File size: 84,685 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:28:07.267490Z"
    },
    "title": "RecipeNLG: A Cooking Recipes Dataset for Semi-Structured Text Generation",
    "authors": [
        {
            "first": "Micha\u0142",
            "middle": [],
            "last": "Bie\u0144",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Micha\u0142",
            "middle": [],
            "last": "Gilski",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Martyna",
            "middle": [],
            "last": "Maciejewska",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Wojciech",
            "middle": [],
            "last": "Taisner",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Dawid",
            "middle": [],
            "last": "Wi\u015bniewski",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Agnieszka",
            "middle": [],
            "last": "\u0141awrynowicz",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Semi-structured text generation is a non-trivial problem. Although last years have brought lots of improvements in natural language generation, thanks to the development of neural models trained on large scale datasets, these approaches still struggle with producing structured, context-and commonsense-aware texts. Moreover, it is not clear how to evaluate the quality of generated texts. To address these problems, we introduce RecipeNLG-a novel dataset of cooking recipes. We discuss the data collection process and the relation between the semi-structured texts and cooking recipes. We use the dataset to approach the problem of generating recipes. Finally, we make use of multiple metrics to evaluate the generated recipes.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Semi-structured text generation is a non-trivial problem. Although last years have brought lots of improvements in natural language generation, thanks to the development of neural models trained on large scale datasets, these approaches still struggle with producing structured, context-and commonsense-aware texts. Moreover, it is not clear how to evaluate the quality of generated texts. To address these problems, we introduce RecipeNLG-a novel dataset of cooking recipes. We discuss the data collection process and the relation between the semi-structured texts and cooking recipes. We use the dataset to approach the problem of generating recipes. Finally, we make use of multiple metrics to evaluate the generated recipes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "A cooking recipe is a very specific category of text, that facilitates sharing culinary ideas between people and provides algorithms for food preparation. Although the recipes follow a set of informal rules which make the cooking experience understandable and reproducible (Fisher, 1969) , there are no strict rules on how this text should be structured. This makes it hard to estimate the recipe quality using any objective measures.",
                "cite_spans": [
                    {
                        "start": 273,
                        "end": 287,
                        "text": "(Fisher, 1969)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Recently, we have noticed a major growth of interest in using cooking recipes datasets for performing deep learning experiments. In particular, there is a number of interesting endeavors utilizing computer vision for finding (Salvador et al., 2017) or even generating cooking recipes matching the input food image. One of the results was the publication of the Recipe1M+ (Salvador et al., 2017) (Marin et al., 2019) dataset containing both recipes and images. This dataset, which was the largest publicly available recipes dataset at the time, boosted research in this area.",
                "cite_spans": [
                    {
                        "start": 225,
                        "end": 248,
                        "text": "(Salvador et al., 2017)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 371,
                        "end": 394,
                        "text": "(Salvador et al., 2017)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 395,
                        "end": 415,
                        "text": "(Marin et al., 2019)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "However, while the demand is still emerging, there is currently no large scale cooking dataset tailored specifically for NLP tasks. The existing resources are either not sufficiently big to make efficient use of state of the art language models, or were created with computer vision in mind. In our work, we propose a novel dataset that builds on that previous work and resources. We hope that this resource, which is currently the largest cooking recipes dataset publicly available, may further empower research in the area.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This work is composed of three parts. In Section 3 we outline the problem of imitating cooking recipes and their structure. We show the limitations that caused us to recognize the existing resources as insufficient for generating complete cooking recipes. In Section 4, we introduce a novel recipes dataset built for semi-structured (Buneman, 1997) text generation, which contains over 2 million recipes. We present detailed information about the process of data gathering, deduplication, and cleansing. Finally, in Section 5 we present the implementation details and results of our experiment. We make use of a Named Entity Recognizer (NER) to extract food entities from the dataset and provide them as an input for the recipe generator, using special control tokens. This data is used to fine-tune a GPT-2 (Radford et al., 2019) language model which generates new recipes based on the given list of food entities. We use a number of evaluation methods to compare the generated output to the real recipes using the same set of food entities.",
                "cite_spans": [
                    {
                        "start": 333,
                        "end": 348,
                        "text": "(Buneman, 1997)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 808,
                        "end": 830,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In summary, our work introduces RecipeNLG 1 -the novel dataset of cooking recipes, along with the language generation task based on this dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Dissemination of artificial neural network architectures like GPT-2 (Radford et al., 2019) , BERT (Devlin et al., 2019) or LSTM (Hochreiter and Schmidhuber, 1997) , (Merity et al., 2017) vance the field of text generation. Recent developments in neural network architectures (Krizhevsky et al., 2012) , (Liang and Hu, 2015) have enabled images to text conversion and vice versa. Publishing Recipe1M+ dataset (Salvador et al., 2017) made it reasonable to utilize deep neural networks and initiated a series of new publications. (Marin et al., 2019) combined the Recipe1M+ dataset with 13 million food images to generate joint embeddings of recipes and images. Their goal was to maximize the coherence of the generated text with its corresponding image. (Bossard et al., 2014) recognized and classified food images into 101 food categories, utilizing a dataset consisting of approximately 100K images. used the Recipe1M+ to generate simplified recipes lacking ingredient quantities and units. They evaluated their model using a perplexity score as well as the adequacy between the generated text and the image.",
