File size: 140,747 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:29:03.101894Z"
    },
    "title": "Gradations of Error Severity in Automatic Image Descriptions",
    "authors": [
        {
            "first": "Emiel",
            "middle": [],
            "last": "Van Miltenburg",
            "suffix": "",
            "affiliation": {
                "laboratory": "Tilburg center for Cognition and Communication (TiCC)",
                "institution": "Tilburg University",
                "location": {}
            },
            "email": "c.w.j.vanmiltenburg@uvt.nl"
        },
        {
            "first": "Wei-Ting",
            "middle": [],
            "last": "Lu",
            "suffix": "",
            "affiliation": {
                "laboratory": "Tilburg center for Cognition and Communication (TiCC)",
                "institution": "Tilburg University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Emiel",
            "middle": [],
            "last": "Krahmer",
            "suffix": "",
            "affiliation": {
                "laboratory": "Tilburg center for Cognition and Communication (TiCC)",
                "institution": "Tilburg University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Albert",
            "middle": [],
            "last": "Gatt",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Malta",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Guanyi",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Utrecht University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Lin",
            "middle": [],
            "last": "Li",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Utrecht University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Kees",
            "middle": [],
            "last": "Van Deemter",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Utrecht University",
                "location": {}
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Earlier research has shown that evaluation metrics based on textual similarity (e.g., BLEU, CIDEr, Meteor) do not correlate well with human evaluation scores for automatically generated text. We carried out an experiment with Chinese speakers, where we systematically manipulated image descriptions to contain different kinds of errors. Because our manipulated descriptions form minimal pairs with the reference descriptions, we are able to assess the impact of different kinds of errors on the perceived quality of the descriptions. Our results show that different kinds of errors elicit significantly different evaluation scores, even though all erroneous descriptions differ in only one character from the reference descriptions. Evaluation metrics based solely on textual similarity are unable to capture these differences, which (at least partially) explains their poor correlation with human judgments. Our work provides the foundations for future work, where we aim to understand why different errors are seen as more or less severe. Human: \u6236\u5916 \u4e00\u500b \u7a7f\u8457 \u85cd\u8272 \u6064 \u7684 \u5973\u4eba \u624b \u88e1 \u62ff\u8457 \u4e00 \u76e4\u5b50 \u4e94\u5f69 \u86cb\u7cd5 outdoor one wear blue shirt of woman hand in take one plate five-color cake 'A woman wearing a blue shirt outside, has a plate with a five-colored cake in her hand' \u4e00\u500b \u5973\u4eba \u7aef\u8457 \u5169 \u584a \u5f69\u8679 \u86cb\u7cd5 one woman hold two piece rainbow cake 'A woman holding two pieces of rainbow cake' \u4e00\u500b \u5973\u4eba \u62ff\u8457 \u76e4\u5b50 \u4e0a\u9762 \u6709 \u5169 \u584a \u5f69\u8272\u7684 \u86cb\u7cd5 one woman take plate on is two piece rainbow cake 'A woman holding a plate with two pieces of rainbow cake' \u4e00\u500b \u5973\u4eba \u7aef\u8457 \u5169 \u584a \u751f\u65e5 \u86cb\u7cd5 one woman hold two piece birthday cake 'A woman holding two pieces of birthday cake' \u4e00\u500b \u5973\u4eba \u62ff\u8457 \u653e \u6709 \u5f69\u8679 \u86cb\u7cd5 \u7684 \u76e4\u5b50 one woman take put is rainbow cake of plate 'A woman holding a plate of birthday cake' System: \u4e00\u500b \u7a7f\u8457 \u7d05 \u7d05 \u7d05\u8272 \u8272 \u8272 \u4e0a\u8863 \u7684 \u5973 \u5973 \u5973\u5b69 \u5b69 \u5b69 \u624b \u88e1 \u62ff\u8457 \u4e00\u500b \u7db2 \u7db2 \u7db2\u7403 \u7403 \u7403\u62cd \u62cd \u62cd one wear red shirt of girl hand in hold one tennis racket 'A girl wearing a red shirt is holding a tennis racket'",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Earlier research has shown that evaluation metrics based on textual similarity (e.g., BLEU, CIDEr, Meteor) do not correlate well with human evaluation scores for automatically generated text. We carried out an experiment with Chinese speakers, where we systematically manipulated image descriptions to contain different kinds of errors. Because our manipulated descriptions form minimal pairs with the reference descriptions, we are able to assess the impact of different kinds of errors on the perceived quality of the descriptions. Our results show that different kinds of errors elicit significantly different evaluation scores, even though all erroneous descriptions differ in only one character from the reference descriptions. Evaluation metrics based solely on textual similarity are unable to capture these differences, which (at least partially) explains their poor correlation with human judgments. Our work provides the foundations for future work, where we aim to understand why different errors are seen as more or less severe. Human: \u6236\u5916 \u4e00\u500b \u7a7f\u8457 \u85cd\u8272 \u6064 \u7684 \u5973\u4eba \u624b \u88e1 \u62ff\u8457 \u4e00 \u76e4\u5b50 \u4e94\u5f69 \u86cb\u7cd5 outdoor one wear blue shirt of woman hand in take one plate five-color cake 'A woman wearing a blue shirt outside, has a plate with a five-colored cake in her hand' \u4e00\u500b \u5973\u4eba \u7aef\u8457 \u5169 \u584a \u5f69\u8679 \u86cb\u7cd5 one woman hold two piece rainbow cake 'A woman holding two pieces of rainbow cake' \u4e00\u500b \u5973\u4eba \u62ff\u8457 \u76e4\u5b50 \u4e0a\u9762 \u6709 \u5169 \u584a \u5f69\u8272\u7684 \u86cb\u7cd5 one woman take plate on is two piece rainbow cake 'A woman holding a plate with two pieces of rainbow cake' \u4e00\u500b \u5973\u4eba \u7aef\u8457 \u5169 \u584a \u751f\u65e5 \u86cb\u7cd5 one woman hold two piece birthday cake 'A woman holding two pieces of birthday cake' \u4e00\u500b \u5973\u4eba \u62ff\u8457 \u653e \u6709 \u5f69\u8679 \u86cb\u7cd5 \u7684 \u76e4\u5b50 one woman take put is rainbow cake of plate 'A woman holding a plate of birthday cake' System: \u4e00\u500b \u7a7f\u8457 \u7d05 \u7d05 \u7d05\u8272 \u8272 \u8272 \u4e0a\u8863 \u7684 \u5973 \u5973 \u5973\u5b69 \u5b69 \u5b69 \u624b \u88e1 \u62ff\u8457 \u4e00\u500b \u7db2 \u7db2 \u7db2\u7403 \u7403 \u7403\u62cd \u62cd \u62cd one wear red shirt of girl hand in hold one tennis racket 'A girl wearing a red shirt is holding a tennis racket'",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Recent years have seen a growing discomfort with the use of automatic metrics like BLEU (Papineni et al., 2002) for the evaluation of natural language generation (NLG) systems (e.g., Sulem et al. 2018; Reiter 2018; Mathur et al. 2020) . Much of the criticism centers around the fact that these metrics show poor agreement with human judgments. While many researchers have tried to develop new metrics that are better suited to evaluate NLG systems (e.g. tailored to the domain like SPICE (Anderson et al., 2016) or with intensive pre-training like BLEURT; Sellam et al. 2020), we are not aware of any studies attempting to explain why we see such a poor correlation between human judges and automatic metrics. This paper aims to explore this hypothesis, focusing on the evaluation of automatic image description systems. We focus on image descriptions because it is relatively easy for humans to judge whether a given description correctly describes an image. Compare this to the WebNLG data (Gardent et al., 2017) , where participants would have to judge whether a given sentence verbalizes a set of triples containing information about properties of different entities, and how different entities relate to each other. The format of the input data, as well as the numerous ways to verbalise each triple separately, and express them jointly, perhaps through some process of aggregation, is bound to make the judgment more challenging.",
                "cite_spans": [
                    {
                        "start": 88,
                        "end": 111,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 183,
                        "end": 201,
                        "text": "Sulem et al. 2018;",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 202,
                        "end": 214,
                        "text": "Reiter 2018;",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 215,
                        "end": 234,
                        "text": "Mathur et al. 2020)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 488,
                        "end": 511,
                        "text": "(Anderson et al., 2016)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 992,
                        "end": 1014,
                        "text": "(Gardent et al., 2017)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Image description systems make different kinds of mistakes, and these mistakes are likely to be of different importance for a 'correct' interpretation of the relevant image. Consider Figure 1 , which shows multiple human reference descriptions, and a description generated by Li et al.'s (2018) system (all in Chinese, with English glosses). This system makes three different mistakes, which are shown separately in Example (1; edited for brevity). We refer to these mistakes as an age error (1b), color error (1c), and an object error (1d). 1 (1) Gold standard (a) and errors (b-d) from Fig. 1 . a. A woman wearing a blue shirt holds a cake. b. A girl wearing a blue shirt holds a cake. c. A woman wearing a red shirt holds a cake. d. A woman wearing a blue shirt holds a racket.",
                "cite_spans": [
                    {
                        "start": 276,
                        "end": 294,
                        "text": "Li et al.'s (2018)",
                        "ref_id": null
                    },
                    {
                        "start": 542,
                        "end": 543,
                        "text": "1",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 183,
                        "end": 191,
                        "text": "Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 588,
                        "end": 594,
                        "text": "Fig. 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Motivation",
                "sec_num": "1.1"
            },
            {
                "text": "Intuitively, the different errors made by the system are not equally severe. Our intuition is that the object error is much more flagrant than the age Figure 1 : Image 59547 from the MS COCO dataset, with human descriptions from the COCO-CN corpus, and an automatically generated description from Li et al.'s system. Glosses are ours. Errors in the automatically generated description are in bold and highlighted in red. Original picture taken by Matt Bauer (CC BY-NC 2.0). error. A potential explanation for this difference lies in the fact that AGE is a more vague property than OBJECT CATEGORY. We will discuss this idea in Section 3, where we posit our hypotheses.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 151,
                        "end": 159,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Motivation",
                "sec_num": "1.1"
            },
            {
                "text": "We address three research questions: 1. Do people's quality judgments indeed differ between error categories? 2. If there is a gradation of error severity, how is it ordered? 3. What might explain those differences? As our title suggests, we indeed find differences in perceived error severity between different types of errors:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Main questions",
                "sec_num": "1.2"
            },
            {
                "text": "1. Perceived severity for GENDER ERRORS is significantly worse than AGE errors. 2. CLOTHING COLOR errors are significantly worse than CLOTHING TYPE or AGE errors. We discuss potential explanations first in our hypotheses section ( \u00a73), and later take stock in the discussion ( \u00a76). Although our study uses Chinesespeaking participants, we believe our main result (differences in perceived error severity) should generalize to other languages, though the order of the error categories on the 'severity scale' may differ. We will discuss this issue further in Section 6.6.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Main questions",
                "sec_num": "1.2"
            },
            {
