File size: 104,915 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:13:08.050328Z"
    },
    "title": "Q. Can Knowledge Graphs be used to Answer Boolean Questions? A. It's complicated!",
    "authors": [
        {
            "first": "Daria",
            "middle": [],
            "last": "Dzendzik",
            "suffix": "",
            "affiliation": {},
            "email": "daria.dzendzik@adaptcentre.ie"
        },
        {
            "first": "Carl",
            "middle": [],
            "last": "Vogel",
            "suffix": "",
            "affiliation": {},
            "email": "vogel@tcd.ie"
        },
        {
            "first": "Jennifer",
            "middle": [],
            "last": "Foster",
            "suffix": "",
            "affiliation": {},
            "email": "jennifer.foster@dcu.ie"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this paper we explore the problem of machine reading comprehension, focusing on the BoolQ dataset of Yes/No questions. We carry out an error analysis of a BERT-based machine reading comprehension model on this dataset, revealing issues such as unstable model behaviour and some noise within the dataset itself. We then experiment with two approaches for integrating information from knowledge graphs: (i) concatenating knowledge graph triples to text passages and (ii) encoding knowledge with a Graph Neural Network. Neither of these approaches show a clear improvement and we hypothesize that this may be due to a combination of inaccuracies in the knowledge graph, imprecision in entity linking, and the models' inability to capture additional information from knowledge graphs.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this paper we explore the problem of machine reading comprehension, focusing on the BoolQ dataset of Yes/No questions. We carry out an error analysis of a BERT-based machine reading comprehension model on this dataset, revealing issues such as unstable model behaviour and some noise within the dataset itself. We then experiment with two approaches for integrating information from knowledge graphs: (i) concatenating knowledge graph triples to text passages and (ii) encoding knowledge with a Graph Neural Network. Neither of these approaches show a clear improvement and we hypothesize that this may be due to a combination of inaccuracies in the knowledge graph, imprecision in entity linking, and the models' inability to capture additional information from knowledge graphs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "1 Introduction Clark et al. (2019) explore the difficulty of Yes/No questions and introduce the BoolQ dataset which contains 16k questions based on real Google user queries, paired by crowdworkers with passages from Wikipedia. They establish a strong baseline using BERT large and transfer learning from the Multi-Genre Natural Language Inference (MNLI) task (Williams et al., 2018) .",
                "cite_spans": [
                    {
                        "start": 15,
                        "end": 34,
                        "text": "Clark et al. (2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 359,
                        "end": 382,
                        "text": "(Williams et al., 2018)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In this work, we carry out an error analysis of 200 samples from the BERT large + M N LI baseline model and find out that 77% constitute genuine model errors, almost 6% of samples contain an incorrect answer tag, and 8% do not contain enough evidence to answer the question. The remaining 9% we classified as difficult questions as they involve deep understanding, reasoning, specific knowledge, and sometimes depend on opinion. Due to the unstable behaviour of the model, error samples vary from run to run, where a run refers to the pipeline of MNLI pre-training, BoolQ fine-tuning, and evaluation of the model. We introduce a stable accuracy metric to evaluate a system across multiple runs with the same hyperparameters. Stable accuracy over n runs refers to the proportion of questions that are always correctly answered. We observed a 3.3% and an 11% drop of stable accuracy over 2 and 10 runs respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Next we turn our attention to improving machine reading comprehension (MRC) system performance. We hypothesize the system might benefit from additional information about entities and/or relations between the entities, in the question and passage. Consider, for example, (1) where pei is an abbreviation of Prince Edward Island.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "(1) Question: is anne with an e filmed on pei Passage: The series is filmed partially in Prince Edward Island as well as ... We propose and evaluate two approaches for augmenting questions and answers with KG information: (1) concatenating the model input with sentences constructed from ConceptNet triples 1 (Speer et al., 2017) ; and (2) encoding KG entities and relations with the Graph Neural Network (GNN) proposed by Shaw et al. (2019) , a model suited to graph-based input. Neither approach shows a significant improvement over the baseline. 2 A Closer Look at the BoolQ Baseline",
                "cite_spans": [
                    {
                        "start": 309,
                        "end": 329,
                        "text": "(Speer et al., 2017)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 423,
                        "end": 441,
                        "text": "Shaw et al. (2019)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We manually analyse 200 errors made by one run of the baseline system (33% of one-run errors) and discover that 6% of them involve an incorrect answer tag and another 8% involve confusing passages which do not give enough support for the answer (see Appendix B for examples). Table 1 shows a categorization of the errors according to the reasoning types provided by Clark et al. (2019) . The majority of errors belongs to the Paraphrasing type (48.5%). In these cases, the answer is in the passage and only a minimum amount of extra knowledge and reasoning is required to answer the question. The Implicit and Missing Mention types account for 19.5% and 14% of errors respectively. Only about 3.5% of incorrectly answered questions require an understanding of examples given in the passage, 6% requrie factual reasoning, and 8% require other inference.",
                "cite_spans": [
                    {
                        "start": 366,
                        "end": 385,
                        "text": "Clark et al. (2019)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 276,
                        "end": 283,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "2.1"
            },
            {
                "text": "We reproduce the results of the baseline BERT large + M N LI model released by Clark et al. (2019) . 2 Its accuracy is between 80% and 82% ( Fig. 1 (a) G) with an average 81.41% accuracy over 10 runs (vs. 82.2% reported in Clark et al. (2019) ). Our error analysis shows that a significant portion of the correctly answered questions varies from run to run together with around 40% of errors.",
                "cite_spans": [
                    {
                        "start": 79,
                        "end": 98,
                        "text": "Clark et al. (2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 200,
                        "end": 242,
                        "text": "(vs. 82.2% reported in Clark et al. (2019)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 141,
                        "end": 147,
                        "text": "Fig. 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Stable Accuracy",
                "sec_num": "2.2"
            },
            {
                "text": "We define the ratio of the number of correctly answered questions across n runs to the total number of questions as stable accuracy. Formally, if Q is the set of all questions and Q i correct is the set of correctly answered questions at the i th run, the stable accuracy after n runs is defined as (2):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stable Accuracy",
                "sec_num": "2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "StableAccuracy n = | \u2229 n i=0 Q i correct | |Q|",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Stable Accuracy",
