File size: 84,685 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:28:07.267490Z"
},
"title": "RecipeNLG: A Cooking Recipes Dataset for Semi-Structured Text Generation",
"authors": [
{
"first": "Micha\u0142",
"middle": [],
"last": "Bie\u0144",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Micha\u0142",
"middle": [],
"last": "Gilski",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Martyna",
"middle": [],
"last": "Maciejewska",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Wojciech",
"middle": [],
"last": "Taisner",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Dawid",
"middle": [],
"last": "Wi\u015bniewski",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Agnieszka",
"middle": [],
"last": "\u0141awrynowicz",
"suffix": "",
"affiliation": {},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Semi-structured text generation is a non-trivial problem. Although last years have brought lots of improvements in natural language generation, thanks to the development of neural models trained on large scale datasets, these approaches still struggle with producing structured, context-and commonsense-aware texts. Moreover, it is not clear how to evaluate the quality of generated texts. To address these problems, we introduce RecipeNLG-a novel dataset of cooking recipes. We discuss the data collection process and the relation between the semi-structured texts and cooking recipes. We use the dataset to approach the problem of generating recipes. Finally, we make use of multiple metrics to evaluate the generated recipes.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "Semi-structured text generation is a non-trivial problem. Although last years have brought lots of improvements in natural language generation, thanks to the development of neural models trained on large scale datasets, these approaches still struggle with producing structured, context-and commonsense-aware texts. Moreover, it is not clear how to evaluate the quality of generated texts. To address these problems, we introduce RecipeNLG-a novel dataset of cooking recipes. We discuss the data collection process and the relation between the semi-structured texts and cooking recipes. We use the dataset to approach the problem of generating recipes. Finally, we make use of multiple metrics to evaluate the generated recipes.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "A cooking recipe is a very specific category of text, that facilitates sharing culinary ideas between people and provides algorithms for food preparation. Although the recipes follow a set of informal rules which make the cooking experience understandable and reproducible (Fisher, 1969) , there are no strict rules on how this text should be structured. This makes it hard to estimate the recipe quality using any objective measures.",
"cite_spans": [
{
"start": 273,
"end": 287,
"text": "(Fisher, 1969)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Recently, we have noticed a major growth of interest in using cooking recipes datasets for performing deep learning experiments. In particular, there is a number of interesting endeavors utilizing computer vision for finding (Salvador et al., 2017) or even generating cooking recipes matching the input food image. One of the results was the publication of the Recipe1M+ (Salvador et al., 2017) (Marin et al., 2019) dataset containing both recipes and images. This dataset, which was the largest publicly available recipes dataset at the time, boosted research in this area.",
"cite_spans": [
{
"start": 225,
"end": 248,
"text": "(Salvador et al., 2017)",
"ref_id": "BIBREF19"
},
{
"start": 371,
"end": 394,
"text": "(Salvador et al., 2017)",
"ref_id": "BIBREF19"
},
{
"start": 395,
"end": 415,
"text": "(Marin et al., 2019)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "However, while the demand is still emerging, there is currently no large scale cooking dataset tailored specifically for NLP tasks. The existing resources are either not sufficiently big to make efficient use of state of the art language models, or were created with computer vision in mind. In our work, we propose a novel dataset that builds on that previous work and resources. We hope that this resource, which is currently the largest cooking recipes dataset publicly available, may further empower research in the area.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "This work is composed of three parts. In Section 3 we outline the problem of imitating cooking recipes and their structure. We show the limitations that caused us to recognize the existing resources as insufficient for generating complete cooking recipes. In Section 4, we introduce a novel recipes dataset built for semi-structured (Buneman, 1997) text generation, which contains over 2 million recipes. We present detailed information about the process of data gathering, deduplication, and cleansing. Finally, in Section 5 we present the implementation details and results of our experiment. We make use of a Named Entity Recognizer (NER) to extract food entities from the dataset and provide them as an input for the recipe generator, using special control tokens. This data is used to fine-tune a GPT-2 (Radford et al., 2019) language model which generates new recipes based on the given list of food entities. We use a number of evaluation methods to compare the generated output to the real recipes using the same set of food entities.",
"cite_spans": [
{
"start": 333,
"end": 348,
"text": "(Buneman, 1997)",
"ref_id": "BIBREF1"
},
{
"start": 808,
"end": 830,
