File size: 104,915 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:13:08.050328Z"
},
"title": "Q. Can Knowledge Graphs be used to Answer Boolean Questions? A. It's complicated!",
"authors": [
{
"first": "Daria",
"middle": [],
"last": "Dzendzik",
"suffix": "",
"affiliation": {},
"email": "daria.dzendzik@adaptcentre.ie"
},
{
"first": "Carl",
"middle": [],
"last": "Vogel",
"suffix": "",
"affiliation": {},
"email": "vogel@tcd.ie"
},
{
"first": "Jennifer",
"middle": [],
"last": "Foster",
"suffix": "",
"affiliation": {},
"email": "jennifer.foster@dcu.ie"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "In this paper we explore the problem of machine reading comprehension, focusing on the BoolQ dataset of Yes/No questions. We carry out an error analysis of a BERT-based machine reading comprehension model on this dataset, revealing issues such as unstable model behaviour and some noise within the dataset itself. We then experiment with two approaches for integrating information from knowledge graphs: (i) concatenating knowledge graph triples to text passages and (ii) encoding knowledge with a Graph Neural Network. Neither of these approaches show a clear improvement and we hypothesize that this may be due to a combination of inaccuracies in the knowledge graph, imprecision in entity linking, and the models' inability to capture additional information from knowledge graphs.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "In this paper we explore the problem of machine reading comprehension, focusing on the BoolQ dataset of Yes/No questions. We carry out an error analysis of a BERT-based machine reading comprehension model on this dataset, revealing issues such as unstable model behaviour and some noise within the dataset itself. We then experiment with two approaches for integrating information from knowledge graphs: (i) concatenating knowledge graph triples to text passages and (ii) encoding knowledge with a Graph Neural Network. Neither of these approaches show a clear improvement and we hypothesize that this may be due to a combination of inaccuracies in the knowledge graph, imprecision in entity linking, and the models' inability to capture additional information from knowledge graphs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "1 Introduction Clark et al. (2019) explore the difficulty of Yes/No questions and introduce the BoolQ dataset which contains 16k questions based on real Google user queries, paired by crowdworkers with passages from Wikipedia. They establish a strong baseline using BERT large and transfer learning from the Multi-Genre Natural Language Inference (MNLI) task (Williams et al., 2018) .",
"cite_spans": [
{
"start": 15,
"end": 34,
"text": "Clark et al. (2019)",
"ref_id": "BIBREF2"
},
{
"start": 359,
"end": 382,
"text": "(Williams et al., 2018)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "In this work, we carry out an error analysis of 200 samples from the BERT large + M N LI baseline model and find out that 77% constitute genuine model errors, almost 6% of samples contain an incorrect answer tag, and 8% do not contain enough evidence to answer the question. The remaining 9% we classified as difficult questions as they involve deep understanding, reasoning, specific knowledge, and sometimes depend on opinion. Due to the unstable behaviour of the model, error samples vary from run to run, where a run refers to the pipeline of MNLI pre-training, BoolQ fine-tuning, and evaluation of the model. We introduce a stable accuracy metric to evaluate a system across multiple runs with the same hyperparameters. Stable accuracy over n runs refers to the proportion of questions that are always correctly answered. We observed a 3.3% and an 11% drop of stable accuracy over 2 and 10 runs respectively.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Next we turn our attention to improving machine reading comprehension (MRC) system performance. We hypothesize the system might benefit from additional information about entities and/or relations between the entities, in the question and passage. Consider, for example, (1) where pei is an abbreviation of Prince Edward Island.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "(1) Question: is anne with an e filmed on pei Passage: The series is filmed partially in Prince Edward Island as well as ... We propose and evaluate two approaches for augmenting questions and answers with KG information: (1) concatenating the model input with sentences constructed from ConceptNet triples 1 (Speer et al., 2017) ; and (2) encoding KG entities and relations with the Graph Neural Network (GNN) proposed by Shaw et al. (2019) , a model suited to graph-based input. Neither approach shows a significant improvement over the baseline. 2 A Closer Look at the BoolQ Baseline",
"cite_spans": [
{
"start": 309,
"end": 329,
"text": "(Speer et al., 2017)",
"ref_id": "BIBREF13"
},
{
"start": 423,
"end": 441,
"text": "Shaw et al. (2019)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "We manually analyse 200 errors made by one run of the baseline system (33% of one-run errors) and discover that 6% of them involve an incorrect answer tag and another 8% involve confusing passages which do not give enough support for the answer (see Appendix B for examples). Table 1 shows a categorization of the errors according to the reasoning types provided by Clark et al. (2019) . The majority of errors belongs to the Paraphrasing type (48.5%). In these cases, the answer is in the passage and only a minimum amount of extra knowledge and reasoning is required to answer the question. The Implicit and Missing Mention types account for 19.5% and 14% of errors respectively. Only about 3.5% of incorrectly answered questions require an understanding of examples given in the passage, 6% requrie factual reasoning, and 8% require other inference.",
"cite_spans": [
{
"start": 366,
"end": 385,
"text": "Clark et al. (2019)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [
{
"start": 276,
"end": 283,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Error Analysis",
"sec_num": "2.1"
},
{
"text": "We reproduce the results of the baseline BERT large + M N LI model released by Clark et al. (2019) . 2 Its accuracy is between 80% and 82% ( Fig. 1 (a) G) with an average 81.41% accuracy over 10 runs (vs. 82.2% reported in Clark et al. (2019) ). Our error analysis shows that a significant portion of the correctly answered questions varies from run to run together with around 40% of errors.",
"cite_spans": [
{
"start": 79,
"end": 98,
"text": "Clark et al. (2019)",
"ref_id": "BIBREF2"
},
{
"start": 200,
"end": 242,
"text": "(vs. 82.2% reported in Clark et al. (2019)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 141,
"end": 147,
"text": "Fig. 1",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Stable Accuracy",
"sec_num": "2.2"
},
{
"text": "We define the ratio of the number of correctly answered questions across n runs to the total number of questions as stable accuracy. Formally, if Q is the set of all questions and Q i correct is the set of correctly answered questions at the i th run, the stable accuracy after n runs is defined as (2):",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Stable Accuracy",
