File size: 113,023 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:27:48.747816Z"
    },
    "title": "From \"Before\" to \"After\": Generating Natural Language Instructions from Image Pairs in a Simple Visual Domain",
    "authors": [
        {
            "first": "Robin",
            "middle": [],
            "last": "Rojowiec",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Potsdam",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Jana",
            "middle": [],
            "last": "G\u00f6tze",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Potsdam",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Philipp",
            "middle": [],
            "last": "Sadler",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Potsdam",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Henrik",
            "middle": [],
            "last": "Voigt",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Jena",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Sina",
            "middle": [],
            "last": "Zarrie\u00df",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Jena",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "David",
            "middle": [],
            "last": "Schlangen",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Potsdam",
                "location": {}
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "While certain types of instructions can be compactly expressed via images, there are situations where one might want to verbalise them, for example when directing someone. We investigate the task of Instruction Generation from Before/After Image Pairs which is to derive from images an instruction for effecting the implied change. For this, we make use of prior work on instruction following in a visual environment. We take an existing dataset, the BLOCKS data collected by Bisk et al. (2016) and investigate whether it is suitable for training an instruction generator as well. We find that it is, and investigate several simple baselines, taking these from the related task of image captioning. Through a series of experiments that simplify the task (by making image processing easier or completely side-stepping it; and by creating template-based targeted instructions), we investigate areas for improvement. We find that captioning models get some way towards solving the task, but have some difficulty with it, and future improvements must lie in the way the change is detected in the instruction.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "While certain types of instructions can be compactly expressed via images, there are situations where one might want to verbalise them, for example when directing someone. We investigate the task of Instruction Generation from Before/After Image Pairs which is to derive from images an instruction for effecting the implied change. For this, we make use of prior work on instruction following in a visual environment. We take an existing dataset, the BLOCKS data collected by Bisk et al. (2016) and investigate whether it is suitable for training an instruction generator as well. We find that it is, and investigate several simple baselines, taking these from the related task of image captioning. Through a series of experiments that simplify the task (by making image processing easier or completely side-stepping it; and by creating template-based targeted instructions), we investigate areas for improvement. We find that captioning models get some way towards solving the task, but have some difficulty with it, and future improvements must lie in the way the change is detected in the instruction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "\"A picture is worth a thousand words\" -nowhere does that old adage seem to be more true than in the domain of assembly instruction giving. As Figure 1 illustrates, quite complex sequences of actions can be expressed compactly using pictorial instruction formats. 1 And yet, sometimes words are necessary; for example, when directing someone who has their eyes and hands on the object that is to be assembled. As a first step towards a vision of a collaborative, situated construction system, we present the task of Instruction Generation from Before/After Images (IG-BA). 2 We leverage a related task that has become popular in recent years, that of Instruction Following (IF). In recent approaches to IF, a model is trained that is given an image and a (verbal) instruction, and predicts, within the context provided by the image, the action denoted by the instruction. (See, inter alia (Mei et al., 2016; Bisk et al., 2016; Anderson et al., 2018; Misra et al., 2018) .) Here, we investigate whether this setup-and, more specifically, the BLOCKS dataset of Bisk et al. (2016) can be used to derive data for IG-BA.",
                "cite_spans": [
                    {
                        "start": 888,
                        "end": 906,
                        "text": "(Mei et al., 2016;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 907,
                        "end": 925,
                        "text": "Bisk et al., 2016;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 926,
                        "end": 948,
                        "text": "Anderson et al., 2018;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 949,
                        "end": 968,
                        "text": "Misra et al., 2018)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 1058,
                        "end": 1076,
                        "text": "Bisk et al. (2016)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 142,
                        "end": 150,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "For IG-BA, we need pairs of images (depicting the before and the after state) as shown in Figure 2 , and as output examples of instructions that when executed turn the former into the latter state. Making use of techniques developed for the task of Image Captioning (that is, the description of single images), we explore to what extent this setup allows us to sidestep the explicit planning steps that were used in earlier Natural Language Generation work on instructions, for example in the context of the GIVE challenge (Byron et al., 2007) .",
                "cite_spans": [
                    {
                        "start": 523,
                        "end": 543,
                        "text": "(Byron et al., 2007)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 90,
                        "end": 98,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The contributions of this paper are: \u2022 Specification of the task of Instruction Generation from Before/After Images (IG-BA).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 BLOCKS gen , a preparation of the BLOCKS dataset (Bisk et al., 2016) specifically for IG-BA.",