"text": "(Radford et al., 2019)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In summary, our work introduces RecipeNLG 1 -the novel dataset of cooking recipes, along with the language generation task based on this dataset.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Dissemination of artificial neural network architectures like GPT-2 (Radford et al., 2019) , BERT (Devlin et al., 2019) or LSTM (Hochreiter and Schmidhuber, 1997) , (Merity et al., 2017) vance the field of text generation. Recent developments in neural network architectures (Krizhevsky et al., 2012) , (Liang and Hu, 2015) have enabled images to text conversion and vice versa. Publishing Recipe1M+ dataset (Salvador et al., 2017) made it reasonable to utilize deep neural networks and initiated a series of new publications. (Marin et al., 2019) combined the Recipe1M+ dataset with 13 million food images to generate joint embeddings of recipes and images. Their goal was to maximize the coherence of the generated text with its corresponding image. (Bossard et al., 2014) recognized and classified food images into 101 food categories, utilizing a dataset consisting of approximately 100K images. used the Recipe1M+ to generate simplified recipes lacking ingredient quantities and units. They evaluated their model using a perplexity score as well as the adequacy between the generated text and the image.",
"cite_spans": [
{
"start": 68,
"end": 90,
"text": "(Radford et al., 2019)",
"ref_id": "BIBREF17"
},
{
"start": 93,
"end": 119,
"text": "BERT (Devlin et al., 2019)",
"ref_id": null
},
{
"start": 128,
"end": 162,
"text": "(Hochreiter and Schmidhuber, 1997)",
"ref_id": "BIBREF5"
},
{
"start": 165,
"end": 186,
"text": "(Merity et al., 2017)",
"ref_id": "BIBREF14"
},
{
"start": 275,
"end": 300,
"text": "(Krizhevsky et al., 2012)",
"ref_id": "BIBREF7"
},
{
"start": 303,
"end": 323,
"text": "(Liang and Hu, 2015)",
"ref_id": "BIBREF10"
},
{
"start": 408,
"end": 431,
"text": "(Salvador et al., 2017)",
"ref_id": "BIBREF19"
},
{
"start": 527,
"end": 547,
"text": "(Marin et al., 2019)",
"ref_id": "BIBREF13"
},
{
"start": 752,
"end": 774,
"text": "(Bossard et al., 2014)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related work",
"sec_num": "2"
},
{
"text": "A number of efforts are underway to utilize neural language models on recipes datasets. (Parvez et al., 2018) used a dataset of 100K recipes to build an LSTM-based discriminative language model for the task of named entity recognition. They utilized a cooking recipes dataset for evaluation. (Yang et al., 2017 ) used a dataset with 31K recipes to propose reference-aware language models to generate instructions based on the ingredients provided. (Kiddon et al., 2016) presented a recurrent neural network that models global coherence. It was used to generate individual instructions based on the title and the list of ingredients. They utilized a dataset with 150K cooking recipes for model evaluation. (Yagcioglu et al., 2018 ) published a dataset consisting of approximately 20K recipes to generate question-answer pairs. (Chandu et al., 2019 ) built a custom dataset of food images and made use of the text to image approach to perform a storyboarding task for each recipe step. (Luis Herranz and Jiang, 2018) surveyed different approaches to the problem of food recognition and recipe analysis. They published a list of datasets, reported in the literature and their characteristics.",
"cite_spans": [
{
"start": 292,
"end": 310,
"text": "(Yang et al., 2017",
"ref_id": "BIBREF24"
},
{
"start": 448,
"end": 469,
"text": "(Kiddon et al., 2016)",
"ref_id": "BIBREF6"
},
{
"start": 705,
"end": 728,
"text": "(Yagcioglu et al., 2018",
"ref_id": "BIBREF23"
},
{
"start": 826,
"end": 846,
"text": "(Chandu et al., 2019",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related work",
"sec_num": "2"
},
{
"text": "(Majumder et al., 2019) proposed the task of personalized recipe generation, and have shared a dataset of 180K recipes and 700K user interactions (reviews). The authors used an encoder-decoder framework to generate recipes and conducted an evaluation using text metrics. They encoded three embedding layers: title, ingredient, and caloriclevel using BERT then decoded recipes steps using a two-layered GRU. (Lee et al., 2020) have recently presented demo paper of their system for the automatic generation of cooking recipes utilizing the Recipe1M+ dataset and a language model. The evaluation of the model was based on translation metrics. They focused on two separate tasks: ingredients, and instructions generation. On the contrary, we use prepared food entities (see Section 5.1) to generate complete recipes, which allows pairwise comparison of the original and generated recipe composed of the same set of ingredients.",
"cite_spans": [
{
"start": 407,
"end": 425,
"text": "(Lee et al., 2020)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related work",
"sec_num": "2"
},
{
"text": "We also propose a new task of generating full recipes with quantities and units. We publish a carefully prepared RecipeNLG dataset containing both recipes and tagged food entities, to ease the process of generating and evaluating recipes.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related work",
"sec_num": "2"
},
{
"text": "Cooking recipes have a specific format which consists of: a title, a list of ingredients with given amounts, and the instructions in a step by step format. The shortest part of the recipe, the title, should accurately name it and summarize its content.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Recipes as datasets",
"sec_num": "3"
},
{
"text": "The ingredients list has to contain entities consisting of the quantity, unit name, and ingredient name. The quantities of all ingredients have to be in line with the number of servings the recipe is made for. The unit name has to be in relation to the quantity. It must be appropriate to the ingredient form (liquid, dry countable, dry uncountable).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Recipes as datasets",
"sec_num": "3"
},
{
