File size: 61,753 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:13:13.525984Z"
    },
    "title": "Counterfactually-Augmented SNLI Training Data Does Not Yield Better Generalization Than Unaugmented Data",
    "authors": [
        {
            "first": "William",
            "middle": [],
            "last": "Huang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "New York University",
                "location": {}
            },
            "email": "will.huang@nyu.edu"
        },
        {
            "first": "Haokun",
            "middle": [],
            "last": "Liu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "New York University",
                "location": {}
            },
            "email": "haokunliu@nyu.edu"
        },
        {
            "first": "Samuel",
            "middle": [
                "R"
            ],
            "last": "Bowman",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "New York University",
                "location": {}
            },
            "email": "bowman@nyu.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "A growing body of work shows that models exploit annotation artifacts to achieve state-ofthe-art performance on standard crowdsourced benchmarks-datasets collected from crowdworkers to create an evaluation task-while still failing on out-of-domain examples for the same task. Recent work has explored the use of counterfactually-augmented data-data built by minimally editing a set of seed examples to yield counterfactual labels-to augment training data associated with these benchmarks and build more robust classifiers that generalize better. However, Khashabi et al. (2020) find that this type of augmentation yields little benefit on reading comprehension tasks when controlling for dataset size and cost of collection. We build upon this work by using English natural language inference data to test model generalization and robustness and find that models trained on a counterfactuallyaugmented SNLI dataset do not generalize better than unaugmented datasets of similar size and that counterfactual augmentation can hurt performance, yielding models that are less robust to challenge examples. Counterfactual augmentation of natural language understanding data through standard crowdsourcing techniques does not appear to be an effective way of collecting training data and further innovation is required to make this general line of work viable.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "A growing body of work shows that models exploit annotation artifacts to achieve state-ofthe-art performance on standard crowdsourced benchmarks-datasets collected from crowdworkers to create an evaluation task-while still failing on out-of-domain examples for the same task. Recent work has explored the use of counterfactually-augmented data-data built by minimally editing a set of seed examples to yield counterfactual labels-to augment training data associated with these benchmarks and build more robust classifiers that generalize better. However, Khashabi et al. (2020) find that this type of augmentation yields little benefit on reading comprehension tasks when controlling for dataset size and cost of collection. We build upon this work by using English natural language inference data to test model generalization and robustness and find that models trained on a counterfactuallyaugmented SNLI dataset do not generalize better than unaugmented datasets of similar size and that counterfactual augmentation can hurt performance, yielding models that are less robust to challenge examples. Counterfactual augmentation of natural language understanding data through standard crowdsourcing techniques does not appear to be an effective way of collecting training data and further innovation is required to make this general line of work viable.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "While standard crowdsourced benchmarks have helped create significant progress within natural language processing (NLP), a growing body of evidence shows the existence of exploitable annotation artifacts in these datasets (Gururangan et al., 2018; Poliak et al., 2018; Tsuchiya, 2018) and that models can use artifacts to achieve state-of-the-art performance on these benchmarks (McCoy et al., 2019; Naik et al., 2018) . The existence of these artifacts makes it difficult to predict out-of-domain generalization and creates uncertainty around the abilities these tasks are designed to test.",
                "cite_spans": [
                    {
                        "start": 242,
                        "end": 247,
                        "text": "2018;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 248,
                        "end": 268,
                        "text": "Poliak et al., 2018;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 269,
                        "end": 284,
                        "text": "Tsuchiya, 2018)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 379,
                        "end": 399,
                        "text": "(McCoy et al., 2019;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 400,
                        "end": 418,
                        "text": "Naik et al., 2018)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Recent work has explored using counterfactually-augmented datasets to address annotation artifacts with the intent to build more robust classifiers (Kaushik et al., 2020; Khashabi et al., 2020) . These datasets are collected by first sampling a set of seed examples and then creating new examples by minimally editing the seed examples to yield counterfactual labels. This type of data collection has been found to mitigate the presence of artifacts in SNLI (Bowman et al., 2015) and is presented as a way to \"elucidate the difference that makes a difference\" (Kaushik et al., 2020) . Further, Khashabi et al. (2020) present this as an efficient method to collect training data yielding models that are \"more robust to minor variations and generalize better\" (Khashabi et al., 2020) . However, they also find that unaugmented datasets yield better performance than datasets with 50-50 original-to-augmented data when controlling for training set size and annotation cost.",