"sec_num": "2.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "StableAccuracy n = | \u2229 n i=0 Q i correct | |Q|",
"eq_num": "(2)"
}
],
"section": "Stable Accuracy",
"sec_num": "2.2"
},
{
"text": "The stable accuracy over 10 runs drops to 71% (see Fig 1 ( up to 10 runs ( Fig. 1 (a) , L) does not outperform the baseline: the values are within the range of 78.09% and 81.77%. 3 We repeat the experiment using the robustly optimized RoBERT a large model implemented by Wolf et al. (2019) and fine tuned on the MNLI task. This model has a better average accuracy (83.7)% but it is also more unstable: the stable accuracy drops to 64.0% (see Fig. 1 (b) ). As with the BERT model, ensembling over 10 runs does not give a performance boost.",
"cite_spans": [
{
"start": 179,
"end": 180,
"text": "3",
"ref_id": null
},
{
"start": 271,
"end": 289,
"text": "Wolf et al. (2019)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 51,
"end": 58,
"text": "Fig 1 (",
"ref_id": "FIGREF1"
},
{
"start": 75,
"end": 85,
"text": "Fig. 1 (a)",
"ref_id": "FIGREF1"
},
{
"start": 442,
"end": 452,
"text": "Fig. 1 (b)",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Stable Accuracy",
"sec_num": "2.2"
},
{
"text": "This observed behavior means that the system performs well on each run but every time it performs well on a different set of questions. This might be related to the notion of \"forgettable\" examples described by Toneva et al. (2019) . The difference is that they discovered the ability of models to forget the learned examples during the training phase, while we examine stable and unstable examples when the training is finished.",
"cite_spans": [
{
"start": 211,
"end": 231,
"text": "Toneva et al. (2019)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Stable Accuracy",
"sec_num": "2.2"
},
{
"text": "Our manual inspection of the results of one baseline system run reveals that approximately 20% of erroneous cases are questions involving some property of an entity or concept, or some hierarchical relationship between entities. An example of the former is (3) and the latter is (4).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Modeling Knowledge Graph Data",
"sec_num": "3"
},
{
"text": "(3) is i 80 in indiana a toll road (4) is college of william and mary an ivy league school?",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Modeling Knowledge Graph Data",
"sec_num": "3"
},
{
"text": "We hypothesize that adding knowledge graph data could help in answering such questions, as well as examples such as (1) and (5) below where the entity in the question is referred to using a different name in the passage.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Modeling Knowledge Graph Data",
"sec_num": "3"
},
{
"text": "(5) Question: does smeagol die in lord of the rings Passage: ... Gollum finally ... but he fell into the fires of the volcano, where both he and the Ring were destroyed. Answer: Yes",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Modeling Knowledge Graph Data",
"sec_num": "3"
},
{
"text": "We use the CloudAPI 4 to annotate text with tokens, part of speech tags, named entities with Freebase 5 KG identifiers (MIDs), numbers, dates and VerbNet 6 roles which can be used for establishing relations between entities.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Modeling Knowledge Graph Data",
"sec_num": "3"
},
{
"text": "ConceptNet (Liu and Singh, 2004; Speer et al., 2017) is an open semantic network based on DB-Pedia, Wiktionary, WordNet, and other resources. It captures common-sense knowledge and was created for computers to understand words and concepts in the same way people do. It was particularly designed to be used by NLP applications and widely used in MRC (Weissenborn et al., 2017; Bauer et al., 2018; Mihaylov and Frank, 2018; Lin et al., 2019; Qiu et al., 2019) . Partly inspired by Weissenborn et al. 2017, we convert ConceptNet relations into sentences but instead of embedding them independently, we concatenate them to the baseline model input.",
"cite_spans": [
{
"start": 11,
"end": 32,
"text": "(Liu and Singh, 2004;",
"ref_id": "BIBREF6"
},
{
"start": 33,
"end": 52,
"text": "Speer et al., 2017)",
"ref_id": "BIBREF13"
},
{
"start": 350,
"end": 376,
"text": "(Weissenborn et al., 2017;",
"ref_id": "BIBREF19"
},
{
"start": 377,
"end": 396,
"text": "Bauer et al., 2018;",
"ref_id": "BIBREF0"
},
{
"start": 397,
"end": 422,
"text": "Mihaylov and Frank, 2018;",
"ref_id": "BIBREF8"
},
{
"start": 423,
"end": 440,
"text": "Lin et al., 2019;",
"ref_id": "BIBREF5"
},
{
"start": 441,
"end": 458,
"text": "Qiu et al., 2019)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Extending Passages with ConceptNet",
"sec_num": "3.1"
},
{
"text": "ConceptNet has 34 relation types. 7 Each relation has start and end entities and a strength of relation (relevance weight). We look up every annotated entity from questions and passages in ConceptNet. We extract the top 100 relations according to the relevance weight, and select those where both the start and end entities are in English. We remove relations that are not useful, such as \"External URLs\", or too broad such as \"FormOf\". Then we transform ConceptNet relations into simple sentences based on the relation description or, if there is no description, we create a string:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Sentence Extraction and Filtering",
"sec_num": "3.1.1"
},
{
"text": "[entity1] [relation] [entity2]",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Sentence Extraction and Filtering",
"sec_num": "3.1.1"
},
{
"text": ", e.g. the \"panda is near a bamboo forest\" string is created from entites: \"panda\", \"bamboo forest\" and the relation \"LocatedNear\". Fig. 2 shows a ConceptNet entity from example (1). The verbalized triples such as \"pei is a synonym of Prince Edward Island\" are prepended to the text passage.",
"cite_spans": [],
"ref_spans": [
{
"start": 132,
"end": 138,
"text": "Fig. 2",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Sentence Extraction and Filtering",
"sec_num": "3.1.1"
},
{
"text": "Since such new sentences can add noise (see polyetherimide examples in Fig. 2 ) and a long input might confuse the model (Thayaparan et al., 2019) , we aim to add extra sentences to the passages only if it is relevant and can better \"explain\" the nature of entities. To select those, we rank all extracted sentences S according to the sum of their similarities with the question q and passage p as shown in (6):",
"cite_spans": [
{
"start": 121,
"end": 146,
"text": "(Thayaparan et al., 2019)",
"ref_id": "BIBREF15"
}
],
"ref_spans": [
{
"start": 71,
"end": 77,
"text": "Fig. 2",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "Sentence Extraction and Filtering",
"sec_num": "3.1.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u2200s \u2208 S : score(s) = g(k(s), k(q))+g(k(s), k(p))",
"eq_num": "(6)"
}
],
"section": "Sentence Extraction and Filtering",
"sec_num": "3.1.1"
},
{
