File size: 108,915 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:27:44.085616Z"
    },
    "title": "Reducing Non-Normative Text Generation from Language Models",
    "authors": [
        {
            "first": "Xiangyu",
            "middle": [],
            "last": "Peng",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Georgia Institute of Technology Atlanta",
                "location": {
                    "postCode": "30332",
                    "region": "GA"
                }
            },
            "email": ""
        },
        {
            "first": "Siyan",
            "middle": [],
            "last": "Li",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Georgia Institute of Technology Atlanta",
                "location": {
                    "postCode": "30332",
                    "region": "GA"
                }
            },
            "email": ""
        },
        {
            "first": "Spencer",
            "middle": [],
            "last": "Frazier",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Georgia Institute of Technology Atlanta",
                "location": {
                    "postCode": "30332",
                    "region": "GA"
                }
            },
            "email": "sfrazier7@gatech.edu"
        },
        {
            "first": "Mark",
            "middle": [],
            "last": "Riedl",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Georgia Institute of Technology Atlanta",
                "location": {
                    "postCode": "30332",
                    "region": "GA"
                }
            },
            "email": "riedl@gatech.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Large-scale, transformer-based language models such as GPT-2 are pretrained on diverse corpora scraped from the internet. Consequently, they are prone to generating non-normative text (i.e. in violation of social norms). We introduce a technique for fine-tuning GPT-2, using a policy gradient reinforcement learning technique and a normative text classifier to produce reward and punishment values. We evaluate our technique on five data sets using automated and human participant experiments. The normative text classifier is 81-90% accurate when compared to gold-standard human judgements of normative and non-normative generated text. Our normative fine-tuning technique is able to reduce non-normative text by 27-61%, depending on the data set.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Large-scale, transformer-based language models such as GPT-2 are pretrained on diverse corpora scraped from the internet. Consequently, they are prone to generating non-normative text (i.e. in violation of social norms). We introduce a technique for fine-tuning GPT-2, using a policy gradient reinforcement learning technique and a normative text classifier to produce reward and punishment values. We evaluate our technique on five data sets using automated and human participant experiments. The normative text classifier is 81-90% accurate when compared to gold-standard human judgements of normative and non-normative generated text. Our normative fine-tuning technique is able to reduce non-normative text by 27-61%, depending on the data set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Human societies implicitly establish codes of acceptable behavior in social contexts. Normativity is behavior that conforms to expected societal norms and contracts, whereas non-normative behavior aligns to values that deviate from these expected norms. Sumner (1967) defines norms as: \"...informal rules that are not written, but, when violated, result in severe punishments and social sanction upon the individuals, such as social and religious exclusions.\" Non-normativity does not connote behavior devoid of value or immoral, but behavior that fails to conform to social standards shared by other individuals in the relevant group, organization or society. Norms can also be thought of as actions taken by an entity which conform to an identity (Katzenstein, 1996) , thus allowing others to categorize behavior as in-group or out-group. Different societies and groups collectively have different ideals about what actions constitute normative behavior; group members use these ideals * Equal contributions to heuristically guide their actions to avoid social ostracization. For example, many societies have norms against violence, or certain behaviors being conducted in public. Conflicts between individuals can arise when enacting non-normative behaviors or uttering non-normative speech.",
                "cite_spans": [
                    {
                        "start": 254,
                        "end": 267,
                        "text": "Sumner (1967)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 749,
                        "end": 768,
                        "text": "(Katzenstein, 1996)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This paper examines generative language models and the frequency at which they generate descriptions of non-normative behavior. Large-scale, transformer-based neural language models such as ELMo (Peters et al., 2018) , BERT (Devlin et al., 2018) , GPT-2 (Radford et al., 2019) , GPT-3, Grover (Zellers et al., 2019) , CTRL (Keskar et al., 2019) , T5 (Raffel et al., 2019) , and XLNet (Yang et al., 2019) are trained on very large corpora such as text scraped from the internet, books, or both.",
                "cite_spans": [
                    {
                        "start": 195,
                        "end": 216,
                        "text": "(Peters et al., 2018)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 224,
                        "end": 245,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 248,
                        "end": 276,
                        "text": "GPT-2 (Radford et al., 2019)",
                        "ref_id": null
                    },
                    {
                        "start": 293,
                        "end": 315,
                        "text": "(Zellers et al., 2019)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 318,
                        "end": 344,
                        "text": "CTRL (Keskar et al., 2019)",
                        "ref_id": null
                    },
                    {
                        "start": 350,
                        "end": 371,
                        "text": "(Raffel et al., 2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 384,
                        "end": 403,
                        "text": "(Yang et al., 2019)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "These language models generate text that is statistically representative of the corpora they were trained on. As such, text scraped from the internet co-mingles text produced by many groups with differing norms, as well as text produced by people intentionally using non-normative speech, like \"trolling\" language. Models trained on these data can then produce undesirable, harmful output. Stories from the internet and books also contain normative and non-normative situations (e.g., antagonists, as well as protagonists conducting conventionally non-normative behaviors). Consequently, it is possible, and often likely, for language models to generate non-normative descriptions of behavior (murder, crime, suicide, racist actions, rude behavior, etc.), exhibit biases against certain demographics groups (Sheng et al., 2019; Solaiman et al., 2019) , stereotypical biases (Nadeem et al., 2020) or racist text when prompted with trigger phrases (Wallace et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 807,
                        "end": 827,
                        "text": "(Sheng et al., 2019;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 828,
                        "end": 850,
                        "text": "Solaiman et al., 2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 874,
                        "end": 895,
                        "text": "(Nadeem et al., 2020)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 946,
                        "end": 968,
                        "text": "(Wallace et al., 2019)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Value alignment (Russell et al., 2015) is the concept that an agent is unable to perform actions that cause harm to humans. Harmful behavior is not limited to physical actions by robots, the focus of some AI value alignment research. We recognize that natural language communication can also cause harm. For example, Amazon Alexa, a virtual assistant AI, was reported to suggest a user commit suicide. 1 Frazier et al. (2019) developed a classifier for normative behavior which exhibits strong zeroshot and few-shot transfer across a variety of text corpora. The authors speculate that their modelwhich they call a value-aligned prior-can bias model output perceived as more normative. In this paper we ask a different question: whether a valuealigned prior can be used to reduce the generation of descriptions of non-normative behavior by neural language models.",
                "cite_spans": [
                    {
                        "start": 16,
                        "end": 38,
                        "text": "(Russell et al., 2015)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 402,