"text": "Finally, all the units in the recipe are expected to follow a single unit system -imperial or metric.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Recipes as datasets",
"sec_num": "3"
},
{
"text": "The instructions section needs to accurately present the order of steps. The actions performed on every ingredient have to be taken into account in the following recipe steps, which should reflect the state of the ingredient after the given action. All the ingredients from list should be used, and their usage quantities match those given on the ingredient list. Finally, some recipes use references to a step number of prior actions, which makes the step dependent on other steps and their ordinal numbers.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Recipes as datasets",
"sec_num": "3"
},
{
"text": "We considered using the Recipe1M+ dataset for our task, but it became clear that it has certain limitations regarding the validity of the recipe structure. To investigate these issues, we prepared a set of corresponding recipes built of 350, 141 pairs of recipes, identified by the same URL. This implies that both recipes in the pair, originated in the same place. They are considered a duplicate, despite not having exactly the same content. Example differences in content, as a result of different processing techniques is presented in Table 1 . The set of corresponding recipes can be divided into two subsets -Recipe1M+ subset (R s ) and Gathered subset (G s ).",
"cite_spans": [],
"ref_spans": [
{
"start": 539,
"end": 546,
"text": "Table 1",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Recipes as datasets",
"sec_num": "3"
},
{
"text": "During the data exploration process, we noticed that the number of instructions in the corresponding recipes varies, usually it is larger in R s . To explain this difference, we manually verified 100 randomly selected pairs of corresponding recipes and found that 34 of them had the same structure, and in 62 cases recipes from R s were malformed -had more steps than the original ones, while recipes from G s kept the original structure.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Recipes as datasets",
"sec_num": "3"
},
{
"text": "We discovered that the recipe instructions in the Recipe1M+ dataset might have been segmented into sentences instead of actual steps (see Table 1 ). To find out whether this explanation is correct, we split recipe instructions form G s into sentences. The distribution of the number of obtained sentences in the recipe is similar to the R s instructions distribution, which indicates that R s recipes structure might have been altered. As our efforts aimed at generating semi-structured text, any changes in the structure of the documents are not acceptable.",
"cite_spans": [],
"ref_spans": [
{
"start": 138,
"end": 145,
"text": "Table 1",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Recipes as datasets",
"sec_num": "3"
},
{
"text": "Another issue we encountered during the data exploration, is the absence or malformation of fractions which we observed in Recipe1M+ (see Table 1). We manually checked the same randomly selected 100 pairs and found, that 79 recipes from the R s dataset missed at least one fraction from the set of ingredients, while the recipes from G s were correctly reflecting the actual fractions in all cases. Furthermore, we found that the total number of recipes that had zero fractions was five times greater in R s than in G s .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Recipes as datasets",
"sec_num": "3"
},
{
"text": "Distortion of the fractions in this scale makes quantitative analyses pointless. Moreover, the text generator trained on this data would be unable to create logically coherent lists of ingredients.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Recipes as datasets",
"sec_num": "3"
},
{
"text": "The results presented in Section 3 indicate the need for an enhanced dataset, appropriate for semi-structured text generation. We prepared a novel dataset named RecipeNLG, built on top of Recipe1M+, but enhanced with new and corrected records. Additional recipes were gathered from multiple cooking web pages, using automated scripts in a web scraping process.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "RecipeNLG dataset",
"sec_num": "4"
},
{
"text": "During the exploratory data analysis multiple problems regarding the structure of recipes were found and corrected. Recipes without any ingredients or instructions were considered to be extraction errors and were removed. We removed the excessive whitespace characters and replaced unicode symbols, (e.g., fractions) with their ASCII equivalents. Finally, the Recipe1M+ dataset was appended to the gathered data. The RecipeNLG dataset contains an additional column, that identifies the origin of each record -Recipe1M+ or Gathered data.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset cleansing",
"sec_num": "4.1"
},
{
"text": "Deduplication was required to ensure that records do not overlap in the resulting set of the recipes. We began with finding duplicated recipes identified by the same URL -recipes downloaded from the same source are supposed to be identical. Then, pairs consisting of the same sequence of characters in instructions and ingredients were detected and removed. Finally, we found and removed near matches. The cosine similarity score was calculated pairwise upon a TF-IDF representation of the recipe ingredients and instructions.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset cleansing",
"sec_num": "4.1"
},
{
"text": "Based on the corresponding recipes set (Section 3), we have determined the value of a duplication threshold as the minimum value of cosine similarity, starting from which a pair of records is considered to be a duplicate, by comparing the set of known duplicates with the set of candidate duplicates for each threshold value (Figure 2 ). For the duplication threshold, we chose the value where \u2022 (Some may elect to keep the spices; the recipe will still turn out but will have a different flavor than intended. \u2022 ).",
