural architecture search",
"authors": [
{
"first": "Christian",
"middle": [],
"last": "Sciuto",
"suffix": ""
},
{
"first": "Kaicheng",
"middle": [],
"last": "Yu",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Jaggi",
"suffix": ""
},
{
"first": "Claudiu",
"middle": [],
"last": "Musat",
"suffix": ""
},
{
"first": "Mathieu",
"middle": [],
"last": "Salzmann",
"suffix": ""
}
],
"year": 2020,
"venue": "ICLR",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. 2020. Evaluating the search phase of neural architecture search. In ICLR.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "The evolved transformer",
"authors": [
{
"first": "David",
"middle": [
"R"
],
"last": "So",
"suffix": ""
},
{
"first": "Chen",
"middle": [],
"last": "Liang",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Quoc",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Le",
"suffix": ""
}
],
"year": 2019,
"venue": "ICML",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David R. So, Chen Liang, and Quoc V. Le. 2019. The evolved transformer. In ICML.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Textnas: A neural architecture search space tailored for text representation",
"authors": [
{
"first": "Yujing",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Yaming",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Yi-Ren",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Jing",
"middle": [],
"last": "Bai",
"suffix": ""
},
{
"first": "Ce",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Guinan",
"middle": [],
"last": "Su",
"suffix": ""
},
{
"first": "Xiaoyu",
"middle": [],
"last": "Kou",
"suffix": ""
},
{
"first": "Yunhai",
"middle": [],
"last": "Tong",
"suffix": ""
},
{
"first": "Mao",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Lidong",
"middle": [],
"last": "Zhou",
"suffix": ""
}
],
"year": 2020,
"venue": "AAAI",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yujing Wang, Yaming Yang, Yi-Ren Chen, Jing Bai, Ce Zhang, Guinan Su, Xiaoyu Kou, Yunhai Tong, Mao Yang, and Lidong Zhou. 2020. Textnas: A neu- ral architecture search space tailored for text repre- sentation. In AAAI.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Huggingface's transformers: State-of-the-art natural language processing",
"authors": [
{
"first": "Thomas",
"middle": [],
"last": "Wolf",
"suffix": ""
},
{
"first": "Lysandre",
"middle": [],
"last": "Debut",
"suffix": ""
},
{
"first": "Victor",
"middle": [],
"last": "Sanh",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Chaumond",
"suffix": ""
},
{
"first": "Clement",
"middle": [],
"last": "Delangue",
"suffix": ""
},
{
"first": "Anthony",
"middle": [],
"last": "Moi",
"suffix": ""
},
{
"first": "Pierric",
"middle": [],
"last": "Cistac",
"suffix": ""
},
{
"first": "Tim",
"middle": [],
"last": "Rault",
"suffix": ""
},
{
"first": "R\u00e9mi",
"middle": [],
"last": "Louf",
"suffix": ""
},
{
"first": "Morgan",
"middle": [],
"last": "Funtowicz",
"suffix": ""
},
{
"first": "Joe",
"middle": [],
"last": "Davison",
"suffix": ""
},
{
"first": "Sam",
"middle": [],
"last": "Shleifer",
"suffix": ""
},
{
"first": "Clara",
"middle": [],
"last": "Patrick Von Platen",
"suffix": ""
},
{
"first": "Yacine",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Jernite",
"suffix": ""
},
{
"first": "Canwen",
"middle": [],
"last": "Plu",
"suffix": ""
},
{
"first": "Teven",
"middle": [
"Le"
],
"last": "Xu",
"suffix": ""
},
{
"first": "Sylvain",
"middle": [],
"last": "Scao",
"suffix": ""
},
{
"first": "Mariama",
"middle": [],
"last": "Gugger",
"suffix": ""
},
{
"first": "Quentin",
"middle": [],
"last": "Drame",
"suffix": ""
},
{
"first": "Alexander",
"middle": [
"M"
],
"last": "Lhoest",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Rush",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R\u00e9mi Louf, Morgan Funtow- icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2019. Huggingface's transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771.",
"links": null
}
},
"ref_entries": {
"TABREF2": {
"num": null,
"type_str": "table",
"content": "<table><tr><td>Dev Performance</td><td>Test Performance</td></tr></table>",
"html": null,
"text": "Dev & Test set performances for LSTM and ENAS-RNN based models. Following Peters et al.(2019), we report pearson correlation for SICK-R and STS-B and accuracy for MRPC. In the RNN collumn, \"E\" stands for ENAS-RNN and \"L\" stands for LSTM. For ESIM there can be different of cells in different layers, e.g. E / L stands for ENAS-RNN in the 1st layer and LSTM in the 2nd layer."