                        "end": 403,
                        "text": "1",
                        "ref_id": null
                    },
                    {
                        "start": 404,
                        "end": 425,
                        "text": "Frazier et al. (2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The common approach to fine-tuning language models is to provide additional corpora of exemplars. If a corpus of exemplars is normative, the language model can be trained to emulate this over time. Generally, in the absence of very large normative corpora, we need an alternative approach to fine-tuning language models. We use a reinforcement learning approach to fine-tuning language models, using the normative behavior classifier of Frazier et al. (2019) as a non-differentiable reward function. Our method back-propagates reward relative to the degree of non-normativity of text generated by the language model. We evaluate our reinforcement learning finetuning technique with three sets of experiments. First, we replicate the experiments by Frazier et al. (2019) on text generated by a language model instead of originally held-out corpus text. Second, we show with automated and human participant experiments that fine-tuning on reward generated by a normative classifier model can reduce the generation of non-normative text by 27 \u2212 61%. Third, we ablate our technique and show with automated and human participant experiments that the fine-tuning technique works with classifiers other than the normative classifier-specifically models trained to classify negative-sentiment and toxic language.",
                "cite_spans": [
                    {
                        "start": 437,
                        "end": 458,
                        "text": "Frazier et al. (2019)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 748,
                        "end": 769,
                        "text": "Frazier et al. (2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Humans have expectations that -just like other humans -agents will avoid harmful actions, conform to personal values and to social norms (Bicchieri, 2005) , even when not explicitly communicated. This is referred to as the value alignment problem (Soares and Fallenstein, 2014; Russell et al., 2015; Arnold et al., 2017; Abel et al., 2016) . Harmful agent behavior can theoretically be mitigated by casting values as preferences over action sequences. For example Christiano et al. (2017) collected human preferences to shape rewards for game-playing agents in reinforcement learning.",
                "cite_spans": [
                    {
                        "start": 137,
                        "end": 154,
                        "text": "(Bicchieri, 2005)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 247,
                        "end": 277,
                        "text": "(Soares and Fallenstein, 2014;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 278,
                        "end": 299,
                        "text": "Russell et al., 2015;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 300,
                        "end": 320,
                        "text": "Arnold et al., 2017;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 321,
                        "end": 339,
                        "text": "Abel et al., 2016)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 464,
                        "end": 488,
                        "text": "Christiano et al. (2017)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Value Alignment and Normative Priors",
                "sec_num": "2.1"
            },
            {
                "text": "Instead of preference learning, Frazier et al. (2019) used the BERT (Devlin et al., 2018) language model's token embeddings to train a binary classifier. This model is used to differentiate between normative and non-normative natural language sentences containing events, utterances and descriptions of behavior. They obtained training data from Goofus & Gallant (G&G), a children's educational comic strip featuring two characters of the same names. Goofus always deviates from the \"proper\" way to behave, while Gallant always performs the behavior of an exemplary child in western society at the time the comics were created. As a result, G&G is a naturally labeled source of normative and non-normative text, for the specific society it represents. Frazier et al. (2019) demonstrated this method could accurately classify descriptions of behavior as normative or non-normative. Furthermore, this classifier retained high performance in zeroshot and few-shot transfer tasks. For example, they show that their classifier, trained on G&G comics, can classify normative event descriptions in contemporary collections of popular plot points and science fiction plot summaries, instances of medium-and far-transfer, respectively. The authors speculate that their classifier model can bias agent behavior toward normative courses of action in other contexts. However, this was not directly shown. We ask whether a normative classifier can be used to fine-tune the \"behavior\" of a large-scale transformer-based language model.",
                "cite_spans": [
                    {
                        "start": 32,
                        "end": 53,
                        "text": "Frazier et al. (2019)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 68,
                        "end": 89,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 752,
                        "end": 773,
                        "text": "Frazier et al. (2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Value Alignment and Normative Priors",
                "sec_num": "2.1"
            },
            {
                "text": "Large-scale transformer-based neural language models such as BERT and GPT-2 are trained on large corpora of text scraped from the web and books. They can be fine-tuned to a specific domain of interest, commonly accomplished by providing a corpus of exemplars from that domain. Over time, the weights of the pre-trained model will shift and increasingly generate passages which better emulate the corpus of exemplars. If the fine-tuning corpus of exemplars is normative, the language model will, in theory, learn to prefer normative language over time. Goofus & Gallant is one such normative corpus, and if a language model is fine-tuned on it then it may prefer to generate normative language.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Model Training & Fine-Tuning",
                "sec_num": "2.2"
            },
            {
                "text": "GPT-2 , in particular, is a large-scale transformer-based language model trained on a large corpus of text scraped from web pages and social media. Applying the concept of value alignment as preference learning, Ziegler et al. (2019) use a reinforcement learning method on the 774M-parameter version of GPT-2 to favor human-preferred text. Crowd workers were asked to select generated text completions from a set of given prompts that had positive sentiment. These preference values were used to fine-tune GPT-2. This is one possible technique for reinforcementbased fine-tuning; sentiment is, however, not necessarily a good measure of adherence to norms. We replace the linear reward model for fine-tuning GPT-2 (Ziegler et al., 2019) with a pre-trained normative text classifier.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Model Training & Fine-Tuning",
                "sec_num": "2.2"
            },
            {
                "text": "The Plug and Play Language Models (PPLM) (Dathathri et al., 2019 ) also apply attribute classifiers to fine-tune language models; the technique is demonstrated via generating text with a target sentiment and also decreasing the frequency of toxic language. There are two limitations: (a) PPLM trains a model to operate on a fixed set of prefix input, and (b) the classification must be done on a word-by-word basis and thus cannot easily be applied to problems where the normative valence of individual words relies on a single or multiple sentence context (e.g. quoting and admonishing toxic speech). Our fine-tuning technique, in contrast, works on arbitrary prefixes and assesses the the normativity of entire sentences.",
                "cite_spans": [
                    {
                        "start": 41,
                        "end": 64,
                        "text": "(Dathathri et al., 2019",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Model Training & Fine-Tuning",
                "sec_num": "2.2"
            },
            {
                "text": "We make use of five datasets, chosen to represent a diverse set of domains. The normative text classifier by Frazier et al. (2019) was tested on a corpus of science fiction plot summaries (Ammanabrolu et al., 2019) as well as a new Plotto dataset, based on a book by the same name that catalogues plot points for scaffolding fictional story-writing. Story corpora are particularly good for testing problems pertaining to textual descriptions of normative and non-normative behavior. Stories contain antagonists that frequently violate societal norms and protagonists who are more likely to exemplify contemporary social norms. We recognize many sto-ries require protagonists to perform non-normative behaviors like violence against others to achieve normative ends, further indicating the importance of accounting for a broader frame of context when determining normativity.",