                "sec_num": "2.2"
            },
            {
                "text": "The stable accuracy over 10 runs drops to 71% (see Fig 1 ( up to 10 runs ( Fig. 1 (a) , L) does not outperform the baseline: the values are within the range of 78.09% and 81.77%. 3 We repeat the experiment using the robustly optimized RoBERT a large model implemented by Wolf et al. (2019) and fine tuned on the MNLI task. This model has a better average accuracy (83.7)% but it is also more unstable: the stable accuracy drops to 64.0% (see Fig. 1 (b) ). As with the BERT model, ensembling over 10 runs does not give a performance boost.",
                "cite_spans": [
                    {
                        "start": 179,
                        "end": 180,
                        "text": "3",
                        "ref_id": null
                    },
                    {
                        "start": 271,
                        "end": 289,
                        "text": "Wolf et al. (2019)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 51,
                        "end": 58,
                        "text": "Fig 1 (",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 75,
                        "end": 85,
                        "text": "Fig. 1 (a)",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 442,
                        "end": 452,
                        "text": "Fig. 1 (b)",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Stable Accuracy",
                "sec_num": "2.2"
            },
            {
                "text": "This observed behavior means that the system performs well on each run but every time it performs well on a different set of questions. This might be related to the notion of \"forgettable\" examples described by Toneva et al. (2019) . The difference is that they discovered the ability of models to forget the learned examples during the training phase, while we examine stable and unstable examples when the training is finished.",
                "cite_spans": [
                    {
                        "start": 211,
                        "end": 231,
                        "text": "Toneva et al. (2019)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stable Accuracy",
                "sec_num": "2.2"
            },
            {
                "text": "Our manual inspection of the results of one baseline system run reveals that approximately 20% of erroneous cases are questions involving some property of an entity or concept, or some hierarchical relationship between entities. An example of the former is (3) and the latter is (4).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modeling Knowledge Graph Data",
                "sec_num": "3"
            },
            {
                "text": "(3) is i 80 in indiana a toll road (4) is college of william and mary an ivy league school?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modeling Knowledge Graph Data",
                "sec_num": "3"
            },
            {
                "text": "We hypothesize that adding knowledge graph data could help in answering such questions, as well as examples such as (1) and (5) below where the entity in the question is referred to using a different name in the passage.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modeling Knowledge Graph Data",
                "sec_num": "3"
            },
            {
                "text": "(5) Question: does smeagol die in lord of the rings Passage: ... Gollum finally ... but he fell into the fires of the volcano, where both he and the Ring were destroyed. Answer: Yes",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modeling Knowledge Graph Data",
                "sec_num": "3"
            },
            {
                "text": "We use the CloudAPI 4 to annotate text with tokens, part of speech tags, named entities with Freebase 5 KG identifiers (MIDs), numbers, dates and VerbNet 6 roles which can be used for establishing relations between entities.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modeling Knowledge Graph Data",
                "sec_num": "3"
            },
            {
                "text": "ConceptNet (Liu and Singh, 2004; Speer et al., 2017) is an open semantic network based on DB-Pedia, Wiktionary, WordNet, and other resources. It captures common-sense knowledge and was created for computers to understand words and concepts in the same way people do. It was particularly designed to be used by NLP applications and widely used in MRC (Weissenborn et al., 2017; Bauer et al., 2018; Mihaylov and Frank, 2018; Lin et al., 2019; Qiu et al., 2019) . Partly inspired by Weissenborn et al. 2017, we convert ConceptNet relations into sentences but instead of embedding them independently, we concatenate them to the baseline model input.",
                "cite_spans": [
                    {
                        "start": 11,
                        "end": 32,
                        "text": "(Liu and Singh, 2004;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 33,
                        "end": 52,
                        "text": "Speer et al., 2017)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 350,
                        "end": 376,
                        "text": "(Weissenborn et al., 2017;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 377,
                        "end": 396,
                        "text": "Bauer et al., 2018;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 397,
                        "end": 422,
                        "text": "Mihaylov and Frank, 2018;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 423,
                        "end": 440,
                        "text": "Lin et al., 2019;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 441,
                        "end": 458,
                        "text": "Qiu et al., 2019)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Extending Passages with ConceptNet",
                "sec_num": "3.1"
            },
            {
                "text": "ConceptNet has 34 relation types. 7 Each relation has start and end entities and a strength of relation (relevance weight). We look up every annotated entity from questions and passages in ConceptNet. We extract the top 100 relations according to the relevance weight, and select those where both the start and end entities are in English. We remove relations that are not useful, such as \"External URLs\", or too broad such as \"FormOf\". Then we transform ConceptNet relations into simple sentences based on the relation description or, if there is no description, we create a string:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sentence Extraction and Filtering",
                "sec_num": "3.1.1"
            },
            {
                "text": "[entity1] [relation] [entity2]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sentence Extraction and Filtering",
                "sec_num": "3.1.1"
            },
            {
                "text": ", e.g. the \"panda is near a bamboo forest\" string is created from entites: \"panda\", \"bamboo forest\" and the relation \"LocatedNear\". Fig. 2 shows a ConceptNet entity from example (1). The verbalized triples such as \"pei is a synonym of Prince Edward Island\" are prepended to the text passage.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 132,
                        "end": 138,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Sentence Extraction and Filtering",
                "sec_num": "3.1.1"
            },
            {
                "text": "Since such new sentences can add noise (see polyetherimide examples in Fig. 2 ) and a long input might confuse the model (Thayaparan et al., 2019) , we aim to add extra sentences to the passages only if it is relevant and can better \"explain\" the nature of entities. To select those, we rank all extracted sentences S according to the sum of their similarities with the question q and passage p as shown in (6):",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 146,
                        "text": "(Thayaparan et al., 2019)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 71,
                        "end": 77,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Sentence Extraction and Filtering",