                "cite_spans": [
                    {
                        "start": 148,
                        "end": 170,
                        "text": "(Kaushik et al., 2020;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 171,
                        "end": 193,
                        "text": "Khashabi et al., 2020)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 453,
                        "end": 479,
                        "text": "SNLI (Bowman et al., 2015)",
                        "ref_id": null
                    },
                    {
                        "start": 560,
                        "end": 582,
                        "text": "(Kaushik et al., 2020)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 594,
                        "end": 616,
                        "text": "Khashabi et al. (2020)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 759,
                        "end": 782,
                        "text": "(Khashabi et al., 2020)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In our work, we further study whether training with counterfactually-augmented data collected through standard crowdsourcing methods yields models with better generalization and robustness by focusing on the domain of natural language inference (NLI): the task of inferring whether a hypothesis is true given a true premise. We train and compare RoBERTa (Liu et al., 2019) trained on three different datasets: (1) the counterfactuallyaugmented natural language inference (CNLI) training set of 8.3k seed and augmented SNLI examples from Kaushik et al. (2020) , (2) a subsampled set of 8.3k unaugmented SNLI examples to control for size, and (3) the 1.7k CNLI seed examples originally sampled from SNLI. We then compare model performances on MNLI (Williams et al., 2018) -a dataset for the same task with examples out-of-domain to SNLI-and two diagnostic sets (Naik et al., 2018; Wang et al., 2019a) .",
                "cite_spans": [
                    {
                        "start": 354,
                        "end": 372,
                        "text": "(Liu et al., 2019)",
                        "ref_id": null
                    },
                    {
                        "start": 537,
                        "end": 558,
                        "text": "Kaushik et al. (2020)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 746,
                        "end": 769,
                        "text": "(Williams et al., 2018)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 859,
                        "end": 878,
                        "text": "(Naik et al., 2018;",
                        "ref_id": null
                    },
                    {
                        "start": 879,
                        "end": 898,
                        "text": "Wang et al., 2019a)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We find that RoBERTa trained on CNLI yields similar performance on out-of-domain MNLI examples when compared to the unaugmented subsampled SNLI training set and that including counterfactually-augmented examples to the CNLI seed set improves generalization. Further, we find that the improvement over seed examples correspond to an increase in n-grams from the addition of augmented examples, roughly doubling the number of 4-grams, and may be a result of improved lexical diversity from a larger training set. While we see similar trends in most of our diagnostic evaluations, we also find evidence that including augmented examples can yield worse performance than only training with seed examples.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "While there is evidence of the benefits of using this type of data for model evaluation (Gardner et al., 2020) , we find that using counterfactuallyaugmented data for training yields less robust models. We argue that further innovation is required to effectively crowdsource counterfactuallyaugmented natural language understanding (NLU) data for training more robust models with better generalization.",
                "cite_spans": [
                    {
                        "start": 88,
                        "end": 110,
                        "text": "(Gardner et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Recent works show that several NLI benchmark datasets contain exploitable annotation artifacts. Several studies (Poliak et al., 2018; Gururangan et al., 2018; Tsuchiya, 2018) show that models trained on hypothesis-only examples manage to perform as much as 35 points higher than chance. Gururangan et al. (2018) also find negation words such as no or never are strongly associated with contradiction predictions. Other works (Naik et al., 2018; McCoy et al., 2019) find that models can exploit premise-hypothesis word overlap to achieve state-of-the-art performance on benchmarks by using associations of high overlap with entailment predictions and low overlap with neutral predictions. Nie et al. (2020) use an adversarial human-andmodel-in-the-loop procedure to address these concerns in Adversarial NLI (ANLI). Using a model in the loop makes ANLI inherently adversarial towards the model used, and we instead focus on naturally collected human-in-the-loop augmented data. Kaushik et al. (2020) crowdsource counterfactually-augmented NLI examples that reduce the presence of hypothesis-only bias in SNLI by providing a set of seed examples to crowdworkers and prompting them to minimally edit either the hypothesis or premise to yield a counterfactual label. Khashabi et al. (2020) present this type of data collection as an efficient method to build training sets yielding robust models that generalize better by crowdsourcing counterfactually-augmented BoolQ examples. However, they also find that augmented datasets yield similar to worse performance when the cost of augmenting an example is no cheaper than collecting a new one and the datasets are controlled for size. We differ from Kaushik et al. (2020) by focusing on performance on out-of-domain examples and from Khashabi et al. (2020) by focusing on the task of NLI instead of reading comprehension.",