                "cite_spans": [
                    {
                        "start": 109,
                        "end": 130,
                        "text": "Frazier et al. (2019)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 188,
                        "end": 214,
                        "text": "(Ammanabrolu et al., 2019)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "2.3"
            },
            {
                "text": "The science-fiction plot summary corpus (Ammanabrolu et al., 2019) is a collection of 2,276 stories scraped from crowd-sourced plot summaries on fan sites. These stories have an average length of 89.23 sentences. Sentences in this corpus tend to give high-level overviews of the actions that characters are performing (e.g. \"Lyta accuses Sinclair of attempting to murder the ambassador\"). The sci-fi corpus also presents a transfer challenge because it involves a lot of novel entities-aliens, spaceships, laser weapons, etc.-that do not exist in Goofus & Gallant. It is notable that a normative text classifier trained on G&G would do well on zero-shot transfer to the sci-fi corpus. This makes it an attractive dataset for our experiments for the same reasons.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "2.3"
            },
            {
                "text": "The Plotto dataset consists of 900 sentences extracted from a book, which catalogues plot points used in popular fiction. Frazier et al. 2019pruned some exceptionally anachronistic and misogynistic sentences from the corpora. These sentences approximate the level of abstraction in the sci-fi corpus but have more contemporary narratives.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "2.3"
            },
            {
                "text": "The ROCstories (Mostafazadeh et al., 2016) corpus contains 52,666 five-sentence stories, often about everyday life situations (e.g. going for a jog, taking a test in school, etc.). Unlike the previous two corpora, it covers a different space of more common, mundane events which usually do not have strong normativity connotations.",
                "cite_spans": [
                    {
                        "start": 15,
                        "end": 42,
                        "text": "(Mostafazadeh et al., 2016)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "2.3"
            },
            {
                "text": "Sentiment is often used as a surrogate for normativity under the belief that non-normative behavior would be associated with negative sentiment. The relationship between normativity and sentiment is not that simple, as we will show in Section 4.3. We include sentiment experiments using large review datasets from IMDb, Yelp, and Amazon (Kotzias et al., 2015) because (1) previous value alignment research has incorporated sentiment analysis, and (2) we want to test our techniques on classifiers other than the normative text classifier.",
                "cite_spans": [
                    {
                        "start": 337,
                        "end": 359,
                        "text": "(Kotzias et al., 2015)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "2.3"
            },
            {
                "text": "Non-normativity is a superset of toxic language in the sense that toxic language is non-normative, but not all non-normative descriptions are toxic. We also conduct experiments using toxic language classifiers -fine-tuned on sentiment corpora like the dataset from the Toxic Comment Classification Challenge 2 as an alternative to the normative text classifier fine-tuned on G&G.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "2.3"
            },
            {
                "text": "The GPT-2 model is trained by minimizing its cross-entropy loss given by :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Normative Fine-Tuning",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "loss w (X, y) = \u2212 log exp(X[y]) i\u2208V exp(X[i]) = \u2212 log (\u03c3(X) y )",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Normative Fine-Tuning",
                "sec_num": "3"
            },
            {
                "text": "where X is a vector containing output logits and y is the index of the word from the ground truth in X. V is the model's vocabulary, \u03c3 is the softmax function, and \u03c3(X) y is the ground truth probability of the word. To punish GPT-2 for producing non-normative text, we use a normative text classifier to evaluate the model's performance and produce a reward value, which is applied to the loss and backpropagated through GPT-2. Given that the normativity of a sentence can only be determined by reading the entire sentence, the classifier must therefore produce a single numeric value per sentence. Specifically, we augment the cross-entropy loss computation with predictions from the pre-trained classifier. We define the sentence loss as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Normative Fine-Tuning",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "loss s (s) = 1 n j\u2208s loss w (X j , y j ) + u(s)",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Normative Fine-Tuning",
                "sec_num": "3"
            },
            {
                "text": "where s is the continuation sentence generated by the neural language model, n = |s| \u2212 1 is the number of the words in the continuation sentence, X j is the j th logit vector, and y j is the ground truth index for the j th word. u(s) is a function of the output of the classifier converted into a punishment value; a value of zero indicates no punishment, and higher positive values indicating increasingly nonnormative sentences. The loss w counter-balances the reward and prevents the generated texts from descending into incoherent fragments. The punishment function u(s) generates a value proportional to the average word loss so that it does not become overwhelmed by loss w :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Normative Fine-Tuning",
                "sec_num": "3"
            },
            {
                "text": "u(s) = \u03c1\u03b2(1 \u2212 C(s))( 1 n j\u2208s loss w (X j , y j )) (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Normative Fine-Tuning",
                "sec_num": "3"
            },
            {
                "text": "where s is a continuation sentence, C(s) is the binary {0, 1} label given by the normative classifier, \u03c1 is a hyper-parameter to control the strength of the penalty, and \u03b2 = (1 \u2212 i \u00d7 0.05) decreases the penalty as the number of fine-tuning iterations i increases. That is, if the generated sentence is classified as normative, a loss close to zero will be applied to each logit generated by the language model. If the generated sentence is non-normative, a higher total sentence loss will be applied to each logit. \u03b2 decreases the step size during back-propagation to avoid over-shooting the local minima. loss w acts as a cycle loss component, punishing the sentences with undesirable characteristics. The fine-tuning process is as follows: given a set of input sentences from a corpus, GPT-2 is used to generate successor sentences. We generate 60 tokens and truncate at the first punctuation mark (e.g. periods, question marks). These continuation sentences are fed through a classifier, which outputs the binary label we treat as a reward C(s) \u2208 {0, 1}. Sentences labeled as 0 are those with undesirable characteristic. As per Equation 3, the reward is used to calculate the punishment score by subtracting from 1.0 and scaling by the average word loss of the sentence. This value is then used to compute a sentence loss as in Equation (2). The sentence loss is averaged to obtain the token-level loss, which is then added to each logit from the continuation sentence and the loss is back-propagated into GPT-2. The process is illustrated in Figure 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1546,
                        "end": 1554,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Normative Fine-Tuning",
                "sec_num": "3"
            },
            {
                "text": "To prevent the model from deviating too much from the language in the original dataset, we feed the fine-tuned model with the same set of input sentences at every loop and use the output sentences to even further fine-tune the model. As the model is trained, the output sentences will differ, and the reward value C(s) may change after every iteration as the model shifts its distribution.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Normative Fine-Tuning",
                "sec_num": "3"
            },
            {