                "sec_num": "3.1.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2200s \u2208 S : score(s) = g(k(s), k(q))+g(k(s), k(p))",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Sentence Extraction and Filtering",
                "sec_num": "3.1.1"
            },
            {
                "text": "where g \u2208 {correlation, cosine} are similarity measures, k is a semantic embedding function. We use the semantic textual similarity model 8 proposed by . To filter more examples, we add an empirically tuned threshold for similarities 9 and select only those sentences which were ranked as the most similar to the question and passage by both correlation (inner product) and cosine similarity, and each score is higher than the established thresholds. Another method of selecting relevant sentences is to consider only the relations which connect an entity in the question to an entity in the passage. We then combine these two strategies: we add sentences only to the examples which meet both criteria (Intersection) or all that meet at least one of the criteria (Union). Table 2 shows the results averaged over 5 runs. With threshold filtering we add sentences to 21.84% 9 of passages, obtaining an average accuracy of 81.23% (see Table 2 : SentEmb). Using entity relations from questions and answers, 22.58% of QA pairs are affected but the performance is slightly worse (see Table 2 : Q&P Match).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 772,
                        "end": 779,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 932,
                        "end": 939,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 1078,
                        "end": 1085,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Sentence Extraction and Filtering",
                "sec_num": "3.1.1"
            },
            {
                "text": "The intersection gives the best performance. By affecting only 1.23% of the data, we obtain 81.46% average accuracy and 82.05% accuracy for the ensemble majority voting scenario. The Union criterion does not show any improvement on accuracy. The Intersection improvement, as well as the disimprovement of SentEmb, Q&PMatch, and Union, are not statistically significant with respect to the baseline. 10 ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "3.1.2"
            },
            {
                "text": "Facing instability of the BERT-based baseline and low coverage of ConceptNet (see Section 4) we experiment with a new architecture and knowledge graph. To better model graph-based input, such as entities and their relations, we tried a transformerbased seq2seq GNN (Shaw et al., 2019) . Entities, relations and input tokens are embedded and fed to a GNN sub-layer that incorporates edge representations extending the self-attention mechanism. The encoder-decoder attention layer considers both encoder output token and entity representations, jointly normalizing attention weights over tokens and entities. In our case, the GNN decoder simply outputs our expected answers: \"Yes\" or \"No\" (see Fig. 3 ). In this case, we initialize the GNN with a pre-trained BERT large model and only fine tune on BoolQ.",
                "cite_spans": [
                    {
                        "start": 265,
                        "end": 284,
                        "text": "(Shaw et al., 2019)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 692,
                        "end": 698,
                        "text": "Fig. 3",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Modeling Knowledge Graphs with GraphNNs",
                "sec_num": "3.2"
            },
            {
                "text": "As an alternative to ConceptNet we also tried the Google Knowledge Graph. It has more than 500 billion facts about 5 billion entities. 11 The entities describe real-world objects and concepts like 10 According to the two sample proportion Z-Test the maximum difference: z = \u22121.3674, p = 0.17068 11 https://blog.google/products/search/ about-knowledge-graph-and-knowledge-panels/ -l.v. 07/2020 people, places, events, and things. Entities are represented as nodes and connected by relations. The latter can simply indicate that a relation is present, or they may encode the type of relation. We try the first three of the following possible experiments:",
                "cite_spans": [
                    {
                        "start": 197,
                        "end": 199,
                        "text": "10",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modeling Knowledge Graphs with GraphNNs",
                "sec_num": "3.2"
            },
            {
                "text": "1. adding a relation between different entities which have the same MID; 2. only adding connections between entities across the QA pair, as in the ConceptNet Q&P Match experiment; 3. distinguishing different types of relations; 4. adding a relation between different mentions of the same entity; 5. adding entities not mentioned in the text but linked to the mentioned entities.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Modeling Knowledge Graphs with GraphNNs",
                "sec_num": "3.2"
            },
            {
                "text": "The results are presented in ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "3.2.1"
            },
            {
                "text": "ConceptNet Even after the filtering described in Section 3.1.1, we observe that often the relations from ConceptNet are too general and do not add new information, e.g. \"cookie jar is a type of jar\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "4"
            },
            {
                "text": "Such relations are already part of the language model. Petroni et al. (2019) show that BERT contains relational knowledge and has a strong ability to recall factual knowledge without fine-tuning. Furthermore, some entities are missing, e.g. there is a \"Tom Hanks\" entity but no \"Meg Ryan\" entity, or the entity \"dragon ball\" contains only non-English connections, confirming the general coverage issue of KGs. 12 Sensitivity We observe that the GNN is sensitive to the learning rate and hyper-parameters. Better tuning may compensate for the difference in performance wrt to the BERT baseline.",
                "cite_spans": [
                    {
                        "start": 55,
                        "end": 76,
                        "text": "Petroni et al. (2019)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 405,
                        "end": 412,
                        "text": "KGs. 12",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Analysis",
                "sec_num": "4"
            },
            {
                "text": "We found issues with the entity linker. Named entities are often not covered or the MID is missing. In some cases, the entity has a wrong MID, e.g. in (7) the entity \"northern ireland\" is not recognised but the entity \"ireland\" (Republic of Ireland) is mentioned instead, while the entity \"great britain\" is recognised with the MID of \"United Kingdom\". ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Entity recognition and linker",
                "sec_num": null
            },
            {
                "text": "We observe a positive tendency towards stable correct answers in the ConceptNet experiments (Table 4 ). The number of new stable correct answers is higher than the number of new stable errors for all settings except Q&AMatch. Also, for all scenarios except Intersection, the number of questions where the predicted answer fluctuates from incorrect to correct is higher than the number of questions where the predicted answer fluctuates from correct.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 92,
                        "end": 100,
                        "text": "(Table 4",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Do KGs affect stable accuracy?",
                "sec_num": null
            },
            {