                "cite_spans": [
                    {
                        "start": 112,
                        "end": 133,
                        "text": "(Poliak et al., 2018;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 134,
                        "end": 158,
                        "text": "Gururangan et al., 2018;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 159,
                        "end": 174,
                        "text": "Tsuchiya, 2018)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 305,
                        "end": 311,
                        "text": "(2018)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 425,
                        "end": 444,
                        "text": "(Naik et al., 2018;",
                        "ref_id": null
                    },
                    {
                        "start": 445,
                        "end": 464,
                        "text": "McCoy et al., 2019)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 688,
                        "end": 705,
                        "text": "Nie et al. (2020)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 977,
                        "end": 998,
                        "text": "Kaushik et al. (2020)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1263,
                        "end": 1285,
                        "text": "Khashabi et al. (2020)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1694,
                        "end": 1715,
                        "text": "Kaushik et al. (2020)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1778,
                        "end": 1800,
                        "text": "Khashabi et al. (2020)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Gardner et al. (2020) use contrast sets written manually by NLP researchers to evaluate models on various annotated tasks. They show that most datasets require 1-3 minutes per augmented example, taking 17-50 hours to create 1,000 examples. We differ by using crowdsourced counterfactuallyaugmented data and focusing on their use for training instead of evaluation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "We perform two experiments to study the effects of counterfactually-augmented NLI training data. All experiments use RoBERTa trained on SNLI, CNLI, or CNLI seed examples originally sampled from SNLI and compare performances on various tasks. We first compare MNLI performances to evaluate the impact on model generalization to out-ofdomain data. We then use the diagnostic examples from Naik et al. (2018) and the GLUE diagnostic set (Wang et al., 2019a) to study model robustness to challenge examples.",
                "cite_spans": [
                    {
                        "start": 399,
                        "end": 405,
                        "text": "(2018)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 434,
                        "end": 454,
                        "text": "(Wang et al., 2019a)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "3"
            },
            {
                "text": "Training Data In SNLI, Bowman et al. (2015) prompt crowdworkers with a scene description premise to collect three hypothesis sentences corresponding to entailment, neutral, and contradiction labels, yielding 570k English premise-hypothesis pairs. Kaushik et al. (2020) collect CNLI examples by prompting crowdworkers to minimally edit seed examples sampled from SNLI to yield counterfactual labels.",
                "cite_spans": [
                    {
                        "start": 247,
                        "end": 268,
                        "text": "Kaushik et al. (2020)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "3"
            },
            {
                "text": "For our training data, we use a subsampled set of 8.3k examples of SNLI, the CNLI training set of 8.3k examples, and the 1.7k CNLI seed examples sampled from SNLI that is also included in the CNLI training set. We subsample SNLI to control for the fact that CNLI only consists of 8.3k examples. We subsample five sets of 8.3k SNLI examples and report results across these five. and Knowledge. We use these sets to test model robustness to challenge examples. We refer the reader to Naik et al. (2018) and Wang et al. (2019a) for additional details on each diagnostic set.",
                "cite_spans": [
                    {
                        "start": 494,
                        "end": 500,
                        "text": "(2018)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 505,
                        "end": 524,
                        "text": "Wang et al. (2019a)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "3"
            },
            {
                "text": "McCoy et al. (2019) provide similar adversarial examples, but we find them too difficult for our models, with performance consistently below 3%, so we do not report performance in detail.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "3"
            },
            {
                "text": "Implementation Our code 1 builds on jiant v2 alpha (Wang et al., 2019b) . All experiments use roberta-base. For each round of training, we perform 20 runs and randomly search the hyperparameter space of learning rate {1e-5, 2e-5, 3e-5}, batch size {32, 64}, and random seed. Given the small training set size and stability benefits from longer training found in Mosbach et al. (2020) , we train each run for 20 epochs using early stopping based on the respective validation sets.",
                "cite_spans": [
                    {
                        "start": 51,
                        "end": 71,
                        "text": "(Wang et al., 2019b)",