                "text": "This paper provides evidence that there are differences in perceived error severity between different kinds of errors in image descriptions. Our results offer one reason why many automatic evaluation metrics correlate poorly with human judgments: most metrics wrongly assume that there is no difference between different kinds of mistakes. This means that we have to rethink the relation between accuracy and overall quality (as measured through human judgments). We will discuss this issue further in Section 6.2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Implications",
                "sec_num": "1.3"
            },
            {
                "text": "NLG output is not perfect. Van Deemter and Reiter (2018) discuss how errors may arise at different stages of the NLG pipeline. Much has been written about how to best evaluate the quality of automatically generated text (e.g. van der Lee et al. 2019; Celikyilmaz et al. 2020) , but less is known about the impact of different kinds of errors on users of automatically generated text. To our knowledge, responses to errors have only been studied by researchers in Human-Computer Interaction (e.g., Abdolrahmani et al. 2017) or Human-Robot Interaction (e.g., Mirnig et al. 2017) . Together, these studies show that while some errors may make users abandon a product, other errors may not be judged as harshly. In fact, Mirnig et al. found that people may even like a robot more if it occasionally makes a mistake. But, as Abdolrahmani et al. note: this all depends on the context of use.",
                "cite_spans": [
                    {
                        "start": 234,
                        "end": 250,
                        "text": "Lee et al. 2019;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 251,
                        "end": 275,
                        "text": "Celikyilmaz et al. 2020)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 497,
                        "end": 522,
                        "text": "Abdolrahmani et al. 2017)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 557,
                        "end": 576,
                        "text": "Mirnig et al. 2017)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Errors in NLG output",
                "sec_num": "2.1"
            },
            {
                "text": "Our study asks how we can systematically study the impact of different kinds of errors in automatic image descriptions. Several studies have proposed different categorizations of these errors. We will discuss those studies below. Hodosh and Hockenmaier (2016) and Shekhar et al. (2017) both manipulate existing image descriptions to generate flawed descriptions, which they use to see if automatic image description systems can recognize those flaws. For example, given a sentence like (2), Hodosh and Hockenmaier swap the existing scene description for another one (2\u21922a), and ask systems to identify the correct description. Shekhar et al. change an entity with another entity falling under the same supercategory (e.g. VEHI-CLE, 2\u21922b), and ask systems to identify the flaw in the description.",
                "cite_spans": [
                    {
                        "start": 230,
                        "end": 259,
                        "text": "Hodosh and Hockenmaier (2016)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 264,
                        "end": 285,
                        "text": "Shekhar et al. (2017)",
                        "ref_id": "BIBREF34"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Errors in NLG output",
                "sec_num": "2.1"
            },
            {
                "text": "(2) Ref: A man is riding a bicycle down the street. a. A man is riding a bicycle on the beach. b. A man is riding a motorcycle down the street.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Weaknesses in system competence",
                "sec_num": "2.2"
            },
            {
                "text": "Together, these studies show that image description systems still have difficulties identifying GRAMMATICAL SUBJECTS AND OBJECTS, SCENES, and OBJECTS in general. An interesting property of the flawed descriptions generated by Shekhar et al. (2017) is that their manipulations are associated with different semantic categories (ANIMAL, VEHICLE, FURNITURE, . . . ). This enables them to pinpoint which kinds of entities are easier or harder for systems to describe. Anderson et al. (2016) propose the SPICE-metric, which differs from other evaluation metrics in that it uses the reference descriptions to build an abstract scene graph. The hypothesis is also parsed into an abstract scene graph, and compared to the reference graph. These graphs can be represented as tuples that correspond to different features, namely: OBJECT, RELATION, and ATTRIBUTE (which is subdivided into COLOR, COUNT and SIZE). We can use SPICE to identify different kinds of propositions that are communicated by an image description. For example, according to SPICE, sentence (3) conveys five propositions: 1. there are eggs (OBJECT); 2. there are three of them (ATTRIBUTE: NUMBER); 3. there is a basket (OBJECT); 4. the basket is green (ATTRIBUTE: COLOR); 5. the eggs are in the basket (RELATION).",
                "cite_spans": [
                    {
                        "start": 226,
                        "end": 247,
                        "text": "Shekhar et al. (2017)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 464,
                        "end": 486,
                        "text": "Anderson et al. (2016)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Weaknesses in system competence",
                "sec_num": "2.2"
            },
            {
                "text": "(3) Ref: There are three eggs in the green basket.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Errors in system output",
                "sec_num": "2.3"
            },
            {
                "text": "a. There are four eggs in the green basket. b. There are three eggs under the green basket. SPICE is not able to determine whether any proposition is correct or not (and thus it does not exactly identify errors), but instead it returns an F1score over the different propositions, showing how often systems 'retrieve' the same propositions that can be extracted from the reference data. For our purposes, we can use the SPICE categories to reason about error severity. For example, intuitively, COUNT errors (such as 3a) might be more forgivable in the eyes of human judges than RELATION errors (such as 3b), since it's easy to miscount.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Errors in system output",
                "sec_num": "2.3"
            },
            {
                "text": "To our knowledge, Van Miltenburg and Elliott (2017) provide the most extensive error analysis of automatic image descriptions. In addition to the semantic categories identified by Anderson et al. (2016) , they discuss: POSITION and ACTIV-ITY; more attributes: AGE, GENDER and STANCE (e.g. whether someone stands, sits, or crouches); SCENE/EVENT/LOCATION; and different ways to generate the wrong subject or object: confusing it with a similar entity, hallucinating an entity, identifying the wrong entity for the semantic role, or identifying the correct entity but wrongly adding another subject/object. Finally, the authors observe that there are surprisingly many errors concerning TYPE OF CLOTHING and COLOR OF CLOTHING.",
                "cite_spans": [
                    {
                        "start": 180,
                        "end": 202,
                        "text": "Anderson et al. (2016)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Errors in system output",
                "sec_num": "2.3"
            },
            {
                "text": "In line with the error analysis from van Miltenburg and Elliott (2017), our experiment explores the perceived severity of four common kinds of errors found in automatic image description systems, relating to 1. AGE, 2. GENDER, 3. CLOTHING-COLOR, and 4. CLOTHING-TYPE. This section discusses our expectations regarding the quality scores for sentences containing these types of errors.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "Earlier studies in linguistics have shown that not every word in a sentence is equally prominent (see Lockwood and Macaulay 2012; Himmelmann and Primus 2015 for an overview). For example, the subject of a sentence is more prominent than the direct object, which in turn is more prominent than the indirect object. By the same token, certain expressions may achieve prominence due to the type of entity they denote. For example, people may be more prominent than inanimate objects (like clothes); an observation also borne out by studies on how humans process visual inputs (cf. Yun et al. 2013) . Animacy also plays an important role in referring expression generation (Baltaretu et al., 2016; Vogels et al., 2013) . We believe that animacy might also play a (yet to be determined) role in quality judgments, and our intuition is: 2",
                "cite_spans": [
                    {
                        "start": 578,
                        "end": 594,
                        "text": "Yun et al. 2013)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 669,
                        "end": 693,
                        "text": "(Baltaretu et al., 2016;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 694,
                        "end": 714,
                        "text": "Vogels et al., 2013)",
                        "ref_id": "BIBREF39"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "Hypothesis 1: The perceived quality of descriptions with people-related errors is lower than the perceived quality of descriptions with clothing-related errors.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "Next our hunch is that, in most situations, gender errors are worse than age errors, and errors regarding clothing type are worse than errors regarding clothing color. Two perspectives come to mind:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "1. Function. Clothing type is a more essential property of a piece of clothing than its color. For example, the most important aspect of a T-shirt is that you can wear it to keep your chest covered and warm. Color is secondary.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "2. Degrees of vagueness. Expressions in natural language are often vague, meaning that they allow for situations in which it is debatable whether the expression has been used truthfully or not (e.g., Williamson 2002; Van Deemter 2012) . Color terms are famously vague (e.g., Parikh 1994), because while there may be situations where everyone agrees that X is red, the exact boundaries of REDNESS cannot be given.",
                "cite_spans": [
                    {
                        "start": 200,
                        "end": 216,
                        "text": "Williamson 2002;",
                        "ref_id": null
                    },
                    {
                        "start": 217,
                        "end": 234,
                        "text": "Van Deemter 2012)",
                        "ref_id": "BIBREF38"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "While it can be argued that all categories exhibit some degree of vagueness, AGE-denoting expressions tend to be more vague than GENDERdenoting ones (e.g. whether someone is old is more often debatable than whether someone is male); likewise, COLOR-denoting expressions tend to be more vague than CLOTHING-TYPE-denoting ones. We therefore expect that participants are more forgiving when judging the truthfulness of age-denoting and clothing-color denoting expressions than when judging the truthfulness of gender-denoting or clothing-type denoting ones. This difference in severity may also become entrenched, so that one type of error may generally be perceived as worse than another. Our intuitions are as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "Hypothesis 2: The perceived quality of descriptions with an age error is higher than the perceived quality of descriptions with a gender error.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "Hypothesis 3: The perceived quality of description with clothing color error is higher than the perceived quality of descriptions with clothing type error.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypotheses",
                "sec_num": "3"
            },
            {
                "text": "We provide a detailed description of our method below. All data and stimuli are provided in the supplementary materials.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "4"
            },
            {
                "text": "We used network sampling to recruit 61 volunteers (35 female, 26 male; 59 native, 2 fluent speakers of Chinese) to participate in our study. 3 Most (N=38) received a university education. All participants indicated that they were not color-blind.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Participants",