},
"TABREF4": {
"num": null,
"type_str": "table",
"content": "<table><tr><td>Dani Yogatama, Lingpeng Kong, and Noah A. Smith.</td></tr><tr><td>2015. Bayesian optimization of text representations.</td></tr><tr><td>In Proceedings of the 2015 Conference on Empiri-</td></tr><tr><td>cal Methods in Natural Language Processing, pages</td></tr><tr><td>2100-2105, Lisbon, Portugal. Association for Com-</td></tr><tr><td>putational Linguistics.</td></tr></table>",
"html": null,
"text": "Hyperparameter search space for all experiments."
},
"TABREF6": {
"num": null,
"type_str": "table",
"content": "<table><tr><td colspan=\"5\">Model Embedding RNN Dataset Batch Size Learning Rate</td><td>Loss</td><td colspan=\"3\">Weight Decay Grad Norm Hidden Dim</td><td>Dropout</td><td colspan=\"3\">Variational Dropout Rnd Seed Architecture #</td></tr><tr><td>BLM</td><td>BERT</td><td>L SICK</td><td>32</td><td>0.0046</td><td>mse</td><td>0.0514</td><td>12.3656</td><td>512</td><td>(0.3782, 0.3474)</td><td>0.4088</td><td>3</td><td>-</td></tr><tr><td>BLM</td><td>BERT</td><td>L MRPC</td><td>64</td><td>0.0021</td><td>cross entropy</td><td>0.0637</td><td>12.8279</td><td>384</td><td>(0.6355, 0.4388)</td><td>0.6804</td><td>2</td><td>-</td></tr><tr><td>BLM</td><td>BERT</td><td>L STS-B</td><td>32</td><td>0.0075</td><td>mse</td><td>0.0407</td><td>16.8742</td><td>512</td><td>(0.2702, 0.4525)</td><td>0.6783</td><td>2</td><td>-</td></tr><tr><td>BLM</td><td>Glove</td><td>L SICK</td><td>64</td><td>0.0007</td><td>mse</td><td>0.0040</td><td>10.2636</td><td>300</td><td>(0.3555, 0.2937)</td><td>0.2774</td><td>1</td><td>-</td></tr><tr><td>BLM</td><td>Glove</td><td>L MRPC</td><td>32</td><td>0.0017</td><td>cross entropy</td><td>0.0301</td><td>8.1649</td><td>450</td><td>(0.3346, 0.3751)</td><td>0.2986</td><td>5</td><td>-</td></tr><tr><td>BLM</td><td>Glove</td><td>L STS-B</td><td>32</td><td>0.0004</td><td>mse</td><td>0.0201</td><td>4.9461</td><td>200</td><td>(0.2597, 0.5924)</td><td>0.4516</td><td>0</td><td>-</td></tr><tr><td>BLM</td><td>BERT</td><td>E SICK</td><td>32</td><td>0.0074</td><td>mse</td><td>0.0226</td><td>11.2817</td><td>384</td><td>(0.3372, 0.5304)</td><td>0.3009</td><td>5</td><td>17</td></tr><tr><td>BLM</td><td>BERT</td><td>E MRPC</td><td>32</td><td>0.0031</td><td>cross entropy</td><td>0.0670</td><td>9.4340</td><td>384</td><td>(0.5310, 0.6235)</td><td>0.4676</td><td>1</td><td>15</td></tr><tr><td>BLM</td><td>BERT</td><td>E STS-B</td><td>32</td><td>0.0019</td><td>mae</td><td>0.0382</td><td>6.7670</td><td>512</td><td>(0.2507, 0.4492)</td><td>0.6193</td><td>1</td><td>19</td></tr><tr><td>BLM</td><td>Glove</td><td>E