File size: 112,669 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:13:03.912455Z"
    },
    "title": "Evaluating the Effectiveness of Efficient Neural Architecture Search for Sentence-Pair Tasks",
    "authors": [
        {
            "first": "Ansel",
            "middle": [],
            "last": "Maclaughlin",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Northeastern University",
                "location": {
                    "settlement": "Boston",
                    "region": "MA"
                }
            },
            "email": ""
        },
        {
            "first": "Jwala",
            "middle": [],
            "last": "Dhamala",
            "suffix": "",
            "affiliation": {
                "laboratory": "Amazon Alexa",
                "institution": "",
                "location": {
                    "settlement": "Cambridge",
                    "region": "MA"
                }
            },
            "email": "jddhamal@amazon.com"
        },
        {
            "first": "Anoop",
            "middle": [],
            "last": "Kumar",
            "suffix": "",
            "affiliation": {
                "laboratory": "Amazon Alexa",
                "institution": "",
                "location": {
                    "settlement": "Cambridge",
                    "region": "MA"
                }
            },
            "email": ""
        },
        {
            "first": "Sriram",
            "middle": [],
            "last": "Venkatapathy",
            "suffix": "",
            "affiliation": {
                "laboratory": "Amazon Alexa",
                "institution": "",
                "location": {
                    "settlement": "Cambridge",
                    "region": "MA"
                }
            },
            "email": ""
        },
        {
            "first": "Ragav",
            "middle": [],
            "last": "Venkatesan",
            "suffix": "",
            "affiliation": {},
            "email": "ragavven@amazon.com"
        },
        {
            "first": "Rahul",
            "middle": [],
            "last": "Gupta",
            "suffix": "",
            "affiliation": {
                "laboratory": "Amazon Alexa",
                "institution": "",
                "location": {
                    "settlement": "Cambridge",
                    "region": "MA"
                }
            },
            "email": "gupra@amazon.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Neural Architecture Search (NAS) methods, which automatically learn entire neural model or individual neural cell architectures, have recently achieved competitive or state-of-theart (SOTA) performance on variety of natural language processing and computer vision tasks, including language modeling, natural language inference, and image classification. In this work, we explore the applicability of a SOTA NAS algorithm, Efficient Neural Architecture Search (ENAS) (Pham et al., 2018) to two sentence pair tasks, paraphrase detection and semantic textual similarity. We use ENAS to perform a microlevel search and learn a task-optimized RNN cell architecture as a drop-in replacement for an LSTM. We explore the effectiveness of ENAS through experiments on three datasets (MRPC, SICK, STS-B), with two different models (ESIM, BiLSTM-Max), and two sets of embeddings (Glove, BERT). In contrast to prior work applying ENAS to NLP tasks, our results are mixed-we find that ENAS architectures sometimes, but not always, outperform LSTMs and perform similarly to random architecture search.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Neural Architecture Search (NAS) methods, which automatically learn entire neural model or individual neural cell architectures, have recently achieved competitive or state-of-theart (SOTA) performance on variety of natural language processing and computer vision tasks, including language modeling, natural language inference, and image classification. In this work, we explore the applicability of a SOTA NAS algorithm, Efficient Neural Architecture Search (ENAS) (Pham et al., 2018) to two sentence pair tasks, paraphrase detection and semantic textual similarity. We use ENAS to perform a microlevel search and learn a task-optimized RNN cell architecture as a drop-in replacement for an LSTM. We explore the effectiveness of ENAS through experiments on three datasets (MRPC, SICK, STS-B), with two different models (ESIM, BiLSTM-Max), and two sets of embeddings (Glove, BERT). In contrast to prior work applying ENAS to NLP tasks, our results are mixed-we find that ENAS architectures sometimes, but not always, outperform LSTMs and perform similarly to random architecture search.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Neural Architecture Search (NAS) methods aim to automatically discover neural architectures that perform well on a given task and dataset. These methods search over a space of possible model architectures, looking for ones that perform well on the task and will generalize to unseen data. There has been substantial prior work on how to define the architecture search space, search over that space, and estimate model performance (Elsken et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 430,
                        "end": 451,
                        "text": "(Elsken et al., 2019)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Recent works, however, cast doubt on the quality and performance of NAS-optimized architectures (Sciuto et al., 2020; Li and Talwalkar, 2019) , showing that current methods fail to find the best performing architectures for a given task and perform similarly to random architecture search.",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 117,
                        "text": "(Sciuto et al., 2020;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 118,
                        "end": 141,
                        "text": "Li and Talwalkar, 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this work, we explore applications of a SOTA NAS algorithm, ENAS (Pham et al., 2018) , to two sentence-pair tasks, paraphrase detection (PD) and semantic textual similarity (STS). We conduct a large set of experiments testing the effectiveness of ENAS-optimized RNN architectures across multiple models (ESIM, BiLSTM-Max), embeddings (BERT, Glove) and datasets (MRPC, SICK, STS-B). We are the first, to our knowledge, to apply ENAS to PD and STS, to explore applications across multiple embeddings and traditionally LSTM-based NLP models, and to conduct extensive SOTA HPT across multiple ENAS-RNN architecture candidates.",
                "cite_spans": [
                    {
                        "start": 68,
                        "end": 87,
                        "text": "(Pham et al., 2018)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our experiments suggest that baseline LSTM models, with appropriate hyperparameter tuning (HPT), can sometimes match or exceed the performance of models with ENAS-RNNs. We also observe that random architectures sampled from the ENAS search space offer a strong baseline, and can sometimes outperform ENAS-RNNs. Given these observations, we recommend that researchers (i) conduct extensive HPT (preferably using automated methods) across various candidate architectures for the fairest comparisons; (ii) compare the performances of ENAS-RNNs against both standard architectures like LSTMs and RNN cells randomly sampled from the ENAS search space; (iii) examine the computational (memory and runtime) requirements of ENAS methods alongside the gains observed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "NAS methods have shown strong performance on many NLP and CV tasks, such as language model-ing and image classification (Zoph and Le, 2017; Pham et al., 2018; Luo et al., 2018; Liu et al., 2019) . Applications in NLP, such as NER (Jiang et al., 2019; Li et al., 2020) , translation (So et al., 2019 ), text classification (Wang et al., 2020) , and natural language inference (NLI) (Pasunuru and Bansal, 2019; Wang et al., 2020) have also been explored.",
                "cite_spans": [
                    {
                        "start": 120,
                        "end": 139,
                        "text": "(Zoph and Le, 2017;",
                        "ref_id": null
                    },
                    {
                        "start": 140,
                        "end": 158,
                        "text": "Pham et al., 2018;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 159,
                        "end": 176,
                        "text": "Luo et al., 2018;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 177,
                        "end": 194,
                        "text": "Liu et al., 2019)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 230,
                        "end": 250,
                        "text": "(Jiang et al., 2019;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 251,
                        "end": 267,
                        "text": "Li et al., 2020)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 282,
                        "end": 298,
                        "text": "(So et al., 2019",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 322,
                        "end": 341,
                        "text": "(Wang et al., 2020)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 381,
                        "end": 408,
                        "text": "(Pasunuru and Bansal, 2019;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 409,
                        "end": 427,
                        "text": "Wang et al., 2020)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Current SOTA approaches focus on learning new cell architectures as replacements for LSTM or convolutional cells (Zoph and Le, 2017; Pham et al., 2018; Liu et al., 2019; Jiang et al., 2019; Li et al., 2020) or entire model architectures to replace hand-designed models such as the transformer or DenseNet (So et al., 2019; Pham et al., 2018) .",
                "cite_spans": [
                    {
                        "start": 113,
                        "end": 132,
                        "text": "(Zoph and Le, 2017;",
                        "ref_id": null
                    },
                    {
                        "start": 133,
                        "end": 151,
                        "text": "Pham et al., 2018;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 152,
                        "end": 169,
                        "text": "Liu et al., 2019;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 170,
                        "end": 189,
                        "text": "Jiang et al., 2019;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 190,
                        "end": 206,
                        "text": "Li et al., 2020)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 305,
                        "end": 322,
                        "text": "(So et al., 2019;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 323,
                        "end": 341,