                "sec_num": "4.1"
            },
            {
                "text": "We selected 7 images from MS COCO. For each image, we manually constructed four descriptions with exactly one error in each of them, resulting in 28 image-description pairs. Figure 2 shows an example image with the reference description, and four erroneous descriptions.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 174,
                        "end": 182,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Materials",
                "sec_num": "4.2"
            },
            {
                "text": "Image selection. Images from the MS COCO dataset were selected to fit the following criteria:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Materials",
                "sec_num": "4.2"
            },
            {
                "text": "1. They should be full-color images.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Materials",
                "sec_num": "4.2"
            },
            {
                "text": "2. There should be a human protagonist, with their face and at least half their body visible. 3. The content of the images should be clearly recognizable. 4. Each clothing item should have a single color. 5. Clothing items should have different colors. We established these criteria to avoid error ambiguity. For example, if the man in Figure 2 were wearing yellow shorts as well, then the clothing type error could be resolved in two ways: coat\u2192shirt or coat\u2192shorts. This is undesirable, since differences in error ambiguity may introduce additional variance in our experiment.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 336,
                        "end": 344,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Materials",
                "sec_num": "4.2"
            },
            {
                "text": "Descriptions. The descriptions were written by a native speaker of Chinese, who was tasked to create minimal pairs between the erroneous descriptions and a single reference description. We used four different types of errors: GENDER, AGE, CLOTH-ING TYPE, CLOTHING COLOR. We discuss our motivation for these categories in Section 3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Materials",
                "sec_num": "4.2"
            },
            {
                "text": "As Figure 2 shows, the erroneous descriptions only differ in one Mandarin character from the reference description. This is essential, so that automatic evaluation methods give each erroneous description the same score. 4 ",
                "cite_spans": [
                    {
                        "start": 220,
                        "end": 221,
                        "text": "4",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 11,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Materials",
                "sec_num": "4.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "(4) a. \u7537\u4eba 'man' (MALE+PERSON) b. \u5973\u4eba 'woman' (FEMALE+PERSON) c. \u7537\u5b69 'boy' (MALE+CHILD) d. \u5973\u5b69 'girl'",
                        "eq_num": "(FEMALE+CHILD)"
                    }
                ],
                "section": "Materials",
                "sec_num": "4.2"
            },
            {
                "text": "As with the images, we aimed to avoid error ambiguity. For example, suppose that the man in Figure 2 were erroneously referred to as wearing yellow shorts. We could resolve this issue in two ways: (1) resolve the color: black shorts, (2) resolve the clothing: yellow shirt. Because it is not clear which error type is applicable, these kinds of ambiguities would make it impossible to determine the impact of individual error types. Therefore, we ensured that there is always a single fix with the lowest edit distance. Finally, there is likely to be some variance within each error type. For example: in the COLOR ERROR category, the mistake orange\u2192red is less severe than orange\u2192blue. To minimize this issue, and to focus on betweencategory differences, we aimed to generate clearcut examples for each error category. We leave within-error variation for future research.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 92,
                        "end": 100,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Materials",
                "sec_num": "4.2"
            },
            {
                "text": "Our experiment was implemented in Qualtrics, and followed a within-subjects design, where each participant was exposed to all 28 stimuli (i.e., all imat the word level) first by any evaluation measure, it would also have been defensible to change multiple characters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Design",
                "sec_num": "4.3"
            },
            {
                "text": "5 Chinese crucially differs from English in that \u5973\u5b69 ('girl') cannot be used to refer to adults, whereas English does allow for 'girl' to refer to an adult woman, in colloquial use. Other languages, like Maltese, also pattern with Chinese in this regard. We would expect this kind of age error to be perceived as less severe in English (if it is perceived as an error at all).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Design",
                "sec_num": "4.3"
            },
            {
                "text": "ages, with all erroneous descriptions). In each trial, participants rated the quality of the erroneous description on a continuous scale from 0 (worst) to 100 (best), using a slider (cf. Magnitude Estimation (Stevens, 1975; Bard et al., 1996) , or Direct Assessment; Graham et al. 2018) . The erroneous description was always presented in the context of the image and the correct reference description.",
                "cite_spans": [
                    {
                        "start": 208,
                        "end": 223,
                        "text": "(Stevens, 1975;",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 224,
                        "end": 242,
                        "text": "Bard et al., 1996)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 267,
                        "end": 286,
                        "text": "Graham et al. 2018)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Design",
                "sec_num": "4.3"
            },
            {
                "text": "Participants were invited to take part in the online experiment through different social media channels. After clicking the Qualtrics link, they were first shown an introductory text with a description of the study (including its aim: to understand how users respond to automatically generated text) and a consent form. 6 After consenting to the study, participants were directed to the trial phase, demographic questions, and the main experiment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Procedure",
                "sec_num": "4.4"
            },
            {
                "text": "Trial phase. The trial phase consisted of four questions for participants, similar to Figure 3 , where they were asked to indicate the quality of the automatically generated description on a slider bar. The purpose of these questions is for the participants to calibrate their responses.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 86,
                        "end": 94,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Procedure",
                "sec_num": "4.4"
            },
            {
                "text": "Demographic questions. Participants were asked to indicate their age, gender, education level, Chinese proficiency, and whether they are colorblind or not. We excluded two participants based on these questions: one colorblind participant, and one Chinese beginner.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Procedure",
                "sec_num": "4.4"
            },
            {
                "text": "Main experiment. The main experiment featured the same kind of questions as in the trial phase.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Procedure",
                "sec_num": "4.4"
            },
            {
                "text": "A woman in a pink skirt throws a frisbee.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Correct description:",
                "sec_num": null
            },
            {
                "text": "A man in a pink skirt throws a frisbee. 0 100 Each participant was asked to rate the quality of all 28 stimuli, presented in random order. Before running our study, we carried out a pretest to get feedback, and to determine the duration of our experiment (5-6 minutes), to inform the participants before taking part in the study. 7",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Automatically generated description:",
                "sec_num": null
            },
            {
                "text": "We found that different error types are indeed judged differently; A repeated measures ANOVA revealed a significant overall effect of error type (F(2.33, 139.5)=13.827, p=<0.001, \u03b7 2 = 0.05). Table 1 provides descriptive statistics, showing the different mean scores and their standard deviations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "We subsequently carried out multiple paired sample t-tests to find out which error types significantly 7 Having a short study and communicating the duration should reduce the dropout rate of our experiment.",
                "cite_spans": [
                    {
                        "start": 103,
                        "end": 104,
                        "text": "7",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypothesis evaluation",
                "sec_num": "5.1"
            },
            {
                "text": "differed from each other. The results for these tests are provided by Table 2 , and are discussed below. Hypothesis 1. We expected that people-related errors would be rated worse than clothing-related errors. This is clearly not the case: descriptions containing age errors are significantly better than those with clothing color errors. Errors regarding clothing type seem to be roughly on the same footing as age-and gender-related errors.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 70,
                        "end": 77,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Hypothesis evaluation",
                "sec_num": "5.1"
            },
            {
                "text": "Hypothesis 2. We also expected that the perceived quality of descriptions with age errors would be higher than that of descriptions with gender errors. We found that this is indeed the case: scores for age errors are significantly better than the scores for gender errors.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypothesis evaluation",
                "sec_num": "5.1"
            },
            {
                "text": "Hypothesis 3. Finally, we expected that clothing type errors would be worse than clothing color errors, but in fact we found the opposite: clothing color errors are significantly worse than clothing type errors.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hypothesis evaluation",
                "sec_num": "5.1"
            },
            {
                "text": "Our main analysis revealed significant differences between descriptions with different error types. We then looked at differences within different error categories. Specifically, we investigated the direction of the errors for two error types: (1) Gender: changing male to female (e.g. man\u2192woman), versus female to male. (2) AGE: changing young to old (e.g. boy\u2192man), versus old to young. Descriptive statistics are provided in Table 3 . The means for both gender-related errors are similar, and we failed to find a significant effect of error directionality for gender (t(60)=0.835, p=0.407).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 428,
                        "end": 435,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Exploratory analysis",
                "sec_num": "5.2"
            },
            {
                "text": "We did, however, find a significant effect of error directionality for age (t(60)=\u22124.49, p<0.001). Changing the label from old (e.g. man) to young (e.g. boy) on average leads to a 9-point reduction in description quality (on a scale from 0 to 100). This might be due to a difference in error severity, but perhaps a more plausible explanation is that the Chinese classifier \u4f4d is used to express politeness (Huang, 2017) . Maybe our participants found it odd to be using this marker with children (e.g., \u4e00 \u4f4d\u7537\u7ae5) instead of adults (e.g., \u4e00\u4f4d\u7537\u4eba). Unfortunately we cannot know this for sure, because all our stimuli start with the same classifier. ",
                "cite_spans": [
                    {
                        "start": 406,
                        "end": 419,
                        "text": "(Huang, 2017)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Exploratory analysis",
                "sec_num": "5.2"