SICK</td><td>64</td><td>0.0007</td><td>mse</td><td>0.0729</td><td>11.7080</td><td>450</td><td>(0.3199, 0.2711)</td><td>0.3911</td><td>5</td><td>18</td></tr><tr><td>BLM</td><td>Glove</td><td>E MRPC</td><td>64</td><td>0.0001</td><td>cross entropy</td><td>0.0637</td><td>15.5210</td><td>450</td><td>(0.3352, 0.3993)</td><td>0.2948</td><td>4</td><td>16</td></tr><tr><td>BLM</td><td>Glove</td><td>E STS-B</td><td>16</td><td>0.0007</td><td>mae</td><td>0.0258</td><td>2.9847</td><td>450</td><td>(0.2584, 0.6419)</td><td>0.2508</td><td>4</td><td>20</td></tr><tr><td>BLM</td><td>Glove</td><td>R SICK</td><td>64</td><td>0.0016</td><td>mse</td><td>0.0647</td><td>15.0969</td><td>450</td><td>(0.2505, 0.3945)</td><td>0.2589</td><td>0</td><td>24</td></tr><tr><td>BLM</td><td>Glove</td><td>R MRPC</td><td>64</td><td>0.0015</td><td>cross entropy</td><td>0.0956</td><td>12.2487</td><td>300</td><td>(0.2956, 0.3971)</td><td>0.3304</td><td>0</td><td>22</td></tr><tr><td>BLM</td><td>Glove</td><td>R STS-B</td><td>64</td><td>0.0004</td><td>mse</td><td>0.0257</td><td>1.2826</td><td>600</td><td>(0.3355, 0.4312)</td><td>0.3392</td><td>3</td><td>24</td></tr><tr><td>BLM</td><td>Glove</td><td>T SICK</td><td>32</td><td>0.0003</td><td>mse</td><td>0.0058</td><td>6.1308</td><td>300</td><td>(0.3809, 0.3487)</td><td>0.3273</td><td>2</td><td>25</td></tr><tr><td>BLM</td><td>Glove</td><td>T MRPC</td><td>32</td><td>0.0005</td><td>cross entropy</td><td>0.0341</td><td>14.0270</td><td>200</td><td>(0.4586, 0.6012)</td><td>0.4123</td><td>0</td><td>26</td></tr><tr><td>ESIM</td><td>BERT</td><td>L/L SICK</td><td>32</td><td>0.0011</td><td>mae</td><td>0.0299</td><td colspan=\"4\">12.9599 (512 1152) (0.3171, 0.6050) (0.6962, 0.4123)</td><td>4</td><td>-</td></tr><tr><td>ESIM</td><td>BERT</td><td>L/L MRPC</td><td>64</td><td>0.0048</td><td>cross entropy</td><td>0.0448</td><td>16.0686</td><td colspan=\"3\">(384 512) (0.2806, 0.4960) (0.5453, 0.3357)</td><td>1</td><td>-</td></tr><tr><td>ESIM</td><td>BERT</td><td>L/L STS-B</td><td>64</td><td>0.0011</td><td>mae</td><td>0.0855</td><td colspan=\"4\">18.4787 (1152 1152) (0.4213, 0.4769) (0.5011, 0.5806)</td><td>3</td><td>-</td></tr><tr><td>ESIM</td><td>Glove</td><td>L/L SICK</td><td>32</td><td>0.0018</td><td>mse</td><td>0.0804</td><td>12.3511</td><td colspan=\"3\">(200 300) (0.4369, 0.5705) (0.4491, 0.3239)</td><td>1</td><td>-</td></tr><tr><td>ESIM</td><td>Glove</td><td>L/L MRPC</td><td>64</td><td>0.0006</td><td>cross entropy</td><td>0.0415</td><td>16.6595</td><td colspan=\"3\">(600 200) (0.4089, 0.7434) (0.2795, 