                        "text": "Pham et al., 2018)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Recently, the superiority of NAS to random architecture search and traditional architectures with SOTA HPT methods has been called into question. Li and Talwalkar (2019) discuss reproducibility issues with current NAS methods and find that, on language modeling and image classification tasks, NAS algorithms perform similarly to random architecture search. Similarly, Sciuto et al. (2020) find minimal differences in performance between NAS and random search and that the popular weightsharing strategy (Pham et al., 2018) decreases performance. With this in perspective, we conduct a study to investigate the value added by ENAS to two NLP tasks, PD and STS, which, to our knowledge, have not been been explored in previous NAS literature.",
                "cite_spans": [
                    {
                        "start": 146,
                        "end": 169,
                        "text": "Li and Talwalkar (2019)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 369,
                        "end": 389,
                        "text": "Sciuto et al. (2020)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 504,
                        "end": 523,
                        "text": "(Pham et al., 2018)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In this work, we explore applications of ENAS to two sentence-pair tasks, PD and STS. We select ENAS because prior work (Pasunuru and Bansal, 2019; Wang et al., 2020) has shown promising results applying it to a closely-related task, NLI, with gains of up to 1.3% absolute over LSTMs and 1.6% over an RNN with a random architecture. Through our evaluations on PD and STS, we aim to study whether the ENAS methods used in prior work for NLI are generalizable and whether the results hold when applied to related tasks and datasets. ENAS models consist of two parts: 1) a search space over model architectures, i.e. child models, and 2) a controller that samples architectures from that search space. The primary contribution of ENAS is that all child models in the search space share their weights, so each child model does not have to be trained from scratch to evaluate it. Train-ing the child models and controller proceeds as follows -first, the controller is fixed, and the child models are trained together for one epoch on the dataset, sampling a new architecture from the controller to use for each minibatch. Then, the child model shared parameters are fixed, and the controller is updated -we sample child architectures from its policy and update the controller to maximize the expected reward on the dev set (e.g. dev set accuracy). This two-step process then repeats for a specified number of epochs. After training is complete, a number of child models are sampled from the controller and the best one is trained from scratch and evaluated on the test set. We refer the reader to Pham et al. (2018) for further details on ENAS.",
                "cite_spans": [
                    {
                        "start": 120,
                        "end": 147,
                        "text": "(Pasunuru and Bansal, 2019;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 148,
                        "end": 166,
                        "text": "Wang et al., 2020)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 1592,
                        "end": 1610,
                        "text": "Pham et al. (2018)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neural Architecture Search for Sentence-Pair Tasks",
                "sec_num": "3"
            },
            {
                "text": "In this work, we follow the setup of Pasunuru and Bansal (2019), using standard LSTM-based NLP models and replacing the LSTMs with RNN cells sampled from the ENAS controller. We leave the rest of the model architecture (e.g. attention, pooling, output layers) the same, so the child model search space consists of every possible ENAS-RNN architecture with the standard model architecture around it. As with standard ENAS training, the parameters of the ENAS-RNNs and standard model architecture (e.g. final output layer) are shared across all child models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Neural Architecture Search for Sentence-Pair Tasks",
                "sec_num": "3"
            },
            {
                "text": "We evaluate ENAS on three sentence-pair datasets using two models and two sets of embeddings: ] which is fed through a feedforward layer and a final projection to single predicted value.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "3.1"
            },
            {
                "text": "3.1.1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Feature-based BERT-base (Devlin et al., 2019) : Following Peters et al. 2019, we jointly encode the sentence pair (rather than encoding each separately). and learn a linear weighted combination of BERT's layers. BERT is frozen during training.",
                "cite_spans": [
                    {
                        "start": 26,
                        "end": 47,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Embeddings",
                "sec_num": "3.1.3"
            },
            {
                "text": "\u2022 Glove (Pennington et al., 2014) : 300 dimensional vectors trained on Wikipedia and Gigaword. Embeddings are frozen during training. 1",
                "cite_spans": [
                    {
                        "start": 8,
                        "end": 33,
                        "text": "(Pennington et al., 2014)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Embeddings",
                "sec_num": "3.1.3"
            },
            {
                "text": "We first benchmark LSTM implementations of both models. We adapt the BLM implementation from Pasunuru and Bansal (2019) and use the AllenNLP implementation of ESIM . To have the most competitive baselines possible, we perform extensive HPT, running 500 trials using a Tree-structured Parzen Estimator (TPE; Bergstra et al. (2011)). We tune the hidden dimension sizes, dropout rates, batch size, loss function (only for regression tasks: mean squared error or mean absolute error), learning rate, weight decay, grad norm, and random seed. See Appendix A.2 for full HPT experiment details. Note that we put emphasis on extensive, automated HPT and conduct hundreds of HPT trials (as opposed to only tens of trials typically used in prior work, e.g. Yogatama et al. (2015)). Given that we train BLM and ESIM on top of frozen embeddings, we use the ESIM + BERT results from Peters et al. (2019) as a baseline. Our reproduced results are in the same ballpark (Table 1 , rows 2-3), albeit with small deviations.",
                "cite_spans": [
                    {
                        "start": 93,
                        "end": 119,
                        "text": "Pasunuru and Bansal (2019)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 954,
                        "end": 962,
                        "text": "(Table 1",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "LSTM Baselines",
                "sec_num": "3.2"
            },
            {
                "text": "After finding the best hyperparameters for each dataset, embedding, model LSTM configuration, we run ENAS to search for a new RNN for each configuration. Following Pasunuru and Bansal (2019), we use 6 node ENAS-RNNs. We use Microsoft NNI's (Microsoft, 2020) ENAS implementation. We replace the BiLSTM in BLM and both BiLSTMs in ESIM with the ENAS BiRNNs (we use same architecture in both ESIM layers). We train ENAS for 150 epochs with early-stopping. For each dataset, embedding, model) configuration, we train the ENAS models with the same hyperparameters as the best corresponding LSTM model, except learning rate of 1e-4 and grad norm 0.25, which are used across all ENAS models 2 . We follow the hyperparameter configurations from Pham et al. (2018) for the ENAS controller.",
                "cite_spans": [
                    {
                        "start": 240,
                        "end": 257,
                        "text": "(Microsoft, 2020)",
                        "ref_id": null
                    },
                    {
                        "start": 736,
                        "end": 754,
                        "text": "Pham et al. (2018)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ENAS Training",
                "sec_num": "3.3"
            },
            {
                "text": "After training ENAS, we sample 10 architectures from the controller. Just as during ENAS training, we then use these architectures as drop-in replacements for LSTMs, replacing a model's BiLSTM layer(s) with ENAS BiRNN(s). We then train the models from scratch and repeat HPT, extending the original LSTM hyperparameter search space with a choice over the 10 sampled architectures. We run 200 trials of HPT. We note that, unlike the CUDA implementations for LSTMs, it is non-trivial to implement highly optimized arbitrary ENAS-RNN architectures. We discuss these limitations and the overall compute dedicated for HPT on LSTM and ENAS-RNN based models in Appendix A.2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training Discovered Architectures",
                "sec_num": "3.4"
            },
            {
                "text": "In addition to experiments replacing all BiLSTM layers with ENAS BiRNNs, we also examine mixing ENAS-RNN and LSTM layers in the multilayer ESIM model. Specifically, we experiment with only replacing the 1st BiLSTM layer in ESIM with an ENAS BiRNN and only replacing the 2nd BiLSTM layer. These models have the same hyperparameter search space as the ESIM model with ENAS-RNNs in both layers (i.e. same possible ENAS-RNN architectures), but we tune and evaluate them separately (see Table 1 , rows 5-6, 11-12). Table 2 : Evaluation of how well ENAS-RNNs transfer to other datasets and compare to random search. We report pearson correlation for SICK-R and STS-B and accuracy for MRPC. In the RNN collumn, \"E\" stands for ENAS-RNN, \"L\" stands for LSTM, and \"RND\" for random RNN. For ESIM we use an ENAS or random RNN in the 1st layer and an LSTM in the 2nd layer. Table 1 lists the dev and test results for all datasets, embeddings, and models. We focus our discussion on the test results. On the whole, the results are mixed. BLM, ENAS outperforms BLM, LSTM across all datasets and embeddings by an average of 1.9%. ESIM, ENAS , on the other hand, fails to consistently outperform ESIM, LSTM . ESIM models with ENAS-RNNs in both layers lag behind LSTMs by 0.9%, on average. Focusing first on BLM, we find that BLM, ENAS outperforms BLM, LSTM by an average of 2.1% across all three datasets using BERT (row 8) and 1.7% using Glove (row 14). These results parallel those of Pasunuru and Bansal (2019) , who find that BLM, ENAS with ELMO embeddings outperforms BLM, LSTM on two NLI datasets and is on par on a third. However, both in our experiments and those of Pasunuru and Bansal (2019) , the 6 node ENAS-RNNs have more parameters than the corresponding LSTM models 3 , making it difficult to get a clear picture of the effects of just changing the RNN architecture. To 3 The exact ratio in number of parameters between 6 node ENAS-RNNs and LSTMs depends on the input and hidden dimensions control for this, in \u00a74.1 we conduct experiments comparing ENAS-RNNs to RNNs randomly sampled from the same search space.",