            },
            {
                "text": "Our main finding, that different error types also differ in severity, suggests that people attach different levels of importance to different aspects of an image description. Our hypotheses provided a first attempt at an explanation, although it is clear that more work is needed to develop a better understanding of why these differences in severity arise. For example, we severely underestimated the severity of color errors. In hindsight, we believe that the severity may be related to the fact that color is a prominent feature, and the blatant color errors in our experiment were perceivable at a glance. Our (revised) intuition is that, similar to visual attention, error severity may be determined both by bottom-up and top-down factors (Itti and Koch, 2000; Borji and Itti, 2013) . Some errors (like our color errors) are easily perceived, and may thus elicit strong responses. Others (such as gender errors) may not be as easily perceived, but their social relevance similarly elicits strong responses.",
                "cite_spans": [
                    {
                        "start": 744,
                        "end": 765,
                        "text": "(Itti and Koch, 2000;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 766,
                        "end": 787,
                        "text": "Borji and Itti, 2013)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Explaining our results",
                "sec_num": "6.1"
            },
            {
                "text": "Carletta and Mellish (1996) discuss risk-taking in task-oriented dialogue. They show that efficient communication requires speakers to make assumptions about the hearer, and to risk being misunderstood. This is better than the alternative, which is to confirm that all the requisite knowledge (to under-stand the utterance) is in place. A similar view has been expressed by Clark (1996) : interlocutors can rely on various heuristics to make communication more efficient, and obviate the need for exhaustive checking of common ground. Our work can be seen as extending this risk-taking literature, quantifying the impact of being wrong.",
                "cite_spans": [
                    {
                        "start": 374,
                        "end": 386,
                        "text": "Clark (1996)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NLG and risk-taking",
                "sec_num": "6.2"
            },
            {
                "text": "Every additional detail you provide in a generated text may make the text more useful. But, at the same time, every additional detail you provide carries the risk of being wrong about that detail. Thus there is a trade-off between accuracy and usefulness. Ideally, this trade-off should be resolved by assessing the impact of our decisions. In other words: we should now be able to quantify (1) the usefulness of generating a particular detail, (2) the risk of being wrong about that detail, and (3) the potential impact of being wrong about that detail. We only focused on the latter, showing that different kinds of errors may be rated differently by end users. The risk of being wrong may be approximated through the model's confidence scores. The usefulness of generating a particular detail is (partly) context-dependent.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NLG and risk-taking",
                "sec_num": "6.2"
            },
            {
                "text": "The present paper sought to maintain a 'taskneutral' stance, requiring only that participants rate descriptions in terms of their accuracy with respect to the image. It is however likely that perceived error severity would be strongly impacted by the communicative setting in which a text was being generated. To take an example, our findings suggested that colour errors are more prominent for speakers than initially assumed. Above, we hinted that this could be a largely bottom-up salience effect (Itti and Koch, 2000) due to the contrastive nature of colour in our items.",
                "cite_spans": [
                    {
                        "start": 500,
                        "end": 521,
                        "text": "(Itti and Koch, 2000)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task effects and generalisability",
                "sec_num": "6.3"
            },
            {
                "text": "However, task demands and top-down expectations may make other features more prominent and may also impact the amount of risk-taking a system or human is willing to take. As an example, consider the setting of the VizWiz challenge (Gurari et al., 2018) , which consists of questions asked by visually impaired people seeking help from online users, based on photographs usually taken using phones. Answering a question to help a user find their medication might motivate more detail, less risk, and a stronger reliance on features a system has high confidence in.",
                "cite_spans": [
                    {
                        "start": 231,
                        "end": 252,
                        "text": "(Gurari et al., 2018)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task effects and generalisability",
                "sec_num": "6.3"
            },
            {
                "text": "While task demands are likely to change the severity of errors, we would still contend that the general point being made is an important one, namely, that not all errors are equally severe. This has implications for our use of evaluation metrics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task effects and generalisability",
                "sec_num": "6.3"
            },
            {
                "text": "This paper provides a conceptual argument against the use of superficial metrics like BLEU, that only look at textual similarity. In our experiments, erroneous descriptions differ by only one character, so the edit distance is always the same. Differences in perceived severity of different error types thus cannot be explained by these kinds of metrics. A separate weakness of BLEU is that an image may be described by many different descriptions; with a finite amount of references, BLEU may penalise descriptions that provide yet another perspective on the same image. Our results show that BLEU and similar metrics are insufficient even with an infinite amount of different (but correct) references. For SPICE, similar limitations should apply: if the different propositions identified by SPICE are not weighted by the kind of proposition, then this uniform approach will not be able to capture differences in severity. Beyond image description, similar issues may arise in other metrics. For example, referring expression generation systems are often evaluated using DICE (Dice, 1945) . Even though this metric looks at meaning (not syntactic form), two referring expressions, RE 1 and RE 2 , can obtain the same DICE score yet RE 1 may be intuitively much better than RE 2 . The reason here is that DICE looks exclusively at the degree of overlap between the set of properties expressed in a gold standard item and the set of properties expressed by a referring expression produced by a referring expression generation algorithm.",
                "cite_spans": [
                    {
                        "start": 1077,
                        "end": 1089,
                        "text": "(Dice, 1945)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Implications for different metrics",
                "sec_num": "6.4"
            },
            {
                "text": "Our study relied on a setup where vagueness and gradability have little impact. For instance, the age differences considered are broad enough to make terms such as 'girl' or 'woman' clear-cut (modulo linguistic differences; see below). On the other hand, descriptions may contain gradable terms whose boundaries are debatable (e.g. 'toddler' versus 'baby') and whose usage is harder to classify as an 'error'. The visual input may itself be ambiguous: e.g. it may not be clear whether a person in a photograph is an adult. A plausible hypothesis would be that users would be more tolerant of terms used in borderline cases, or visually ambiguous ones, than more clear-cut cases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Vagueness and gradability",
                "sec_num": "6.5"
            },
            {
                "text": "Different languages. We only looked at Chinese image descriptions. Our intuition is that other languages show similar gradations in perceived severity of different kinds of errors, but this remains to be tested, paying attention to cross-linguistic differences (such as those noted in Footnote 5 above). This is especially important because our intuitions (even as native speakers) may not be reflected by the data, as we've seen with our results. Another question is whether the average severity of different error categories is similar across different languages. Future research should investigate this question using a typologically diverse sample of languages (cf. Bender 2011).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Future research",
                "sec_num": "6.6"
            },
            {
                "text": "Different types of errors. We also restricted ourselves to four different types of errors. Future research should look into other kinds of errors, to better understand how different kinds of errors affect the perceived quality of the output. The inclusion of other error categories would also allow us to test hypotheses about the importance of different properties for the representation of visual scenes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Future research",
                "sec_num": "6.6"
            },
            {
                "text": "Anscombe's quartet for NLG. Anscombe's quartet is a well-known collection of four datasets that have similar descriptive statistics (mean, variance, correlation of x and y), but that have wildly different plots when you visualize the data (Anscombe, 1973) . Our dataset is designed as a linguistic analog to Anscombe's Quartet: all erroneous descriptions differ the same, minimal amount (one character) from the reference description, but we hypothesized them to have very different quality ratings. Analogously to Anscombe's quartet, metrics like BLEU are unable to capture any differences in perceived quality of the descriptions. We encourage NLG researchers to develop similar datasets, so as to put evaluation metrics to the test, to see if they can truly capture differences in perceived quality.",
                "cite_spans": [
                    {
                        "start": 239,
                        "end": 255,
                        "text": "(Anscombe, 1973)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Future research",
                "sec_num": "6.6"
            },
            {
                "text": "Weighted quality metrics? Given that metrics like BLEU do not correlate well with human judgments (Reiter, 2018; Mathur et al., 2020) , and seeing that human judgments are influenced by error types, one might conclude that we should develop evaluation metrics that take different levels of error severity into account (e.g., by weighing the different kinds of errors). After all, this would probably improve the correlation between automatic measures and human judgments. But here we might ask ourselves: what is quality, really? Is it some abstract construct that we aim to approach through human ratings? Or do we want to model human responses to textual output? If the former, then our study only shows that human ratings are biased against specific kinds of errors, and we may not want to depend on human ratings too much. If the latter, then weighing different kinds of errors might be a good first step.",
                "cite_spans": [
                    {
                        "start": 98,
                        "end": 112,
                        "text": "(Reiter, 2018;",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 113,
                        "end": 133,
                        "text": "Mathur et al., 2020)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Future research",
                "sec_num": "6.6"
            },
            {
                "text": "We identify three main limitations of our work:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Limitations",
                "sec_num": "6.7"
            },
            {
                "text": "1. Assumptions about gender. Larson (2017) discuss the implications of using gender as a variable in NLP research. In light of their study, we should note that we are manipulating gender as a binary variable; protagonists are either described as a man/woman or as a boy/girl. This is a simplification for the sake of our experiment, to see how people respond to identification errors where people who are perceived as male are described as female and vice versa. Because the authors manually identified the gender of the protagonists, these gender labels could be different from the protagonists' actual gender identity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Limitations",