                "text": "We conduct three sets of experiments to (1) verify the normative text classifier on generated continuations, (2) evaluate our reward-based fine-tuning with the normative text classifier, (3) evaluate our reward-based fine-tuning on other classifiers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "The normative text classifier by Frazier et al. (2019) was evaluated on original sentences from a number of corpora, including the science fiction story corpus (sci-fi) we use in subsequent evaluation experiments. Generated text potentially constitutes a shift in the text distribution. Hence, the accuracy of classifiers on generated continuations must be validated. The 117M parameter GPT-2 is fine-tuned with training sets from Plotto, ROCstories, sci-fi, Toxic and Sentiment datasets, separately, in order to shift the output probability distribution of GPT-2 and to make it generate text similar to the corpus we used for training. The sci-fi and Plotto corpora were used for fine-tuning two different versions of the normative text classifier, starting with the classifier by Frazier et al. (2019) . Thus the original classifier originally trained on G&G was updated to the respective domains; a few-shot transfer paradigm. We fine-tuned the classifiers for 2-5 iterations.",
                "cite_spans": [
                    {
                        "start": 33,
                        "end": 54,
                        "text": "Frazier et al. (2019)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 782,
                        "end": 803,
                        "text": "Frazier et al. (2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Replication of the Normative Classifier",
                "sec_num": "4.1"
            },
            {
                "text": "For the ROCstories, Toxic and Sentiment datasets, we directly train a BERT-based classifier on the given labels instead of fine-tuning the classifier that was first trained on G&G. We found the G&G-trained classifier did not transfer well to ROCstories and thus collected our own normative and non-normative labels. Toxic and Sentiment experiments do not look at normativity so we did not use the normative classifier.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Replication of the Normative Classifier",
                "sec_num": "4.1"
            },
            {
                "text": "A human participant study was then conducted to validate the fine-tuned classifier's accuracy. Sentences from each corpus test set were randomly chosen and used as prompts for GPT-2 to generate continuation sentences. 70 crowd workers on Mechanical Turk labeled those generated sentences as normative or non-normative (or positive or negative sentiment, or toxic or non-toxic). Each sentence received at least three labels. We treat the majority label from humans participants as the ground-truth. Table 1 shows the accuracy of classifiers on generated continuations and on sentences directly from the test sets. Accuracy decreases on generated continuations, but are on par with accuracy on sentences taken directly from the test corpora, and on par with the results from Frazier et al. (2019) . This indicates that any distributional shift during generation is likely inconsequential and the classifer achieves good zero-shot transfer to more datasets.",
                "cite_spans": [
                    {
                        "start": 773,
                        "end": 794,
                        "text": "Frazier et al. (2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 498,
                        "end": 505,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 1: Replication of the Normative Classifier",
                "sec_num": "4.1"
            },
            {
                "text": "Non-Normative Generation",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2: Decreasing",
                "sec_num": "4.2"
            },
            {
                "text": "In this set of experiments, we seek to determine if, and by how much, the amount of non-normative behavior descriptions generated by GPT-2 decreases when fine-tuned with the normative text classifier. We emphasis the decrease of non-normative language because both normative and neutral languages are acceptable. Consistent with Experiment 1, we first fine-tune the 117M parameter version of GPT-2 with sentences sampled from three datasets: ROCstories, sci-fi, and Plotto. This gives us three versions of GPT-2: GPT-ROCstories, GPT-scifi and GPTplotto, respectively. The 117M GPT-2 model is fine-tuned for two, three and five iterations separately on ROCstories, Plotto and sci-fi to avoid overfitting. We then fine-tune each of these models a second time using the reinforcement learning, reward-based technique in Section 3. We refer to these models as GPT-ROCstories-norm, GPT-sci-finorm, and GPT-Plotto-norm, respectively. Due to the small size of the datasets, GPT-2 easily overfits during training. Therefore, we only fine-tune one of its 12 attention heads to avoid overfitting.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2: Decreasing",
                "sec_num": "4.2"
            },
            {
                "text": "We evaluate the performance of our fine-tuned GPT-X-norm models (X=plotto, scifi, ROCstories) by analyzing the change in the proportion of generated text that is non-normative. We measure the ratio of non-normative to normative text in two ways. First, we use the normative text classifier on continuations generated by baselines and fine-tuned models. This is an automated evaluation; Experiment 1 suggests the normative text classifier has high accuracy on the continuations. However, the gold standard is the human participant labels. For our second evaluation metric, we hired 70 Mechanical Turk workers to label generated continuation sentences as normative (including neutral) or nonnormative. At least 3 crowd workers labeled each sentence and the majority vote is considered as the ground truth label. Table 2 shows the proportions of non-normative sentence continuations for both the baseline and the fine-tuned models. The results are summarized below. We note percentage decreases, which are the relative percentage decrease compared to the original statistics. 3",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 810,
                        "end": 817,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 2: Decreasing",
                "sec_num": "4.2"
            },
            {
                "text": "\u2022 GPT-ROCstories generates non-normative continuations 64% of the time according to the normative text classifier, which reduces to 26% after further fine-tuning, a 59% decrease. Humans label GPT-ROCstories continuations as non-normative 58% of the time, which drops to 22%, a 61% decrease.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2: Decreasing",
                "sec_num": "4.2"
            },
            {
                "text": "\u2022 GPT-Plotto generates non-normative continuations 81% of the time according to the normative text classifier, which reduces to 59% after further fine-tuning, a 27% decrease. Humans label GPT-Plotto continuations as nonnormative 72% of the time, which drops to Label Sentence Non-norm. Mollari now refuses to pay the two parents' expenses and lives. Non-norm. Garibaldi slaps the door behind them and locks it behind them. Non-norm. He considers himself morally superior to his family because he is wealthy. Norm.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2: Decreasing",
                "sec_num": "4.2"
            },
            {
                "text": "Nathaniel repays his debt through an honest act of honest enterprise. Norm.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2: Decreasing",
                "sec_num": "4.2"
            },
            {
                "text": "He then makes a generous and appropriate sacrifice. Norm.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2: Decreasing",
                "sec_num": "4.2"
            },
            {
                "text": "He returns home to support his country. 53%, also a 27% decrease.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2: Decreasing",
                "sec_num": "4.2"
            },
            {
                "text": "\u2022 GPT-scifi generates non-normative continuations 35% of the time according to the normative text classifier, which reduces to 15% after further fine-tuning, a 55% decrease. Humans label GPT-scifi continuations as nonnormative 26% of the time, which drops to 18%, a 31% decrease.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2: Decreasing",
                "sec_num": "4.2"
            },
            {
                "text": "We observe that the classifier results are generally in line with the human evaluation results. The models fine-tuned on the Plotto dataset generally generate more non-normative continuation sentences and are more difficult to induce normativity. The models fine-tuned on the sci-fi dataset have the lowest frequency of non-normative generations, but can still be induced to produce lower frequencies with this method. The perplexity remains steady after fine-tuning with the normative text classifier, indicating that the GPT-X-norm models are not overfitting nor losing their fluency. Table 3 shows some examples of sentences generated by the fine-tuned GPT-2 models for the sci-fi and Plotto domains.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 587,
                        "end": 594,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 2: Decreasing",
                "sec_num": "4.2"
            },
            {