                "cite_spans": [
                    {
                        "start": 1470,
                        "end": 1496,
                        "text": "Pasunuru and Bansal (2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1658,
                        "end": 1684,
                        "text": "Pasunuru and Bansal (2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1868,
                        "end": 1869,
                        "text": "3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 482,
                        "end": 489,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 510,
                        "end": 517,
                        "text": "Table 2",
                        "ref_id": null
                    },
                    {
                        "start": 861,
                        "end": 868,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Training Discovered Architectures",
                "sec_num": "3.4"
            },
            {
                "text": "Examining ESIM, the results are mixed. ESIM models with ENAS-RNNs in both layers (rows 4, 10) are worse than ESIM, LSTM on 4 of 6 dataset, embedding configurations. The best ESIM, ENAS performance is actually achieved using a mix of ENAS-RNNs and LSTMs across different layers. In fact, the only configurations in which ESIM, ENAS outperforms ESIM, LSTM across all three datasets is BERT, ENAS / LSTM) (row 5), where we only replace the first LSTM layer with an ENAS-RNN. The gains, however, are modest compared to those of the BLM model, improving over ESIM, LSTM by 0.73% on average. Further, changing the embeddings to Glove Glove, ENAS / LSTM) (row 11), ESIM, ENAS underperforms ESIM, LSTM across all 3 datasets by nearly 2% on average. Since we do not observe similar performance gains with ESIM as with BLM, we hypothesize that optimization of specific RNN architectures might matter less as model complexity (e.g. number of layers) increases. We suggest future work further examine the importance of ENAS as it relates to model complexity, especially on tasks where an RNN's architecture might have a higher impact on modeling performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4"
            },
            {
                "text": "In addition to comparisons to LSTMs, we evaluate two common claims about NAS methods: 1) NAS outperforms random search (Pham et al., 2018; Zoph and Le, 2017; Luo et al., 2018; Liu et al., 2019) 2) NAS architectures are transferable to related datasets and tasks (Zoph and Le, 2017; Liu et al., 2019; Luo et al., 2018) . We choose two configurations to evaluate these claims: (i) Glove, BLM and (ii) BERT, ESIM, ENAS / LSTM with ENAS-RNNs only in the first layer, keeping the second BiLSTM layer. We chose these configurations since they perform well relative to LSTMs and, between them, cover all embeddings and models.",
                "cite_spans": [
                    {
                        "start": 119,
                        "end": 138,
                        "text": "(Pham et al., 2018;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 139,
                        "end": 157,
                        "text": "Zoph and Le, 2017;",
                        "ref_id": null
                    },
                    {
                        "start": 158,
                        "end": 175,
                        "text": "Luo et al., 2018;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 176,
                        "end": 193,
                        "text": "Liu et al., 2019)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 262,
                        "end": 281,
                        "text": "(Zoph and Le, 2017;",
                        "ref_id": null
                    },
                    {
                        "start": 282,
                        "end": 299,
                        "text": "Liu et al., 2019;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 300,
                        "end": 317,
                        "text": "Luo et al., 2018)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Random & Transfer Architectures",
                "sec_num": "4.1"
            },
            {
                "text": "For claim #1, we first randomly sample 10 RNN architectures from the ENAS search space. Then, just as for the ENAS-RNNs, we perform 200 HPT trials, replacing the 10 ENAS-RNN candidates with the 10 randomly sampled RNN candidates. For claim #2, we test the transferability of SICK-R and MRPC cells to/from each other. We do not evaluate the transferability of STS-B cells, since STS-B contains data from SICK-R and MRPC. We again perform 200 HPT trials, but with the different dataset's ENAS-RNN cells in the search space. Table 2 shows our results. We again focus on test results. For claim #1, we find mixed results, with ENAS outperforming random search by an average of 1.33% in the configuration BERT, ESIM, ENAS / LSTM (rows 1-4), but performing worse or on par with random on GLOVE, BLM (rows 5-8) (average 0.9% decrease). These results contrast those of Pham et al. (2018); Pasunuru and Bansal (2019), who report gains over random search on language modeling (25.4% decrease in perplexity) and NLI datasets (1.53% increase in accuracy). We hypothesize that these differences are due, in part, to our emphasis on creating strong baselines by searching over multiple architectures and performing extensive HPT for all models and settings.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 522,
                        "end": 529,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Random & Transfer Architectures",
                "sec_num": "4.1"
            },
            {
                "text": "For claim #2, we find that transfer architectures underperform dataset-specific ENAS architectures by 0.58% and random architectures by 0.7%, on average. Only one architecture (row 1, SICK to MRPC) outperforms either of the corresponding random or dataset-specific architectures. Together with our findings for claim #1, these results cast further doubt on the ability of ENAS to find the best architecture for a specific task, its superiority to well-tuned random architectures, and the transferability of its discovered architectures.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Random & Transfer Architectures",
                "sec_num": "4.1"
            },
            {
                "text": "Unlike prior work applying ENAS to NLP, we find that ENAS-RNNs only outperform LSTMs and random search on some dataset, embedding, model) configurations. Our findings parallel recent work (Li and Talwalkar, 2019; Sciuto et al., 2020) which question the effectiveness of current NAS methods and their superiority to random architecture search and SOTA HPT methods. Given our mixed results, we recommend researchers: (i) extensively tune hyperparameters for standard (e.g. LSTM) and randomly sampled architectures to create strong baselines; (ii) benchmark ENAS performance across multiple simple and complex model architectures (e.g. BLM & ESIM); (iii) present computational requirements alongside gains observed with ENAS methods. ",
                "cite_spans": [
                    {
                        "start": 188,
                        "end": 212,
                        "text": "(Li and Talwalkar, 2019;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 213,
                        "end": 233,
                        "text": "Sciuto et al., 2020)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "All models were implemented with Pytorch and run on Amazon p3 instances (16GB Nvidia V100).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Implementation Details",
                "sec_num": null
            },
            {
                "text": "Experiments with BERT used the Huggingface Transformers library (Wolf et al., 2019) . Experiments with Glove vectors used 300 dimensional vectors trained on Wikipedia 2014 + Gigaword 5 4 . Glove vectors weren't updated training, and outof-vocabulary tokens were replaced with the token \"[UNK]\" with an embedding of all 0s (\u2248 6% of tokens are OOV). In initial experiments, we found no differences between our all-0 embeddings and embeddings randomly initialized according to a Gaussian distribution.",
                "cite_spans": [
                    {
                        "start": 64,
                        "end": 83,
                        "text": "(Wolf et al., 2019)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Embeddings",
                "sec_num": null
            },
            {
                "text": "All HPT was run using Microsoft NNI's parallel implementation of TPE 5 with concurrency 8. Table 3 contains the search space for our experiments. Table 5 contains the best hyperparameter settings for all of our experiments.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 146,
                        "end": 153,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "A.2 Hyperparameter Tuning",
                "sec_num": null
            },
            {
                "text": "In order for a model to fit on a single GPU (16GB Nvidia V100), we had to limit the search space slightly for models using both ENAS-RNNs and BERT embeddings. This is because the ENAS-RNN search space contains weight matrices W h ,j",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.2.1 Memory Limitations for HPT with ENAS-RNNs",
                "sec_num": null
            },
            {
                "text": "between each pair of nodes , j in the RNN search space DAG, which greatly expands memory usage (see Pham et al. (2018) , sections 2.1 and Appendix A). For both BLM and ESIM models, hidden dimensions were limited to [384, 512, 768] . Further, for ESIM models with ENAS-RNNs in both layers, the batch size was also limited to [16, 32] .",
                "cite_spans": [
                    {
                        "start": 100,
                        "end": 118,
                        "text": "Pham et al. (2018)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 215,
                        "end": 220,
                        "text": "[384,",
                        "ref_id": null
                    },
                    {
                        "start": 221,
                        "end": 225,
                        "text": "512,",
                        "ref_id": null
                    },
                    {
                        "start": 226,
                        "end": 230,
                        "text": "768]",
                        "ref_id": null
                    },
                    {
                        "start": 324,
                        "end": 328,
                        "text": "[16,",
                        "ref_id": null
                    },
                    {
                        "start": 329,
                        "end": 332,
                        "text": "32]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.2.1 Memory Limitations for HPT with ENAS-RNNs",