                "sec_num": "6.7"
            },
            {
                "text": "Whether image descriptions should contain references to gender is a subject of debate. On the one hand, blind or visually impaired users indicate that they would like to see them (Stangl et al., 2020) , but on the other hand, gender is notoriously difficult to detect (Buolamwini and Gebru, 2018) , and misgendering individuals can be harmful to users (Keyes, 2018) . For this reason, Google decided to no longer use gender labels for its image recognition services (Ghosh, 2020) .",
                "cite_spans": [
                    {
                        "start": 179,
                        "end": 200,
                        "text": "(Stangl et al., 2020)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 268,
                        "end": 296,
                        "text": "(Buolamwini and Gebru, 2018)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 352,
                        "end": 365,
                        "text": "(Keyes, 2018)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 466,
                        "end": 479,
                        "text": "(Ghosh, 2020)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Limitations",
                "sec_num": "6.7"
            },
            {
                "text": "2. Variation within categories. A fundamental problem with our current line of research is that textual descriptions can be wrong in many ways. As noted in Section 4.2, there is likely also variation within each error category based on the degree of 'wrongness'. Presumably, orange\u2192red is less wrong than orange\u2192blue. Similarly, baby\u2192toddler is probably better than baby\u2192adult. This complicates the comparison of different error categories. We aimed to minimize this issue by generating clear-cut mistakes in each category. Still, some variation may remain. In future work, we will investigate this issue further by explicitly targeting within-category variation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Limitations",
                "sec_num": "6.7"
            },
            {
                "text": "3. No visually impaired end-users included. Finally, we caution that our results only hold for participants with regular vision, and not necessarily for blind or visually impaired users, for whom image description technology is currently being developed. Although there have been some studies on blind or visually impaired users' experiences with this technology (Zhao et al., 2017; , more work is needed to understand the impact of erroneous output on these users. A major challenge in this area is that blind or visually impaired users are not able to determine whether a given image description is correct or not. This means that future work should investigate the impact of different kinds of errors using other means, such as (contextual) interviews or focus groups.",
                "cite_spans": [
                    {
                        "start": 363,
                        "end": 382,
                        "text": "(Zhao et al., 2017;",
                        "ref_id": "BIBREF43"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Limitations",
                "sec_num": "6.7"
            },
            {
                "text": "We carried out a tightly controlled study, comparing minimal pairs of image descriptions with different types of errors. Our results reveal big differences in perceived quality between these descriptions. Moreover, we even found preliminary evidence that there are also differences within error categories. Our results show that we need to take a closer look at the determinants of description quality, and take seriously the idea of different levels of importance for different aspects of an image. On a broader level, gradations in error severity are probably not limited to image descriptions alone. We encourage researchers in NLG to take a closer look at common output errors in their domain, and to consider the different impact that each of those errors may have. Figure 4 (repeated from Figure 3) provides an example item. Before each item, there was an instructional text, and the sliders were accompanied by additional instructions. These are provided in Table 4 below, both in the original Chinese, and translated into English. Table 5 presents all replacements made in our experiment, with counts for how often each replacement was made to generate an erroneous description.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 771,
                        "end": 779,
                        "text": "Figure 4",
                        "ref_id": null
                    },
                    {
                        "start": 795,
                        "end": 804,
                        "text": "Figure 3)",
                        "ref_id": null
                    },
                    {
                        "start": 965,
                        "end": 972,
                        "text": "Table 4",
                        "ref_id": null
                    },
                    {
                        "start": 1039,
                        "end": 1046,
                        "text": "Table 5",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "Instructions \u8acb\u4ed4\u7d30\u95b1\u8b80\u4ee5\u4e0b\u5716\u7247\u53ca\u6587\u5b57\uff0c\u4e26\u79fb\u52d5\u6ed1\u584a\u4ee5\u8a55\u4f30\u81ea\u52d5\u751f\u6210\u5716\u50cf\u63cf\u8ff0\u7684\u54c1\u8cea 'Please read the following pictures and text carefully, and move the slider to evaluate the quality of the automatically generated image description'",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Replacements at a glance",
                "sec_num": null
            },
            {
                "text": "Correct cue \u6b63\u78ba\u63cf\u8ff0 'correct description'",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Replacements at a glance",
                "sec_num": null
            },
            {
                "text": "Erroneous cue \u81ea\u52d5\u751f\u6210\u63cf\u8ff0 'automatically generated description'",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Replacements at a glance",
                "sec_num": null
            },
            {
                "text": "Slider text \u8acb\u79fb\u52d5\u6ed1\u584a\u4ee5\u8a55\u4f30\u81ea\u52d5\u751f\u6210\u63cf\u8ff0\u7684\u54c1\u8cea 'Please move the slider to evaluate the quality of the automatically generated description' Table 4 : Instructions for the participants.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 122,
                        "end": 129,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "B Replacements at a glance",
                "sec_num": null
            },
            {
                "text": "Correct description: A woman in a pink skirt throws a frisbee.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "B Replacements at a glance",
                "sec_num": null
            },
            {
                "text": "A man in a pink skirt throws a frisbee.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Automatically generated description:",
                "sec_num": null
            },
            {
                "text": "Figure 4: Example item, with the picture (137767 in MS COCO), the reference description, the erroneous description, and a slider to indicate the description quality. Descriptions have been translated and edited for ease of presentation. Original picture taken by Mike LaCon (CC BY-SA 2.0). ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "100",
                "sec_num": "0"
            },
            {
                "text": "Tables 6-12 (see next two pages) are all the descriptions we used for the images. Images themselves are not provided here, but instead we provide the image ID from the MS COCO dataset. See the images here: https://cocodataset.org/ #explore?id=ID (replace ID with the actual ID).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "C Descriptions",
                "sec_num": null
            },
            {
                "text": "Note that the human annotators do not make any mistakes at all; they are clearly able to identify the protagonist as a woman who is wearing a blue shirt and holding a cake.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Sentence structure is a potential confound in our design. People-related terms (woman,boy) and clothing-related terms (pink, coat) are both in subject position, but the latter are generally more deeply embedded in the NP[woman [wearing [a [pink coat]]]], making them syntactically less prominent (and so errors may be less obvious).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Although we did not ask for their nationality (and thus cannot provide counts), most participants areTaiwanese.4 This is a conservative choice, because Chinese words may consist of one or more (often two) syllables/characters. Assuming the descriptions would be tokenised (i.e. segmented",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Participants agreed to take part in the experiment, and to have their (anonymized) responses recorded and shared with the scientific community. They were informed that they could quit at any time, without any negative consequences.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This study was approved by the Research Ethics and Data Management Committee at the Tilburg School of Humanities and Digital sciences, Tilburg University (reference number: 2019.40 -amended September 26, 2019). The experimental design and main data are from the Master's thesis of Wei-Ting Lu, supervised by Emiel van Miltenburg.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": "8"
            },
            {
                "text": "\u4e00\u4f4d \u7537\u7ae5 \u7a7f\u8457 \u9ed1\u8272 \u4e0a\u8863 \u5728 \u68d2\u7403\u5834 \u6295\u7403 A boy wear black shirt on baseball field pitch Translation A boy in a black shirt pitches at the baseball field. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Correct",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Embracing errors: Examining how context of use impacts blind individuals' acceptance of navigation aid errors",
                "authors": [
                    {
                        "first": "Ali",
                        "middle": [],
                        "last": "Abdolrahmani",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Easley",
                        "suffix": ""
                    },
                    {
                        "first": "Michele",
                        "middle": [],
                        "last": "Williams",
                        "suffix": ""
                    },
                    {
                        "first": "Stacy",
                        "middle": [],
                        "last": "Branham",
                        "suffix": ""
                    },
                    {
                        "first": "Amy",
                        "middle": [],
                        "last": "Hurst",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI '17",
                "volume": "",
                "issue": "",
                "pages": "4158--4169",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ali Abdolrahmani, William Easley, Michele Williams, Stacy Branham, and Amy Hurst. 2017. Embrac- ing errors: Examining how context of use impacts blind individuals' acceptance of navigation aid er- rors. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI '17, pages 4158-4169, New York, NY, USA. Association for Computing Machinery.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Spice: Semantic propositional image caption evaluation",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Anderson",
                        "suffix": ""
                    },
                    {
                        "first": "Basura",
                        "middle": [],
                        "last": "Fernando",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Gould",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "European Conference on Computer Vision",
                "volume": "",
                "issue": "",
                "pages": "382--398",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. 2016. Spice: Semantic propo- sitional image caption evaluation. In European Conference on Computer Vision, pages 382-398. Springer.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Graphs in statistical analysis",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Francis",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Anscombe",
                        "suffix": ""
                    }
                ],
                "year": 1973,
                "venue": "The American Statistician",
                "volume": "27",