                "cite_spans": [
                    {
                        "start": 68,
                        "end": 90,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 93,
                        "end": 119,
                        "text": "BERT (Devlin et al., 2019)",
                        "ref_id": null
                    },
                    {
                        "start": 128,
                        "end": 162,
                        "text": "(Hochreiter and Schmidhuber, 1997)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 165,
                        "end": 186,
                        "text": "(Merity et al., 2017)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 275,
                        "end": 300,
                        "text": "(Krizhevsky et al., 2012)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 303,
                        "end": 323,
                        "text": "(Liang and Hu, 2015)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 408,
                        "end": 431,
                        "text": "(Salvador et al., 2017)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 527,
                        "end": 547,
                        "text": "(Marin et al., 2019)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 752,
                        "end": 774,
                        "text": "(Bossard et al., 2014)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "A number of efforts are underway to utilize neural language models on recipes datasets. (Parvez et al., 2018) used a dataset of 100K recipes to build an LSTM-based discriminative language model for the task of named entity recognition. They utilized a cooking recipes dataset for evaluation. (Yang et al., 2017 ) used a dataset with 31K recipes to propose reference-aware language models to generate instructions based on the ingredients provided. (Kiddon et al., 2016) presented a recurrent neural network that models global coherence. It was used to generate individual instructions based on the title and the list of ingredients. They utilized a dataset with 150K cooking recipes for model evaluation. (Yagcioglu et al., 2018 ) published a dataset consisting of approximately 20K recipes to generate question-answer pairs. (Chandu et al., 2019 ) built a custom dataset of food images and made use of the text to image approach to perform a storyboarding task for each recipe step. (Luis Herranz and Jiang, 2018) surveyed different approaches to the problem of food recognition and recipe analysis. They published a list of datasets, reported in the literature and their characteristics.",
                "cite_spans": [
                    {
                        "start": 292,
                        "end": 310,
                        "text": "(Yang et al., 2017",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 448,
                        "end": 469,
                        "text": "(Kiddon et al., 2016)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 705,
                        "end": 728,
                        "text": "(Yagcioglu et al., 2018",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 826,
                        "end": 846,
                        "text": "(Chandu et al., 2019",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "(Majumder et al., 2019) proposed the task of personalized recipe generation, and have shared a dataset of 180K recipes and 700K user interactions (reviews). The authors used an encoder-decoder framework to generate recipes and conducted an evaluation using text metrics. They encoded three embedding layers: title, ingredient, and caloriclevel using BERT then decoded recipes steps using a two-layered GRU. (Lee et al., 2020) have recently presented demo paper of their system for the automatic generation of cooking recipes utilizing the Recipe1M+ dataset and a language model. The evaluation of the model was based on translation metrics. They focused on two separate tasks: ingredients, and instructions generation. On the contrary, we use prepared food entities (see Section 5.1) to generate complete recipes, which allows pairwise comparison of the original and generated recipe composed of the same set of ingredients.",
                "cite_spans": [
                    {
                        "start": 407,
                        "end": 425,
                        "text": "(Lee et al., 2020)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "We also propose a new task of generating full recipes with quantities and units. We publish a carefully prepared RecipeNLG dataset containing both recipes and tagged food entities, to ease the process of generating and evaluating recipes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "Cooking recipes have a specific format which consists of: a title, a list of ingredients with given amounts, and the instructions in a step by step format. The shortest part of the recipe, the title, should accurately name it and summarize its content.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Recipes as datasets",
                "sec_num": "3"
            },
            {
                "text": "The ingredients list has to contain entities consisting of the quantity, unit name, and ingredient name. The quantities of all ingredients have to be in line with the number of servings the recipe is made for. The unit name has to be in relation to the quantity. It must be appropriate to the ingredient form (liquid, dry countable, dry uncountable).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Recipes as datasets",
                "sec_num": "3"
            },
            {
                "text": "Finally, all the units in the recipe are expected to follow a single unit system -imperial or metric.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Recipes as datasets",
                "sec_num": "3"
            },
            {
                "text": "The instructions section needs to accurately present the order of steps. The actions performed on every ingredient have to be taken into account in the following recipe steps, which should reflect the state of the ingredient after the given action. All the ingredients from list should be used, and their usage quantities match those given on the ingredient list. Finally, some recipes use references to a step number of prior actions, which makes the step dependent on other steps and their ordinal numbers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Recipes as datasets",