                "sec_num": null
            },
            {
                "text": "Since our ENAS-RNNs are, similar to prior NAS research code, implemented using a Python for-loop over time steps, the implementation is significantly slower (\u2248 25x) than the cuda-optimized LSTM equivalent. Thus, due to computational limits, we only perform 200 trials of HPT for the models with ENAS-RNNs (vs. 500 for models with LSTMs). Though the number of HPT trials is lower than for LSTMs, due to their slow speed, the total compute time devoted to tuning the ENAS-RNN models is roughly 10x+ higher. As an example, Table 4 shows the total compute time dedicated to HPT for BLM models (both LSTM-based models and ENAS-RNN based models), measured as the total number of hours spent on a single p3.16xlarge instance 6 to finish all HPT trials. Note, the models with ENAS-RNNs are not always exactly 10x slower than the LSTM equivalent -since we are also searching over batch size during HPT, runtimes can vary significantly.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 520,
                        "end": 527,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "A.2.2 Timing limitations for HPT with ENAS-RNNs",
                "sec_num": null
            },
            {
                "text": "As noted in \u00a73.3, we train the ENAS child models BLM, ESIM using the same parameters as the corresponding best LSTM model for the given configuration dataset, embeddings, model . For the configuration STS-B, BERT, ESIM , the corresponding ENAS child models would not fit on a single GPU (16GB Nvidia V100). This is due to the large memory footprint of ENAS as discussed in A.2. Thus, for STS-B, BERT, ESIM we decrease the batch size from 64 to 32 and the hidden dimensions from 1152 to 768. Table 4 : Compute time spent on HPT for BLM models (both LSTM-based models and ENAS-RNN based models). Compute time measured as total number of hours on a single p3.16xlarge instance. All HPT was run using Microsoft NNI's parallel implementation of TPE 7 with concurrency 8 (one trial running on each of the 8 GPUs in the p3.16xlarge instance).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 491,
                        "end": 498,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "A.3 Memory Limitations for Training ENAS",
                "sec_num": null
            },
            {
                "text": "As described in \u00a73.3, when training the ESIM child models jointly with the ENAS controller, we replace both of ESIM's BiLSTMs with the sampled ENAS-RNN architectures. We do this for each dataset, embedding configuration, thus running 6 total instances of ENAS (3 datasets * 2 embeddings). After the ENAS training is complete, we sample 10 ENAS-RNN architectures from the trained controller. However, when training ESIM models from scratch, as described in \u00a73.4, we experiment with 1) replacing both LSTM layers with the ENAS-RNN architecture (same as during ENAS training) 2) only replacing the 1st layer 3) only replacing the 2nd layer. We treat each ESIM layer configuration as its own model and tune its hyperparameters separately. Thus, for example, for the configuration (SICK-R, BERT, ESIM) we perform 200 trails of HPT for the configuration with ENAS-RNNs in both layers, 200 trials of HPT for the configuration with an ENAS-RNN in layer 1 and an LSTM in layer 2, and finally 200 trials of HPT for the configuration with an LSTM in layer 1 and an ENAS-RNN in layer 2. Note, however, that these three separate instances of HPT share the same search space over ENAS-RNN architectures -all three are searching over the same 10 ENAS-RNNs sampled from the same controller. In total, we run 18 different instances of HPT (3 datasets * 2 embeddings * 3 layer configs). The results from each configuration are presented separately in Table 1 (in the main portion of the paper).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.4 ESIM: Differences Between Training Child Models with ENAS and Training Models from Scratch",
                "sec_num": null
            },
            {
                "text": "Search Space Table 6 shows the architectures of all RNNs used in our experiments (ENAS-RNNs, transferred ENAS-RNNs, random RNNs). Each architecture is numbered 1-26. Table 5 , which displays the hyperparameter settings for each model and configuration, lists which RNN architecture each configuration uses. Note, some of the architectures are the same across different model configurations. This is due to two reasons:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 13,
                        "end": 20,
                        "text": "Table 6",
                        "ref_id": null
                    },
                    {
                        "start": 166,
                        "end": 173,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "A.5 RNN Architectures Sampled from ENAS",
                "sec_num": null
            },
            {
                "text": "\u2022 As discussed in \u00a73.4 and \u00a7A.4, we experiment with mixing ENAS-RNN and LSTM layers in the multi-layer ESIM model. The ESIM models with ENAS RNNs in both layers share the same possible ENAS-RNN architectures as the corresponding ESIM models with an ENAS-RNN only in the 1st layer or 2nd layer.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.5 RNN Architectures Sampled from ENAS",
                "sec_num": null
            },
            {
                "text": "\u2022 We sampled 10 total random architectures from the ENAS-RNN search space then used those same 10 architectures in the search spaces for all dataset, model, embedding configurations. Thus, some configurations might use the same architecture.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.5 RNN Architectures Sampled from ENAS",
                "sec_num": null
            },
            {
                "text": "For MRPC and STS-B, we use the data provided by Glue 8 . For SICK-R, we use the data provided by SemEval-2014 Task 1 9 . We use scikit-learn 10 to split the provided SICK-R training data into train and dev splits. For our experiments with BERT, we use the Bert-Tokenizer from the Huggingface Transformers library (Wolf et al., 2019) . We cap each sentencepair at a certain number of total wordpiece tokens (SICK: 64, MRPC: 128, STS-B: 128). For our experiments with Glove, we use spacy 11 (Honnibal and Montani, 2017) to tokenize each sentence. We cap each sentence at a certain number of tokens (SICK: 30, MRPC: 46, Table 5 : Hyperparameter values used for all experiments. In the RNN collumn, \"E\" stands for ENAS-RNN, \"L\" stands for LSTM, \"R\" for random RNN, and \"T\" for transfer. All floating point values have been rounded to 4 significant figures after the decimal point. Variational dropout is applied before each RNN layer. For models with RNNs from the ENAS search space (all models except those with LSTMs), the column 'Architecture #' displays which RNN architecture it uses. The number corresponds to the row number in Table 6 . For ESIM models, the two hidden dimension values refer to (RNN layer 1, RNN layer 2) and the two dropout numbers refer to standard dropout (applied after the 'enhancement' layer, in the final MLP layer). For BLM models, the two dropout numbers refer to standard dropout applied (after the RNN layer, before the final projection)",
                "cite_spans": [
                    {
                        "start": 313,
                        "end": 332,
                        "text": "(Wolf et al., 2019)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 489,
                        "end": 517,
                        "text": "(Honnibal and Montani, 2017)",
                        "ref_id": null
                    },
                    {
                        "start": 596,
                        "end": 606,
                        "text": "(SICK: 30,",
                        "ref_id": null
                    },
                    {
                        "start": 607,
                        "end": 616,
                        "text": "MRPC: 46,",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 617,
                        "end": 624,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 1130,
                        "end": 1137,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "A.6 Datasets",
                "sec_num": null
            },
            {
                "text": "Our initial experiments found that static Glove embeddings outperformed non-static ones.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Training is unstable with the higher learning rates found during HPT for our LSTM models and those suggested inPasunuru and Bansal (2019);Pham et al. (2018)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://nlp.stanford.edu/data/glove.6B. zip 5 https://nni.readthedocs.io/en/latest/ CommunitySharings/ParallelizingTpeSearch. html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://aws.amazon.com/ec2/ instance-types/p3/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://gluebenchmark.com/faq 9 http://alt.qcri.org/semeval2014/ task1/ 10 https://scikit-learn.org/stable/ modules/generated/sklearn.model_ selection.train_test_split.html, dev size: 0.1, random state: 011 https://spacy.io/models/en#en_core_ web_md",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": " Table 5 by the column 'Architecture #'. Node # Input refers to the index of the previous node used as input to the current node. Node # Op refers to the elementwise operation applied at each node (Relu, Tanh, Sigmoid, Identity). Please see Pham et al. (2018) for more details on the ENAS RNN search space.",
                "cite_spans": [
                    {
                        "start": 241,
                        "end": 259,
                        "text": "Pham et al. (2018)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1,
                        "end": 8,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "annex",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Algorithms for hyper-parameter optimization",
                "authors": [
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Bergstra",
                        "suffix": ""
                    },
                    {
                        "first": "R\u00e9mi",
                        "middle": [],
                        "last": "Bardenet",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    },
                    {
                        "first": "Bal\u00e1zs",
                        "middle": [],
                        "last": "K\u00e9gl",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "NIPS",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "James Bergstra, R\u00e9mi Bardenet, Yoshua Bengio, and Bal\u00e1zs K\u00e9gl. 2011. Algorithms for hyper-parameter optimization. In NIPS.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "SemEval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Cer",
                        "suffix": ""
                    },
                    {
                        "first": "Mona",
                        "middle": [],
                        "last": "Diab",
                        "suffix": ""