                        "ref_id": null
                    },
                    {
                        "start": 362,
                        "end": 383,
                        "text": "Mosbach et al. (2020)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "3"
            },
            {
                "text": "Generalization to MNLI From the median scores in Figure 1 , we see that models trained on CNLI perform no better than models trained on a comparably large sample of unaugmented SNLI examples. This is in line with findings from Khashabi et al. (2020) , where training with their minimally perturbed BoolQ dataset of seed and augmented examples yields similar or worse performance on out-of-domain tasks compared to the original BoolQ training set. Additionally, the improvement of CNLI over the 1.7k seed examples shows that counterfactual examples are somewhat helpful when they are strictly additive, as in Khashabi et al. (2020) . Figure 2 presents performances on the diagnostic sets from Naik et al. (2018) and Wang et al. (2019a) . For the GLUE diagnostic sets, we follow the authors and use R 3 (Gorodkin, 2004) as our evaluation metric. The distributions of classification accuracy again show that CNLI yields similar performance compared to unaugmented datasets of similar size on most of the categories. However, we find that training on CNLI yields worse performance than using either unaugmented SNLI or CNLI seed examples for Negation examples. These challenge examples append the phrase \"and false is not true\" to every hypothesis in the MNLI validation set. This construction introduces the strong negation word \"no\" to target the association between negation words and the contradiction label without changing the truth condition of the sentence. We speculate that the augmented data may have amplified this association already present among the seed examples. Not only does this show that CNLI can yield models that are less robust to certain challenge examples, but it also provides evidence that adding substantial numbers of counterfactual examples to a dataset can hurt robustness.",
                "cite_spans": [
                    {
                        "start": 227,
                        "end": 249,
                        "text": "Khashabi et al. (2020)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 608,
                        "end": 630,
                        "text": "Khashabi et al. (2020)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 692,
                        "end": 710,
                        "text": "Naik et al. (2018)",
                        "ref_id": null
                    },
                    {
                        "start": 715,
                        "end": 734,
                        "text": "Wang et al. (2019a)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 801,
                        "end": 817,
                        "text": "(Gorodkin, 2004)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 49,
                        "end": 57,
                        "text": "Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 633,
                        "end": 641,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4"
            },
            {
                "text": "Lexical Diversity Given the minimal edits constraint in CNLI, we study the lexical diversity of the training sets to see the effectiveness of this constraint and whether the general improvement of CNLI over seed examples is a result of greater diversity from a larger training set. Table 1 provides the number of n-grams present in each training set with n varying from one to four. We see that including minimally edited examples to CNLI increases the number of n-grams present, roughly doubling the number of 4-grams, which corresponds to the general improvement over seed examples.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 282,
                        "end": 289,
                        "text": "Table 1",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Robustness to Diagnostic Sets",
                "sec_num": null
            },
            {
                "text": "We also observe that CNLI contains roughly 70% of 2-, 3-, and 4-grams compared to similarly large unaugmented training sets. This seems natural given the minimal edits constraint when collecting counterfactually-augmented examples and highlights the fact that this type of data augmentation results in less diversity per example.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Robustness to Diagnostic Sets",
                "sec_num": null
            },
            {
                "text": "We follow a similar setup to Khashabi et al. (2020) and use English NLI data to test whether counterfactually-augmented training data yields models that generalize better to out-of-domain data and are more robust to challenge examples. We first find that adding counterfactually-augmented data improves generalization, but provides no advantage over adding similar amounts of unaugmented data. Further, we find that the improvement over seed examples corresponds to an increase in n-gram diversity. We also find that including counterfactuallyaugmented data can make models less robust to challenge examples. Assuming that crowdworkers take a similar amount of time to make targeted edits to examples and to write new examples (Bowman et al., 2020) , there is then no obvious value in crowdsourcing augmentations under current protocols for use as training data.",
                "cite_spans": [
                    {
                        "start": 29,
                        "end": 51,
                        "text": "Khashabi et al. (2020)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 727,
                        "end": 748,