"text": "where g \u2208 {correlation, cosine} are similarity measures, k is a semantic embedding function. We use the semantic textual similarity model 8 proposed by . To filter more examples, we add an empirically tuned threshold for similarities 9 and select only those sentences which were ranked as the most similar to the question and passage by both correlation (inner product) and cosine similarity, and each score is higher than the established thresholds. Another method of selecting relevant sentences is to consider only the relations which connect an entity in the question to an entity in the passage. We then combine these two strategies: we add sentences only to the examples which meet both criteria (Intersection) or all that meet at least one of the criteria (Union). Table 2 shows the results averaged over 5 runs. With threshold filtering we add sentences to 21.84% 9 of passages, obtaining an average accuracy of 81.23% (see Table 2 : SentEmb). Using entity relations from questions and answers, 22.58% of QA pairs are affected but the performance is slightly worse (see Table 2 : Q&P Match).",
"cite_spans": [],
"ref_spans": [
{
"start": 772,
"end": 779,
"text": "Table 2",
"ref_id": "TABREF4"
},
{
"start": 932,
"end": 939,
"text": "Table 2",
"ref_id": "TABREF4"
},
{
"start": 1078,
"end": 1085,
"text": "Table 2",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Sentence Extraction and Filtering",
"sec_num": "3.1.1"
},
{
"text": "The intersection gives the best performance. By affecting only 1.23% of the data, we obtain 81.46% average accuracy and 82.05% accuracy for the ensemble majority voting scenario. The Union criterion does not show any improvement on accuracy. The Intersection improvement, as well as the disimprovement of SentEmb, Q&PMatch, and Union, are not statistically significant with respect to the baseline. 10 ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results",
"sec_num": "3.1.2"
},
{
"text": "Facing instability of the BERT-based baseline and low coverage of ConceptNet (see Section 4) we experiment with a new architecture and knowledge graph. To better model graph-based input, such as entities and their relations, we tried a transformerbased seq2seq GNN (Shaw et al., 2019) . Entities, relations and input tokens are embedded and fed to a GNN sub-layer that incorporates edge representations extending the self-attention mechanism. The encoder-decoder attention layer considers both encoder output token and entity representations, jointly normalizing attention weights over tokens and entities. In our case, the GNN decoder simply outputs our expected answers: \"Yes\" or \"No\" (see Fig. 3 ). In this case, we initialize the GNN with a pre-trained BERT large model and only fine tune on BoolQ.",
"cite_spans": [
{
"start": 265,
"end": 284,
"text": "(Shaw et al., 2019)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [
{
"start": 692,
"end": 698,
"text": "Fig. 3",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "Modeling Knowledge Graphs with GraphNNs",
"sec_num": "3.2"
},
{
"text": "As an alternative to ConceptNet we also tried the Google Knowledge Graph. It has more than 500 billion facts about 5 billion entities. 11 The entities describe real-world objects and concepts like 10 According to the two sample proportion Z-Test the maximum difference: z = \u22121.3674, p = 0.17068 11 https://blog.google/products/search/ about-knowledge-graph-and-knowledge-panels/ -l.v. 07/2020 people, places, events, and things. Entities are represented as nodes and connected by relations. The latter can simply indicate that a relation is present, or they may encode the type of relation. We try the first three of the following possible experiments:",
"cite_spans": [
{
"start": 197,
"end": 199,
"text": "10",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Modeling Knowledge Graphs with GraphNNs",
"sec_num": "3.2"
},
{
"text": "1. adding a relation between different entities which have the same MID; 2. only adding connections between entities across the QA pair, as in the ConceptNet Q&P Match experiment; 3. distinguishing different types of relations; 4. adding a relation between different mentions of the same entity; 5. adding entities not mentioned in the text but linked to the mentioned entities.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Modeling Knowledge Graphs with GraphNNs",
"sec_num": "3.2"
},
{
"text": "The results are presented in ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results",
"sec_num": "3.2.1"
},
{
"text": "ConceptNet Even after the filtering described in Section 3.1.1, we observe that often the relations from ConceptNet are too general and do not add new information, e.g. \"cookie jar is a type of jar\".",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Analysis",
"sec_num": "4"
},
{
"text": "Such relations are already part of the language model. Petroni et al. (2019) show that BERT contains relational knowledge and has a strong ability to recall factual knowledge without fine-tuning. Furthermore, some entities are missing, e.g. there is a \"Tom Hanks\" entity but no \"Meg Ryan\" entity, or the entity \"dragon ball\" contains only non-English connections, confirming the general coverage issue of KGs. 12 Sensitivity We observe that the GNN is sensitive to the learning rate and hyper-parameters. Better tuning may compensate for the difference in performance wrt to the BERT baseline.",
"cite_spans": [
{
"start": 55,
"end": 76,
"text": "Petroni et al. (2019)",
"ref_id": "BIBREF10"
},
{
"start": 405,
"end": 412,
"text": "KGs. 12",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Analysis",
"sec_num": "4"
},
{
"text": "We found issues with the entity linker. Named entities are often not covered or the MID is missing. In some cases, the entity has a wrong MID, e.g. in (7) the entity \"northern ireland\" is not recognised but the entity \"ireland\" (Republic of Ireland) is mentioned instead, while the entity \"great britain\" is recognised with the MID of \"United Kingdom\". ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Entity recognition and linker",
"sec_num": null
},
{
"text": "We observe a positive tendency towards stable correct answers in the ConceptNet experiments (Table 4 ). The number of new stable correct answers is higher than the number of new stable errors for all settings except Q&AMatch. Also, for all scenarios except Intersection, the number of questions where the predicted answer fluctuates from incorrect to correct is higher than the number of questions where the predicted answer fluctuates from correct.",
"cite_spans": [],
"ref_spans": [
{
"start": 92,
"end": 100,
"text": "(Table 4",
"ref_id": "TABREF8"
}
],
"eq_spans": [],
"section": "Do KGs affect stable accuracy?",
"sec_num": null
},
{
"text": "Is a KG necessary? The BoolQ dataset was not originally created to be used with a KG, and the passages were selected such that they contain the information required to answer a question. For some questions, such as (1) the additional information provided by a KG is helpful, and for questions like (7), even though the passage has all the required information, a KG could highlight the relation between entities and help answer the question. However, there are also cases where a KG is not needed or cannot be applied, e.g. (8) and (9).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Do KGs affect stable accuracy?",