                "text": "In the previous sections we evaluate how the normative text classifier and our fine-tuning technique work together to decrease the generation of nonnormative text. In this section, we ablate our system and evaluate our fine-tuning method independently of the normative text classifier. We seek to determine whether the fine-tuning technique is general enough to work with other classifiers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 3: Other Classifiers",
                "sec_num": "4.3"
            },
            {
                "text": "We replicate the experimental methodolgy in Section 4.2 but with the Toxic Comment Classification dataset and the Sentiment dataset. Sentiment is often used as a surrogate for normativity because non-normative behavior might be inferred to be perceived with negative sentiment, and because labeled sentiment data is more readily available. Toxic language is a subclass of non-normative behavior. First, we train two classifiers using the same technique as Frazier et al. (2019) . Specifically, we fine-tune BERT on the datasets with ground-truth sentiment and toxicity labels. Both classifiers are fine-tuned 5 times on training set of corpora and tested on test sets (see Table 1 ).",
                "cite_spans": [
                    {
                        "start": 456,
                        "end": 477,
                        "text": "Frazier et al. (2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 673,
                        "end": 680,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 3: Other Classifiers",
                "sec_num": "4.3"
            },
            {
                "text": "We follow the methodology in Section 4.2 to produce new GPT-2 baseline models. To make the improvement from applying our technique more visible, we fine-tuned the 117M GPT-2 with only toxic or negative sentences when producing the baseline models, and obtained GPT-senti-ext and GPT-toxic-ext, which frequently produce negative or toxic generated continuations. We also finetuned the 117M GPT-2 with balanced datasets (half negative texts and half toxic texts, respectively), and refer to these two models as GPT-senti-bal and GPT-toxic-bal. We then further fine-tune these models using their respective classifiers per the technique in Section 4.2. Table 4 shows the percentage of textual continuations that are either toxic or contain negative sentiment. Fine-tuning GPT-senti-ext with the sentiment classifier can reduce negative sentiment from 76% to 42%, a 45% reduction. Fine-tuning GPTsenti-bal with the sentiment classifier can reduce negative sentiment from 36% to 29%, a 17% reduction. Fine-tuning GPT-toxic-ext with the toxic classifier can reduce toxic language from 57% to 30%, a 46% reduction. Fine-tuning GPT-toxic-bal with the toxic classifier can reduce toxic language from 33% to 28%, a 13% reduction. This shows that the fine-tuning technique working on sentence loss is agnostic to which classifier is used.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 650,
                        "end": 657,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 3: Other Classifiers",
                "sec_num": "4.3"
            },
            {
                "text": "We did not compare our results directly to the Plug and Play Langauge Models (PPLM) work (Dathathri et al., 2019) , which also uses a toxic word classifier to fine-tune a language model. PPLM fine-tunes on a word-by-word basis instead of at the sentence unit, making it difficult to account for the context needed for determining normativity. For toxic language reduction, their model is trained to operate on a pre-given set of prompts such as \"black\" or \"asian\". For these prompts, given during training, they can reduce GPT-2's toxic language frequency from \u223c10% to \u223c6%. This is non-significant (p < 0.23) though it is challenging to reduce a number that is already close to zero. When we prompt our GPT-toxic-bal and GPT-toxicbal-norm with \"asian\" and \"black\", we see reductions from 52% to 32% and from 70% to 50%, respectively. Our classifier has only ever seen the word \"black\" once and has never seen the word \"asian\". We see higher occurrences of toxicity because GPT-2 is fine-tuned on the equal numbers of toxic and non-toxic sentences from the Toxic dataset (whereas PPLM compares against a nonfine-tuned version of GPT-2) and because GPT-2 has a pre-existing unjust bias toward these words.",
                "cite_spans": [
                    {
                        "start": 89,
                        "end": 113,
                        "text": "(Dathathri et al., 2019)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 3: Other Classifiers",
                "sec_num": "4.3"
            },
            {
                "text": "To address the relationship between sentiment and normativity, we sample 300 sentences from the sci-fi corpus and 300 sentences from the generation results of the trained GPT-2 model and classify them using the normative text classifier and Sen-tiWordNet (Esuli and Sebastiani, 2006) . Figure 2 shows the percentage of sentences were classified as (a) both normative and positive/neutral sentiment (orange), (b) both non-normative and negative sentiment (blue), (c) normative but negative sentiment (green), and (d) non-normative but positive/neutral sentiment (brown). Only about half the sentences tested (53.08%) had sentiment and normativity labels that matched, whereas 46.92% of sentences have conflicting labels.",
                "cite_spans": [
                    {
                        "start": 255,
                        "end": 283,
                        "text": "(Esuli and Sebastiani, 2006)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 286,
                        "end": 294,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 3: Other Classifiers",
                "sec_num": "4.3"
            },
            {
                "text": "We demonstrate how value-aligned priors such as normative text classifiers can act as a reward provider to nudge the GPT-2 language model towards producing more normative and neutral descriptions of behaviors and events. Applying this reward-based fine-tuning technique reduces the likelihood of generating sentences containing non-normative behavior by approximately \u223c27-61%, depending on the dataset. Some datasets are more non-normative and more resistant to reduction of non-normativity. Datasets with low nonnormativity to begin with are, naturally, more resistant.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "Beyond the numerical results, this shows evidence that policy-gradient based reinforcement learning approaches to fine-tuning can be an effective means for reducing the generation of nonnormative descriptions. By using a normative text classifier-a value aligned prior-one can finetune a language model to the desired domain and then fine-tune using the prior again to reduce nonnormative generation that stems either from GPT-2 or from the domain corpus. We provide this approach as an alternative-or in complement todebiasing techniques that attempt to correct for prejudicial bias in datasets prior to training. Our approach is roughly equivalent to teaching a language model to censor itself.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "The policy-gradient based reinforcement learning technique using a value-aligned prior can be even more valuable with GPT-3, where fine-tuning to a domain is less necessary. GPT-3 has been demonstrated to be capable of non-normative, toxic, and prejudicially biased generation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "By using the normative text classifier trained on Goofus & Gallant comics, our results are limited to Western-and in particular Americanmainstream ideals of normative behavior. We acknowledge that culture is not monolithic, even within the United States of America, and this represents only one of many possible sources of normativity. We cannot conclusively say that our results will hold if we had normative text classifiers trained from different source materials. Because general sources of normative behavior are currently hard to come by, we attempt to show generalization of our technique with experiments using sentiment and toxic language.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "One limitation of our work is that the normative text classifier can only classify individual sentences without context. Given the context-dependent nature of normativity, the normative text classifier may overlook non-normative sentences that may appear normative out-of-context. This may lead to GPT-2 still producing this sentence in its nonnormative context. Another limitation is that finetuning GPT-2 on Plotto, ROCstories and sci-fi datasets leads to it generating both neutral and normative sentences. If a model that generates solely normative sentences is desired, one can substitute the normative classifier with a ternary classifier with labels for normative, non-normative, and neutral sentences, and adjust the reward signals accordingly. Furthermore, fine-tuning classifiers requires datasets with labeled exemplars, hence, in order to replicate our work to generate texts with some other desirable characteristics, datasets with labels would be prerequisites. The motivation of our work is to show how those who are concerned with generating undesirable text language models can obtain some control over the generation process. We look at normativity, but also show how other criteria can be applied. However, as is true for most algorithms, those with malicious intent can find ways to corrupt the intentions of the work. For example, equation 3can be trivially modified to punish normative text instead of non-normative text.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "We have shown that large-scale transformer-based neural language models can be made to generate text containing fewer descriptions of nonnormative behavior by applying data-efficient, policy-gradient reinforcement learning. As most large-scale language models are trained on datasets from the internet and from books, the potential for intentional or unintentional non-normative language persists. We see this as a first step toward decreasing the potential for unintended, unacceptable, anachronistic or harmful language.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "6"