                "text": "Is a KG necessary? The BoolQ dataset was not originally created to be used with a KG, and the passages were selected such that they contain the information required to answer a question. For some questions, such as (1) the additional information provided by a KG is helpful, and for questions like (7), even though the passage has all the required information, a KG could highlight the relation between entities and help answer the question. However, there are also cases where a KG is not needed or cannot be applied, e.g. (8) and (9).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Do KGs affect stable accuracy?",
                "sec_num": null
            },
            {
                "text": "(8) Question: do all ni numbers have a letter at the end Passage: The format of the number is two prefix letters, six digits, and one suffix letter. The example used is typically QQ123456C. ... Answer: Yes (9) Question: was the movie insomnia based on a book Passage: Robert Westbrook adapted the screenplay to novel form, which was published by Alex in May 2002. Answer: No",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Do KGs affect stable accuracy?",
                "sec_num": null
            },
            {
                "text": "In (8) a question is asked about a number format and the information about the specific last symbol is unlikely to be a part of a KG. (9) contains a very short passage explicitly saying there is a book but it was adapted from the screenplay. In this case, a KG could provide potentially confusing information simply stating that there is a book.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Do KGs affect stable accuracy?",
                "sec_num": null
            },
            {
                "text": "In this work, we take a closer look at a BERT baseline system on the BoolQ dataset, which reveals some inconsistencies in the data and some instability in the model. We try two approaches to integrating knowledge graph information, one based on augmenting the passage text and another using a Graph Neural Network. Neither are successful. One culprit is the lack of coverage of Con-ceptNet and another is related to accuracy of the entity recognition. We also suggest that the number of questions where suitable KG data is needed and could be found might just not be enough for the models to learn from.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "The BoolQ dataset (Clark et al., 2019 ) is a part of the SuperGLUE benchmark 13 (Wang et al., 2019) . About 3000 question and passages come from Nat-uralQuestion . The main statistics about the dataset is collected in Table 5 . Clark et al. (2019) showed the BERT large model outperforming recurrent models with attention , both in their vanilla version and in combination with deep contextualized word representation (Peters et al., 2018) .",
                "cite_spans": [
                    {
                        "start": 18,
                        "end": 37,
                        "text": "(Clark et al., 2019",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 80,
                        "end": 99,
                        "text": "(Wang et al., 2019)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 228,
                        "end": 247,
                        "text": "Clark et al. (2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 418,
                        "end": 439,
                        "text": "(Peters et al., 2018)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 218,
                        "end": 225,
                        "text": "Table 5",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "A BoolQ Dataset Details",
                "sec_num": null
            },
            {
                "text": "Some questions in BoolQ are formulated in a certain context which might change given time. For example (10) which is asking about a movie released this year. As the dataset was released in 2019 the data could be collected in 2018 so then the answer is yes but if this question would be asked in 2015 or today (2020) the answer should be no. Another example (11) where a passage provides the information about United States citizens border crossing requirements but the question does not specify what kind of citizenship the person asking the question holds. In contrast with example (12) where the question and passage provide an unconditional outcome as a holder of the Schengen visa (information from question) can enter Montenegro for 30 days (information from the passage). So, in such cases like examples (10) and (11), the passage information is not enough to answer the questions unconditionally.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Erroneous and Confusing Examples",
                "sec_num": null
            },
            {
                "text": "(10) Question: is there a star wars movie this year Passage: The first film was followed by two successful sequels, The Empire Strikes Back (1980) (13 -14) . The passages are related to the questions but specific information is missing the answer \"Yes\" cannot be confirmed by the passages. We observe, around 8% of questions we confusing or have certain assumptions. Passage: A cordon bleu or schnitzel cordon bleu is a dish of meat wrapped around cheese (or with cheese filling), then breaded and pan-fried or deep-fried. Veal or pork cordon bleu is made of veal or pork pounded thin and wrapped around a slice of ham and a slice of cheese, breaded, and then pan fried or baked. For chicken cordon bleu chicken breast is used instead of veal. Ham cordon bleu is ham stuffed with mushrooms and cheese. Answer: Yes",
                "cite_spans": [
                    {
                        "start": 140,
                        "end": 146,
                        "text": "(1980)",
                        "ref_id": null
                    },
                    {
                        "start": 147,
                        "end": 155,
                        "text": "(13 -14)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Erroneous and Confusing Examples",
                "sec_num": null
            },
            {
                "text": "There are a few examples of errors (15 -17) from the dataset. The first error example is asking if shower gel can be used instead of shampoo in a negative form (\"is it bad to ...\") and the passage says that they are perfectly substitutable so the answer should be No (it is not bad). In the second example (16) the passage explicitly says India does not have a national language so the answer should be No. And in the third example (17) there is nothing that should make the reader believe there were any games outside of Russia, so the answer should be Yes. According to our analysis 6% of samples have the wrong answer tag. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Erroneous and Confusing Examples",
                "sec_num": null
            },
            {
                "text": "Note that the ensemble performs slightly better with an odd numbers of runs as only the samples with strictly more votes for the correct answer are considered to be answered correctly. This is a very strict evaluation. Alternatively, in the case of a tie, the majority answer (Yes) can be selected, but we aim to provide the evaluation with the maximum certainty.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://cloud.google.com/apis/docs/ overview -l.v. 07/2020 5 https://en.wikipedia.org/wiki/ Freebase_(database) -l.v. 07/2020 6 http://verbs.colorado.edu/\u02dcmpalmer/ projects/verbnet.html -l.v. 07/2020 7 Based on https://github.com/commonsense/ conceptnet5/wiki/Relations -l.v. 07/2020. We found a few more like \"language\" or \"occupations\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Available via TensorFlowHub (Cer et al., 2018): https: //www.tensorflow.org/hub/ -l.v. 07/20209 We used: correlation > 220; cosine similarity > 1.38.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://conceptnet.io/c/en/jar, https: //conceptnet.io/c/en/tom_hanks -An English term in ConceptNet 5.8, https://conceptnet.io/ c/en/meg_ryan -'meg ryan' is not a node in Con-ceptNet, https://conceptnet.io/c/en/dragon_ ball,-l.v. 07/2020",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We are extremely gratefully to Massimo Nicosia from Google Research Switzerland without whom this work would not be possible. We thank the anonymous reviewers for their constructive and helpful feedback. Finally, a big thank you to Andrew Dunne, Lauren Cassidy, and Meghan Dowling.This research is partly supported by Science Foundation Ireland in the ADAPT Centre for Digital Content Technology, funded under the SFI Research Centres Programme (Grant 13/RC/2106) and the European Regional Development Fund.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Commonsense for generative multi-hop question answering tasks",