"sec_num": null
},
{
"text": "(8) Question: do all ni numbers have a letter at the end Passage: The format of the number is two prefix letters, six digits, and one suffix letter. The example used is typically QQ123456C. ... Answer: Yes (9) Question: was the movie insomnia based on a book Passage: Robert Westbrook adapted the screenplay to novel form, which was published by Alex in May 2002. Answer: No",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Do KGs affect stable accuracy?",
"sec_num": null
},
{
"text": "In (8) a question is asked about a number format and the information about the specific last symbol is unlikely to be a part of a KG. (9) contains a very short passage explicitly saying there is a book but it was adapted from the screenplay. In this case, a KG could provide potentially confusing information simply stating that there is a book.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Do KGs affect stable accuracy?",
"sec_num": null
},
{
"text": "In this work, we take a closer look at a BERT baseline system on the BoolQ dataset, which reveals some inconsistencies in the data and some instability in the model. We try two approaches to integrating knowledge graph information, one based on augmenting the passage text and another using a Graph Neural Network. Neither are successful. One culprit is the lack of coverage of Con-ceptNet and another is related to accuracy of the entity recognition. We also suggest that the number of questions where suitable KG data is needed and could be found might just not be enough for the models to learn from.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
},
{
"text": "The BoolQ dataset (Clark et al., 2019 ) is a part of the SuperGLUE benchmark 13 (Wang et al., 2019) . About 3000 question and passages come from Nat-uralQuestion . The main statistics about the dataset is collected in Table 5 . Clark et al. (2019) showed the BERT large model outperforming recurrent models with attention , both in their vanilla version and in combination with deep contextualized word representation (Peters et al., 2018) .",
"cite_spans": [
{
"start": 18,
"end": 37,
"text": "(Clark et al., 2019",
"ref_id": "BIBREF2"
},
{
"start": 80,
"end": 99,
"text": "(Wang et al., 2019)",
"ref_id": "BIBREF17"
},
{
"start": 228,
"end": 247,
"text": "Clark et al. (2019)",
"ref_id": "BIBREF2"
},
{
"start": 418,
"end": 439,
"text": "(Peters et al., 2018)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [
{
"start": 218,
"end": 225,
"text": "Table 5",
"ref_id": "TABREF10"
}
],
"eq_spans": [],
"section": "A BoolQ Dataset Details",
"sec_num": null
},
{
"text": "Some questions in BoolQ are formulated in a certain context which might change given time. For example (10) which is asking about a movie released this year. As the dataset was released in 2019 the data could be collected in 2018 so then the answer is yes but if this question would be asked in 2015 or today (2020) the answer should be no. Another example (11) where a passage provides the information about United States citizens border crossing requirements but the question does not specify what kind of citizenship the person asking the question holds. In contrast with example (12) where the question and passage provide an unconditional outcome as a holder of the Schengen visa (information from question) can enter Montenegro for 30 days (information from the passage). So, in such cases like examples (10) and (11), the passage information is not enough to answer the questions unconditionally.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "B Erroneous and Confusing Examples",
"sec_num": null
},
{
"text": "(10) Question: is there a star wars movie this year Passage: The first film was followed by two successful sequels, The Empire Strikes Back (1980) (13 -14) . The passages are related to the questions but specific information is missing the answer \"Yes\" cannot be confirmed by the passages. We observe, around 8% of questions we confusing or have certain assumptions. Passage: A cordon bleu or schnitzel cordon bleu is a dish of meat wrapped around cheese (or with cheese filling), then breaded and pan-fried or deep-fried. Veal or pork cordon bleu is made of veal or pork pounded thin and wrapped around a slice of ham and a slice of cheese, breaded, and then pan fried or baked. For chicken cordon bleu chicken breast is used instead of veal. Ham cordon bleu is ham stuffed with mushrooms and cheese. Answer: Yes",
"cite_spans": [
{
"start": 140,
"end": 146,
"text": "(1980)",
"ref_id": null
},
{
"start": 147,
"end": 155,
"text": "(13 -14)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "B Erroneous and Confusing Examples",
"sec_num": null
},
{
"text": "There are a few examples of errors (15 -17) from the dataset. The first error example is asking if shower gel can be used instead of shampoo in a negative form (\"is it bad to ...\") and the passage says that they are perfectly substitutable so the answer should be No (it is not bad). In the second example (16) the passage explicitly says India does not have a national language so the answer should be No. And in the third example (17) there is nothing that should make the reader believe there were any games outside of Russia, so the answer should be Yes. According to our analysis 6% of samples have the wrong answer tag. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "B Erroneous and Confusing Examples",
"sec_num": null
},
{
"text": "Note that the ensemble performs slightly better with an odd numbers of runs as only the samples with strictly more votes for the correct answer are considered to be answered correctly. This is a very strict evaluation. Alternatively, in the case of a tie, the majority answer (Yes) can be selected, but we aim to provide the evaluation with the maximum certainty.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://cloud.google.com/apis/docs/ overview -l.v. 07/2020 5 https://en.wikipedia.org/wiki/ Freebase_(database) -l.v. 07/2020 6 http://verbs.colorado.edu/\u02dcmpalmer/ projects/verbnet.html -l.v. 07/2020 7 Based on https://github.com/commonsense/ conceptnet5/wiki/Relations -l.v. 07/2020. We found a few more like \"language\" or \"occupations\".",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Available via TensorFlowHub (Cer et al., 2018): https: //www.tensorflow.org/hub/ -l.v. 07/20209 We used: correlation > 220; cosine similarity > 1.38.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://conceptnet.io/c/en/jar, https: //conceptnet.io/c/en/tom_hanks -An English term in ConceptNet 5.8, https://conceptnet.io/ c/en/meg_ryan -'meg ryan' is not a node in Con-ceptNet, https://conceptnet.io/c/en/dragon_ ball,-l.v. 07/2020",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "We are extremely gratefully to Massimo Nicosia from Google Research Switzerland without whom this work would not be possible. We thank the anonymous reviewers for their constructive and helpful feedback. Finally, a big thank you to Andrew Dunne, Lauren Cassidy, and Meghan Dowling.This research is partly supported by Science Foundation Ireland in the ADAPT Centre for Digital Content Technology, funded under the SFI Research Centres Programme (Grant 13/RC/2106) and the European Regional Development Fund.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Commonsense for generative multi-hop question answering tasks",