                "issue": "1",
                "pages": "17--21",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Francis J Anscombe. 1973. Graphs in statistical analy- sis. The American Statistician, 27(1):17-21.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Talking about relations: Factors influencing the production of relational descriptions",
                "authors": [
                    {
                        "first": "Adriana",
                        "middle": [],
                        "last": "Baltaretu",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Emiel",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Frontiers in Psychology",
                "volume": "7",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Adriana Baltaretu, Emiel J. Krahmer, Carel van Wijk, and Alfons Maes. 2016. Talking about relations: Factors influencing the production of relational de- scriptions. Frontiers in Psychology, 7:103.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Magnitude estimation of linguistic acceptability. Language",
                "authors": [
                    {
                        "first": "Ellen Gurman",
                        "middle": [],
                        "last": "Bard",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Robertson",
                        "suffix": ""
                    },
                    {
                        "first": "Antonella",
                        "middle": [],
                        "last": "Sorace",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "32--68",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ellen Gurman Bard, Dan Robertson, and Antonella So- race. 1996. Magnitude estimation of linguistic ac- ceptability. Language, pages 32-68.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "On achieving and evaluating language-independence in nlp",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Emily",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Bender",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Linguistic Issues in Language Technology",
                "volume": "6",
                "issue": "3",
                "pages": "1--26",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emily M Bender. 2011. On achieving and evaluating language-independence in nlp. Linguistic Issues in Language Technology, 6(3):1-26.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "State-of-the-art in visual attention modeling",
                "authors": [
                    {
                        "first": "Ali",
                        "middle": [],
                        "last": "Borji",
                        "suffix": ""
                    },
                    {
                        "first": "Laurent",
                        "middle": [],
                        "last": "Itti",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "IEEE Transactions on Pattern Analysis and Machine Intelligence",
                "volume": "35",
                "issue": "",
                "pages": "185--207",
                "other_ids": {
                    "DOI": [
                        "10.1109/TPAMI.2012.89"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ali Borji and Laurent Itti. 2013. State-of-the-art in vi- sual attention modeling. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 35(1):185- 207.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Gender shades: Intersectional accuracy disparities in commercial gender classification",
                "authors": [
                    {
                        "first": "Joy",
                        "middle": [],
                        "last": "Buolamwini",
                        "suffix": ""
                    },
                    {
                        "first": "Timnit",
                        "middle": [],
                        "last": "Gebru",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 1st Conference on Fairness, Accountability and Transparency",
                "volume": "81",
                "issue": "",
                "pages": "77--91",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accuracy disparities in com- mercial gender classification. In Proceedings of the 1st Conference on Fairness, Accountability and Transparency, volume 81 of Proceedings of Ma- chine Learning Research, pages 77-91, New York, NY, USA. PMLR.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Risktaking and recovery in task-oriented dialogue",
                "authors": [
                    {
                        "first": "Jean",
                        "middle": [],
                        "last": "Carletta",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "S"
                        ],
                        "last": "Mellish",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Journal of Pragmatics",
                "volume": "26",
                "issue": "1",
                "pages": "71--107",
                "other_ids": {
                    "DOI": [
                        "10.1016/0378-2166(95)00046-1"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jean Carletta and Christopher S. Mellish. 1996. Risk- taking and recovery in task-oriented dialogue. Jour- nal of Pragmatics, 26(1):71 -107.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Evaluation of text generation: A survey",
                "authors": [
                    {
                        "first": "Asli",
                        "middle": [],
                        "last": "Celikyilmaz",
                        "suffix": ""
                    },
                    {
                        "first": "Elizabeth",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2006.14799"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. 2020. Evaluation of text generation: A survey. arXiv preprint arXiv:2006.14799.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Using Language",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Herbert",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.2277/0521561582"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Herbert H. Clark. 1996. Using Language. Cambridge University Press, Cambridge, UK.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Lying and computational linguistics",
                "authors": [
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Kees Van Deemter",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Reiter",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "The Oxford Handbook of Lying",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kees van Deemter and Ehud Reiter. 2018. Lying and computational linguistics. In J\u00f6rg Meibauer, editor, The Oxford Handbook of Lying. Oxford University Press.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Measures of the amount of ecologic association between species",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dice",
                        "suffix": ""
                    }
                ],
                "year": 1945,
                "venue": "Ecology",
                "volume": "26",
                "issue": "3",
                "pages": "297--302",
                "other_ids": {
                    "DOI": [
                        "10.2307/1932409"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lee R. Dice. 1945. Measures of the amount of ecologic association between species. Ecology, 26(3):297- 302.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "The WebNLG challenge: Generating text from RDF data",
                "authors": [
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Gardent",
                        "suffix": ""
                    },
                    {
                        "first": "Anastasia",
                        "middle": [],
                        "last": "Shimorina",
                        "suffix": ""
                    },
                    {
                        "first": "Shashi",
                        "middle": [],
                        "last": "Narayan",
                        "suffix": ""
                    },
                    {
                        "first": "Laura",
                        "middle": [],
                        "last": "Perez-Beltrachini",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 10th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "124--133",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-3518"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. 2017. The WebNLG challenge: Generating text from RDF data. In Pro- ceedings of the 10th International Conference on Natural Language Generation, pages 124-133, San- tiago de Compostela, Spain. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Google ai will no longer use gender labels like 'woman' or 'man' on images of people to avoid bias",
                "authors": [
                    {
                        "first": "Shona",
                        "middle": [],
                        "last": "Ghosh",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Business Insider",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shona Ghosh. 2020. Google ai will no longer use gen- der labels like 'woman' or 'man' on images of peo- ple to avoid bias. Business Insider. Retrieved: 23 July 2020.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Evaluation of automatic video captioning using direct assessment",
                "authors": [
                    {
                        "first": "Yvette",
                        "middle": [],
                        "last": "Graham",
                        "suffix": ""
                    },
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Awad",
                        "suffix": ""
                    },
                    {
                        "first": "Alan",
                        "middle": [],
                        "last": "Smeaton",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "PLOS ONE",
                "volume": "13",
                "issue": "9",
                "pages": "1--20",
                "other_ids": {
                    "DOI": [
                        "10.1371/journal.pone.0202789"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yvette Graham, George Awad, and Alan Smeaton. 2018. Evaluation of automatic video captioning us- ing direct assessment. PLOS ONE, 13(9):1-20.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "VizWiz Grand Challenge : Answering Visual Questions from Blind People",
                "authors": [
                    {
                        "first": "Danna",
                        "middle": [],
                        "last": "Gurari",
                        "suffix": ""
                    },
                    {
                        "first": "Qing",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Abigale",
                        "middle": [
                            "J"
                        ],
                        "last": "Stangl",
                        "suffix": ""
                    },
                    {
                        "first": "Anhong",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    },
                    {
                        "first": "Chi",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Kristen",
                        "middle": [],
                        "last": "Grauman",
                        "suffix": ""
                    },
                    {
                        "first": "Jiebo",
                        "middle": [],
                        "last": "Luo",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [
                            "P"
                        ],
                        "last": "Bigham",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Computer Vision and Pattern Recognition (CVPR'18)",
                "volume": "",
                "issue": "",
                "pages": "3608--3617",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and Jeffrey P Bigham. 2018. VizWiz Grand Challenge : Answer- ing Visual Questions from Blind People. In Proceed- ings of the 2018 Conference on Computer Vision and Pattern Recognition (CVPR'18), pages 3608-3617, Salt Lake City, Utah. Computer Vision Foundation.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Prominence beyond prosody: A first approximation",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Nikolaus",
                        "suffix": ""
                    },
                    {
                        "first": "Beatrice",
                        "middle": [],
                        "last": "Himmelmann",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Primus",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "pS-prominenceS: Prominences in Linguistics. Proceedings of the International Conference",
                "volume": "",
                "issue": "",