            },
            {
                "text": "While our primary result is to show that we can decrease the generation of non-normative behavior descriptions, our normative classifier of choice is rooted in Western/American norms and values. Normative classifiers are rare and datasets containing normative or preference learning examples are difficult to obtain. However, our results show that even small datasets of normative examples can be converted into few-shot classifiers and applied to new domains. By replicating our results with sentiment and toxic classifier, we show that our technique is not specific to any one classifier.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "6"
            },
            {
                "text": "https://www.newsweek.com/amazon-echo% 2Dtells-uk-woman-stab-herself-1479074/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Percentage decrease is calculated by (p \u2212p)/p, where p andp are the proportion of non-normative behavior (% Nonnorm) generated by GPT-X and GPT-X-norm, respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Reinforcement learning as a framework for ethical decision making",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Abel",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Macglashan",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [
                            "L"
                        ],
                        "last": "Littman",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Workshops at the Thirtieth AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Abel, James MacGlashan, and Michael L Littman. 2016. Reinforcement learning as a frame- work for ethical decision making. In Workshops at the Thirtieth AAAI Conference on Artificial Intelli- gence.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Story realization: Expanding plot events into sentences",
                "authors": [
                    {
                        "first": "Prithviraj",
                        "middle": [],
                        "last": "Ammanabrolu",
                        "suffix": ""
                    },
                    {
                        "first": "Ethan",
                        "middle": [],
                        "last": "Tien",
                        "suffix": ""
                    },
                    {
                        "first": "Wesley",
                        "middle": [],
                        "last": "Cheung",
                        "suffix": ""
                    },
                    {
                        "first": "Zhaochen",
                        "middle": [],
                        "last": "Luo",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lara",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [
                            "O"
                        ],
                        "last": "Martin",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Riedl",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1909.03480"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Prithviraj Ammanabrolu, Ethan Tien, Wesley Che- ung, Zhaochen Luo, William Ma, Lara J Martin, and Mark O Riedl. 2019. Story realization: Ex- panding plot events into sentences. arXiv preprint arXiv:1909.03480.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Value alignment or misalignmentwhat will keep systems accountable?",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Arnold",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Kasenberg",
                        "suffix": ""
                    },
                    {
                        "first": "Matthias",
                        "middle": [],
                        "last": "Scheutz",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Workshops at the Thirty-First AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Arnold, Daniel Kasenberg, and Matthias Scheutz. 2017. Value alignment or misalignment- what will keep systems accountable? In Workshops at the Thirty-First AAAI Conference on Artificial In- telligence.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "The grammar of society: The nature and dynamics of social norms",
                "authors": [
                    {
                        "first": "Cristina",
                        "middle": [],
                        "last": "Bicchieri",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cristina Bicchieri. 2005. The grammar of society: The nature and dynamics of social norms. Cambridge University Press.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Deep reinforcement learning from human preferences",
                "authors": [
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Paul F Christiano",
                        "suffix": ""
                    },
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Leike",
                        "suffix": ""
                    },
                    {
                        "first": "Miljan",
                        "middle": [],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "Shane",
                        "middle": [],
                        "last": "Martic",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Legg",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "4299--4307",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar- tic, Shane Legg, and Dario Amodei. 2017. Deep reinforcement learning from human preferences. In Advances in Neural Information Processing Systems, pages 4299-4307.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Plug and play language models: a simple approach to controlled text generation",
                "authors": [
                    {
                        "first": "Sumanth",
                        "middle": [],
                        "last": "Dathathri",
                        "suffix": ""
                    },
                    {
                        "first": "Andrea",
                        "middle": [],
                        "last": "Madotto",
                        "suffix": ""
                    },
                    {
                        "first": "Janice",
                        "middle": [],
                        "last": "Lan",
                        "suffix": ""
                    },
                    {
                        "first": "Jane",
                        "middle": [],
                        "last": "Hung",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    },
                    {
                        "first": "Piero",
                        "middle": [],
                        "last": "Molino",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Yosinski",
                        "suffix": ""
                    },
                    {
                        "first": "Rosanne",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1912.02164"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and Rosanne Liu. 2019. Plug and play language mod- els: a simple approach to controlled text generation. arXiv preprint arXiv:1912.02164.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "BERT: pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: pre-training of deep bidirectional transformers for language under- standing. CoRR, abs/1810.04805.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Sentiwordnet: A publicly available lexical resource for opinion mining",
                "authors": [
                    {
                        "first": "Andrea",
                        "middle": [],
                        "last": "Esuli",
                        "suffix": ""
                    },
                    {
                        "first": "Fabrizio",
                        "middle": [],
                        "last": "Sebastiani",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "LREC",
                "volume": "6",
                "issue": "",
                "pages": "417--422",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andrea Esuli and Fabrizio Sebastiani. 2006. Senti- wordnet: A publicly available lexical resource for opinion mining. In LREC, volume 6, pages 417-422. Citeseer.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Learning norms from stories: A prior for value aligned agents",
                "authors": [
                    {
                        "first": "Spencer",
                        "middle": [],
                        "last": "Frazier",
                        "suffix": ""