"cite_spans": [],
"ref_spans": [
{
"start": 325,
"end": 334,
"text": "(Figure 2",
"ref_id": "FIGREF1"
}
],
"eq_spans": [],
"section": "Dataset cleansing",
"sec_num": "4.1"
},
{
"text": "\u2022 Combine dressing, lime juice, and honey.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset cleansing",
"sec_num": "4.1"
},
{
"text": "\u2022 Marinate the chicken tenders in this mixture for at least one hour.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset cleansing",
"sec_num": "4.1"
},
{
"text": "\u2022 Grill chicken to a lightly golden color.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset cleansing",
"sec_num": "4.1"
},
{
"text": "\u2022 Drain and discard spices from the Italian dressing. (Some may elect to keep the spices; the recipe will still turn out but will have a different flavor than intended.).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset cleansing",
"sec_num": "4.1"
},
{
"text": "\u2022 Combine dressing, lime juice, and honey.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset cleansing",
"sec_num": "4.1"
},
{
"text": "\u2022 Marinate the chicken tenders in this mixture for at least one hour.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset cleansing",
"sec_num": "4.1"
},
{
"text": "\u2022 Grill chicken to a lightly golden color. the F1 score was the highest, which is 0.92. During the deduplication 523,040 records were removed.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset cleansing",
"sec_num": "4.1"
},
{
"text": "We filtered out recipes in languages other than English. To recognize language of the recipe, we used only instructions, since foreign names (e.g., croissant) are common in titles and ingredients names, and may mislead the classifier. We used Google Translate API for language detection task.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset cleansing",
"sec_num": "4.1"
},
{
"text": "The RecipeNLG dataset contains 2, 231, 142 distinct cooking recipes and to the best of our knowledge, it is the largest available dataset in the domain. Figure 3 presents distributions of the number of elements in instructions, it visualizes the trend described in Section 3. This suggests, that recipes in RecipeNLG are more likely to have a structure consistent with the original recipes. ",
"cite_spans": [],
"ref_spans": [
{
"start": 153,
"end": 161,
"text": "Figure 3",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "RecipeNLG metrics",
"sec_num": "4.2"
},
{
"text": "We present our experiment performed on the RecipeNLG dataset. The goal was to prepare a model, which makes use of food entities to generate a complete cooking recipe. To accomplish this task, we prepared a NER model for identifying and extracting food entities. A GPT-2 model was fine-tuned for the recipe generation. The generated recipes were compared against the original recipes, using automatic evaluation metrics.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiment",
"sec_num": "5"
},
{
"text": "To use the NER for this problem, it was necessary to teach it what ingredients are. In order to determine the collection of ingredients, a subset of 500 recipes was manually annotated. This training data allowed us to extract food entities from the rest of the dataset. In total, the chosen recipes contained about 2,400 individual ingredients. We created the penalty metric to evaluate how precisely the model extracts a food entity (set of tokensT ) from an ingredient, based on a test set (set of tokens T ).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Identifying food entities",
"sec_num": "5.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "penalty(T , T ) = \uf8f1 \uf8f2 \uf8f3 0 ifT = T 0.5 ifT \u2282 T 1 ifT \u2229 T = \u2205",
"eq_num": "(1)"
}
],
"section": "Identifying food entities",
"sec_num": "5.1"
},
{
"text": "Since we allow partial matching of the result and the classified ingredient, we decided not to use standard metrics, such as precision and recall to evaluate NER performance.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Identifying food entities",
"sec_num": "5.1"
},
{
"text": "As a proof of concept for the usage of our dataset, we have created a language model based on the Hugging Face (Wolf et al., 2019) implementation of the pretrained GPT-2 (Radford et al., 2019) . Before training, we performed several postprocessing operations on the dataset to ensure it is ready for our use case. It was crucial to create a model that generates \"rich\", extensive recipes. We decided to remove recipes with very short titles or instructions sections. We also removed recipes which contain phrases: 'step' in instructions, to remove the possibility of cross-step references based on ordinal numbers, and 'mix all', which lead the model to a preference of mixing everything over preparing detailed instructions.",
"cite_spans": [
{
"start": 111,
"end": 130,
"text": "(Wolf et al., 2019)",
"ref_id": "BIBREF20"
},
{
"start": 170,
"end": 192,
"text": "(Radford et al., 2019)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Generating recipes from food entities",
"sec_num": "5.2"
},
{
"text": "The model was given a set of food entities and ordered to generate full recipes. A set of control tokens (visible on Figure 1 ) was prepared and embedded in the dataset. This has allowed the model to understand the recipe's underlying structure. Both the original recipes and the extracted food entities were used to prepare the training input. We placed multiple tokenized recipes into one context to speed up the training process. If the training sample was still shorter than the required size, the remaining space was filled with end of recipe tokens.",