                    },
                    {
                        "first": "Eneko",
                        "middle": [],
                        "last": "Agirre",
                        "suffix": ""
                    },
                    {
                        "first": "I\u00f1igo",
                        "middle": [],
                        "last": "Lopez-Gazpio",
                        "suffix": ""
                    },
                    {
                        "first": "Lucia",
                        "middle": [],
                        "last": "Specia",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)",
                "volume": "",
                "issue": "",
                "pages": "1--14",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/S17-2001"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel Cer, Mona Diab, Eneko Agirre, I\u00f1igo Lopez- Gazpio, and Lucia Specia. 2017. SemEval-2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation. In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), pages 1-14, Vancouver, Canada. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Enhanced LSTM for natural language inference",
                "authors": [
                    {
                        "first": "Qian",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodan",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Zhen-Hua",
                        "middle": [],
                        "last": "Ling",
                        "suffix": ""
                    },
                    {
                        "first": "Si",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "Hui",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Diana",
                        "middle": [],
                        "last": "Inkpen",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1657--1668",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-1152"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang, and Diana Inkpen. 2017. Enhanced LSTM for natural language inference. In Proceedings of the 55th Annual Meeting of the Association for Com- putational Linguistics (Volume 1: Long Papers), pages 1657-1668, Vancouver, Canada. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Supervised learning of universal sentence representations from natural language inference data",
                "authors": [
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Conneau",
                        "suffix": ""
                    },
                    {
                        "first": "Douwe",
                        "middle": [],
                        "last": "Kiela",
                        "suffix": ""
                    },
                    {
                        "first": "Holger",
                        "middle": [],
                        "last": "Schwenk",
                        "suffix": ""
                    },
                    {
                        "first": "Lo\u00efc",
                        "middle": [],
                        "last": "Barrault",
                        "suffix": ""
                    },
                    {
                        "first": "Antoine",
                        "middle": [],
                        "last": "Bordes",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "670--680",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1070"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alexis Conneau, Douwe Kiela, Holger Schwenk, Lo\u00efc Barrault, and Antoine Bordes. 2017. Supervised learning of universal sentence representations from natural language inference data. In Proceedings of the 2017 Conference on Empirical Methods in Nat- ural Language Processing, pages 670-680, Copen- hagen, Denmark. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Automatically constructing a corpus of sentential paraphrases",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "William",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dolan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Brockett",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "IWP@IJCNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "William B. Dolan and Chris Brockett. 2005. Automati- cally constructing a corpus of sentential paraphrases. In IWP@IJCNLP.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Neural architecture search: A survey",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Elsken",
                        "suffix": ""
                    },
                    {
                        "first": "Jan",
                        "middle": [
                            "Hendrik"
                        ],
                        "last": "Metzen",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Hutter",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture search: A survey. JMLR.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Allennlp: A deep semantic natural language processing platform",
                "authors": [
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    },
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Grus",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Neumann",
                        "suffix": ""
                    },
                    {
                        "first": "Oyvind",
                        "middle": [],
                        "last": "Tafjord",
                        "suffix": ""
                    },
                    {
                        "first": "Pradeep",
                        "middle": [],
                        "last": "Dasigi",
                        "suffix": ""
                    },
                    {
                        "first": "Nelson",
                        "middle": [
                            "F"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [
                            "E"
                        ],
                        "last": "Peters",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Schmitz",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E. Peters, Michael Schmitz, and Luke Zettle- moyer. 2018. Allennlp: A deep semantic natural language processing platform. ArXiv, abs/1803.07640. ESIM implementation https:",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "2017. spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Honnibal",
                        "suffix": ""
                    },
                    {
                        "first": "Ines",
                        "middle": [],
                        "last": "Montani",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language understanding with Bloom embed- dings, convolutional neural networks and incremen- tal parsing. To appear.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Improved differentiable architecture search for language modeling and named entity recognition",
                "authors": [
                    {
                        "first": "Yufan",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Chi",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Tong",
                        "middle": [],
                        "last": "Xiao",
                        "suffix": ""
                    },
                    {
                        "first": "Chunliang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jingbo",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "3585--3590",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1367"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yufan Jiang, Chi Hu, Tong Xiao, Chunliang Zhang, and Jingbo Zhu. 2019. Improved differentiable ar- chitecture search for language modeling and named entity recognition. In Proceedings of the 2019 Con- ference on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 3585-3590, Hong Kong, China. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Random search and reproducibility for neural architecture search",
                "authors": [
                    {
                        "first": "Liam",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Ameet",
                        "middle": [],
                        "last": "Talwalkar",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "UAI",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Liam Li and Ameet Talwalkar. 2019. Random search and reproducibility for neural architecture search. In UAI.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Learning architectures from an extended search space for language modeling",
                "authors": [
                    {
                        "first": "Yinqiao",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Chi",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Yuhao",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Nuo",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Yufan",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Tong",
                        "middle": [],
                        "last": "Xiao",
                        "suffix": ""
                    },
                    {
                        "first": "Jingbo",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Tongran",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "6629--6639",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yinqiao Li, Chi Hu, Yuhao Zhang, Nuo Xu, Yufan Jiang, Tong Xiao, Jingbo Zhu, Tongran Liu, and changliang li. 2020. Learning architectures from an extended search space for language modeling. In Proceedings of the 58th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 6629- 6639, Online. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Darts: Differentiable architecture search",
                "authors": [
                    {
                        "first": "Hanxiao",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Karen",
                        "middle": [],
                        "last": "Simonyan",
                        "suffix": ""
                    },
                    {
                        "first": "Yiming",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ICLR",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2019. Darts: Differentiable architecture search. In ICLR.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Neural architecture optimization",
                "authors": [
                    {
                        "first": "Renqian",
                        "middle": [],
                        "last": "Luo",
                        "suffix": ""
                    },
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Tian",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Tie-Yan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Renqian Luo, Fei Tian, Tao Qin, and Tie-Yan Liu. 2018. Neural architecture optimization. In NeurIPS.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A SICK cure for the evaluation of compositional distributional semantic models",
                "authors": [
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Marelli",
                        "suffix": ""
                    },
                    {
                        "first": "Stefano",
                        "middle": [],
                        "last": "Menini",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Baroni",