                "sec_num": "3"
            },
            {
                "text": "We considered using the Recipe1M+ dataset for our task, but it became clear that it has certain limitations regarding the validity of the recipe structure. To investigate these issues, we prepared a set of corresponding recipes built of 350, 141 pairs of recipes, identified by the same URL. This implies that both recipes in the pair, originated in the same place. They are considered a duplicate, despite not having exactly the same content. Example differences in content, as a result of different processing techniques is presented in Table 1 . The set of corresponding recipes can be divided into two subsets -Recipe1M+ subset (R s ) and Gathered subset (G s ).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 539,
                        "end": 546,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Recipes as datasets",
                "sec_num": "3"
            },
            {
                "text": "During the data exploration process, we noticed that the number of instructions in the corresponding recipes varies, usually it is larger in R s . To explain this difference, we manually verified 100 randomly selected pairs of corresponding recipes and found that 34 of them had the same structure, and in 62 cases recipes from R s were malformed -had more steps than the original ones, while recipes from G s kept the original structure.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Recipes as datasets",
                "sec_num": "3"
            },
            {
                "text": "We discovered that the recipe instructions in the Recipe1M+ dataset might have been segmented into sentences instead of actual steps (see Table 1 ). To find out whether this explanation is correct, we split recipe instructions form G s into sentences. The distribution of the number of obtained sentences in the recipe is similar to the R s instructions distribution, which indicates that R s recipes structure might have been altered. As our efforts aimed at generating semi-structured text, any changes in the structure of the documents are not acceptable.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 138,
                        "end": 145,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Recipes as datasets",
                "sec_num": "3"
            },
            {
                "text": "Another issue we encountered during the data exploration, is the absence or malformation of fractions which we observed in Recipe1M+ (see Table 1). We manually checked the same randomly selected 100 pairs and found, that 79 recipes from the R s dataset missed at least one fraction from the set of ingredients, while the recipes from G s were correctly reflecting the actual fractions in all cases. Furthermore, we found that the total number of recipes that had zero fractions was five times greater in R s than in G s .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Recipes as datasets",
                "sec_num": "3"
            },
            {
                "text": "Distortion of the fractions in this scale makes quantitative analyses pointless. Moreover, the text generator trained on this data would be unable to create logically coherent lists of ingredients.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Recipes as datasets",
                "sec_num": "3"
            },
            {
                "text": "The results presented in Section 3 indicate the need for an enhanced dataset, appropriate for semi-structured text generation. We prepared a novel dataset named RecipeNLG, built on top of Recipe1M+, but enhanced with new and corrected records. Additional recipes were gathered from multiple cooking web pages, using automated scripts in a web scraping process.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RecipeNLG dataset",
                "sec_num": "4"
            },
            {
                "text": "During the exploratory data analysis multiple problems regarding the structure of recipes were found and corrected. Recipes without any ingredients or instructions were considered to be extraction errors and were removed. We removed the excessive whitespace characters and replaced unicode symbols, (e.g., fractions) with their ASCII equivalents. Finally, the Recipe1M+ dataset was appended to the gathered data. The RecipeNLG dataset contains an additional column, that identifies the origin of each record -Recipe1M+ or Gathered data.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset cleansing",
                "sec_num": "4.1"
            },
            {
                "text": "Deduplication was required to ensure that records do not overlap in the resulting set of the recipes. We began with finding duplicated recipes identified by the same URL -recipes downloaded from the same source are supposed to be identical. Then, pairs consisting of the same sequence of characters in instructions and ingredients were detected and removed. Finally, we found and removed near matches. The cosine similarity score was calculated pairwise upon a TF-IDF representation of the recipe ingredients and instructions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset cleansing",
                "sec_num": "4.1"
            },
            {
                "text": "Based on the corresponding recipes set (Section 3), we have determined the value of a duplication threshold as the minimum value of cosine similarity, starting from which a pair of records is considered to be a duplicate, by comparing the set of known duplicates with the set of candidate duplicates for each threshold value (Figure 2 ). For the duplication threshold, we chose the value where \u2022 (Some may elect to keep the spices; the recipe will still turn out but will have a different flavor than intended. \u2022 ).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 325,
                        "end": 334,
                        "text": "(Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Dataset cleansing",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Combine dressing, lime juice, and honey.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset cleansing",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Marinate the chicken tenders in this mixture for at least one hour.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset cleansing",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Grill chicken to a lightly golden color.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset cleansing",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Drain and discard spices from the Italian dressing. (Some may elect to keep the spices; the recipe will still turn out but will have a different flavor than intended.).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset cleansing",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Combine dressing, lime juice, and honey.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset cleansing",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Marinate the chicken tenders in this mixture for at least one hour.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset cleansing",