                "pages": "38--58",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nikolaus P Himmelmann and Beatrice Primus. 2015. Prominence beyond prosody: A first approxima- tion. In pS-prominenceS: Prominences in Linguis- tics. Proceedings of the International Conference, pages 38-58. Disucom Press, University of Tuscia Viterbo.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Focused evaluation for image description with binary forcedchoice tasks",
                "authors": [
                    {
                        "first": "Micah",
                        "middle": [],
                        "last": "Hodosh",
                        "suffix": ""
                    },
                    {
                        "first": "Julia",
                        "middle": [],
                        "last": "Hockenmaier",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 5th Workshop on Vision and Language",
                "volume": "",
                "issue": "",
                "pages": "19--28",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W16-3203"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Micah Hodosh and Julia Hockenmaier. 2016. Focused evaluation for image description with binary forced- choice tasks. In Proceedings of the 5th Workshop on Vision and Language, pages 19-28, Berlin, Ger- many. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Chinese classifier categorizations and the application to second language acquisition",
                "authors": [
                    {
                        "first": "Wenyu",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wenyu Huang. 2017. Chinese classifier categorizations and the application to second language acquisition. Master's thesis, Leiden University.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "A saliency-based search mechanism for overt and covert shifts of visual attention",
                "authors": [
                    {
                        "first": "Laurent",
                        "middle": [],
                        "last": "Itti",
                        "suffix": ""
                    },
                    {
                        "first": "Christof",
                        "middle": [],
                        "last": "Koch",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Vision Research",
                "volume": "40",
                "issue": "10",
                "pages": "1489--1506",
                "other_ids": {
                    "DOI": [
                        "10.1016/S0042-6989(99)00163-7"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Laurent Itti and Christof Koch. 2000. A saliency-based search mechanism for overt and covert shifts of vi- sual attention. Vision Research, 40(10):1489 -1506.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "The misgendering machines",
                "authors": [
                    {
                        "first": "Os",
                        "middle": [],
                        "last": "Keyes",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1145/3274357"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Os Keyes. 2018. The misgendering machines:",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Trans/hci implications of automatic gender recognition",
                "authors": [],
                "year": null,
                "venue": "Proc. ACM Hum.-Comput. Interact",
                "volume": "2",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1145/3274357"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Trans/hci implications of automatic gender recog- nition. Proc. ACM Hum.-Comput. Interact., 2(CSCW).",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Gender as a variable in naturallanguage processing: Ethical considerations",
                "authors": [
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Larson",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the First ACL Workshop on Ethics in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1--11",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-1601"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Brian Larson. 2017. Gender as a variable in natural- language processing: Ethical considerations. In Pro- ceedings of the First ACL Workshop on Ethics in Natural Language Processing, pages 1-11, Valencia, Spain. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Best practices for the human evaluation of automatically generated text",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Van Der Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "Sander",
                        "middle": [],
                        "last": "Emiel Van Miltenburg",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Wubben",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 12th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "355--368",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-8643"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Chris van der Lee, Albert Gatt, Emiel van Miltenburg, Sander Wubben, and Emiel Krahmer. 2019. Best practices for the human evaluation of automatically generated text. In Proceedings of the 12th Interna- tional Conference on Natural Language Generation, pages 355-368, Tokyo, Japan. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "COCO-CN for cross-lingual image tagging, captioning and retrieval",
                "authors": [
                    {
                        "first": "Xirong",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoxu",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Chaoxi",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Weiyu",
                        "middle": [],
                        "last": "Lan",
                        "suffix": ""
                    },
                    {
                        "first": "Qijie",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "Gang",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Jieping",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xirong Li, Xiaoxu Wang, Chaoxi Xu, Weiyu Lan, Qijie Wei, Gang Yang, and Jieping Xu. 2018. COCO-CN for cross-lingual image tagging, captioning and re- trieval. CoRR, abs/1805.08661.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Prominence hierarchies",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Hunter",
                        "suffix": ""
                    },
                    {
                        "first": "Monica",
                        "middle": [],
                        "last": "Lockwood",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Macaulay",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Language and Linguistics Compass",
                "volume": "6",
                "issue": "7",
                "pages": "431--446",
                "other_ids": {
                    "DOI": [
                        "10.1002/lnc3.345"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hunter T. Lockwood and Monica Macaulay. 2012. Prominence hierarchies. Language and Linguistics Compass, 6(7):431-446.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Tangled up in BLEU: Reevaluating the evaluation of automatic machine translation evaluation metrics",
                "authors": [
                    {
                        "first": "Nitika",
                        "middle": [],
                        "last": "Mathur",
                        "suffix": ""
                    },
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Baldwin",
                        "suffix": ""
                    },
                    {
                        "first": "Trevor",
                        "middle": [],
                        "last": "Cohn",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4984--4997",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nitika Mathur, Timothy Baldwin, and Trevor Cohn. 2020. Tangled up in BLEU: Reevaluating the eval- uation of automatic machine translation evaluation metrics. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pages 4984-4997, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Room for improvement in automatic image description: an error analysis",
                "authors": [
                    {
                        "first": "Desmond",
                        "middle": [],
                        "last": "Emiel Van Miltenburg",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Elliott",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emiel van Miltenburg and Desmond Elliott. 2017. Room for improvement in automatic image descrip- tion: an error analysis. CoRR, abs/1704.04198.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "To err is robot: How humans assess and act toward an erroneous social robot",
                "authors": [
                    {
                        "first": "Nicole",
                        "middle": [],
                        "last": "Mirnig",
                        "suffix": ""
                    },
                    {
                        "first": "Gerald",
                        "middle": [],
                        "last": "Stollnberger",
                        "suffix": ""
                    },
                    {
                        "first": "Markus",
                        "middle": [],
                        "last": "Miksch",
                        "suffix": ""
                    },
                    {
                        "first": "Susanne",
                        "middle": [],
                        "last": "Stadler",
                        "suffix": ""
                    },
                    {
                        "first": "Manuel",
                        "middle": [],
                        "last": "Giuliani",
                        "suffix": ""
                    },
                    {
                        "first": "Manfred",
                        "middle": [],
                        "last": "Tscheligi",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Frontiers in Robotics and AI",
                "volume": "4",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nicole Mirnig, Gerald Stollnberger, Markus Miksch, Susanne Stadler, Manuel Giuliani, and Manfred Tscheligi. 2017. To err is robot: How humans assess and act toward an erroneous social robot. Frontiers in Robotics and AI, 4:21.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {
                    "DOI": [
                        "10.3115/1073083.1073135"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. Bleu: a method for automatic eval- uation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Com- putational Linguistics, pages 311-318, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Vagueness and utility: The semantics of common nouns",
                "authors": [
                    {
                        "first": "Rohit",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Linguistics and Philosophy",
                "volume": "17",
                "issue": "6",
                "pages": "521--535",
                "other_ids": {
                    "DOI": [
                        "10.1007/BF00985317"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rohit Parikh. 1994. Vagueness and utility: The seman- tics of common nouns. Linguistics and Philosophy, 17(6):521-535.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "A structured review of the validity of BLEU",
                "authors": [
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Reiter",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Computational Linguistics",
                "volume": "44",
                "issue": "3",
                "pages": "393--401",
                "other_ids": {
                    "DOI": [
                        "10.1162/coli_a_00322"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ehud Reiter. 2018. A structured review of the validity of BLEU. Computational Linguistics, 44(3):393- 401.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "BLEURT: Learning robust metrics for text generation",
                "authors": [
                    {
                        "first": "Thibault",
                        "middle": [],
                        "last": "Sellam",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Ankur",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "7881--7892",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020. BLEURT: Learning robust metrics for text generation. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pages 7881-7892, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "FOIL it! find one mismatch between image and language caption",
                "authors": [
                    {
                        "first": "Ravi",
                        "middle": [],
                        "last": "Shekhar",
                        "suffix": ""
                    },
                    {
                        "first": "Sandro",
                        "middle": [],
                        "last": "Pezzelle",
                        "suffix": ""
                    },
                    {
                        "first": "Yauhen",
                        "middle": [],
                        "last": "Klimovich",