                        "suffix": ""
                    },
                    {
                        "first": "Luisa",
                        "middle": [],
                        "last": "Bentivogli",
                        "suffix": ""
                    },
                    {
                        "first": "Raffaella",
                        "middle": [],
                        "last": "Bernardi",
                        "suffix": ""
                    },
                    {
                        "first": "Roberto",
                        "middle": [],
                        "last": "Zamparelli",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014)",
                "volume": "",
                "issue": "",
                "pages": "216--223",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marco Marelli, Stefano Menini, Marco Baroni, Luisa Bentivogli, Raffaella Bernardi, and Roberto Zampar- elli. 2014. A SICK cure for the evaluation of com- positional distributional semantic models. In Pro- ceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014), pages 216-223, Reykjavik, Iceland. European Lan- guages Resources Association (ELRA).",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Continual and multi-task architecture search",
                "authors": [
                    {
                        "first": "Ramakanth",
                        "middle": [],
                        "last": "Pasunuru",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1911--1922",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1185"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ramakanth Pasunuru and Mohit Bansal. 2019. Con- tinual and multi-task architecture search. In Pro- ceedings of the 57th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 1911- 1922, Florence, Italy. Association for Computational Linguistics. Github Repository: https://github. com/ramakanth-pasunuru/CAS-MAS.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Glove: Global vectors for word representation",
                "authors": [
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Pennington",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "1532--1543",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/D14-1162"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global vectors for word rep- resentation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process- ing (EMNLP), pages 1532-1543, Doha, Qatar. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Deep contextualized word representations",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Peters",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Neumann",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Iyyer",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "2227--2237",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-1202"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word rep- resentations. In Proceedings of the 2018 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long Papers), pages 2227-2237, New Orleans, Louisiana. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "To tune or not to tune? adapting pretrained representations to diverse tasks",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [
                            "E"
                        ],
                        "last": "Peters",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Ruder",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 4th Workshop on Representation Learning for NLP (RepL4NLP-2019)",
                "volume": "",
                "issue": "",
                "pages": "7--14",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-4302"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matthew E. Peters, Sebastian Ruder, and Noah A. Smith. 2019. To tune or not to tune? adapting pre- trained representations to diverse tasks. In Proceed- ings of the 4th Workshop on Representation Learn- ing for NLP (RepL4NLP-2019), pages 7-14, Flo- rence, Italy. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Efficient neural architecture search via parameter sharing",
                "authors": [
                    {
                        "first": "Hieu",
                        "middle": [],
                        "last": "Pham",
                        "suffix": ""
                    },
                    {
                        "first": "Melody",
                        "middle": [
                            "Y"
                        ],
                        "last": "Guan",
                        "suffix": ""
                    },
                    {
                        "first": "Barret",
                        "middle": [],
                        "last": "Zoph",
                        "suffix": ""
                    },
                    {
                        "first": "Quoc",
                        "middle": [
                            "V"
                        ],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Dean",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "ICML",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. 2018. Efficient neural architecture search via parameter sharing. In ICML.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Evaluating the search phase of neural architecture search",
                "authors": [
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Sciuto",
                        "suffix": ""
                    },
                    {
                        "first": "Kaicheng",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Jaggi",
                        "suffix": ""
                    },
                    {
                        "first": "Claudiu",
                        "middle": [],
                        "last": "Musat",
                        "suffix": ""
                    },
                    {
                        "first": "Mathieu",
                        "middle": [],
                        "last": "Salzmann",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "ICLR",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat, and Mathieu Salzmann. 2020. Evaluating the search phase of neural architecture search. In ICLR.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "The evolved transformer",
                "authors": [
                    {
                        "first": "David",
                        "middle": [
                            "R"
                        ],
                        "last": "So",
                        "suffix": ""
                    },
                    {
                        "first": "Chen",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Quoc",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ICML",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David R. So, Chen Liang, and Quoc V. Le. 2019. The evolved transformer. In ICML.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Textnas: A neural architecture search space tailored for text representation",
                "authors": [
                    {
                        "first": "Yujing",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Yaming",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Yi-Ren",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Jing",
                        "middle": [],
                        "last": "Bai",
                        "suffix": ""
                    },
                    {
                        "first": "Ce",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Guinan",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoyu",
                        "middle": [],
                        "last": "Kou",
                        "suffix": ""
                    },
                    {
                        "first": "Yunhai",
                        "middle": [],
                        "last": "Tong",
                        "suffix": ""
                    },
                    {
                        "first": "Mao",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Lidong",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "AAAI",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yujing Wang, Yaming Yang, Yi-Ren Chen, Jing Bai, Ce Zhang, Guinan Su, Xiaoyu Kou, Yunhai Tong, Mao Yang, and Lidong Zhou. 2020. Textnas: A neu- ral architecture search space tailored for text repre- sentation. In AAAI.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Huggingface's transformers: State-of-the-art natural language processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "R\u00e9mi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    },
                    {
                        "first": "Morgan",
                        "middle": [],
                        "last": "Funtowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Joe",
                        "middle": [],
                        "last": "Davison",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Shleifer",
                        "suffix": ""
                    },
                    {
                        "first": "Clara",
                        "middle": [],
                        "last": "Patrick Von Platen",
                        "suffix": ""
                    },
                    {
                        "first": "Yacine",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Jernite",
                        "suffix": ""
                    },
                    {
                        "first": "Canwen",
                        "middle": [],
                        "last": "Plu",
                        "suffix": ""
                    },
                    {
                        "first": "Teven",
                        "middle": [
                            "Le"
                        ],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Sylvain",
                        "middle": [],
                        "last": "Scao",
                        "suffix": ""
                    },
                    {
                        "first": "Mariama",
                        "middle": [],
                        "last": "Gugger",
                        "suffix": ""
                    },
                    {
                        "first": "Quentin",
                        "middle": [],
                        "last": "Drame",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "M"
                        ],
                        "last": "Lhoest",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R\u00e9mi Louf, Morgan Funtow- icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2019. Huggingface's transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF2": {
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td>Dev Performance</td><td>Test Performance</td></tr></table>",
                "html": null,
                "text": "Dev & Test set performances for LSTM and ENAS-RNN based models. Following Peters et al.(2019), we report pearson correlation for SICK-R and STS-B and accuracy for MRPC. In the RNN collumn, \"E\" stands for ENAS-RNN and \"L\" stands for LSTM. For ESIM there can be different of cells in different layers, e.g. E / L stands for ENAS-RNN in the 1st layer and LSTM in the 2nd layer."