                "sec_num": "4.1"
            },
            {
                "text": "\u2022 Grill chicken to a lightly golden color. the F1 score was the highest, which is 0.92. During the deduplication 523,040 records were removed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset cleansing",
                "sec_num": "4.1"
            },
            {
                "text": "We filtered out recipes in languages other than English. To recognize language of the recipe, we used only instructions, since foreign names (e.g., croissant) are common in titles and ingredients names, and may mislead the classifier. We used Google Translate API for language detection task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset cleansing",
                "sec_num": "4.1"
            },
            {
                "text": "The RecipeNLG dataset contains 2, 231, 142 distinct cooking recipes and to the best of our knowledge, it is the largest available dataset in the domain. Figure 3 presents distributions of the number of elements in instructions, it visualizes the trend described in Section 3. This suggests, that recipes in RecipeNLG are more likely to have a structure consistent with the original recipes. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 153,
                        "end": 161,
                        "text": "Figure 3",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "RecipeNLG metrics",
                "sec_num": "4.2"
            },
            {
                "text": "We present our experiment performed on the RecipeNLG dataset. The goal was to prepare a model, which makes use of food entities to generate a complete cooking recipe. To accomplish this task, we prepared a NER model for identifying and extracting food entities. A GPT-2 model was fine-tuned for the recipe generation. The generated recipes were compared against the original recipes, using automatic evaluation metrics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment",
                "sec_num": "5"
            },
            {
                "text": "To use the NER for this problem, it was necessary to teach it what ingredients are. In order to determine the collection of ingredients, a subset of 500 recipes was manually annotated. This training data allowed us to extract food entities from the rest of the dataset. In total, the chosen recipes contained about 2,400 individual ingredients. We created the penalty metric to evaluate how precisely the model extracts a food entity (set of tokensT ) from an ingredient, based on a test set (set of tokens T ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Identifying food entities",
                "sec_num": "5.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "penalty(T , T ) = \uf8f1 \uf8f2 \uf8f3 0 ifT = T 0.5 ifT \u2282 T 1 ifT \u2229 T = \u2205",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Identifying food entities",
                "sec_num": "5.1"
            },
            {
                "text": "Since we allow partial matching of the result and the classified ingredient, we decided not to use standard metrics, such as precision and recall to evaluate NER performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Identifying food entities",
                "sec_num": "5.1"
            },
            {
                "text": "As a proof of concept for the usage of our dataset, we have created a language model based on the Hugging Face (Wolf et al., 2019) implementation of the pretrained GPT-2 (Radford et al., 2019) . Before training, we performed several postprocessing operations on the dataset to ensure it is ready for our use case. It was crucial to create a model that generates \"rich\", extensive recipes. We decided to remove recipes with very short titles or instructions sections. We also removed recipes which contain phrases: 'step' in instructions, to remove the possibility of cross-step references based on ordinal numbers, and 'mix all', which lead the model to a preference of mixing everything over preparing detailed instructions.",
                "cite_spans": [
                    {
                        "start": 111,
                        "end": 130,
                        "text": "(Wolf et al., 2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 170,
                        "end": 192,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generating recipes from food entities",
                "sec_num": "5.2"
            },
            {
                "text": "The model was given a set of food entities and ordered to generate full recipes. A set of control tokens (visible on Figure 1 ) was prepared and embedded in the dataset. This has allowed the model to understand the recipe's underlying structure. Both the original recipes and the extracted food entities were used to prepare the training input. We placed multiple tokenized recipes into one context to speed up the training process. If the training sample was still shorter than the required size, the remaining space was filled with end of recipe tokens.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 117,
                        "end": 125,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Generating recipes from food entities",
                "sec_num": "5.2"
            },
            {
                "text": "We selected a set of 100 recipes that were not used in training, to form a gold standard. Based on the food entities of each record from the gold standard 10 recipes were generated using two models: one trained on RecipeNLG, and one trained on Recipe1M+ dataset. This resulted in 2000 generated recipes used to evaluate these two models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5.3"
            },
            {
                "text": "Firstly, we used cosine similarity calculated upon TF-IDF representation to measure the similarity of a generated recipe and its gold standard counterpart. The results have shown that a RecipeNLG model generates recipes more similar to the gold standard than the Recipe1M+ model (0.666 and 0.589 average cosine similarity, respectively).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5.3"
            },
            {
                "text": "We used the LanguageCheck spell and grammar checker to calculate the amount of linguistic mistakes -a metric that allowed us to estimate the overall performance of the model, and is applicable for a variety of texts. We calculated the average number of errors per recipe. There were fewer errors in the RecipeNLG model (2.78) than in the Recipe1M+ (7.35). Interestingly, the RecipeNLG model scored better than the gold standard (3.64).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5.3"