                        "suffix": ""
                    },
                    {
                        "first": "Aur\u00e9lie",
                        "middle": [],
                        "last": "Herbelot",
                        "suffix": ""
                    },
                    {
                        "first": "Moin",
                        "middle": [],
                        "last": "Nabi",
                        "suffix": ""
                    },
                    {
                        "first": "Enver",
                        "middle": [],
                        "last": "Sangineto",
                        "suffix": ""
                    },
                    {
                        "first": "Raffaella",
                        "middle": [],
                        "last": "Bernardi",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "255--265",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-1024"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, Au- r\u00e9lie Herbelot, Moin Nabi, Enver Sangineto, and Raffaella Bernardi. 2017. FOIL it! find one mis- match between image and language caption. In Pro- ceedings of the 55th Annual Meeting of the Associa- tion for Computational Linguistics (Volume 1: Long Papers), pages 255-265, Vancouver, Canada. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "person, shoes, tree. is the person naked?\" what people with vision impairments want in image descriptions",
                "authors": [
                    {
                        "first": "Abigale",
                        "middle": [],
                        "last": "Stangl",
                        "suffix": ""
                    },
                    {
                        "first": "Meredith",
                        "middle": [
                            "Ringel"
                        ],
                        "last": "Morris",
                        "suffix": ""
                    },
                    {
                        "first": "Danna",
                        "middle": [],
                        "last": "Gurari",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI '20",
                "volume": "",
                "issue": "",
                "pages": "1--13",
                "other_ids": {
                    "DOI": [
                        "10.1145/3313831.3376404"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Abigale Stangl, Meredith Ringel Morris, and Danna Gurari. 2020. \"person, shoes, tree. is the person naked?\" what people with vision impairments want in image descriptions. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI '20, page 1-13, New York, NY, USA. Association for Computing Machinery.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects",
                "authors": [
                    {
                        "first": "Stanley",
                        "middle": [
                            "Smith"
                        ],
                        "last": "Stevens",
                        "suffix": ""
                    }
                ],
                "year": 1975,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stanley Smith Stevens. 1975. Psychophysics: Introduc- tion to its Perceptual, Neural, and Social Prospects. New York: John Wiley.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "BLEU is not suitable for the evaluation of text simplification",
                "authors": [
                    {
                        "first": "Elior",
                        "middle": [],
                        "last": "Sulem",
                        "suffix": ""
                    },
                    {
                        "first": "Omri",
                        "middle": [],
                        "last": "Abend",
                        "suffix": ""
                    },
                    {
                        "first": "Ari",
                        "middle": [],
                        "last": "Rappoport",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "738--744",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1081"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Elior Sulem, Omri Abend, and Ari Rappoport. 2018. BLEU is not suitable for the evaluation of text sim- plification. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process- ing, pages 738-744, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Not exactly: In praise of vagueness",
                "authors": [
                    {
                        "first": "Kees",
                        "middle": [],
                        "last": "Van Deemter",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kees Van Deemter. 2012. Not exactly: In praise of vagueness. Oxford University Press.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "When a stone tries to climb up a slope: The interplay between lexical and perceptual animacy in referential choices",
                "authors": [
                    {
                        "first": "Jorrig",
                        "middle": [],
                        "last": "Vogels",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    },
                    {
                        "first": "Alfons",
                        "middle": [],
                        "last": "Maes",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Frontiers in Psychology",
                "volume": "4",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jorrig Vogels, Emiel Krahmer, and Alfons Maes. 2013. When a stone tries to climb up a slope: The interplay between lexical and perceptual animacy in referen- tial choices. Frontiers in Psychology, 4:154.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Automatic alt-text: Computergenerated image descriptions for blind users on a social network service",
                "authors": [
                    {
                        "first": "Shaomei",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Wieland",
                        "suffix": ""
                    },
                    {
                        "first": "Omid",
                        "middle": [],
                        "last": "Farivar",
                        "suffix": ""
                    },
                    {
                        "first": "Julie",
                        "middle": [],
                        "last": "Schiller",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, CSCW '17",
                "volume": "",
                "issue": "",
                "pages": "1180--1192",
                "other_ids": {
                    "DOI": [
                        "10.1145/2998181.2998364"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shaomei Wu, Jeffrey Wieland, Omid Farivar, and Julie Schiller. 2017. Automatic alt-text: Computer- generated image descriptions for blind users on a so- cial network service. In Proceedings of the 2017 ACM Conference on Computer Supported Coopera- tive Work and Social Computing, CSCW '17, page 1180-1192, New York, NY, USA. Association for Computing Machinery.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Studying relationships between human gaze, description, and computer vision",
                "authors": [
                    {
                        "first": "Kiwon",
                        "middle": [],
                        "last": "Yun",
                        "suffix": ""
                    },
                    {
                        "first": "Yifan",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Dimitris",
                        "middle": [],
                        "last": "Samaras",
                        "suffix": ""
                    },
                    {
                        "first": "Gregory",
                        "middle": [
                            "J"
                        ],
                        "last": "Zelinsky",
                        "suffix": ""
                    },
                    {
                        "first": "Tamara",
                        "middle": [
                            "L"
                        ],
                        "last": "Berg",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'13)",
                "volume": "",
                "issue": "",
                "pages": "739--746",
                "other_ids": {
                    "DOI": [
                        "10.1109/CVPR.2013.101"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kiwon Yun, Yifan Peng, Dimitris Samaras, Gregory J. Zelinsky, and Tamara L. Berg. 2013. Studying re- lationships between human gaze, description, and computer vision. In Proceedings of the IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition (CVPR'13), pages 739-746.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "The effect of computergenerated descriptions on photo-sharing experiences of people with visual impairments",
                "authors": [
                    {
                        "first": "Yuhang",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Shaomei",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Lindsay",
                        "middle": [],
                        "last": "Reynolds",
                        "suffix": ""
                    },
                    {
                        "first": "Shiri",
                        "middle": [],
                        "last": "Azenkot",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proc. ACM Hum.-Comput. Interact",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1145/3134756"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yuhang Zhao, Shaomei Wu, Lindsay Reynolds, and Shiri Azenkot. 2017. The effect of computer- generated descriptions on photo-sharing experiences of people with visual impairments. Proc. ACM Hum.-Comput. Interact., 1(CSCW).",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "html": null,
                "text": "To illustrate, Exam-Correct \u4e00\u4f4d \u7537\u4eba \u7a7f\u8457 \u9ec3\u8272 \u4e0a\u8863 \u5728 \u7db2\u7403\u5834 \u6253 \u7db2\u7403 A man wear yellow shirt on tennis court play tennis Translation 'A man in a yellow shirt plays tennis on the tennis court.' Gender error \u4e00\u4f4d \u5973 \u5973 \u5973\u4eba \u7a7f\u8457 \u9ec3\u8272 \u4e0a\u8863 \u5728 \u7db2\u7403\u5834 \u6253 \u7db2\u7403 A woman wear yellow shirt on tennis court play tennis Age error \u4e00\u4f4d \u7537\u5b69 \u5b69 \u5b69 \u7a7f\u8457 \u9ec3\u8272 \u4e0a\u8863 \u5728 \u7db2\u7403\u5834 \u6253 \u7db2\u7403 A boy wear yellow shirt on tennis court play tennis Clothing type error \u4e00\u4f4d \u7537\u4eba \u7a7f\u8457 \u9ec3\u8272 \u5927 \u5927 \u5927\u8863 \u5728 \u7db2\u7403\u5834 \u6253 \u7db2\u7403 A man wear yellow coat on tennis court play tennis Clothing color error \u4e00\u4f4d \u7537\u4eba \u7a7f\u8457 \u7d2b \u7d2b \u7d2b\u8272 \u4e0a\u8863 \u5728 \u7db2\u7403\u5834 \u6253 \u7db2\u7403 A man wear purple shirt on tennis court play tennisFigure 2: Correct reference description, along with systematically manipulated descriptions for image 344149 from the MS COCO dataset. Each erroneous description differs only in one character from the original. The picture (of Jarkko Nieminen at the 2010 French Open) was taken by JanJan de Paris (CC BY-SA 2.0).",
                "content": "<table><tr><td>ple (4) presents a Chinese noun formation paradigm</td></tr><tr><td>for gendered person descriptions: 5</td></tr></table>",
                "type_str": "table",
                "num": null
            },
            "TABREF2": {
                "html": null,
                "text": "",
                "content": "<table/>",
                "type_str": "table",
                "num": null
            },
            "TABREF4": {
                "html": null,
                "text": "Results of multiple paired sample t-tests to compare the means of the scores for the different error categories. The table shows both the original p-values and the Bonferroni-adjusted p-values that were used to determine significance at \u03b1 = 0.05.",
                "content": "<table><tr><td colspan=\"2\">Category Direction</td><td>Mean</td><td>SD</td></tr><tr><td>Gender</td><td colspan=\"3\">Male to female 40.508 23.300</td></tr><tr><td>Gender</td><td colspan=\"3\">Female to male 41.601 25.084</td></tr><tr><td>Age</td><td>Young to old</td><td colspan=\"2\">58.475 23.252</td></tr><tr><td>Age</td><td>Old to young</td><td colspan=\"2\">49.226 25.748</td></tr></table>",
                "type_str": "table",
                "num": null
            },
            "TABREF5": {
                "html": null,
                "text": "Descriptive statistics for subcategories of",
                "content": "<table/>",
                "type_str": "table",
                "num": null
            },
            "TABREF7": {
                "html": null,
                "text": "Replacements made in our experiment",
                "content": "<table/>",
                "type_str": "table",
                "num": null
            }
        }
    }
}