0.4438)</td><td>3</td><td>-</td></tr><tr><td>ESIM</td><td>Glove</td><td>L/L STS-B</td><td>64</td><td>0.0027</td><td>mse</td><td>0.0741</td><td>12.3487</td><td colspan=\"3\">(300 600) (0.2822, 0.4862) (0.2867, 0.5283)</td><td>1</td><td>-</td></tr><tr><td>ESIM</td><td>BERT</td><td>E/E SICK</td><td>16</td><td>0.0002</td><td>mae</td><td>0.0572</td><td>4.5861</td><td colspan=\"3\">(512 768) (0.3362, 0.6338) (0.6415, 0.3806)</td><td>1</td><td>7</td></tr><tr><td>ESIM</td><td>BERT</td><td>E/E MRPC</td><td>32</td><td>0.0005</td><td>cross entropy</td><td>0.0808</td><td>15.6688</td><td colspan=\"3\">(384 768) (0.7098, 0.6014) (0.6504, 0.3573)</td><td>2</td><td>5</td></tr><tr><td>ESIM</td><td>BERT</td><td>E/E STS-B</td><td>32</td><td>0.0024</td><td>mse</td><td>0.0684</td><td>17.1467</td><td colspan=\"3\">(384 512) (0.4992, 0.6578) (0.7135, 0.4686)</td><td>5</td><td>12</td></tr><tr><td>ESIM</td><td>Glove</td><td>E/E SICK</td><td>64</td><td>0.0005</td><td>mse</td><td>0.0673</td><td>11.2588</td><td colspan=\"3\">(450 200) (0.5421, 0.6383) (0.4262, 0.4960)</td><td>1</td><td>11</td></tr><tr><td>ESIM</td><td>Glove</td><td>E/E MRPC</td><td>64</td><td>0.0019</td><td>cross entropy</td><td>0.0544</td><td>16.2351</td><td colspan=\"3\">(150 600) (0.4805, 0.6752) (0.4711, 0.5483)</td><td>3</td><td>6</td></tr><tr><td>ESIM</td><td>Glove</td><td>E/E STS-B</td><td>64</td><td>0.0005</td><td>mae</td><td>0.0579</td><td>11.3040</td><td colspan=\"3\">(450 200) (0.3348, 0.5270) (0.2846, 0.4997)</td><td>0</td><td>13</td></tr><tr><td>ESIM</td><td>BERT</td><td>E/L SICK</td><td>16</td><td>0.0008</td><td>mse</td><td>0.0835</td><td>14.1718</td><td colspan=\"3\">(512 768) (0.3996, 0.4231) (0.3149, 0.3665)</td><td>0</td><td>9</td></tr><tr><td>ESIM</td><td>BERT</td><td>E/L MRPC</td><td>32</td><td>0.0005</td><td>cross entropy</td><td>0.0525</td><td>13.0402</td><td colspan=\"3\">(768 512) (0.5491, 0.2819) (0.4482, 0.3430)</td><td>5</td><td>3</td></tr><tr><td>ESIM</td><td>BERT</td><td>E/L STS-B</td><td>32</td><td>0.0008</td><td>mae</td><td>0.0995</td><td>5.6442</td><td colspan=\"3\">(384 384) (0.6291, 0.6221) (0.3899, 0.6917)</td><td>5</td><td>14</td></tr><tr><td>ESIM</td><td>Glove</td><td>E/L SICK</td><td>32</td><td>0.0004</td><td>mse</td><td>0.0337</td><td>0.7994</td><td colspan=\"3\">(600 600) (0.4193, 0.6904) (0.4331, 0.6221)</td><td>2</td><td>10</td></tr><tr><td>ESIM</td><td>Glove</td><td>E/L MRPC</td><td>64</td><td>0.0011</td><td>cross entropy</td><td>0.0549</td><td>5.7392</td><td colspan=\"3\">(200 150) (0.5909, 0.4142) (0.4288, 0.2503)</td><td>4</td><td>4</td></tr><tr><td>ESIM</td><td>Glove</td><td>E/L