"cite_spans": [],
"ref_spans": [
{
"start": 117,
"end": 125,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Generating recipes from food entities",
"sec_num": "5.2"
},
{
"text": "We selected a set of 100 recipes that were not used in training, to form a gold standard. Based on the food entities of each record from the gold standard 10 recipes were generated using two models: one trained on RecipeNLG, and one trained on Recipe1M+ dataset. This resulted in 2000 generated recipes used to evaluate these two models.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation",
"sec_num": "5.3"
},
{
"text": "Firstly, we used cosine similarity calculated upon TF-IDF representation to measure the similarity of a generated recipe and its gold standard counterpart. The results have shown that a RecipeNLG model generates recipes more similar to the gold standard than the Recipe1M+ model (0.666 and 0.589 average cosine similarity, respectively).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation",
"sec_num": "5.3"
},
{
"text": "We used the LanguageCheck spell and grammar checker to calculate the amount of linguistic mistakes -a metric that allowed us to estimate the overall performance of the model, and is applicable for a variety of texts. We calculated the average number of errors per recipe. There were fewer errors in the RecipeNLG model (2.78) than in the Recipe1M+ (7.35). Interestingly, the RecipeNLG model scored better than the gold standard (3.64).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation",
"sec_num": "5.3"
},
{
"text": "The last approach to the evaluation was the utilization of translation metrics. We used three common ones: BLEU (Papineni et al., 2002) , GLEU (Wu et al., 2016) , and WER (Word Error Rate). Scores achieved by each set are outlined in Table 2 . The model trained on our dataset scored better on all of the translation metrics.",
"cite_spans": [
{
"start": 112,
"end": 135,
"text": "(Papineni et al., 2002)",
"ref_id": "BIBREF15"
},
{
"start": 143,
"end": 160,
"text": "(Wu et al., 2016)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 234,
"end": 241,
"text": "Table 2",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Evaluation",
"sec_num": "5.3"
},
{
"text": "While the RecipeNLG dataset is based on the Recipe1M+ dataset, it greatly expands the number of recipes available. What is even more important, the dataset comes with a changed scope -we didn't follow the idea of linking cooking recipes with their images, putting emphasis on the recipe text, structure and underlying logic. The new dataset provides over 1 million new, preprocessed and deduplicated recipes on top of the Recipe1M+ dataset. To the best of our knowledge, it is the largest publicly available dataset in the domain.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions & Future work",
"sec_num": "6"
},
{
"text": "Our dataset, contrary to Recipe1M+, preserves unmodified ingredients quantities. It creates an opportunity to evaluate if the quantities are correctly generated by the model. In the future works, it could allow their normalization to a specific amount of servings. Another interesting potential work is on unification of mostly ambiguous units (e.g. cups, pinch) with regards to the item they are describing, which could have many uses in and outside of the culinary world, and further unification using knowledge graphs (Lawrynowicz, 2020).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions & Future work",
"sec_num": "6"
},
{
"text": "The challenges we faced can be generalized to the other examples of text generation tasks. Therefore, we make this dataset public, expecting that it could enable new research in the area.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions & Future work",
"sec_num": "6"
},
{
"text": "recipenlg.cs.put.poznan.pl",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "Model prototyping was supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC) programme.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Food-101 -mining discriminative components with random forests",
"authors": [
{
"first": "Lukas",
"middle": [],
"last": "Bossard",
"suffix": ""
},
{
"first": "Matthieu",
"middle": [],
"last": "Guillaumin",
"suffix": ""
},
{
"first": "Luc",
"middle": [],
"last": "Van Gool",
"suffix": ""
}
],
"year": 2014,
"venue": "Computer Vision -ECCV 2014",
"volume": "",
"issue": "",
"pages": "446--461",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. 2014. Food-101 -mining discriminative components with random forests. In Computer Vi- sion -ECCV 2014, pages 446-461, Cham. Springer International Publishing.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Semistructured data",
"authors": [
{
"first": "P",
"middle": [],
"last": "Buneman",
"suffix": ""
}
],
"year": 1997,
"venue": "PODS '97",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. Buneman. 1997. Semistructured data. In PODS '97.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Storyboarding of recipes: Grounded contextual generation",
"authors": [
{
"first": "Khyathi",
"middle": [],
"last": "Chandu",
"suffix": ""
},
{
"first": "Eric",
"middle": [],
"last": "Nyberg",
"suffix": ""
},
{
"first": "Alan",
"middle": [
"W"
],
"last": "Black",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "6040--6046",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1606"
]
},
"num": null,
"urls": [],
"raw_text": "Khyathi Chandu, Eric Nyberg, and Alan W Black. 2019. Storyboarding of recipes: Grounded contex- tual generation. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin- guistics, pages 6040-6046, Florence, Italy. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "BERT: pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019",
"volume": "1",
"issue": "",
"pages": "4171--4186",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Pa- pers), pages 4171-4186.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "The Anatomy of a Recipe",