                "authors": [
                    {
                        "first": "Lisa",
                        "middle": [],
                        "last": "Bauer",
                        "suffix": ""
                    },
                    {
                        "first": "Yicheng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "4220--4230",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1454"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lisa Bauer, Yicheng Wang, and Mohit Bansal. 2018. Commonsense for generative multi-hop question an- swering tasks. In Proceedings of the 2018 Confer- ence on Empirical Methods in Natural Language Processing, pages 4220-4230, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Universal sentence encoder for English",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Cer",
                        "suffix": ""
                    },
                    {
                        "first": "Yinfei",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Sheng-Yi",
                        "middle": [],
                        "last": "Kong",
                        "suffix": ""
                    },
                    {
                        "first": "Nan",
                        "middle": [],
                        "last": "Hua",
                        "suffix": ""
                    },
                    {
                        "first": "Nicole",
                        "middle": [],
                        "last": "Limtiaco",
                        "suffix": ""
                    },
                    {
                        "first": "Rhomni",
                        "middle": [],
                        "last": "St",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [],
                        "last": "John",
                        "suffix": ""
                    },
                    {
                        "first": "Mario",
                        "middle": [],
                        "last": "Constant",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Guajardo-Cespedes",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Tar",
                        "suffix": ""
                    },
                    {
                        "first": "Ray",
                        "middle": [],
                        "last": "Strope",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kurzweil",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "169--174",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-2029"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St. John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Brian Strope, and Ray Kurzweil. 2018. Universal sentence encoder for English. In Proceedings of the 2018 Conference on Empirical Methods in Nat- ural Language Processing: System Demonstrations, pages 169-174, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "BoolQ: Exploring the surprising difficulty of natural yes/no questions",
                "authors": [
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Kwiatkowski",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "2924--2936",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1300"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. 2019. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Proceed- ings of the 2019 Conference of the North American Chapter of the Association for Computational Lin- guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2924-2936, Min- neapolis, Minnesota. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Natural questions: A benchmark for question answering research",
                "authors": [
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Kwiatkowski",
                        "suffix": ""
                    },
                    {
                        "first": "Jennimaria",
                        "middle": [],
                        "last": "Palomaki",
                        "suffix": ""
                    },
                    {
                        "first": "Olivia",
                        "middle": [],
                        "last": "Redfield",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    },
                    {
                        "first": "Ankur",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Alberti",
                        "suffix": ""
                    },
                    {
                        "first": "Danielle",
                        "middle": [],
                        "last": "Epstein",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    },
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "7",
                "issue": "0",
                "pages": "452--466",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red- field, Michael Collins, Ankur Parikh, Chris Al- berti, Danielle Epstein, Illia Polosukhin, Jacob De- vlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural questions: A benchmark for question an- swering research. Transactions of the Association for Computational Linguistics, 7(0):452-466.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "KagNet: Knowledge-aware graph networks for commonsense reasoning",
                "authors": [
                    {
                        "first": "Xinyue",
                        "middle": [],
                        "last": "Bill Yuchen Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Jamin",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "2829--2839",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1282"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Bill Yuchen Lin, Xinyue Chen, Jamin Chen, and Xi- ang Ren. 2019. KagNet: Knowledge-aware graph networks for commonsense reasoning. In Proceed- ings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter- national Joint Conference on Natural Language Pro- cessing (EMNLP-IJCNLP), pages 2829-2839, Hong Kong, China. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Conceptnet -a practical commonsense reasoning tool-kit",
                "authors": [
                    {
                        "first": "Hugo",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Push",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "BT Technology Journal",
                "volume": "22",
                "issue": "4",
                "pages": "211--226",
                "other_ids": {
                    "DOI": [
                        "10.1023/B:BTTJ.0000047600.45421.6d"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hugo Liu and Push Singh. 2004. Conceptnet -a prac- tical commonsense reasoning tool-kit. BT Technol- ogy Journal, 22(4):211-226.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Roberta: A robustly optimized BERT pretraining approach",
                "authors": [
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "Jingfei",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "Mandar",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Danqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.11692"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized BERT pretraining ap- proach. arXiv:1907.11692.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Knowledgeable reader: Enhancing cloze-style reading comprehension with external commonsense knowledge",
                "authors": [
                    {
                        "first": "Todor",
                        "middle": [],
                        "last": "Mihaylov",
                        "suffix": ""
                    },
                    {