STS-B</td><td>64</td><td>0.0003</td><td>mse</td><td>0.0302</td><td>13.5390</td><td colspan=\"3\">(450 600) (0.4538, 0.2828) (0.4641, 0.6847)</td><td>0</td><td>13</td></tr><tr><td>ESIM</td><td>BERT</td><td>R/L SICK</td><td>64</td><td>0.0007</td><td>mse</td><td>0.0135</td><td>3.3407</td><td colspan=\"3\">(384 512) (0.3738, 0.4779) (0.6879, 0.3507)</td><td>2</td><td>23</td></tr><tr><td>ESIM</td><td>BERT</td><td>R/L MRPC</td><td>64</td><td>0.0007</td><td>cross entropy</td><td>0.0747</td><td>12.8833</td><td colspan=\"3\">(384 768) (0.3532, 0.6506) (0.6440, 0.6599)</td><td>0</td><td>21</td></tr><tr><td>ESIM</td><td>BERT</td><td>R/L STS-B</td><td>32</td><td>0.0014</td><td>mse</td><td>0.0240</td><td>0.3344</td><td colspan=\"3\">(512 384) (0.6102, 0.2993) (0.5616, 0.3264)</td><td>4</td><td>24</td></tr><tr><td>ESIM</td><td>BERT</td><td>T/L SICK</td><td>64</td><td>0.0025</td><td>mse</td><td>0.0623</td><td>6.0643</td><td colspan=\"3\">(384 384) (0.4455, 0.3305) (0.6036, 0.4636)</td><td>3</td><td>5</td></tr><tr><td>ESIM</td><td>BERT</td><td>T/L MRPC</td><td>32</td><td>0.0003</td><td>cross entropy</td><td>0.0989</td><td>19.2888</td><td colspan=\"3\">(512 768) (0.3023, 0.2515) (0.6723, 0.4313)</td><td>3</td><td>7</td></tr><tr><td>ESIM</td><td>BERT</td><td>L/E SICK</td><td>32</td><td>0.0024</td><td>mse</td><td>0.0690</td><td>6.5209</td><td colspan=\"3\">(384 384) (0.2935, 0.3905) (0.5975, 0.3623)</td><td>2</td><td>7</td></tr><tr><td>ESIM</td><td>BERT</td><td>L/E MRPC</td><td>32</td><td>0.0020</td><td>cross entropy</td><td>0.0637</td><td>12.9123</td><td colspan=\"3\">(768 768) (0.3302, 0.5489) (0.7050, 0.5593)</td><td>0</td><td>1</td></tr><tr><td>ESIM</td><td>BERT</td><td>L/E STS-B</td><td>16</td><td>0.0014</td><td>mae</td><td>0.0294</td><td>19.7594</td><td colspan=\"3\">(384 384) (0.3857, 0.5279) (0.5551, 0.3715)</td><td>3</td><td>12</td></tr><tr><td>ESIM</td><td>Glove</td><td>L/E SICK</td><td>32</td><td>0.0028</td><td>mse</td><td>0.0360</td><td>16.7776</td><td colspan=\"3\">(150 200) (0.3367, 0.7101) (0.3469, 0.3811)</td><td>3</td><td>8</td></tr><tr><td>ESIM</td><td>Glove</td><td>L/E MRPC</td><td>64</td><td>0.0013</td><td>cross entropy</td><td>0.0151</td><td>3.7091</td><td colspan=\"3\">(300 300) (0.4849, 0.6060) (0.5526, 0.4104)</td><td>0</td><td>2</td></tr><tr><td>ESIM</td><td>Glove</td><td>L/E STS-B</td><td>32</td><td>0.0017</td><td>mse</td><td>0.0814</td><td>0.2999</td><td colspan=\"3\">(150 200) (0.2829, 0.3279) (0.2622, 0.2951)</td><td>5</td><td>13</td></tr></table>",
"html": null,
"text": ")."
}
}
}
} |