                        "text": "(Bowman et al., 2020)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "Despite these findings, we argue that there is still value in naturally collected counterfactuallyaugmented NLU data. Gardner et al. (2020) show that collecting this type of data can be used as a method to address systematic gaps in testing data. As performances on benchmarks become saturated, we still view this style of augmenting test sets as a viable method to provide longer-lasting benchmarks in addition to standard test set creation.",
                "cite_spans": [
                    {
                        "start": 118,
                        "end": 139,
                        "text": "Gardner et al. (2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "The success of Gardner et al. (2020) in using expert-designed counterfactual augmentation to target specific phenomena for evaluation suggests that it may be possible to target heuristics in training data with expert guidance during the crowdsourcing process. Further, understanding how to identify heuristics to target and the types of useful augmentations to collect, assuming such a thing is possible, are important directions we leave to future work.",
                "cite_spans": [
                    {
                        "start": 15,
                        "end": 36,
                        "text": "Gardner et al. (2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            }
        ],
        "back_matter": [
            {
                "text": "We thank Clara Vania and Jason Phang for their helpful feedback and Alex Wang for providing the script for n-gram counts that we base our lexical diversity analysis code on. This project has benefited from financial support to SB by Eric and Wendy Schmidt (made by recommendation of the Schmidt Futures program), by Samsung Research (under the project Improving Deep Learning using Latent Structure), by Intuit, Inc., and in-kind support by the NYU High-Performance Computing Center and by NVIDIA Corporation (with the donation of a Titan V GPU). This material is based upon work supported by the National Science Foundation under Grant No. 1922658. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A large annotated corpus for learning natural language inference",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Samuel",
                        "suffix": ""
                    },
                    {
                        "first": "Gabor",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Angeli",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Potts",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "632--642",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/d15-1075"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large an- notated corpus for learning natural language infer- ence. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages 632-642. The Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Collecting entailment data for pretraining: New protocols and negative results",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Samuel",
                        "suffix": ""
                    },
                    {
                        "first": "Jennimaria",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    },
                    {
                        "first": "Livio Baldini",
                        "middle": [],
                        "last": "Palomaki",
                        "suffix": ""
                    },
                    {
                        "first": "Emily",
                        "middle": [],
                        "last": "Soares",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Pitler",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Samuel R. Bowman, Jennimaria Palomaki, Livio Bal- dini Soares, and Emily Pitler. 2020. Collecting en- tailment data for pretraining: New protocols and negative results. In Proceedings of EMNLP.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Comparing two k-category assignments by a k-category correlation coefficient",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Gorodkin",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Biology and Chemistry",
                "volume": "28",
                "issue": "5",
                "pages": "367--374",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.compbiolchem.2004.09.006"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "J. Gorodkin. 2004. Comparing two k-category assign- ments by a k-category correlation coefficient. Com- putational Biology and Chemistry, 28(5):367 -374.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Annotation artifacts in natural language inference data",
                "authors": [
                    {
                        "first": "Swabha",
                        "middle": [],
                        "last": "Suchin Gururangan",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Swayamdipta",
                        "suffix": ""
                    },
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [
                            "R"
                        ],
                        "last": "Schwartz",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Bowman",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT",
                "volume": "2",
                "issue": "",
                "pages": "107--112",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/n18-2017"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel R. Bowman, and Noah A. Smith. 2018. Annotation artifacts in natural language inference data. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 2 (Short Papers), pages 107-112. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Learning the difference that makes A difference with counterfactuallyaugmented data",
                "authors": [
                    {
                        "first": "Divyansh",
                        "middle": [],
                        "last": "Kaushik",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [
                            "H"
                        ],
                        "last": "Hovy",
                        "suffix": ""
                    },
                    {
                        "first": "Zachary",