                    },
                    {
                        "first": "Md Sultan Al",
                        "middle": [],
                        "last": "Nahian",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Riedl",
                        "suffix": ""
                    },
                    {
                        "first": "Brent",
                        "middle": [],
                        "last": "Harrison",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1912.03553"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Spencer Frazier, Md Sultan Al Nahian, Mark Riedl, and Brent Harrison. 2019. Learning norms from sto- ries: A prior for value aligned agents. arXiv preprint arXiv:1912.03553.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "The culture of national security: Norms and identity in world politics",
                "authors": [
                    {
                        "first": "Mary",
                        "middle": [],
                        "last": "Fainsod Katzenstein",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mary Fainsod Katzenstein. 1996. The culture of na- tional security: Norms and identity in world politics. Columbia University Press.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Ctrl: A conditional transformer language model for controllable generation",
                "authors": [
                    {
                        "first": "Bryan",
                        "middle": [],
                        "last": "Nitish Shirish Keskar",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mccann",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Lav",
                        "suffix": ""
                    },
                    {
                        "first": "Caiming",
                        "middle": [],
                        "last": "Varshney",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1909.05858"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher. 2019. Ctrl: A conditional transformer language model for control- lable generation. arXiv preprint arXiv:1909.05858.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "From group to individual labels using deep features",
                "authors": [
                    {
                        "first": "Dimitrios",
                        "middle": [],
                        "last": "Kotzias",
                        "suffix": ""
                    },
                    {
                        "first": "Misha",
                        "middle": [],
                        "last": "Denil",
                        "suffix": ""
                    },
                    {
                        "first": "Padhraic",
                        "middle": [],
                        "last": "Nando De Freitas",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Smyth",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining",
                "volume": "",
                "issue": "",
                "pages": "597--606",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dimitrios Kotzias, Misha Denil, Nando De Freitas, and Padhraic Smyth. 2015. From group to individual la- bels using deep features. In Proceedings of the 21th ACM SIGKDD International Conference on Knowl- edge Discovery and Data Mining, pages 597-606.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "A corpus and cloze evaluation for deeper understanding of commonsense stories",
                "authors": [
                    {
                        "first": "Nasrin",
                        "middle": [],
                        "last": "Mostafazadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Nathanael",
                        "middle": [],
                        "last": "Chambers",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Devi",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    },
                    {
                        "first": "Dhruv",
                        "middle": [],
                        "last": "Batra",
                        "suffix": ""
                    },
                    {
                        "first": "Lucy",
                        "middle": [],
                        "last": "Vanderwende",
                        "suffix": ""
                    },
                    {
                        "first": "Pushmeet",
                        "middle": [],
                        "last": "Kohli",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Allen",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "839--849",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli, and James Allen. 2016. A cor- pus and cloze evaluation for deeper understanding of commonsense stories. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 839-849.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Stereoset: Measuring stereotypical bias in pretrained language models",
                "authors": [
                    {
                        "first": "Moin",
                        "middle": [],
                        "last": "Nadeem",
                        "suffix": ""
                    },
                    {
                        "first": "Anna",
                        "middle": [],
                        "last": "Bethke",
                        "suffix": ""
                    },
                    {
                        "first": "Siva",
                        "middle": [],
                        "last": "Reddy",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2004.09456"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Moin Nadeem, Anna Bethke, and Siva Reddy. 2020. Stereoset: Measuring stereotypical bias in pretrained language models. arXiv preprint arXiv:2004.09456.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Deep contextualized word representations",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [
                            "E"
                        ],
                        "last": "Peters",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Neumann",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Iyyer",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proc. of NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word repre- sentations. In Proc. of NAACL.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Language models are unsupervised multitask learners",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "OpenAI Blog",
                "volume": "",
                "issue": "8",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI Blog, 1(8).",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
                "authors": [
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Raffel",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Roberts",
                        "suffix": ""
                    },
                    {
                        "first": "Katherine",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Sharan",
                        "middle": [],
                        "last": "Narang",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Matena",
                        "suffix": ""
                    },
                    {
                        "first": "Yanqi",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Peter J",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.10683"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text trans- former. arXiv preprint arXiv:1910.10683.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Research priorities for robust and beneficial artificial intelligence",
                "authors": [
                    {
                        "first": "Stuart",
                        "middle": [],
                        "last": "Russell",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Dewey",
                        "suffix": ""
                    },
                    {
                        "first": "Max",
                        "middle": [],
                        "last": "Tegmark",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "36",
                "issue": "",
                "pages": "105--114",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stuart Russell, Daniel Dewey, and Max Tegmark. 2015. Research priorities for robust and beneficial artificial intelligence. Ai Magazine, 36(4):105-114.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "The woman worked as a babysitter: On biases in language generation",
                "authors": [
                    {
                        "first": "Emily",
                        "middle": [],
                        "last": "Sheng",
                        "suffix": ""
                    },
                    {
                        "first": "Kai-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Premkumar",
                        "middle": [],
                        "last": "Natarajan",
                        "suffix": ""
                    },
                    {
                        "first": "Nanyun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1909.01326"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. 2019. The woman worked as a babysitter: On biases in language generation. arXiv preprint arXiv:1909.01326.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Aligning superintelligence with human interests: A technical research agenda",