"authors": [
{
"first": "Lisa",
"middle": [],
"last": "Bauer",
"suffix": ""
},
{
"first": "Yicheng",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Mohit",
"middle": [],
"last": "Bansal",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "4220--4230",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1454"
]
},
"num": null,
"urls": [],
"raw_text": "Lisa Bauer, Yicheng Wang, and Mohit Bansal. 2018. Commonsense for generative multi-hop question an- swering tasks. In Proceedings of the 2018 Confer- ence on Empirical Methods in Natural Language Processing, pages 4220-4230, Brussels, Belgium. Association for Computational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Universal sentence encoder for English",
"authors": [
{
"first": "Daniel",
"middle": [],
"last": "Cer",
"suffix": ""
},
{
"first": "Yinfei",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Sheng-Yi",
"middle": [],
"last": "Kong",
"suffix": ""
},
{
"first": "Nan",
"middle": [],
"last": "Hua",
"suffix": ""
},
{
"first": "Nicole",
"middle": [],
"last": "Limtiaco",
"suffix": ""
},
{
"first": "Rhomni",
"middle": [],
"last": "St",
"suffix": ""
},
{
"first": "Noah",
"middle": [],
"last": "John",
"suffix": ""
},
{
"first": "Mario",
"middle": [],
"last": "Constant",
"suffix": ""
},
{
"first": "Steve",
"middle": [],
"last": "Guajardo-Cespedes",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Yuan",
"suffix": ""
},
{
"first": "Brian",
"middle": [],
"last": "Tar",
"suffix": ""
},
{
"first": "Ray",
"middle": [],
"last": "Strope",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kurzweil",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
"volume": "",
"issue": "",
"pages": "169--174",
"other_ids": {
"DOI": [
"10.18653/v1/D18-2029"
]
},
"num": null,
"urls": [],
"raw_text": "Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope, and Ray Kurzweil. 2018. Universal sentence encoder for English. In Proceedings of the 2018 Conference on Empirical Methods in Nat- ural Language Processing: System Demonstrations, pages 169-174, Brussels, Belgium. Association for Computational Linguistics.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "BoolQ: Exploring the surprising difficulty of natural yes/no questions",
"authors": [
{
"first": "Christopher",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Tom",
"middle": [],
"last": "Kwiatkowski",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "2924--2936",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1300"
]
},
"num": null,
"urls": [],
"raw_text": "Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. 2019. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceed- ings of the 2019 Conference of the North American Chapter of the Association for Computational Lin- guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2924-2936, Min- neapolis, Minnesota. Association for Computational Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4171--4186",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1423"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Natural questions: A benchmark for question answering research",
"authors": [
{
"first": "Tom",
"middle": [],
"last": "Kwiatkowski",
"suffix": ""
},
{
"first": "Jennimaria",
"middle": [],
"last": "Palomaki",
"suffix": ""
},
{
"first": "Olivia",
"middle": [],
"last": "Redfield",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
},
{
"first": "Ankur",
"middle": [],
"last": "Parikh",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Alberti",
"suffix": ""
},
{
"first": "Danielle",
"middle": [],
"last": "Epstein",
"suffix": ""
},
{
"first": "Illia",
"middle": [],
"last": "Polosukhin",
"suffix": ""
},
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
}
],
"year": 2019,
"venue": "Transactions of the Association for Computational Linguistics",
"volume": "7",
"issue": "0",
"pages": "452--466",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red- field, Michael Collins, Ankur Parikh, Chris Al- berti, Danielle Epstein, Illia Polosukhin, Jacob De- vlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural questions: A benchmark for question an- swering research. Transactions of the Association for Computational Linguistics, 7(0):452-466.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "KagNet: Knowledge-aware graph networks for commonsense reasoning",
"authors": [
{
"first": "Xinyue",
"middle": [],
"last": "Bill Yuchen Lin",
"suffix": ""
},
{
"first": "Jamin",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Xiang",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Ren",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "2829--2839",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1282"
]
},
"num": null,
"urls": [],
"raw_text": "Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xi- ang Ren. 2019. KagNet: Knowledge-aware graph networks for commonsense reasoning. In Proceed- ings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter- national Joint Conference on Natural Language Pro- cessing (EMNLP-IJCNLP), pages 2829-2839, Hong Kong, China. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Conceptnet -a practical commonsense reasoning tool-kit",
"authors": [
{
"first": "Hugo",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Push",
"middle": [],
"last": "Singh",
"suffix": ""
}
],
"year": 2004,
"venue": "BT Technology Journal",
"volume": "22",
"issue": "4",
"pages": "211--226",
"other_ids": {
"DOI": [
"10.1023/B:BTTJ.0000047600.45421.6d"
]
},
"num": null,
"urls": [],
"raw_text": "Hugo Liu and Push Singh. 2004. Conceptnet -a prac- tical commonsense reasoning tool-kit. BT Technol- ogy Journal, 22(4):211-226.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Roberta: A robustly optimized BERT pretraining approach",
"authors": [
{
"first": "Yinhan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Myle",
"middle": [],
"last": "Ott",
"suffix": ""
},
{
"first": "Naman",
"middle": [],
"last": "Goyal",
"suffix": ""
},
{
"first": "Jingfei",
"middle": [],
"last": "Du",
"suffix": ""
},
{
"first": "Mandar",
"middle": [],
"last": "Joshi",
"suffix": ""
},
{
"first": "Danqi",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Omer",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Lewis",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
},
{
"first": "Veselin",
"middle": [],
"last": "Stoyanov",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1907.11692"
]
},
"num": null,
"urls": [],
"raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized BERT pretraining ap- proach. arXiv:1907.11692.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Knowledgeable reader: Enhancing cloze-style reading comprehension with external commonsense knowledge",
"authors": [
{
"first": "Todor",
"middle": [],
"last": "Mihaylov",
"suffix": ""
},
{
"first": "Anette",
"middle": [],
"last": "Frank",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "821--832",