            },
            {
                "text": "The last approach to the evaluation was the utilization of translation metrics. We used three common ones: BLEU (Papineni et al., 2002) , GLEU (Wu et al., 2016) , and WER (Word Error Rate). Scores achieved by each set are outlined in Table 2 . The model trained on our dataset scored better on all of the translation metrics.",
                "cite_spans": [
                    {
                        "start": 112,
                        "end": 135,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 143,
                        "end": 160,
                        "text": "(Wu et al., 2016)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 234,
                        "end": 241,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5.3"
            },
            {
                "text": "While the RecipeNLG dataset is based on the Recipe1M+ dataset, it greatly expands the number of recipes available. What is even more important, the dataset comes with a changed scope -we didn't follow the idea of linking cooking recipes with their images, putting emphasis on the recipe text, structure and underlying logic. The new dataset provides over 1 million new, preprocessed and deduplicated recipes on top of the Recipe1M+ dataset. To the best of our knowledge, it is the largest publicly available dataset in the domain.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions & Future work",
                "sec_num": "6"
            },
            {
                "text": "Our dataset, contrary to Recipe1M+, preserves unmodified ingredients quantities. It creates an opportunity to evaluate if the quantities are correctly generated by the model. In the future works, it could allow their normalization to a specific amount of servings. Another interesting potential work is on unification of mostly ambiguous units (e.g. cups, pinch) with regards to the item they are describing, which could have many uses in and outside of the culinary world, and further unification using knowledge graphs (Lawrynowicz, 2020).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions & Future work",
                "sec_num": "6"
            },
            {
                "text": "The challenges we faced can be generalized to the other examples of text generation tasks. Therefore, we make this dataset public, expecting that it could enable new research in the area.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions & Future work",
                "sec_num": "6"
            },
            {
                "text": "recipenlg.cs.put.poznan.pl",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "Model prototyping was supported with Cloud TPUs from Google's TensorFlow Research Cloud (TFRC) programme.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Food-101 -mining discriminative components with random forests",
                "authors": [
                    {
                        "first": "Lukas",
                        "middle": [],
                        "last": "Bossard",
                        "suffix": ""
                    },
                    {
                        "first": "Matthieu",
                        "middle": [],
                        "last": "Guillaumin",
                        "suffix": ""
                    },
                    {
                        "first": "Luc",
                        "middle": [],
                        "last": "Van Gool",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Computer Vision -ECCV 2014",
                "volume": "",
                "issue": "",
                "pages": "446--461",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. 2014. Food-101 -mining discriminative components with random forests. In Computer Vi- sion -ECCV 2014, pages 446-461, Cham. Springer International Publishing.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Semistructured data",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Buneman",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "PODS '97",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Buneman. 1997. Semistructured data. In PODS '97.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Storyboarding of recipes: Grounded contextual generation",
                "authors": [
                    {
                        "first": "Khyathi",
                        "middle": [],
                        "last": "Chandu",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Nyberg",
                        "suffix": ""
                    },
                    {
                        "first": "Alan",
                        "middle": [
                            "W"
                        ],
                        "last": "Black",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "6040--6046",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1606"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Khyathi Chandu, Eric Nyberg, and Alan W Black. 2019. Storyboarding of recipes: Grounded contex- tual generation. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin- guistics, pages 6040-6046, Florence, Italy. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "BERT: pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Pa- pers), pages 4171-4186.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "The Anatomy of a Recipe",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "F K"
                        ],
                        "last": "Fisher",
                        "suffix": ""
                    }
                ],
                "year": 1969,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. F. K. Fisher. 1969. The Anatomy of a Recipe, With Bold Knife and Fork. Counterpoint.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Long short-term memory",
                "authors": [
                    {
                        "first": "Sepp",
                        "middle": [],
                        "last": "Hochreiter",
                        "suffix": ""
                    },
                    {
                        "first": "J\u00fcrgen",
                        "middle": [],
                        "last": "Schmidhuber",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Neural computation",
                "volume": "9",
                "issue": "",
                "pages": "1735--80",
                "other_ids": {
                    "DOI": [
                        "10.1162/neco.1997.9.8.1735"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9:1735- 80.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Globally coherent text generation with neural checklist models",
                "authors": [
                    {
                        "first": "Chlo\u00e9",
                        "middle": [],