            },
            "TABREF4": {
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td>Dani Yogatama, Lingpeng Kong, and Noah A. Smith.</td></tr><tr><td>2015. Bayesian optimization of text representations.</td></tr><tr><td>In Proceedings of the 2015 Conference on Empiri-</td></tr><tr><td>cal Methods in Natural Language Processing, pages</td></tr><tr><td>2100-2105, Lisbon, Portugal. Association for Com-</td></tr><tr><td>putational Linguistics.</td></tr></table>",
                "html": null,
                "text": "Hyperparameter search space for all experiments."
            },
            "TABREF6": {
                "num": null,
                "type_str": "table",
                "content": "<table><tr><td colspan=\"5\">Model Embedding RNN Dataset Batch Size Learning Rate</td><td>Loss</td><td colspan=\"3\">Weight Decay Grad Norm Hidden Dim</td><td>Dropout</td><td colspan=\"3\">Variational Dropout Rnd Seed Architecture #</td></tr><tr><td>BLM</td><td>BERT</td><td>L SICK</td><td>32</td><td>0.0046</td><td>mse</td><td>0.0514</td><td>12.3656</td><td>512</td><td>(0.3782, 0.3474)</td><td>0.4088</td><td>3</td><td>-</td></tr><tr><td>BLM</td><td>BERT</td><td>L MRPC</td><td>64</td><td>0.0021</td><td>cross entropy</td><td>0.0637</td><td>12.8279</td><td>384</td><td>(0.6355, 0.4388)</td><td>0.6804</td><td>2</td><td>-</td></tr><tr><td>BLM</td><td>BERT</td><td>L STS-B</td><td>32</td><td>0.0075</td><td>mse</td><td>0.0407</td><td>16.8742</td><td>512</td><td>(0.2702, 0.4525)</td><td>0.6783</td><td>2</td><td>-</td></tr><tr><td>BLM</td><td>Glove</td><td>L SICK</td><td>64</td><td>0.0007</td><td>mse</td><td>0.0040</td><td>10.2636</td><td>300</td><td>(0.3555, 0.2937)</td><td>0.2774</td><td>1</td><td>-</td></tr><tr><td>BLM</td><td>Glove</td><td>L MRPC</td><td>32</td><td>0.0017</td><td>cross entropy</td><td>0.0301</td><td>8.1649</td><td>450</td><td>(0.3346, 0.3751)</td><td>0.2986</td><td>5</td><td>-</td></tr><tr><td>BLM</td><td>Glove</td><td>L STS-B</td><td>32</td><td>0.0004</td><td>mse</td><td>0.0201</td><td>4.9461</td><td>200</td><td>(0.2597, 0.5924)</td><td>0.4516</td><td>0</td><td>-</td></tr><tr><td>BLM</td><td>BERT</td><td>E SICK</td><td>32</td><td>0.0074</td><td>mse</td><td>0.0226</td><td>11.2817</td><td>384</td><td>(0.3372, 0.5304)</td><td>0.3009</td><td>5</td><td>17</td></tr><tr><td>BLM</td><td>BERT</td><td>E MRPC</td><td>32</td><td>0.0031</td><td>cross entropy</td><td>0.0670</td><td>9.4340</td><td>384</td><td>(0.5310, 0.6235)</td><td>0.4676</td><td>1</td><td>15</td></tr><tr><td>BLM</td><td>BERT</td><td>E STS-B</td><td>32</td><td>0.0019</td><td>mae</td><td>0.0382</td><td>6.7670</td><td>512</td><td>(0.2507, 0.4492)</td><td>0.6193</td><td>1</td><td>19</td></tr><tr><td>BLM</td><td>Glove</td><td>E SICK</td><td>64</td><td>0.0007</td><td>mse</td><td>0.0729</td><td>11.7080</td><td>450</td><td>(0.3199, 0.2711)</td><td>0.3911</td><td>5</td><td>18</td></tr><tr><td>BLM</td><td>Glove</td><td>E MRPC</td><td>64</td><td>0.0001</td><td>cross entropy</td><td>0.0637</td><td>15.5210</td><td>450</td><td>(0.3352, 0.3993)</td><td>0.2948</td><td>4</td><td>16</td></tr><tr><td>BLM</td><td>Glove</td><td>E STS-B</td><td>16</td><td>0.0007</td><td>mae</td><td>0.0258</td><td>2.9847</td><td>450</td><td>(0.2584, 0.6419)</td><td>0.2508</td><td>4</td><td>20</td></tr><tr><td>BLM</td><td>Glove</td><td>R SICK</td><td>64</td><td>0.0016</td><td>mse</td><td>0.0647</td><td>15.0969</td><td>450</td><td>(0.2505, 0.3945)</td><td>0.2589</td><td>0</td><td>24</td></tr><tr><td>BLM</td><td>Glove</td><td>R MRPC</td><td>64</td><td>0.0015</td><td>cross entropy</td><td>0.0956</td><td>12.2487</td><td>300</td><td>(0.2956, 0.3971)</td><td>0.3304</td><td>0</td><td>22</td></tr><tr><td>BLM</td><td>Glove</td><td>R STS-B</td><td>64</td><td>0.0004</td><td>mse</td><td>0.0257</td><td>1.2826</td><td>600</td><td>(0.3355, 0.4312)</td><td>0.3392</td><td>3</td><td>24</td></tr><tr><td>BLM</td><td>Glove</td><td>T SICK</td><td>32</td><td>0.0003</td><td>mse</td><td>0.0058</td><td>6.1308</td><td>300</td><td>(0.3809, 0.3487)</td><td>0.3273</td><td>2</td><td>25</td></tr><tr><td>BLM</td><td>Glove</td><td>T MRPC</td><td>32</td><td>0.0005</td><td>cross entropy</td><td>0.0341</td><td>14.0270</td><td>200</td><td>(0.4586, 0.6012)</td><td>0.4123</td><td>0</td><td>26</td></tr><tr><td>ESIM</td><td>BERT</td><td>L/L SICK</td><td>32</td><td>0.0011</td><td>mae</td><td>0.0299</td><td colspan=\"4\">12.9599 (512 1152) (0.3171, 0.6050) (0.6962, 0.4123)</td><td>4</td><td>-</td></tr><tr><td>ESIM</td><td>BERT</td><td>L/L MRPC</td><td>64</td><td>0.0048</td><td>cross entropy</td><td>0.0448</td><td>16.0686</td><td colspan=\"3\">(384 512) (0.2806, 0.4960) (0.5453, 0.3357)</td><td>1</td><td>-</td></tr><tr><td>ESIM</td><td>BERT</td><td>L/L STS-B</td><td>64</td><td>0.0011</td><td>mae</td><td>0.0855</td><td colspan=\"4\">18.4787 (1152 1152) (0.4213, 0.4769) (0.5011, 0.5806)</td><td>3</td><td>-</td></tr><tr><td>ESIM</td><td>Glove</td><td>L/L SICK</td><td>32</td><td>0.0018</td><td>mse</td><td>0.0804</td><td>12.3511</td><td colspan=\"3\">(200 300) (0.4369, 0.5705) (0.4491, 0.3239)</td><td>1</td><td>-</td></tr><tr><td>ESIM</td><td>Glove</td><td>L/L MRPC</td><td>64</td><td>0.0006</td><td>cross entropy</td><td>0.0415</td><td>16.6595</td><td colspan=\"3\">(600 