"other_ids": {
"DOI": [
"10.18653/v1/P18-1076"
]
},
"num": null,
"urls": [],
"raw_text": "Todor Mihaylov and Anette Frank. 2018. Knowledge- able reader: Enhancing cloze-style reading compre- hension with external commonsense knowledge. In Proceedings of the 56th Annual Meeting of the As- sociation for Computational Linguistics (Volume 1: Long Papers), pages 821-832, Melbourne, Australia. Association for Computational Linguistics.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Deep contextualized word representations",
"authors": [
{
"first": "Matthew",
"middle": [],
"last": "Peters",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Neumann",
"suffix": ""
},
{
"first": "Mohit",
"middle": [],
"last": "Iyyer",
"suffix": ""
},
{
"first": "Matt",
"middle": [],
"last": "Gardner",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "2227--2237",
"other_ids": {
"DOI": [
"10.18653/v1/N18-1202"
]
},
"num": null,
"urls": [],
"raw_text": "Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word rep- resentations. In Proceedings of the 2018 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long Papers), pages 2227-2237, New Orleans, Louisiana. Association for Computational Linguistics.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Association for Computational Linguistics",
"authors": [
{
"first": "Fabio",
"middle": [],
"last": "Petroni",
"suffix": ""
},
{
"first": "Tim",
"middle": [],
"last": "Rockt\u00e4schel",
"suffix": ""
},
{
"first": "Sebastian",
"middle": [],
"last": "Riedel",
"suffix": ""
},
{
"first": "Patrick",
"middle": [],
"last": "Lewis",
"suffix": ""
},
{
"first": "Anton",
"middle": [],
"last": "Bakhtin",
"suffix": ""
},
{
"first": "Yuxiang",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Alexander",
"middle": [],
"last": "Miller",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "2463--2473",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1250"
]
},
"num": null,
"urls": [],
"raw_text": "Fabio Petroni, Tim Rockt\u00e4schel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller. 2019. Language models as knowl- edge bases? In Proceedings of the 2019 Confer- ence on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 2463-2473, Hong Kong, China. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Machine reading comprehension using structural knowledge graph-aware network",
"authors": [
{
"first": "Delai",
"middle": [],
"last": "Qiu",
"suffix": ""
},
{
"first": "Yuanzhe",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Xinwei",
"middle": [],
"last": "Feng",
"suffix": ""
},
{
"first": "Xiangwen",
"middle": [],
"last": "Liao",
"suffix": ""
},
{
"first": "Wenbin",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Yajuan",
"middle": [],
"last": "Lyu",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "5896--5901",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1602"
]
},
"num": null,
"urls": [],
"raw_text": "Delai Qiu, Yuanzhe Zhang, Xinwei Feng, Xiangwen Liao, Wenbin Jiang, Yajuan Lyu, Kang Liu, and Jun Zhao. 2019. Machine reading comprehension us- ing structural knowledge graph-aware network. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 5896- 5901, Hong Kong, China. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Generating logical forms from graph representations of text and entities",
"authors": [
{
"first": "Peter",
"middle": [],
"last": "Shaw",
"suffix": ""
},
{
"first": "Philip",
"middle": [],
"last": "Massey",
"suffix": ""
},
{
"first": "Angelica",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Francesco",
"middle": [],
"last": "Piccinno",
"suffix": ""
},
{
"first": "Yasemin",
"middle": [],
"last": "Altun",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "95--106",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1010"
]
},
"num": null,
"urls": [],
"raw_text": "Peter Shaw, Philip Massey, Angelica Chen, Francesco Piccinno, and Yasemin Altun. 2019. Generating log- ical forms from graph representations of text and entities. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguistics, pages 95-106, Florence, Italy. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Conceptnet 5.5: An open multilingual graph of general knowledge",
"authors": [
{
"first": "Robyn",
"middle": [],
"last": "Speer",
"suffix": ""
},
{
"first": "Joshua",
"middle": [],
"last": "Chin",
"suffix": ""
},
{
"first": "Catherine",
"middle": [],
"last": "Havasi",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI'17",
"volume": "",
"issue": "",
"pages": "4444--4451",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. Conceptnet 5.5: An open multilingual graph of general knowledge. In Proceedings of the Thirty- First AAAI Conference on Artificial Intelligence, AAAI'17, page 4444-4451. AAAI Press.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "CommonsenseQA: A question answering challenge targeting commonsense knowledge",
"authors": [
{
"first": "Alon",
"middle": [],
"last": "Talmor",
"suffix": ""
},
{
"first": "Jonathan",
"middle": [],
"last": "Herzig",
"suffix": ""
},
{
"first": "Nicholas",
"middle": [],
"last": "Lourie",
"suffix": ""
},
{
"first": "Jonathan",
"middle": [],
"last": "Berant",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4149--4158",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1421"
]
},
"num": null,
"urls": [],
"raw_text": "Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2019. CommonsenseQA: A ques- tion answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4149-4158, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Identifying supporting facts for multi-hop question answering with document graph networks",
"authors": [
{
"first": "Mokanarangan",
"middle": [],
"last": "Thayaparan",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Valentino",
"suffix": ""
},
{
"first": "Viktor",
"middle": [],
"last": "Schlegel",
"suffix": ""
},
{
"first": "Andr\u00e9",
"middle": [],
"last": "Freitas",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)",
"volume": "",
"issue": "",
"pages": "42--51",
"other_ids": {
"DOI": [
"10.18653/v1/D19-5306"
]
},
"num": null,
"urls": [],
"raw_text": "Mokanarangan Thayaparan, Marco Valentino, Viktor Schlegel, and Andr\u00e9 Freitas. 2019. Identifying supporting facts for multi-hop question answering with document graph networks. In Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 42-51, Hong Kong. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "An empirical study of example forgetting during deep neural network learning",
"authors": [
{
"first": "Mariya",
"middle": [],
"last": "Toneva",
"suffix": ""
},
{
"first": "Alessandro",
"middle": [],
"last": "Sordoni",
"suffix": ""
},
{
"first": "Remi",
"middle": [],
"last": "Tachet",
"suffix": ""
},
{
"first": "Adam",
"middle": [],
"last": "Combes",
"suffix": ""
},
{
"first": "Yoshua",
"middle": [],
"last": "Trischler",
"suffix": ""
},
{
"first": "Geoffrey",
"middle": [
"J"
],
"last": "Bengio",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Gordon",
"suffix": ""
}
],
"year": 2019,