                        "last": "Kiddon",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "329--339",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D16-1032"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Chlo\u00e9 Kiddon, Luke Zettlemoyer, and Yejin Choi. 2016. Globally coherent text generation with neural checklist models. In Proceedings of the 2016 Con- ference on Empirical Methods in Natural Language Processing, pages 329-339, Austin, Texas. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Imagenet classification with deep convolutional neural networks",
                "authors": [
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Krizhevsky",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [
                            "E"
                        ],
                        "last": "Hinton",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "25",
                "issue": "",
                "pages": "1097--1105",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin- ton. 2012. Imagenet classification with deep con- volutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Creative AI: A new avenue for the Semantic Web? Semantic Web",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "11",
                "issue": "",
                "pages": "69--78",
                "other_ids": {
                    "DOI": [
                        "10.3233/SW-190377"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Agnieszka Lawrynowicz. 2020. Creative AI: A new avenue for the Semantic Web? Semantic Web, 11(1):69-78.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "RecipeGPT: Generative pretraining based cooking recipe generation and evaluation system",
                "authors": [
                    {
                        "first": "Helena",
                        "middle": [
                            "H"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Ke",
                        "middle": [],
                        "last": "Shu",
                        "suffix": ""
                    },
                    {
                        "first": "Palakorn",
                        "middle": [],
                        "last": "Achananuparp",
                        "suffix": ""
                    },
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Philips Kokoh Prasetyo",
                        "suffix": ""
                    },
                    {
                        "first": "Ee-Peng",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Lav",
                        "middle": [
                            "R"
                        ],
                        "last": "Lim",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Varshney",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Companion Proceedings of the Web Conference",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Helena H. Lee, Ke Shu, Palakorn Achananuparp, Philips Kokoh Prasetyo, Yue Liu, Ee-Peng Lim, and Lav R. Varshney. 2020. RecipeGPT: Generative pre- training based cooking recipe generation and evalua- tion system. In Companion Proceedings of the Web Conference 2020.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Recurrent convolutional neural network for object recognition",
                "authors": [
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaolin",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ming Liang and Xiaolin Hu. 2015. Recurrent convolu- tional neural network for object recognition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Food recognition and recipe analysis: integrating visual content, context and external knowledge",
                "authors": [
                    {
                        "first": "Luis",
                        "middle": [],
                        "last": "Weiqing Min",
                        "suffix": ""
                    },
                    {
                        "first": "Shuqiang",
                        "middle": [],
                        "last": "Herranz",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Weiqing Min Luis Herranz and Shuqiang Jiang. 2018. Food recognition and recipe analysis: integrating vi- sual content, context and external knowledge. ArXiv, abs/1801.07239v1.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Generating personalized recipes from historical user preferences",
                "authors": [
                    {
                        "first": "Shuyang",
                        "middle": [],
                        "last": "Bodhisattwa Prasad Majumder",
                        "suffix": ""
                    },
                    {
                        "first": "Jianmo",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Julian",
                        "middle": [],
                        "last": "Ni",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mcauley",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "EMNLP",
                "volume": "",
                "issue": "",
                "pages": "5975--5981",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni, and Julian McAuley. 2019. Generating personalized recipes from historical user preferences. In EMNLP, pages 5975-5981.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Recipe1m+: A dataset for learning cross-modal embeddings for cooking recipes and food images",
                "authors": [
                    {
                        "first": "Javier",
                        "middle": [],
                        "last": "Marin",
                        "suffix": ""
                    },
                    {
                        "first": "Aritro",
                        "middle": [],
                        "last": "Biswas",
                        "suffix": ""
                    },
                    {
                        "first": "Ferda",
                        "middle": [],
                        "last": "Ofli",
                        "suffix": ""
                    },
                    {
                        "first": "Nicholas",
                        "middle": [],
                        "last": "Hynes",
                        "suffix": ""
                    },
                    {
                        "first": "Amaia",
                        "middle": [],
                        "last": "Salvador",
                        "suffix": ""
                    },
                    {
                        "first": "Yusuf",
                        "middle": [],
                        "last": "Aytar",
                        "suffix": ""
                    },
                    {
                        "first": "Ingmar",
                        "middle": [],
                        "last": "Weber",
                        "suffix": ""
                    },
                    {
                        "first": "Antonio",
                        "middle": [],