                        "first": "Anette",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "821--832",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1076"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Todor Mihaylov and Anette Frank. 2018. Knowledge- able reader: Enhancing cloze-style reading compre- hension with external commonsense knowledge. In Proceedings of the 56th Annual Meeting of the As- sociation for Computational Linguistics (Volume 1: Long Papers), pages 821-832, Melbourne, Australia. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Deep contextualized word representations",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Peters",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Neumann",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Iyyer",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "2227--2237",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-1202"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word rep- resentations. In Proceedings of the 2018 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long Papers), pages 2227-2237, New Orleans, Louisiana. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Association for Computational Linguistics",
                "authors": [
                    {
                        "first": "Fabio",
                        "middle": [],
                        "last": "Petroni",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rockt\u00e4schel",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Riedel",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Anton",
                        "middle": [],
                        "last": "Bakhtin",
                        "suffix": ""
                    },
                    {
                        "first": "Yuxiang",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Miller",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "2463--2473",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1250"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Fabio Petroni, Tim Rockt\u00e4schel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller. 2019. Language models as knowl- edge bases? In Proceedings of the 2019 Confer- ence on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 2463-2473, Hong Kong, China. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Machine reading comprehension using structural knowledge graph-aware network",
                "authors": [
                    {
                        "first": "Delai",
                        "middle": [],
                        "last": "Qiu",
                        "suffix": ""
                    },
                    {
                        "first": "Yuanzhe",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xinwei",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Xiangwen",
                        "middle": [],
                        "last": "Liao",
                        "suffix": ""
                    },
                    {
                        "first": "Wenbin",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Yajuan",
                        "middle": [],
                        "last": "Lyu",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "5896--5901",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1602"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Delai Qiu, Yuanzhe Zhang, Xinwei Feng, Xiangwen Liao, Wenbin Jiang, Yajuan Lyu, Kang Liu, and Jun Zhao. 2019. Machine reading comprehension us- ing structural knowledge graph-aware network. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 5896- 5901, Hong Kong, China. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Generating logical forms from graph representations of text and entities",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Shaw",
                        "suffix": ""
                    },
                    {
                        "first": "Philip",
                        "middle": [],
                        "last": "Massey",
                        "suffix": ""
                    },
                    {
                        "first": "Angelica",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Francesco",
                        "middle": [],
                        "last": "Piccinno",
                        "suffix": ""
                    },
                    {
                        "first": "Yasemin",
                        "middle": [],
                        "last": "Altun",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "95--106",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1010"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Peter Shaw, Philip Massey, Angelica Chen, Francesco Piccinno, and Yasemin Altun. 2019. Generating log- ical forms from graph representations of text and entities. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguistics, pages 95-106, Florence, Italy. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Conceptnet 5.5: An open multilingual graph of general knowledge",
                "authors": [
                    {
                        "first": "Robyn",
                        "middle": [],
                        "last": "Speer",
                        "suffix": ""
                    },
                    {
                        "first": "Joshua",
                        "middle": [],
                        "last": "Chin",
                        "suffix": ""
                    },
                    {
                        "first": "Catherine",
                        "middle": [],
                        "last": "Havasi",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI'17",
                "volume": "",
                "issue": "",
                "pages": "4444--4451",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robyn Speer, Joshua Chin, and Catherine Havasi. 2017. Conceptnet 5.5: An open multilingual graph of general knowledge. In Proceedings of the Thirty- First AAAI Conference on Artificial Intelligence, AAAI'17, page 4444-4451. AAAI Press.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "CommonsenseQA: A question answering challenge targeting commonsense knowledge",
                "authors": [
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Talmor",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Herzig",
                        "suffix": ""
                    },
                    {
                        "first": "Nicholas",
                        "middle": [],
                        "last": "Lourie",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Berant",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4149--4158",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1421"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. 2019. CommonsenseQA: A ques- tion answering challenge targeting commonsense knowledge. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4149-4158, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Identifying supporting facts for multi-hop question answering with document graph networks",
                "authors": [
                    {
                        "first": "Mokanarangan",
                        "middle": [],
                        "last": "Thayaparan",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Valentino",
                        "suffix": ""
                    },
                    {
                        "first": "Viktor",
                        "middle": [],
                        "last": "Schlegel",
                        "suffix": ""
                    },
                    {
                        "first": "Andr\u00e9",
                        "middle": [],
                        "last": "Freitas",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)",
                "volume": "",
                "issue": "",
                "pages": "42--51",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-5306"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mokanarangan Thayaparan, Marco Valentino, Viktor Schlegel, and Andr\u00e9 Freitas. 2019. Identifying supporting facts for multi-hop question answering with document graph networks. In Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13), pages 42-51, Hong Kong. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "An empirical study of example forgetting during deep neural network learning",
                "authors": [
                    {
                        "first": "Mariya",
                        "middle": [],
                        "last": "Toneva",
                        "suffix": ""
                    },
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Sordoni",
                        "suffix": ""
                    },
                    {
                        "first": "Remi",