                "authors": [
                    {
                        "first": "Nate",
                        "middle": [],
                        "last": "Soares",
                        "suffix": ""
                    },
                    {
                        "first": "Benja",
                        "middle": [],
                        "last": "Fallenstein",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Machine Intelligence Research Institute (MIRI) technical report",
                "volume": "8",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nate Soares and Benja Fallenstein. 2014. Aligning su- perintelligence with human interests: A technical re- search agenda. Machine Intelligence Research Insti- tute (MIRI) technical report, 8.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Release strategies and the social impacts of language models",
                "authors": [
                    {
                        "first": "Irene",
                        "middle": [],
                        "last": "Solaiman",
                        "suffix": ""
                    },
                    {
                        "first": "Miles",
                        "middle": [],
                        "last": "Brundage",
                        "suffix": ""
                    },
                    {
                        "first": "Jack",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Amanda",
                        "middle": [],
                        "last": "Askell",
                        "suffix": ""
                    },
                    {
                        "first": "Ariel",
                        "middle": [],
                        "last": "Herbert-Voss",
                        "suffix": ""
                    },
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jasmine",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1908.09203"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford, and Jasmine Wang. 2019. Release strategies and the social impacts of language models. arXiv preprint arXiv:1908.09203.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Normative ethics and metaethics",
                "authors": [
                    {
                        "first": "Leonard Wayne",
                        "middle": [],
                        "last": "Sumner",
                        "suffix": ""
                    }
                ],
                "year": 1967,
                "venue": "Ethics",
                "volume": "77",
                "issue": "2",
                "pages": "95--106",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Leonard Wayne Sumner. 1967. Normative ethics and metaethics. Ethics, 77(2):95-106.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Universal adversarial triggers for attacking and analyzing nlp",
                "authors": [
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Wallace",
                        "suffix": ""
                    },
                    {
                        "first": "Shi",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Nikhil",
                        "middle": [],
                        "last": "Kandpal",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    },
                    {
                        "first": "Sameer",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1908.07125"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner, and Sameer Singh. 2019. Universal adversarial trig- gers for attacking and analyzing nlp. arXiv preprint arXiv:1908.07125.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Xlnet: Generalized autoregressive pretraining for language understanding",
                "authors": [
                    {
                        "first": "Zhilin",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Zihang",
                        "middle": [],
                        "last": "Dai",
                        "suffix": ""
                    },
                    {
                        "first": "Yiming",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Jaime",
                        "middle": [],
                        "last": "Carbonell",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Russ",
                        "suffix": ""
                    },
                    {
                        "first": "Quoc V",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "5753--5763",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car- bonell, Russ R Salakhutdinov, and Quoc V Le. 2019. Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural in- formation processing systems, pages 5753-5763.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Defending against neural fake news. CoRR, abs",
                "authors": [
                    {
                        "first": "Rowan",
                        "middle": [],
                        "last": "Zellers",
                        "suffix": ""
                    },
                    {
                        "first": "Ari",
                        "middle": [],
                        "last": "Holtzman",
                        "suffix": ""
                    },
                    {
                        "first": "Hannah",
                        "middle": [],
                        "last": "Rashkin",
                        "suffix": ""
                    },
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Bisk",
                        "suffix": ""
                    },
                    {
                        "first": "Ali",
                        "middle": [],
                        "last": "Farhadi",
                        "suffix": ""
                    },
                    {
                        "first": "Franziska",
                        "middle": [],
                        "last": "Roesner",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 1905,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and Yejin Choi. 2019. Defending against neural fake news. CoRR, abs/1905.12616.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Fine-tuning language models from human preferences",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Daniel",
                        "suffix": ""
                    },
                    {
                        "first": "Nisan",
                        "middle": [],
                        "last": "Ziegler",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Stiennon",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Tom",
                        "suffix": ""
                    },
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [],
                        "last": "Christiano",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Irving",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1909.08593"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Chris- tiano, and Geoffrey Irving. 2019. Fine-tuning lan- guage models from human preferences. arXiv preprint arXiv:1909.08593.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "https://www.kaggle.com/c/jigsaw% 2Dtoxic-comment-classification-challenge/ Pipeline for fine-tuning GPT-2 with the classifier. Loss is backpropagated through the output logits to GPT-2."
            },
            "FIGREF1": {
                "num": null,
                "type_str": "figure",
                "uris": null,
                "text": "Differences between normative classification and sentiment classification."
            },
            "TABREF1": {
                "text": "Results of Mechanical Turk study. Accuracy on generated continuations equals to the percentage of Mechanical Turk worker labels equivalent to labels produced by the normative classifier when classifying generated sentences, since Mechanical Turk worker labels are considered as ground truth label of generated continuations. Accuracy on original corpora is measured by the classifier on the held-out test sets of corpora sentences.",
                "content": "<table/>",
                "html": null,
                "num": null,
                "type_str": "table"
            },
            "TABREF3": {
                "text": "",
                "content": "<table><tr><td>: The proportion of non-normative behavior and</td></tr><tr><td>events (% Non-norm) generated by different fine-tuned</td></tr><tr><td>models on different datasets. Ratios are measured us-</td></tr><tr><td>ing the normative text classifier (automated) and Me-</td></tr><tr><td>chanical Turk studies (human labeling).</td></tr></table>",
                "html": null,
                "num": null,
                "type_str": "table"
            },
            "TABREF4": {
                "text": "Examples of generated normative and nonnormative sentences from GPT-Plotto and GPT-scifi.",
                "content": "<table/>",
                "html": null,
                "num": null,
                "type_str": "table"
            },
            "TABREF6": {
                "text": "",
                "content": "<table><tr><td>: The proportion of non-normative behavior and</td></tr><tr><td>events (% non-norm.) generated by different fine-tuned</td></tr><tr><td>models on different datasets.</td></tr></table>",
                "html": null,
                "num": null,
                "type_str": "table"
            }
        }
    }
}