                        "last": "Torralba",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "IEEE Trans. Pattern Anal. Mach. Intell",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Javier Marin, Aritro Biswas, Ferda Ofli, Nicholas Hynes, Amaia Salvador, Yusuf Aytar, Ingmar Weber, and Antonio Torralba. 2019. Recipe1m+: A dataset for learning cross-modal embeddings for cooking recipes and food images. IEEE Trans. Pattern Anal. Mach. Intell.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Regularizing and optimizing LSTM language models",
                "authors": [
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Merity",
                        "suffix": ""
                    },
                    {
                        "first": "Nitish",
                        "middle": [],
                        "last": "Shirish Keskar",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2017. Regularizing and optimiz- ing LSTM language models. ArXiv preprint ArXiv:1708.02182.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. Bleu: a method for automatic eval- uation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Compu- tational Linguistics (ACL), pages 311-318.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Building language models for text with named entities",
                "authors": [
                    {
                        "first": "Saikat",
                        "middle": [],
                        "last": "Md Rizwan Parvez",
                        "suffix": ""
                    },
                    {
                        "first": "Baishakhi",
                        "middle": [],
                        "last": "Chakraborty",
                        "suffix": ""
                    },
                    {
                        "first": "Kai-Wei",
                        "middle": [],
                        "last": "Ray",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "2373--2383",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Md Rizwan Parvez, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2018. Building language mod- els for text with named entities. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2373-2383. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Language models are unsupervised multitask learners",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Inverse cooking: Recipe generation from food images",
                "authors": [
                    {
                        "first": "Amaia",
                        "middle": [],
                        "last": "Salvador",
                        "suffix": ""
                    },
                    {
                        "first": "Michal",
                        "middle": [],
                        "last": "Drozdzal",
                        "suffix": ""
                    },
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Gir\u00f3",
                        "suffix": ""
                    },
                    {
                        "first": "Adriana",
                        "middle": [],
                        "last": "Romero",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)",
                "volume": "",
                "issue": "",
                "pages": "10445--10454",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amaia Salvador, Michal Drozdzal, Xavier Gir\u00f3, and Adriana Romero. 2019. Inverse cooking: Recipe generation from food images. 2019 IEEE/CVF Con- ference on Computer Vision and Pattern Recognition (CVPR), pages 10445-10454.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Learning cross-modal embeddings for cooking recipes and food images",
                "authors": [
                    {
                        "first": "Amaia",
                        "middle": [],
                        "last": "Salvador",
                        "suffix": ""
                    },
                    {
                        "first": "Nicholas",
                        "middle": [],
                        "last": "Hynes",
                        "suffix": ""
                    },
                    {
                        "first": "Yusuf",
                        "middle": [],
                        "last": "Aytar",
                        "suffix": ""
                    },
                    {
                        "first": "Javier",
                        "middle": [],
                        "last": "Mar\u00edn",
                        "suffix": ""
                    },
                    {
                        "first": "Ferda",
                        "middle": [],
                        "last": "Ofli",
                        "suffix": ""
                    },
                    {
                        "first": "Ingmar",
                        "middle": [],
                        "last": "Weber",
                        "suffix": ""
                    },
                    {
                        "first": "Antonio",
                        "middle": [],
                        "last": "Torralba",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
                "volume": "",
                "issue": "",
                "pages": "3068--3076",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier Mar\u00edn, Ferda Ofli, Ingmar Weber, and Antonio Tor- ralba. 2017. Learning cross-modal embeddings for cooking recipes and food images. 2017 IEEE Con- ference on Computer Vision and Pattern Recognition (CVPR), pages 3068-3076.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Huggingface's transformers: State-of-the-art natural language processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "R'emi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    },
                    {
                        "first": "Morgan",
                        "middle": [],
                        "last": "Funtowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Jamie",
                        "middle": [],
                        "last": "Brew",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, R'emi Louf, Morgan Funtow- icz, and Jamie Brew. 2019. Huggingface's trans- formers: State-of-the-art natural language process- ing. ArXiv, abs/1910.03771.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Google's neural machine translation system: Bridging the gap between human and machine translation",
                "authors": [
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Stevens",
                        "suffix": ""
                    },
                    {
                        "first": "Nishant",
                        "middle": [],
                        "last": "Kurian",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Patil",
                        "suffix": ""
                    },
                    {
                        "first": "Cliff",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Riesa",
                        "suffix": ""
                    },
                    {