                        "middle": [
                            "Chase"
                        ],
                        "last": "Lipton",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "8th International Conference on Learning Representations",
                "volume": "2020",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Divyansh Kaushik, Eduard H. Hovy, and Zachary Chase Lipton. 2020. Learning the differ- ence that makes A difference with counterfactually- augmented data. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "More bang for your buck: Natural perturbation for robust question answering",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Khashabi",
                        "suffix": ""
                    },
                    {
                        "first": "Tushar",
                        "middle": [],
                        "last": "Khot",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Sabharwal",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Khashabi, Tushar Khot, and Ashish Sabharwal. 2020. More bang for your buck: Natural perturba- tion for robust question answering. In Proceedings of EMNLP.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference",
                "authors": [
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Mccoy",
                        "suffix": ""
                    },
                    {
                        "first": "Ellie",
                        "middle": [],
                        "last": "Pavlick",
                        "suffix": ""
                    },
                    {
                        "first": "Tal",
                        "middle": [],
                        "last": "Linzen",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019",
                "volume": "1",
                "issue": "",
                "pages": "3428--3448",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/p19-1334"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right for the wrong reasons: Diagnosing syntactic heuristics in natural language inference. In Pro- ceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28-August 2, 2019, Volume 1: Long Pa- pers, pages 3428-3448. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "On the stability of fine-tuning BERT: misconceptions, explanations, and strong baselines. CoRR, abs",
                "authors": [
                    {
                        "first": "Marius",
                        "middle": [],
                        "last": "Mosbach",
                        "suffix": ""
                    },
                    {
                        "first": "Maksym",
                        "middle": [],
                        "last": "Andriushchenko",
                        "suffix": ""
                    },
                    {
                        "first": "Dietrich",
                        "middle": [],
                        "last": "Klakow",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marius Mosbach, Maksym Andriushchenko, and Diet- rich Klakow. 2020. On the stability of fine-tuning BERT: misconceptions, explanations, and strong baselines. CoRR, abs/2006.04884.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Stress test evaluation for natural language inference",
                "authors": [],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2340--2353",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stress test evaluation for natural language in- ference. In Proceedings of the 27th International Conference on Computational Linguistics, COLING 2018, Santa Fe, New Mexico, USA, August 20-26, 2018, pages 2340-2353. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Adversarial NLI: A new benchmark for natural language understanding",
                "authors": [
                    {
                        "first": "Yixin",
                        "middle": [],
                        "last": "Nie",
                        "suffix": ""
                    },
                    {
                        "first": "Adina",
                        "middle": [],
                        "last": "Williams",
                        "suffix": ""
                    },
                    {
                        "first": "Emily",
                        "middle": [],
                        "last": "Dinan",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    },
                    {
                        "first": "Douwe",
                        "middle": [],
                        "last": "Kiela",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2020",
                "issue": "",
                "pages": "4885--4901",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yixin Nie, Adina Williams, Emily Dinan, Mohit Bansal, Jason Weston, and Douwe Kiela. 2020. Ad- versarial NLI: A new benchmark for natural lan- guage understanding. In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 4885-4901. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Hypothesis only baselines in natural language inference",
                "authors": [
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Poliak",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Naradowsky",
                        "suffix": ""
                    },
                    {
                        "first": "Aparajita",
                        "middle": [],
                        "last": "Haldar",
                        "suffix": ""
                    },
                    {
                        "first": "Rachel",
                        "middle": [],
                        "last": "Rudinger",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Van Durme",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Seventh Joint Conference on Lexical and Computational Semantics, *SEM@NAACL-HLT 2018",
                "volume": "",
                "issue": "",