"venue": "International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Geof- frey J. Gordon. 2019. An empirical study of exam- ple forgetting during deep neural network learning. In International Conference on Learning Represen- tations.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "SuperGLUE: A stickier benchmark for general-purpose language understanding systems",
"authors": [
{
"first": "Alex",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Yada",
"middle": [],
"last": "Pruksachatkun",
"suffix": ""
},
{
"first": "Nikita",
"middle": [],
"last": "Nangia",
"suffix": ""
},
{
"first": "Amanpreet",
"middle": [],
"last": "Singh",
"suffix": ""
},
{
"first": "Julian",
"middle": [],
"last": "Michael",
"suffix": ""
},
{
"first": "Felix",
"middle": [],
"last": "Hill",
"suffix": ""
},
{
"first": "Omer",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Samuel",
"middle": [],
"last": "Bowman",
"suffix": ""
}
],
"year": 2019,
"venue": "Advances in Neural Information Processing Systems",
"volume": "32",
"issue": "",
"pages": "3266--3280",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2019. SuperGLUE: A stickier benchmark for general-purpose language un- derstanding systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlch\u00e9-Buc, E. Fox, and R. Gar- nett, editors, Advances in Neural Information Pro- cessing Systems 32, pages 3266-3280. Curran Asso- ciates, Inc.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "GLUE: A multi-task benchmark and analysis platform for natural language understanding",
"authors": [
{
"first": "Alex",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Amanpreet",
"middle": [],
"last": "Singh",
"suffix": ""
},
{
"first": "Julian",
"middle": [],
"last": "Michael",
"suffix": ""
},
{
"first": "Felix",
"middle": [],
"last": "Hill",
"suffix": ""
},
{
"first": "Omer",
"middle": [],
"last": "Levy",
"suffix": ""
},
{
"first": "Samuel",
"middle": [],
"last": "Bowman",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 EMNLP Workshop Black-boxNLP: Analyzing and Interpreting Neural Networks for NLP",
"volume": "",
"issue": "",
"pages": "353--355",
"other_ids": {
"DOI": [
"10.18653/v1/W18-5446"
]
},
"num": null,
"urls": [],
"raw_text": "Alex Wang, Amanpreet Singh, Julian Michael, Fe- lix Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: A multi-task benchmark and analysis plat- form for natural language understanding. In Pro- ceedings of the 2018 EMNLP Workshop Black- boxNLP: Analyzing and Interpreting Neural Net- works for NLP, pages 353-355, Brussels, Belgium. Association for Computational Linguistics.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Dynamic integration of background knowl",
"authors": [
{
"first": "Dirk",
"middle": [],
"last": "Weissenborn",
"suffix": ""
},
{
"first": "Tom\u00e1\u0161",
"middle": [],
"last": "Ko\u010disk\u00fd",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
}
],
"year": 2017,
"venue": "neural NLU systems",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1706.02596"
]
},
"num": null,
"urls": [],
"raw_text": "Dirk Weissenborn, Tom\u00e1\u0161 Ko\u010disk\u00fd, and Chris Dyer. 2017. Dynamic integration of background knowl- edge in neural NLU systems. arXiv:1706.02596.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "A broad-coverage challenge corpus for sentence understanding through inference",
"authors": [
{
"first": "Adina",
"middle": [],
"last": "Williams",
"suffix": ""
},
{
"first": "Nikita",
"middle": [],
"last": "Nangia",
"suffix": ""
},
{
"first": "Samuel",
"middle": [],
"last": "Bowman",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "1112--1122",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sen- tence understanding through inference. In Proceed- ings of the 2018 Conference of the North American Chapter of the Association for Computational Lin- guistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112-1122. Association for Computational Linguistics.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Morgan Funtowicz, and Jamie Brew. 2019. Huggingface's transformers: State-of-the-art natural language processing",
"authors": [
{
"first": "Thomas",
"middle": [],
"last": "Wolf",
"suffix": ""
},
{
"first": "Lysandre",
"middle": [],
"last": "Debut",
"suffix": ""
},
{
"first": "Victor",
"middle": [],
"last": "Sanh",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Chaumond",
"suffix": ""
},
{
"first": "Clement",
"middle": [],
"last": "Delangue",
"suffix": ""
},
{
"first": "Anthony",
"middle": [],
"last": "Moi",
"suffix": ""
},
{
"first": "Pierric",
"middle": [],
"last": "Cistac",
"suffix": ""
},
{
"first": "Tim",
"middle": [],
"last": "Rault",
"suffix": ""
},
{
"first": "R'emi",
"middle": [],
"last": "Louf",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1910.03771"
]
},
"num": null,
"urls": [],
"raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R'emi Louf, Morgan Funtow- icz, and Jamie Brew. 2019. Huggingface's trans- formers: State-of-the-art natural language process- ing. arXiv:1910.03771.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Learning semantic textual similarity from conversations",
"authors": [
{
"first": "Yinfei",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Steve",
"middle": [],
"last": "Yuan",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Cer",
"suffix": ""
},
{
"first": "Sheng-Yi",
"middle": [],
"last": "Kong",
"suffix": ""
},
{
"first": "Noah",
"middle": [],
"last": "Constant",
"suffix": ""
},
{
"first": "Petr",
"middle": [],
"last": "Pilar",
"suffix": ""
},
{
"first": "Heming",
"middle": [],
"last": "Ge",
"suffix": ""
},
{
"first": "Yun-Hsuan",
"middle": [],
"last": "Sung",
"suffix": ""
},
{
"first": "Brian",
"middle": [],
"last": "Strope",
"suffix": ""
},
{
"first": "Ray",
"middle": [],
"last": "Kurzweil",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of The Third Workshop on Representation Learning for NLP",
"volume": "",
"issue": "",
"pages": "164--174",
"other_ids": {
"DOI": [
"10.18653/v1/W18-3022"
]
},
"num": null,
"urls": [],
"raw_text": "Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong, Noah Constant, Petr Pilar, Heming Ge, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Learn- ing semantic textual similarity from conversations. In Proceedings of The Third Workshop on Repre- sentation Learning for NLP, pages 164-174, Mel- bourne, Australia. Association for Computational Linguistics.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Complex factoid question answering with a free-text knowledge graph",
"authors": [
{
"first": "Chen",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Chenyan",
"middle": [],
"last": "Xiong",
"suffix": ""
},
{
"first": "Xin",
"middle": [],
"last": "Qian",
"suffix": ""
},
{
"first": "Jordan",
"middle": [],
"last": "Boyd-Graber",
"suffix": ""
}
],
"year": 2020,
"venue": "The Web Conference 2020",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chen Zhao, Chenyan Xiong, Xin Qian, and Jordan Boyd-Graber. 2020. Complex factoid question an- swering with a free-text knowledge graph. In The Web Conference 2020 (formerly WWW conference).",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"text": "Gold Answer: Yes Predicted Answer: No A number of works including Mihaylov and Frank (2018); Bauer et al. (2018); Lin et al. (2019); Qiu et al. (2019); Thayaparan et al. (2019); Talmor et al. (2019); Zhao et al. (2020) show successful usage of knowledge graphs (KGs) in several MRC settings.",