200) (0.4089, 0.7434) (0.2795, 0.4438)</td><td>3</td><td>-</td></tr><tr><td>ESIM</td><td>Glove</td><td>L/L STS-B</td><td>64</td><td>0.0027</td><td>mse</td><td>0.0741</td><td>12.3487</td><td colspan=\"3\">(300 600) (0.2822, 0.4862) (0.2867, 0.5283)</td><td>1</td><td>-</td></tr><tr><td>ESIM</td><td>BERT</td><td>E/E SICK</td><td>16</td><td>0.0002</td><td>mae</td><td>0.0572</td><td>4.5861</td><td colspan=\"3\">(512 768) (0.3362, 0.6338) (0.6415, 0.3806)</td><td>1</td><td>7</td></tr><tr><td>ESIM</td><td>BERT</td><td>E/E MRPC</td><td>32</td><td>0.0005</td><td>cross entropy</td><td>0.0808</td><td>15.6688</td><td colspan=\"3\">(384 768) (0.7098, 0.6014) (0.6504, 0.3573)</td><td>2</td><td>5</td></tr><tr><td>ESIM</td><td>BERT</td><td>E/E STS-B</td><td>32</td><td>0.0024</td><td>mse</td><td>0.0684</td><td>17.1467</td><td colspan=\"3\">(384 512) (0.4992, 0.6578) (0.7135, 0.4686)</td><td>5</td><td>12</td></tr><tr><td>ESIM</td><td>Glove</td><td>E/E SICK</td><td>64</td><td>0.0005</td><td>mse</td><td>0.0673</td><td>11.2588</td><td colspan=\"3\">(450 200) (0.5421, 0.6383) (0.4262, 0.4960)</td><td>1</td><td>11</td></tr><tr><td>ESIM</td><td>Glove</td><td>E/E MRPC</td><td>64</td><td>0.0019</td><td>cross entropy</td><td>0.0544</td><td>16.2351</td><td colspan=\"3\">(150 600) (0.4805, 0.6752) (0.4711, 0.5483)</td><td>3</td><td>6</td></tr><tr><td>ESIM</td><td>Glove</td><td>E/E STS-B</td><td>64</td><td>0.0005</td><td>mae</td><td>0.0579</td><td>11.3040</td><td colspan=\"3\">(450 200) (0.3348, 0.5270) (0.2846, 0.4997)</td><td>0</td><td>13</td></tr><tr><td>ESIM</td><td>BERT</td><td>E/L SICK</td><td>16</td><td>0.0008</td><td>mse</td><td>0.0835</td><td>14.1718</td><td colspan=\"3\">(512 768) (0.3996, 0.4231) (0.3149, 0.3665)</td><td>0</td><td>9</td></tr><tr><td>ESIM</td><td>BERT</td><td>E/L MRPC</td><td>32</td><td>0.0005</td><td>cross entropy</td><td>0.0525</td><td>13.0402</td><td colspan=\"3\">(768 512) (0.5491, 0.2819) (0.4482, 0.3430)</td><td>5</td><td>3</td></tr><tr><td>ESIM</td><td>BERT</td><td>E/L STS-B</td><td>32</td><td>0.0008</td><td>mae</td><td>0.0995</td><td>5.6442</td><td colspan=\"3\">(384 384) (0.6291, 0.6221) (0.3899, 0.6917)</td><td>5</td><td>14</td></tr><tr><td>ESIM</td><td>Glove</td><td>E/L SICK</td><td>32</td><td>0.0004</td><td>mse</td><td>0.0337</td><td>0.7994</td><td colspan=\"3\">(600 600) (0.4193, 0.6904) (0.4331, 0.6221)</td><td>2</td><td>10</td></tr><tr><td>ESIM</td><td>Glove</td><td>E/L MRPC</td><td>64</td><td>0.0011</td><td>cross entropy</td><td>0.0549</td><td>5.7392</td><td colspan=\"3\">(200 150) (0.5909, 0.4142) (0.4288, 0.2503)</td><td>4</td><td>4</td></tr><tr><td>ESIM</td><td>Glove</td><td>E/L STS-B</td><td>64</td><td>0.0003</td><td>mse</td><td>0.0302</td><td>13.5390</td><td colspan=\"3\">(450 600) (0.4538, 0.2828) (0.4641, 0.6847)</td><td>0</td><td>13</td></tr><tr><td>ESIM</td><td>BERT</td><td>R/L SICK</td><td>64</td><td>0.0007</td><td>mse</td><td>0.0135</td><td>3.3407</td><td colspan=\"3\">(384 512) (0.3738, 0.4779) (0.6879, 0.3507)</td><td>2</td><td>23</td></tr><tr><td>ESIM</td><td>BERT</td><td>R/L MRPC</td><td>64</td><td>0.0007</td><td>cross entropy</td><td>0.0747</td><td>12.8833</td><td colspan=\"3\">(384 768) (0.3532, 0.6506) (0.6440, 0.6599)</td><td>0</td><td>21</td></tr><tr><td>ESIM</td><td>BERT</td><td>R/L STS-B</td><td>32</td><td>0.0014</td><td>mse</td><td>0.0240</td><td>0.3344</td><td colspan=\"3\">(512 384) (0.6102, 0.2993) (0.5616, 0.3264)</td><td>4</td><td>24</td></tr><tr><td>ESIM</td><td>BERT</td><td>T/L SICK</td><td>64</td><td>0.0025</td><td>mse</td><td>0.0623</td><td>6.0643</td><td colspan=\"3\">(384 384) (0.4455, 0.3305) (0.6036, 0.4636)</td><td>3</td><td>5</td></tr><tr><td>ESIM</td><td>BERT</td><td>T/L MRPC</td><td>32</td><td>0.0003</td><td>cross entropy</td><td>0.0989</td><td>19.2888</td><td colspan=\"3\">(512 768) (0.3023, 0.2515) (0.6723, 0.4313)</td><td>3</td><td>7</td></tr><tr><td>ESIM</td><td>BERT</td><td>L/E SICK</td><td>32</td><td>0.0024</td><td>mse</td><td>0.0690</td><td>6.5209</td><td colspan=\"3\">(384 384) (0.2935, 0.3905) (0.5975, 0.3623)</td><td>2</td><td>7</td></tr><tr><td>ESIM</td><td>BERT</td><td>L/E MRPC</td><td>32</td><td>0.0020</td><td>cross entropy</td><td>0.0637</td><td>12.9123</td><td colspan=\"3\">(768 768) (0.3302, 0.5489) (0.7050, 0.5593)</td><td>0</td><td>1</td></tr><tr><td>ESIM</td><td>BERT</td><td>L/E STS-B</td><td>16</td><td>0.0014</td><td>mae</td><td>0.0294</td><td>19.7594</td><td colspan=\"3\">(384 384) (0.3857, 0.5279) (0.5551, 0.3715)</td><td>3</td><td>12</td></tr><tr><td>ESIM</td><td>Glove</td><td>L/E SICK</td><td>32</td><td>0.0028</td><td>mse</td><td>0.0360</td><td>16.7776</td><td colspan=\"3\">(150 200) (0.3367, 0.7101) (0.3469, 0.3811)</td><td>3</td><td>8</td></tr><tr><td>ESIM</td><td>Glove</td><td>L/E MRPC</td><td>64</td><td>0.0013</td><td>cross entropy</td><td>0.0151</td><td>3.7091</td><td colspan=\"3\">(300 300) (0.4849, 0.6060) (0.5526, 0.4104)</td><td>0</td><td>2</td></tr><tr><td>ESIM</td><td>Glove</td><td>L/E STS-B</td><td>32</td><td>0.0017</td><td>mse</td><td>0.0814</td><td>0.2999</td><td colspan=\"3\">(150 200) (0.2829, 0.3279) (0.2622, 0.2951)</td><td>5</td><td>13</td></tr></table>",
                "html": null,
                "text": ")."
            }
        }
    }
}