                "pages": "180--191",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/s18-2023"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme. 2018. Hypothesis only baselines in natural language in- ference. In Proceedings of the Seventh Joint Con- ference on Lexical and Computational Semantics, *SEM@NAACL-HLT 2018, New Orleans, Louisiana, USA, June 5-6, 2018, pages 180-191. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Performance impact caused by hidden bias of training data for recognizing textual entailment",
                "authors": [
                    {
                        "first": "Masatoshi",
                        "middle": [],
                        "last": "Tsuchiya",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation, LREC 2018",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Masatoshi Tsuchiya. 2018. Performance impact caused by hidden bias of training data for rec- ognizing textual entailment. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation, LREC 2018, Miyazaki, Japan, May 7-12, 2018. European Language Re- sources Association (ELRA).",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "GLUE: A multi-task benchmark and analysis platform for natural language understanding",
                "authors": [
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Amanpreet",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Julian",
                        "middle": [],
                        "last": "Michael",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Hill",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [
                            "R"
                        ],
                        "last": "Bowman",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "7th International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019a. GLUE: A multi-task benchmark and analysis plat- form for natural language understanding. In 7th International Conference on Learning Representa- tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "2019b. jiant 1.3: A software toolkit for research on general-purpose text understanding models",
                "authors": [
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Ian",
                        "middle": [
                            "F"
                        ],
                        "last": "Tenney",
                        "suffix": ""
                    },
                    {
                        "first": "Yada",
                        "middle": [],
                        "last": "Pruksachatkun",
                        "suffix": ""
                    },
                    {
                        "first": "Phil",
                        "middle": [],
                        "last": "Yeres",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Phang",
                        "suffix": ""
                    },
                    {
                        "first": "Haokun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": ",",
                        "middle": [],
                        "last": "Phu Mon Htut",
                        "suffix": ""
                    },
                    {
                        "first": "Katherin",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Hula",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Raghu",
                        "middle": [],
                        "last": "Pappagari",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "Thomas"
                        ],
                        "last": "Shuning Jin",
                        "suffix": ""
                    },
                    {
                        "first": "Roma",
                        "middle": [],
                        "last": "Mccoy",
                        "suffix": ""
                    },
                    {
                        "first": "Yinghui",
                        "middle": [],
                        "last": "Patel",
                        "suffix": ""
                    },
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Najoung",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "Thibault",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "F\u00e9vry",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alex Wang, Ian F. Tenney, Yada Pruksachatkun, Phil Yeres, Jason Phang, Haokun Liu, Phu Mon Htut, , Katherin Yu, Jan Hula, Patrick Xia, Raghu Pap- pagari, Shuning Jin, R. Thomas McCoy, Roma Pa- tel, Yinghui Huang, Edouard Grave, Najoung Kim, Thibault F\u00e9vry, Berlin Chen, Nikita Nangia, Anhad Mohananey, Katharina Kann, Shikha Bordia, Nico- las Patry, David Benton, Ellie Pavlick, and Samuel R. Bowman. 2019b. jiant 1.3: A software toolkit for research on general-purpose text understanding models. http://jiant.info/.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "A broad-coverage challenge corpus for sentence understanding through inference",
                "authors": [
                    {
                        "first": "Adina",
                        "middle": [],
                        "last": "Williams",
                        "suffix": ""
                    },
                    {
                        "first": "Nikita",
                        "middle": [],
                        "last": "Nangia",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [
                            "R"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018",
                "volume": "1",
                "issue": "",
                "pages": "1112--1122",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/n18-1101"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Adina Williams, Nikita Nangia, and Samuel R. Bow- man. 2018. A broad-coverage challenge corpus for sentence understanding through inference. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 1 (Long Papers), pages 1112-1122. Association for Computational Linguis- tics.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF3": {
                "num": null,
                "html": null,
                "type_str": "table",
                "content": "<table/>",
                "text": "Number of unique n-gram types observed in each training set."
            }
        }
    }
}