"uris": null,
"type_str": "figure",
"num": null
},
"FIGREF1": {
"text": "Accuracy (G), stable accuracy (#), and majority voting accuracy (L) over up to 10 runs of (a) BERT and (b) RoBERTa baselines.",
"uris": null,
"type_str": "figure",
"num": null
},
"FIGREF2": {
"text": "An example of usage ConceptNet entities for answering a Boolean question.",
"uris": null,
"type_str": "figure",
"num": null
},
"FIGREF3": {
"text": "The GNN architecture based onShaw et al. (2019) without action selection and copy mechanism.",
"uris": null,
"type_str": "figure",
"num": null
},
"FIGREF4": {
"text": "Question: is northern ireland part of the great britain Passage: ... Great Britain is part of the United Kingdom of Great Britain and Northern Ireland ... Answer: No The questions in the BoolQ dataset are lowercased, and this may have affected the entity recognition.",
"uris": null,
"type_str": "figure",
"num": null
},
"FIGREF5": {
"text": "Question: is daisy the director of shield in the comics Passage: Daisy Johnson, ... The daughter of the supervillain Mister Hyde, she is a secret agent of the intelligence organization S.H.I.E.L.D. with the power to generate earthquakes. Answer: Yes (14) Question: is chicken cordon bleu made with blue cheese",
"uris": null,
"type_str": "figure",
"num": null
},
"TABREF1": {
"content": "<table/>",
"type_str": "table",
"text": "BoolQ errors anlysis by reasoning type.",
"html": null,
"num": null
},
"TABREF3": {
"content": "<table><tr><td/><td>Base</td><td>Sent</td><td>Q&P</td><td colspan=\"2\">Intersection Union</td></tr><tr><td/><td>line</td><td>Emb</td><td>Match</td><td/></tr><tr><td>Data Cov-</td><td>-</td><td colspan=\"2\">21.84 22.58</td><td>1.23</td><td>38.57</td></tr><tr><td>erage (%)</td><td/><td/><td/><td/></tr></table>",
"type_str": "table",
"text": "AVG 81.26 81.23 80.86 81.23 81.46 80.72 Stable 73.84 73.19 72.61 73.25 73.74 72.40 Ensemble 81.62 81.89 81.37 81.92 82.05 81.10",
"html": null,
"num": null
},
"TABREF4": {
"content": "<table/>",
"type_str": "table",
"text": "",
"html": null,
"num": null
},
"TABREF5": {
"content": "<table><tr><td/><td colspan=\"3\">No KG +ConceptNet +GKG</td></tr><tr><td>BERT large</td><td>78.09</td><td>-</td><td>-</td></tr><tr><td>GNN + BERT</td><td>77.37</td><td>77.4</td><td>76.80</td></tr><tr><td>+ Same MID</td><td>-</td><td>-</td><td>77.60</td></tr><tr><td colspan=\"2\">+ Relation Type -</td><td>-</td><td>77.75</td></tr><tr><td>+ Q&AMatch</td><td>-</td><td>-</td><td>76.95</td></tr></table>",
"type_str": "table",
"text": "The first row shows the baseline BERT model with no KG data and the remaining rows show the BERT + GN N system with no KG data, with ConceptNet or with the Google Knowledge Graph. Adding KG information does not outperform the baseline result. None of the differences between the baseline are statistically significant.",
"html": null,
"num": null
},
"TABREF6": {
"content": "<table/>",
"type_str": "table",
"text": "GNN accuracy results on a development set using ConceptNet or Google KG (GKG).",
"html": null,
"num": null
},
"TABREF8": {
"content": "<table><tr><td>ber of new stable (wrt to baseline) correct (incorrect)</td></tr><tr><td>predictions, New Fluct. is the number of new questions</td></tr><tr><td>where answer fluctuates: Err\u00a1Corr (Corr\u00a1Err) is</td></tr><tr><td>the number of questions where answer was a stable er-</td></tr><tr><td>ror (correct), becoming correct (error) sometimes.</td></tr></table>",
"type_str": "table",
"text": "New Correct (Error) corresponds to the num-",
"html": null,
"num": null
},
"TABREF10": {
"content": "<table/>",
"type_str": "table",
"text": "The basic statistics for the BoolQ dataset.",
"html": null,
"num": null
},
"TABREF11": {
"content": "<table><tr><td colspan=\"2\">in 2015 with Answer: Yes (true)</td></tr><tr><td colspan=\"2\">(11) Question: Can I get into Canada with a</td></tr><tr><td>military ID?</td><td/></tr><tr><td>Passage:</td><td>(Title: American entry into</td></tr><tr><td colspan=\"2\">Canada by land) Canadian law requires</td></tr><tr><td colspan=\"2\">that all persons entering Canada must carry</td></tr><tr><td colspan=\"2\">proof of both citizenship and identity. A valid</td></tr><tr><td colspan=\"2\">U.S. passport or passport card is preferred,</td></tr><tr><td colspan=\"2\">although a birth certificate, naturalization</td></tr><tr><td colspan=\"2\">certificate, citizenship certificate, or another</td></tr><tr><td colspan=\"2\">document proving U.S. nationality, together</td></tr><tr><td colspan=\"2\">with a government-issued photo ID (such as a</td></tr><tr><td colspan=\"2\">driver's license) are acceptable to establish</td></tr><tr><td colspan=\"2\">identity and nationality.</td></tr><tr><td>Answer: Yes</td><td/></tr><tr><td colspan=\"2\">(12) Question: Can I go to Montenegro with a</td></tr><tr><td colspan=\"2\">Schengen visa?</td></tr><tr><td colspan=\"2\">Passage: Nationals of any country may visit</td></tr><tr><td colspan=\"2\">Montenegro without a visa for up to 30 days</td></tr><tr><td colspan=\"2\">if they hold a passport with visas issued by</td></tr><tr><td colspan=\"2\">Ireland, a Schengen Area member state, ...</td></tr><tr><td>Answer: Yes</td><td/></tr><tr><td colspan=\"2\">Some passages looked unrelated or do not con-</td></tr><tr><td colspan=\"2\">tain enough information to obtain the answer, e.g.</td></tr><tr><td>and Return of the Jedi (1983); ... A</td><td/></tr><tr><td>prequel trilogy was released between 1999</td><td/></tr><tr><td>and 2005, albeit to mixed reactions from</td><td/></tr><tr><td>critics and fans. A sequel trilogy concluding</td><td/></tr><tr><td>the main story of the nine-episode saga began</td><td/></tr><tr><td>13 https://super.gluebenchmark.com/ -l.v.</td><td/></tr><tr><td>07/2020</td><td/></tr></table>",
"type_str": "table",
"text": "The Force Awakens. ... Together with the theatrical spin-off films The Clone Wars (2008), Rogue One (2016) and Solo: A Star Wars Story (2018), Star Wars is the second highest-grossing film series ever.",
"html": null,
"num": null
},
"TABREF12": {
"content": "<table/>",
"type_str": "table",
"text": "Question: Is it bad to wash your hair with shower gel? Passage: ... This means that shower gels can also double as an effective and perfectly acceptable substitute to shampoo, even if they are not labelled as a hair and body wash. Answer: Yes Should be No (16) Question: Is Hindi is our national language of India? Passage: The Constitution of India designates the official language of the Government of India as Hindi written in the Devanagari script, as well as English. There is no national language as declared by the Constitution of India. Hindi is used for official purposes ... Answer: Yes Should be No (17) Question: are all world cup matches played in russia Passage: The 2018 FIFA World Cup was the 21st FIFA World Cup, an international football tournament contested by the men's national teams of the member associations of FIFA once every four years. It took place in Russia from 14 June to 15 July 2018. ... Answer: No Should be Yes",
"html": null,
"num": null
}
}
}
} |