                "cite_spans": [
                    {
                        "start": 51,
                        "end": 70,
                        "text": "(Bisk et al., 2016)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 A set of baseline models for IG-BA, together with ablation studies pointing towards areas of future model adaptations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Generating descriptions of single images is by now a well-studied task (Bernardi et al., 2016; Mogadala et al., 2019) , where the best-performing models typically make use of image encodings computed by Convolutional Neural Networks (CNNs) and caption generation (decoding) based on auto-regressive recurrent networks (Hossain et al., 2019) . We will directly build on these approaches and discuss the ones we utilise in more detail below.",
                "cite_spans": [
                    {
                        "start": 71,
                        "end": 94,
                        "text": "(Bernardi et al., 2016;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 95,
                        "end": 117,
                        "text": "Mogadala et al., 2019)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 318,
                        "end": 340,
                        "text": "(Hossain et al., 2019)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "There is also some recent work that looks at a task which, similar to ours, takes image pairs as input. In change captioning (Oluwasanmi et al., 2019; Park et al., 2019) , the task is to verbalise what is different between two otherwise very similar images. Our task contains this, but goes beyond it in that it also has to be verbalised how that difference can be effected. In that work, specialised architectures are presented that can more easily extract differences. Here, we wanted to start by exploring more standard captioning approaches as a baseline in order to fully understand the requirements of our task, leaving further architectural adaptations to future work.",
                "cite_spans": [
                    {
                        "start": 125,
                        "end": 150,
                        "text": "(Oluwasanmi et al., 2019;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 151,
                        "end": 169,
                        "text": "Park et al., 2019)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "After early work in the context of the GIVE challenge (Gargett et al. (2010) , Byron et al. (2007) ), there is some renewed interest in instruction giving. K\u00f6hn et al. (2020) presented an instruction giving platform called MC-Saar-Instruct where players can interact with a bot in the Minecraft world which instructs them to build something. This is very related to our interest in this project; for now, however, that work still assumes a symbolic representation as input.",
                "cite_spans": [
                    {
                        "start": 54,
                        "end": 76,
                        "text": "(Gargett et al. (2010)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 79,
                        "end": 98,
                        "text": "Byron et al. (2007)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 156,
                        "end": 174,
                        "text": "K\u00f6hn et al. (2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In the field of natural language generation, the production of referring expressions is a wellestablished task (Krahmer and van Deemter, 2012) , increasingly also tackled with neural methods (Zarrie\u00df and Schlangen, 2018; Castro Ferreira et al., 2018) . IG-BA includes this; but as will become clear in the next section, the data that we use here allows us to factor it out, as references to objects can simply be done via unique names. The complexity in our task comes from the spatial language required to denote locations, which is something not found to that degree neither in image captioning nor referring expression generation. Generation of spatial expressions has seen some attention in recent years, e.g. by Ghanimifard and Dobnik (2019a) , who investigate the spatial language that neural language models can learn and express.",
                "cite_spans": [
                    {
                        "start": 111,
                        "end": 142,
                        "text": "(Krahmer and van Deemter, 2012)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 191,
                        "end": 220,
                        "text": "(Zarrie\u00df and Schlangen, 2018;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 221,
                        "end": 250,
                        "text": "Castro Ferreira et al., 2018)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 717,
                        "end": 747,
                        "text": "Ghanimifard and Dobnik (2019a)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "We will now describe how we can make use of data collected for instruction following for our task of instruction giving. Bisk et al. (2016) collected the BLOCKS dataset in order to study instruction following in a simple visual environment. The environment consists of up to 20 blocks of the same size, which are placed on a board. The blocks are uniquely labelled either with a number between 1 and 20, or with the logo of a major company; this makes reference to blocks unambiguous and straightforward. To collect instructions, the authors created pairs of states s t , s t+1 , represented as images i t and i t+1 (computer-generated using a 3D-Engine), that differ in the placement of only a single block, and presented these to crowd workers who were tasked with producing a natural language instruction whose execution would turn s t into s t+1 .",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 139,
                        "text": "Bisk et al. (2016)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data: BLOCKS and BLOCKS gen",
                "sec_num": "3"
            },
            {