                        "middle": [],
                        "last": "Tachet",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Combes",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Trischler",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [
                            "J"
                        ],
                        "last": "Bengio",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gordon",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Geof- frey J. Gordon. 2019. An empirical study of exam- ple forgetting during deep neural network learning. In International Conference on Learning Represen- tations.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "SuperGLUE: A stickier benchmark for general-purpose language understanding systems",
                "authors": [
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Yada",
                        "middle": [],
                        "last": "Pruksachatkun",
                        "suffix": ""
                    },
                    {
                        "first": "Nikita",
                        "middle": [],
                        "last": "Nangia",
                        "suffix": ""
                    },
                    {
                        "first": "Amanpreet",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Julian",
                        "middle": [],
                        "last": "Michael",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Hill",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "32",
                "issue": "",
                "pages": "3266--3280",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. 2019. SuperGLUE: A stickier benchmark for general-purpose language un- derstanding systems. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlch\u00e9-Buc, E. Fox, and R. Gar- nett, editors, Advances in Neural Information Pro- cessing Systems 32, pages 3266-3280. Curran Asso- ciates, Inc.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "GLUE: A multi-task benchmark and analysis platform for natural language understanding",
                "authors": [
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Amanpreet",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Julian",
                        "middle": [],
                        "last": "Michael",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Hill",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 EMNLP Workshop Black-boxNLP: Analyzing and Interpreting Neural Networks for NLP",
                "volume": "",
                "issue": "",
                "pages": "353--355",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-5446"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alex Wang, Amanpreet Singh, Julian Michael, Fe- lix Hill, Omer Levy, and Samuel Bowman. 2018. GLUE: A multi-task benchmark and analysis plat- form for natural language understanding. In Pro- ceedings of the 2018 EMNLP Workshop Black- boxNLP: Analyzing and Interpreting Neural Net- works for NLP, pages 353-355, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Dynamic integration of background knowl",
                "authors": [
                    {
                        "first": "Dirk",
                        "middle": [],
                        "last": "Weissenborn",
                        "suffix": ""
                    },
                    {
                        "first": "Tom\u00e1\u0161",
                        "middle": [],
                        "last": "Ko\u010disk\u00fd",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "neural NLU systems",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1706.02596"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Dirk Weissenborn, Tom\u00e1\u0161 Ko\u010disk\u00fd, and Chris Dyer. 2017. Dynamic integration of background knowl- edge in neural NLU systems. arXiv:1706.02596.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "A broad-coverage challenge corpus for sentence understanding through inference",
                "authors": [
                    {
                        "first": "Adina",
                        "middle": [],
                        "last": "Williams",
                        "suffix": ""
                    },
                    {
                        "first": "Nikita",
                        "middle": [],
                        "last": "Nangia",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "1112--1122",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A broad-coverage challenge corpus for sen- tence understanding through inference. In Proceed- ings of the 2018 Conference of the North American Chapter of the Association for Computational Lin- guistics: Human Language Technologies, Volume 1 (Long Papers), pages 1112-1122. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Morgan Funtowicz, and Jamie Brew. 2019. Huggingface's transformers: State-of-the-art natural language processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "R'emi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.03771"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R'emi Louf, Morgan Funtow- icz, and Jamie Brew. 2019. Huggingface's trans- formers: State-of-the-art natural language process- ing. arXiv:1910.03771.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Learning semantic textual similarity from conversations",
                "authors": [
                    {
                        "first": "Yinfei",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Cer",
                        "suffix": ""
                    },
                    {
                        "first": "Sheng-Yi",
                        "middle": [],
                        "last": "Kong",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [],
                        "last": "Constant",
                        "suffix": ""
                    },
                    {
                        "first": "Petr",
                        "middle": [],
                        "last": "Pilar",
                        "suffix": ""
                    },
                    {
                        "first": "Heming",
                        "middle": [],
                        "last": "Ge",
                        "suffix": ""
                    },
                    {
                        "first": "Yun-Hsuan",
                        "middle": [],
                        "last": "Sung",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Strope",
                        "suffix": ""
                    },
                    {
                        "first": "Ray",
                        "middle": [],
                        "last": "Kurzweil",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of The Third Workshop on Representation Learning for NLP",
                "volume": "",
                "issue": "",
                "pages": "164--174",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-3022"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yinfei Yang, Steve Yuan, Daniel Cer, Sheng-yi Kong, Noah Constant, Petr Pilar, Heming Ge, Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. 2018. Learn- ing semantic textual similarity from conversations. In Proceedings of The Third Workshop on Repre- sentation Learning for NLP, pages 164-174, Mel- bourne, Australia. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Complex factoid question answering with a free-text knowledge graph",
                "authors": [
                    {
                        "first": "Chen",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Chenyan",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Xin",
                        "middle": [],
                        "last": "Qian",
                        "suffix": ""
                    },
                    {
                        "first": "Jordan",
                        "middle": [],
                        "last": "Boyd-Graber",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "The Web Conference 2020",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chen Zhao, Chenyan Xiong, Xin Qian, and Jordan Boyd-Graber. 2020. Complex factoid question an- swering with a free-text knowledge graph. In The Web Conference 2020 (formerly WWW conference).",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Gold Answer: Yes Predicted Answer: No A number of works including Mihaylov and Frank (2018); Bauer et al. (2018); Lin et al. (2019); Qiu et al. (2019); Thayaparan et al. (2019); Talmor et al. (2019); Zhao et al. (2020) show successful usage of knowledge graphs (KGs) in several MRC settings.",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "FIGREF1": {