                        "first": "Oriol",
                        "middle": [],
                        "last": "Rudnick",
                        "suffix": ""
                    },
                    {
                        "first": "Gregory",
                        "middle": [
                            "S"
                        ],
                        "last": "Vinyals",
                        "suffix": ""
                    },
                    {
                        "first": "Macduff",
                        "middle": [],
                        "last": "Corrado",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Hughes",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dean",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "ArXiv",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rud- nick, Oriol Vinyals, Gregory S. Corrado, Macduff Hughes, and Jeffrey Dean. 2016. Google's neu- ral machine translation system: Bridging the gap between human and machine translation. ArXiv, abs/1609.08144.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "RecipeQA: A challenge dataset for multimodal comprehension of cooking recipes",
                "authors": [
                    {
                        "first": "Semih",
                        "middle": [],
                        "last": "Yagcioglu",
                        "suffix": ""
                    },
                    {
                        "first": "Aykut",
                        "middle": [],
                        "last": "Erdem",
                        "suffix": ""
                    },
                    {
                        "first": "Erkut",
                        "middle": [],
                        "last": "Erdem",
                        "suffix": ""
                    },
                    {
                        "first": "Nazli",
                        "middle": [],
                        "last": "Ikizler-Cinbis",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1358--1368",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/d18-1166"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Semih Yagcioglu, Aykut Erdem, Erkut Erdem, and Na- zli Ikizler-Cinbis. 2018. RecipeQA: A challenge dataset for multimodal comprehension of cooking recipes. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP (2018), pages 1358-1368.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Reference-aware language models",
                "authors": [
                    {
                        "first": "Zichao",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Phil",
                        "middle": [],
                        "last": "Blunsom",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Wang",
                        "middle": [],
                        "last": "Ling",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1850--1859",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/d17-1197"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zichao Yang, Phil Blunsom, Chris Dyer, and Wang Ling. 2017. Reference-aware language models. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, pages 1850-1859.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "Concept schema of the semi-structured text evaluation pipeline.",
                "num": null,
                "uris": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "text": "Cosine similarity threshold value selection for a dataset deduplication task.",
                "num": null,
                "uris": null
            },
            "FIGREF3": {
                "type_str": "figure",
                "text": "Comparison of number of lines of instructions between datasets. Triangles denote mean values.",
                "num": null,
                "uris": null
            },
            "TABREF0": {
                "text": "allowed to ad-Web scraped and acquired recipes ingr: [\"3/4 lbs. lean beef\", ...], instr: [\"Combine all ingredients.\" ...], title: \"Spicy Stuffed Peppers\"",
                "content": "<table><tr><td colspan=\"2\">Constructing dataset</td></tr><tr><td/><td/><td>Extracting food entites</td><td>input: [ \"beef\", ... ]</td></tr><tr><td colspan=\"2\">Adding control tokens to form a plain text input</td><td>Adding NER result</td></tr><tr><td colspan=\"3\">&lt;RECIPE_START&gt;&lt;INPUT_START&gt; beef &lt;NEXT_INPUT&gt; ...</td></tr><tr><td colspan=\"3\">&lt;INPUT_END&gt; &lt;INGR_START&gt; 3/4 lbs. lean beef</td></tr><tr><td colspan=\"3\">&lt;NEXT_INGR&gt; ...&lt;INGR_END&gt; &lt;INSTR_START&gt; Combine all</td></tr><tr><td colspan=\"3\">ingredients.&lt;NEXT_INSTR&gt; ... &lt;INSTR_END&gt; &lt;TITLE_START&gt;</td></tr><tr><td colspan=\"3\">Spicy Stuffed Peppers &lt;TITLE_END&gt;&lt;RECIPE_END&gt;</td></tr><tr><td>Tokenizing</td><td colspan=\"2\">Training the</td></tr><tr><td/><td>model</td></tr><tr><td>[50265, 50267, 12023...]</td><td/><td>GPT2</td></tr><tr><td/><td colspan=\"2\">Generation</td></tr><tr><td/><td>Starter</td></tr><tr><td>Test set</td><td/><td>Generated</td></tr><tr><td/><td/><td>Recipes</td></tr><tr><td colspan=\"3\">Evaluating recipes. Original vs generated</td></tr><tr><td colspan=\"3\">with the same input string</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF1": {
                "text": "Classic Chicken Tenderloin from www.food.com/recipe/classic-chicken-tenderloin-410132 Drain and discard spices from the Italian dressing.",
                "content": "<table><tr><td>Recipe1M+</td><td>RecipeNLG</td></tr><tr><td>Ingredients missing slash character:</td><td>Valid ingredients:</td></tr><tr><td>\u2022 1 lb chicken breast tenders</td><td>\u2022 1 lb chicken breast tenders</td></tr><tr><td>\u2022 12 cup Italian dressing</td><td>\u2022 1/2 cup Italian dressing</td></tr><tr><td>\u2022 1 teaspoon fresh lime juice</td><td>\u2022 1 teaspoon fresh lime juice</td></tr><tr><td>\u2022 1 12 teaspoons honey</td><td>\u2022 1 1/2 teaspoons honey</td></tr><tr><td>Directions split into phrases:</td><td>Valid directions split:</td></tr><tr><td>\u2022</td><td/></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF2": {
                "text": "Comparison of two different representations of the same recipe",
                "content": "<table><tr><td/><td>1.0</td></tr><tr><td/><td>0.8</td></tr><tr><td>Value</td><td>0.6</td></tr><tr><td/><td/><td>Precision</td></tr><tr><td/><td>0.4</td><td>Recall</td></tr><tr><td/><td/><td>F1 score</td></tr><tr><td/><td/><td>Threshold=0.92</td></tr><tr><td/><td>0.2</td></tr><tr><td/><td/><td>0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00</td></tr><tr><td/><td/><td>Treshold</td></tr></table>",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF4": {
                "text": "Results of machine translation metrics for GPT-2 models fine-tuned on different datasets.",
                "content": "<table/>",
                "type_str": "table",
                "num": null,
                "html": null
            }
        }
    }
}