"authors": [
{
"first": "M",
"middle": [
"F K"
],
"last": "Fisher",
"suffix": ""
}
],
"year": 1969,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. F. K. Fisher. 1969. The Anatomy of a Recipe, With Bold Knife and Fork. Counterpoint.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Long short-term memory",
"authors": [
{
"first": "Sepp",
"middle": [],
"last": "Hochreiter",
"suffix": ""
},
{
"first": "J\u00fcrgen",
"middle": [],
"last": "Schmidhuber",
"suffix": ""
}
],
"year": 1997,
"venue": "Neural computation",
"volume": "9",
"issue": "",
"pages": "1735--80",
"other_ids": {
"DOI": [
"10.1162/neco.1997.9.8.1735"
]
},
"num": null,
"urls": [],
"raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9:1735- 80.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Globally coherent text generation with neural checklist models",
"authors": [
{
"first": "Chlo\u00e9",
"middle": [],
"last": "Kiddon",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
},
{
"first": "Yejin",
"middle": [],
"last": "Choi",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "329--339",
"other_ids": {
"DOI": [
"10.18653/v1/D16-1032"
]
},
"num": null,
"urls": [],
"raw_text": "Chlo\u00e9 Kiddon, Luke Zettlemoyer, and Yejin Choi. 2016. Globally coherent text generation with neural checklist models. In Proceedings of the 2016 Con- ference on Empirical Methods in Natural Language Processing, pages 329-339, Austin, Texas. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Imagenet classification with deep convolutional neural networks",
"authors": [
{
"first": "Alex",
"middle": [],
"last": "Krizhevsky",
"suffix": ""
},
{
"first": "Ilya",
"middle": [],
"last": "Sutskever",
"suffix": ""
},
{
"first": "Geoffrey",
"middle": [
"E"
],
"last": "Hinton",
"suffix": ""
}
],
"year": 2012,
"venue": "Advances in Neural Information Processing Systems",
"volume": "25",
"issue": "",
"pages": "1097--1105",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin- ton. 2012. Imagenet classification with deep con- volutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran Associates, Inc.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Creative AI: A new avenue for the Semantic Web? Semantic Web",
"authors": [],
"year": null,
"venue": "",
"volume": "11",
"issue": "",
"pages": "69--78",
"other_ids": {
"DOI": [
"10.3233/SW-190377"
]
},
"num": null,
"urls": [],
"raw_text": "Agnieszka Lawrynowicz. 2020. Creative AI: A new avenue for the Semantic Web? Semantic Web, 11(1):69-78.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "RecipeGPT: Generative pretraining based cooking recipe generation and evaluation system",
"authors": [
{
"first": "Helena",
"middle": [
"H"
],
"last": "Lee",
"suffix": ""
},
{
"first": "Ke",
"middle": [],
"last": "Shu",
"suffix": ""
},
{
"first": "Palakorn",
"middle": [],
"last": "Achananuparp",
"suffix": ""
},
{
"first": "Yue",
"middle": [],
"last": "Philips Kokoh Prasetyo",
"suffix": ""
},
{
"first": "Ee-Peng",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Lav",
"middle": [
"R"
],
"last": "Lim",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Varshney",
"suffix": ""
}
],
"year": 2020,
"venue": "Companion Proceedings of the Web Conference",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Helena H. Lee, Ke Shu, Palakorn Achananuparp, Philips Kokoh Prasetyo, Yue Liu, Ee-Peng Lim, and Lav R. Varshney. 2020. RecipeGPT: Generative pre- training based cooking recipe generation and evalua- tion system. In Companion Proceedings of the Web Conference 2020.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Recurrent convolutional neural network for object recognition",
"authors": [
{
"first": "Ming",
"middle": [],
"last": "Liang",
"suffix": ""
},
{
"first": "Xiaolin",
"middle": [],
"last": "Hu",
"suffix": ""
}
],
"year": 2015,
"venue": "The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ming Liang and Xiaolin Hu. 2015. Recurrent convolu- tional neural network for object recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Food recognition and recipe analysis: integrating visual content, context and external knowledge",
"authors": [
{
"first": "Luis",
"middle": [],
"last": "Weiqing Min",
"suffix": ""
},
{
"first": "Shuqiang",
"middle": [],
"last": "Herranz",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Jiang",
"suffix": ""
}
],
"year": 2018,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Weiqing Min Luis Herranz and Shuqiang Jiang. 2018. Food recognition and recipe analysis: integrating vi- sual content, context and external knowledge. ArXiv, abs/1801.07239v1.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Generating personalized recipes from historical user preferences",
"authors": [
{
"first": "Shuyang",
"middle": [],
"last": "Bodhisattwa Prasad Majumder",
"suffix": ""
},
{
"first": "Jianmo",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Julian",
"middle": [],
"last": "Ni",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Mcauley",
"suffix": ""
}
],
"year": 2019,
"venue": "EMNLP",
"volume": "",
"issue": "",
"pages": "5975--5981",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni, and Julian McAuley. 2019. Generating personalized recipes from historical user preferences. In EMNLP, pages 5975-5981.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Recipe1m+: A dataset for learning cross-modal embeddings for cooking recipes and food images",
"authors": [
{
"first": "Javier",
"middle": [],
"last": "Marin",
"suffix": ""
},
{
"first": "Aritro",
"middle": [],
"last": "Biswas",
"suffix": ""
},
{
"first": "Ferda",
"middle": [],
"last": "Ofli",
"suffix": ""
},
{
"first": "Nicholas",
"middle": [],
"last": "Hynes",
"suffix": ""
},
{
"first": "Amaia",
"middle": [],
"last": "Salvador",
"suffix": ""
},
{
"first": "Yusuf",
"middle": [],
"last": "Aytar",
"suffix": ""
},
{