                "text": "Accuracy (G), stable accuracy (#), and majority voting accuracy (L) over up to 10 runs of (a) BERT and (b) RoBERTa baselines.",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "FIGREF2": {
                "text": "An example of usage ConceptNet entities for answering a Boolean question.",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "FIGREF3": {
                "text": "The GNN architecture based onShaw et al. (2019) without action selection and copy mechanism.",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "FIGREF4": {
                "text": "Question: is northern ireland part of the great britain Passage: ... Great Britain is part of the United Kingdom of Great Britain and Northern Ireland ... Answer: No The questions in the BoolQ dataset are lowercased, and this may have affected the entity recognition.",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "FIGREF5": {
                "text": "Question: is daisy the director of shield in the comics Passage: Daisy Johnson, ... The daughter of the supervillain Mister Hyde, she is a secret agent of the intelligence organization S.H.I.E.L.D. with the power to generate earthquakes. Answer: Yes (14) Question: is chicken cordon bleu made with blue cheese",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "TABREF1": {
                "content": "<table/>",
                "type_str": "table",
                "text": "BoolQ errors anlysis by reasoning type.",
                "html": null,
                "num": null
            },
            "TABREF3": {
                "content": "<table><tr><td/><td>Base</td><td>Sent</td><td>Q&amp;P</td><td colspan=\"2\">Intersection Union</td></tr><tr><td/><td>line</td><td>Emb</td><td>Match</td><td/></tr><tr><td>Data Cov-</td><td>-</td><td colspan=\"2\">21.84 22.58</td><td>1.23</td><td>38.57</td></tr><tr><td>erage (%)</td><td/><td/><td/><td/></tr></table>",
                "type_str": "table",
                "text": "AVG 81.26 81.23 80.86 81.23 81.46 80.72 Stable 73.84 73.19 72.61 73.25 73.74 72.40 Ensemble 81.62 81.89 81.37 81.92 82.05 81.10",
                "html": null,
                "num": null
            },
            "TABREF4": {
                "content": "<table/>",
                "type_str": "table",
                "text": "",
                "html": null,
                "num": null
            },
            "TABREF5": {
                "content": "<table><tr><td/><td colspan=\"3\">No KG +ConceptNet +GKG</td></tr><tr><td>BERT large</td><td>78.09</td><td>-</td><td>-</td></tr><tr><td>GNN + BERT</td><td>77.37</td><td>77.4</td><td>76.80</td></tr><tr><td>+ Same MID</td><td>-</td><td>-</td><td>77.60</td></tr><tr><td colspan=\"2\">+ Relation Type -</td><td>-</td><td>77.75</td></tr><tr><td>+ Q&amp;AMatch</td><td>-</td><td>-</td><td>76.95</td></tr></table>",
                "type_str": "table",
                "text": "The first row shows the baseline BERT model with no KG data and the remaining rows show the BERT + GN N system with no KG data, with ConceptNet or with the Google Knowledge Graph. Adding KG information does not outperform the baseline result. None of the differences between the baseline are statistically significant.",
                "html": null,
                "num": null
            },
            "TABREF6": {
                "content": "<table/>",
                "type_str": "table",
                "text": "GNN accuracy results on a development set using ConceptNet or Google KG (GKG).",
                "html": null,
                "num": null
            },
            "TABREF8": {
                "content": "<table><tr><td>ber of new stable (wrt to baseline) correct (incorrect)</td></tr><tr><td>predictions, New Fluct. is the number of new questions</td></tr><tr><td>where answer fluctuates: Err\u00a1Corr (Corr\u00a1Err) is</td></tr><tr><td>the number of questions where answer was a stable er-</td></tr><tr><td>ror (correct), becoming correct (error) sometimes.</td></tr></table>",
                "type_str": "table",
                "text": "New Correct (Error) corresponds to the num-",
                "html": null,
                "num": null
            },
            "TABREF10": {
                "content": "<table/>",
                "type_str": "table",
                "text": "The basic statistics for the BoolQ dataset.",
                "html": null,
                "num": null
            },
            "TABREF11": {
                "content": "<table><tr><td colspan=\"2\">in 2015 with Answer: Yes (true)</td></tr><tr><td colspan=\"2\">(11) Question: Can I get into Canada with a</td></tr><tr><td>military ID?</td><td/></tr><tr><td>Passage:</td><td>(Title: American entry into</td></tr><tr><td colspan=\"2\">Canada by land) Canadian law requires</td></tr><tr><td colspan=\"2\">that all persons entering Canada must carry</td></tr><tr><td colspan=\"2\">proof of both citizenship and identity. A valid</td></tr><tr><td colspan=\"2\">U.S. passport or passport card is preferred,</td></tr><tr><td colspan=\"2\">although a birth certificate, naturalization</td></tr><tr><td colspan=\"2\">certificate, citizenship certificate, or another</td></tr><tr><td colspan=\"2\">document proving U.S. nationality, together</td></tr><tr><td colspan=\"2\">with a government-issued photo ID (such as a</td></tr><tr><td colspan=\"2\">driver's license) are acceptable to establish</td></tr><tr><td colspan=\"2\">identity and nationality.</td></tr><tr><td>Answer: Yes</td><td/></tr><tr><td colspan=\"2\">(12) Question: Can I go to Montenegro with a</td></tr><tr><td colspan=\"2\">Schengen visa?</td></tr><tr><td colspan=\"2\">Passage: Nationals of any country may visit</td></tr><tr><td colspan=\"2\">Montenegro without a visa for up to 30 days</td></tr><tr><td colspan=\"2\">if they hold a passport with visas issued by</td></tr><tr><td colspan=\"2\">Ireland, a Schengen Area member state, ...</td></tr><tr><td>Answer: Yes</td><td/></tr><tr><td colspan=\"2\">Some passages looked unrelated or do not con-</td></tr><tr><td colspan=\"2\">tain enough information to obtain the answer, e.g.</td></tr><tr><td>and Return of the Jedi (1983); ... A</td><td/></tr><tr><td>prequel trilogy was released between 1999</td><td/></tr><tr><td>and 2005, albeit to mixed reactions from</td><td/></tr><tr><td>critics and fans. A sequel trilogy concluding</td><td/></tr><tr><td>the main story of the nine-episode saga began</td><td/></tr><tr><td>13 https://super.gluebenchmark.com/ -l.v.</td><td/></tr><tr><td>07/2020</td><td/></tr></table>",
                "type_str": "table",
                "text": "The Force Awakens. ... Together with the theatrical spin-off films The Clone Wars (2008), Rogue One (2016) and Solo: A Star Wars Story (2018), Star Wars is the second highest-grossing film series ever.",
                "html": null,
                "num": null
            },
            "TABREF12": {
                "content": "<table/>",
                "type_str": "table",
                "text": "Question: Is it bad to wash your hair with shower gel? Passage: ... This means that shower gels can also double as an effective and perfectly acceptable substitute to shampoo, even if they are not labelled as a hair and body wash. Answer: Yes Should be No (16) Question: Is Hindi is our national language of India? Passage: The Constitution of India designates the official language of the Government of India as Hindi written in the Devanagari script, as well as English. There is no national language as declared by the Constitution of India. Hindi is used for official purposes ... Answer: Yes Should be No (17) Question: are all world cup matches played in russia Passage: The 2018 FIFA World Cup was the 21st FIFA World Cup, an international football tournament contested by the men's national teams of the member associations of FIFA once every four years. It took place in Russia from 14 June to 15 July 2018. ... Answer: No Should be Yes",
                "html": null,
                "num": null
            }
        }
    }
}