"first": "Ingmar",
"middle": [],
"last": "Weber",
"suffix": ""
},
{
"first": "Antonio",
"middle": [],
"last": "Torralba",
"suffix": ""
}
],
"year": 2019,
"venue": "IEEE Trans. Pattern Anal. Mach. Intell",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf Aytar, Ingmar Weber, and Antonio Torralba. 2019. Recipe1m+: A dataset for learning cross-modal embeddings for cooking recipes and food images. IEEE Trans. Pattern Anal. Mach. Intell.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Regularizing and optimizing LSTM language models",
"authors": [
{
"first": "Stephen",
"middle": [],
"last": "Merity",
"suffix": ""
},
{
"first": "Nitish",
"middle": [],
"last": "Shirish Keskar",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2017. Regularizing and optimiz- ing LSTM language models. ArXiv preprint ArXiv:1708.02182.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Bleu: a method for automatic evaluation of machine translation",
"authors": [
{
"first": "Kishore",
"middle": [],
"last": "Papineni",
"suffix": ""
},
{
"first": "Salim",
"middle": [],
"last": "Roukos",
"suffix": ""
},
{
"first": "Todd",
"middle": [],
"last": "Ward",
"suffix": ""
},
{
"first": "Wei-Jing",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "311--318",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. Bleu: a method for automatic eval- uation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Compu- tational Linguistics (ACL), pages 311-318.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Building language models for text with named entities",
"authors": [
{
"first": "Saikat",
"middle": [],
"last": "Md Rizwan Parvez",
"suffix": ""
},
{
"first": "Baishakhi",
"middle": [],
"last": "Chakraborty",
"suffix": ""
},
{
"first": "Kai-Wei",
"middle": [],
"last": "Ray",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Chang",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "2373--2383",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Md Rizwan Parvez, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2018. Building language mod- els for text with named entities. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2373-2383. Association for Computational Linguistics.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Language models are unsupervised multitask learners",
"authors": [
{
"first": "Alec",
"middle": [],
"last": "Radford",
"suffix": ""
},
{
"first": "Jeff",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Rewon",
"middle": [],
"last": "Child",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Luan",
"suffix": ""
},
{
"first": "Dario",
"middle": [],
"last": "Amodei",
"suffix": ""
},
{
"first": "Ilya",
"middle": [],
"last": "Sutskever",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Inverse cooking: Recipe generation from food images",
"authors": [
{
"first": "Amaia",
"middle": [],
"last": "Salvador",
"suffix": ""
},
{
"first": "Michal",
"middle": [],
"last": "Drozdzal",
"suffix": ""
},
{
"first": "Xavier",
"middle": [],
"last": "Gir\u00f3",
"suffix": ""
},
{
"first": "Adriana",
"middle": [],
"last": "Romero",
"suffix": ""
}
],
"year": 2019,
"venue": "IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)",
"volume": "",
"issue": "",
"pages": "10445--10454",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Amaia Salvador, Michal Drozdzal, Xavier Gir\u00f3, and Adriana Romero. 2019. Inverse cooking: Recipe generation from food images. 2019 IEEE/CVF Con- ference on Computer Vision and Pattern Recognition (CVPR), pages 10445-10454.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Learning cross-modal embeddings for cooking recipes and food images",
"authors": [
{
"first": "Amaia",
"middle": [],
"last": "Salvador",
"suffix": ""
},
{
"first": "Nicholas",
"middle": [],
"last": "Hynes",
"suffix": ""
},
{
"first": "Yusuf",
"middle": [],
"last": "Aytar",
"suffix": ""
},
{
"first": "Javier",
"middle": [],
"last": "Mar\u00edn",
"suffix": ""
},
{
"first": "Ferda",
"middle": [],
"last": "Ofli",
"suffix": ""
},
{
"first": "Ingmar",
"middle": [],
"last": "Weber",
"suffix": ""
},
{
"first": "Antonio",
"middle": [],
"last": "Torralba",
"suffix": ""
}
],
"year": 2017,
"venue": "IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
"volume": "",
"issue": "",
"pages": "3068--3076",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier Mar\u00edn, Ferda Ofli, Ingmar Weber, and Antonio Tor- ralba. 2017. Learning cross-modal embeddings for cooking recipes and food images. 2017 IEEE Con- ference on Computer Vision and Pattern Recognition (CVPR), pages 3068-3076.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Huggingface's transformers: State-of-the-art natural language processing",
"authors": [
{
"first": "Thomas",
"middle": [],
"last": "Wolf",
"suffix": ""
},
{
"first": "Lysandre",
"middle": [],
"last": "Debut",
"suffix": ""
},
{
"first": "Victor",
"middle": [],
"last": "Sanh",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Chaumond",
"suffix": ""
},
{
"first": "Clement",
"middle": [],
"last": "Delangue",
"suffix": ""
},
{
"first": "Anthony",
"middle": [],
"last": "Moi",
"suffix": ""
},
{
"first": "Pierric",
"middle": [],
"last": "Cistac",
"suffix": ""
},
{
"first": "Tim",
"middle": [],
"last": "Rault",
"suffix": ""
},
{
"first": "R'emi",
"middle": [],
"last": "Louf",
"suffix": ""
},
{
"first": "Morgan",
"middle": [],
"last": "Funtowicz",
"suffix": ""
},
{
"first": "Jamie",
"middle": [],
"last": "Brew",
"suffix": ""
}
],
"year": 2019,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R'emi Louf, Morgan Funtow- icz, and Jamie Brew. 2019. Huggingface's trans- formers: State-of-the-art natural language process- ing. ArXiv, abs/1910.03771.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Google's neural machine translation system: Bridging the gap between human and machine translation",
"authors": [
{
"first": "George",
"middle": [],
"last": "Stevens",
"suffix": ""
},
{
"first": "Nishant",
"middle": [],
"last": "Kurian",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Patil",
"suffix": ""
},
{
"first": "Cliff",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Jason",
"middle": [],
"last": "Young",
"suffix": ""
},
{
"first": "Jason",
"middle": [],
"last": "Smith",
"suffix": ""
},
{
"first": "Alex",
"middle": [],
"last": "Riesa",
"suffix": ""
},
{
"first": "Oriol",
"middle": [],
"last": "Rudnick",
"suffix": ""
},
{
"first": "Gregory",
"middle": [
"S"
],
"last": "Vinyals",
"suffix": ""
},
{
"first": "Macduff",
"middle": [],
"last": "Corrado",
"suffix": ""
},
{
"first": "Jeffrey",
"middle": [],
"last": "Hughes",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Dean",
"suffix": ""
}
],
"year": 2016,
"venue": "ArXiv",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rud- nick, Oriol Vinyals, Gregory S. Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google's neu- ral machine translation system: Bridging the gap between human and machine translation. ArXiv, abs/1609.08144.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "RecipeQA: A challenge dataset for multimodal comprehension of cooking recipes",
"authors": [
{
"first": "Semih",
"middle": [],
"last": "Yagcioglu",
"suffix": ""
},
{
"first": "Aykut",
"middle": [],
"last": "Erdem",
"suffix": ""
},
{
"first": "Erkut",
"middle": [],
"last": "Erdem",
"suffix": ""
},
{
"first": "Nazli",
"middle": [],
"last": "Ikizler-Cinbis",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1358--1368",
"other_ids": {
"DOI": [
"10.18653/v1/d18-1166"
]
},
"num": null,
"urls": [],
"raw_text": "Semih Yagcioglu, Aykut Erdem, Erkut Erdem, and Na- zli Ikizler-Cinbis. 2018. RecipeQA: A challenge dataset for multimodal comprehension of cooking recipes. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP (2018), pages 1358-1368.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Reference-aware language models",
"authors": [
{
"first": "Zichao",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Phil",
"middle": [],
"last": "Blunsom",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
},
{
"first": "Wang",
"middle": [],
"last": "Ling",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1850--1859",
"other_ids": {
"DOI": [
"10.18653/v1/d17-1197"
]
},
"num": null,
"urls": [],
"raw_text": "Zichao Yang, Phil Blunsom, Chris Dyer, and Wang Ling. 2017. Reference-aware language models. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, pages 1850-1859.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"type_str": "figure",
"text": "Concept schema of the semi-structured text evaluation pipeline.",
"num": null,
"uris": null
},
"FIGREF1": {
"type_str": "figure",
"text": "Cosine similarity threshold value selection for a dataset deduplication task.",
"num": null,
"uris": null
},
"FIGREF3": {
"type_str": "figure",
"text": "Comparison of number of lines of instructions between datasets. Triangles denote mean values.",
"num": null,
"uris": null
},
"TABREF0": {
"text": "allowed to ad-Web scraped and acquired recipes ingr: [\"3/4 lbs. lean beef\", ...], instr: [\"Combine all ingredients.\" ...], title: \"Spicy Stuffed Peppers\"",
"content": "<table><tr><td colspan=\"2\">Constructing dataset</td></tr><tr><td/><td/><td>Extracting food entites</td><td>input: [ \"beef\", ... ]</td></tr><tr><td colspan=\"2\">Adding control tokens to form a plain text input</td><td>Adding NER result</td></tr><tr><td colspan=\"3\"><RECIPE_START><INPUT_START> beef <NEXT_INPUT> ...</td></tr><tr><td colspan=\"3\"><INPUT_END> <INGR_START> 3/4 lbs. lean beef</td></tr><tr><td colspan=\"3\"><NEXT_INGR> ...<INGR_END> <INSTR_START> Combine all</td></tr><tr><td colspan=\"3\">ingredients.<NEXT_INSTR> ... <INSTR_END> <TITLE_START></td></tr><tr><td colspan=\"3\">Spicy Stuffed Peppers <TITLE_END><RECIPE_END></td></tr><tr><td>Tokenizing</td><td colspan=\"2\">Training the</td></tr><tr><td/><td>model</td></tr><tr><td>[50265, 50267, 12023...]</td><td/><td>GPT2</td></tr><tr><td/><td colspan=\"2\">Generation</td></tr><tr><td/><td>Starter</td></tr><tr><td>Test set</td><td/><td>Generated</td></tr><tr><td/><td/><td>Recipes</td></tr><tr><td colspan=\"3\">Evaluating recipes. Original vs generated</td></tr><tr><td colspan=\"3\">with the same input string</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF1": {
"text": "Classic Chicken Tenderloin from www.food.com/recipe/classic-chicken-tenderloin-410132 Drain and discard spices from the Italian dressing.",
"content": "<table><tr><td>Recipe1M+</td><td>RecipeNLG</td></tr><tr><td>Ingredients missing slash character:</td><td>Valid ingredients:</td></tr><tr><td>\u2022 1 lb chicken breast tenders</td><td>\u2022 1 lb chicken breast tenders</td></tr><tr><td>\u2022 12 cup Italian dressing</td><td>\u2022 1/2 cup Italian dressing</td></tr><tr><td>\u2022 1 teaspoon fresh lime juice</td><td>\u2022 1 teaspoon fresh lime juice</td></tr><tr><td>\u2022 1 12 teaspoons honey</td><td>\u2022 1 1/2 teaspoons honey</td></tr><tr><td>Directions split into phrases:</td><td>Valid directions split:</td></tr><tr><td>\u2022</td><td/></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF2": {
"text": "Comparison of two different representations of the same recipe",
"content": "<table><tr><td/><td>1.0</td></tr><tr><td/><td>0.8</td></tr><tr><td>Value</td><td>0.6</td></tr><tr><td/><td/><td>Precision</td></tr><tr><td/><td>0.4</td><td>Recall</td></tr><tr><td/><td/><td>F1 score</td></tr><tr><td/><td/><td>Threshold=0.92</td></tr><tr><td/><td>0.2</td></tr><tr><td/><td/><td>0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00</td></tr><tr><td/><td/><td>Treshold</td></tr></table>",
"type_str": "table",
"num": null,
"html": null
},
"TABREF4": {
"text": "Results of machine translation metrics for GPT-2 models fine-tuned on different datasets.",
"content": "<table/>",
"type_str": "table",
"num": null,
"html": null
}
}
}
} |