                "text": "To create a sequence of such pairs, the authors started with a final configuration s T which they successively distorted by moving a randomly selected single block to a random free location. This results in an initial state s 1 in which all blocks appear to be placed randomly. In the part of the dataset that we use, the final configuration constituted an interpretable pattern (numbers as sampled from the MNIST dataset (LeCun and Cortes, 2010)), with the assumption that this makes high-level instructions possible (\"build a number 5\"), and makes instructions towards the end of the sequence more easy to interpret. In the final configuration, the blocks are near-sorted (in that block 1 is likely to be placed near block 2, etc.). We discuss below consequences of this for use in our task. In the part of the dataset that we use here, only movements in the plane were allowed (i.e., no stacking of blocks occurs). The pairs of images were presented to crowd workers, who were asked to formulate instructions that lead from the Before to the After state. Each pair was presented to three workers, who each produced three different instructions for it. Figure 2 shows an example of a state (image) pair and collected instructions. Table 1 gives an overview of the dataset through some statistics. Notable is the small size of the vocabulary, which is quite in contrast to typical image captioning, indicating that the crucial information is not in the lexical choice, but in the composition of the utterances.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1155,
                        "end": 1163,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1233,
                        "end": 1240,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "BLOCKS: Instruction Following",
                "sec_num": "3.1"
            },
            {
                "text": "To summarise, what the BLOCKS dataset gives us is a collection of state pairs (symbolically represented as well as rendered into images), ordered into sequences leading to a final state, where each transition is encoded linguistically in an instruction. Formally, each data point is of the form",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BLOCKS: Instruction Following",
                "sec_num": "3.1"
            },
            {
                "text": "(s j t , i j t , s j t+1 , i j t+1 , E j t\u2192t+1 )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BLOCKS: Instruction Following",
                "sec_num": "3.1"
            },
            {
                "text": ", where j is the index of the sequence, 1 \u2264 t \u2264 T , and E is the set of instructions for a given state pair.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BLOCKS: Instruction Following",
                "sec_num": "3.1"
            },
            {
                "text": "As described above, the task of Instruction Generation from Before/After Images (IG-BA) consists in the generation of a natural language instruction given a pair of images, with the understanding that applying the instruction to the Before state would result in the state shown in the After image. Instructions can be given at different levels of specificity. As we are starting out with the IG-BA task here, we target what we call simple instructions, which map to actions that can naturally be seen as being atomic in their domain. At the same time, the task should be challenging enough to be interesting, both on the level of image understanding, and the level of language generation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Requirements for a Dataset for IG-BA",
                "sec_num": "3.2"
            },
            {
                "text": "Prima facie, it seems that the BLOCKS data gives us what we want. By design of the dataset, the in-structions that come with pairs of successive states are simple instructions, as the change they describe involves only a single block and can be effected with an atomic action. To specify this action, it is necessary to identify the block that has moved (we will call this block the target block). This has to be done by comparing the images in the pair, which is a visual task that goes beyond those found in image captioning. As all blocks are uniquely labelled, referring to blocks is straightforward in this domain. Denoting the target location, however, is challenging, as it requires the identification of a landmark block and its spatial relation to the target location. These are visual and linguistic tasks that are partially present in image captioning as well. However, in naturalistic scenes, spatial relations are to a large extent predictable (e.g., a rider will likely not be under the horse; (Ghanimifard and Dobnik, 2019b)), whereas here no systematic preference should be expected.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Requirements for a Dataset for IG-BA",
                "sec_num": "3.2"
            },
            {
                "text": "We will investigate in more detail in the next section whether these assumptions about the dataset do indeed hold and to which degree it is compositional.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Requirements for a Dataset for IG-BA",
                "sec_num": "3.2"
            },
            {
                "text": "To support the analysis of the corpus (and later, for evaluation), we automatically process both the instructions and the symbolically represented scenes. (The results presented here are for the training split of the corpus; the preprocessing methods of course can also be applied to the other splits.)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing",
                "sec_num": "3.3.1"
            },
            {
                "text": "The goal of the instruction parser is to extract from the instruction the reference to the target block, and if present, the reference to the landmark and the spatial relation, as in example (1) below.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing",
                "sec_num": "3.3.1"
            },
            {
                "text": "( 1)Input: move the BMW block below the Adidas block Output: bmw, adidas, below To do this, the candidate instruction is first run through the spellchecker hunspell and then dependency parsed, using spaCy's medium-sized pretrained model for English. 3 We identify block references by applying a small set of regular expressions (Table 2) . We distinguish between target block reference (the one that moved) and landmarks using the rules shown in Appendix A. We extract string spans denoting the spatial relation by extracting phrases that function as modifier, such as prepositional modifiers, shown in the same appendix.",
                "cite_spans": [
                    {
                        "start": 250,
                        "end": 251,
                        "text": "3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 328,
                        "end": 337,
                        "text": "(Table 2)",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Preprocessing",
                "sec_num": "3.3.1"
            },
            {
                "text": "Evaluating whether the instruction parser correctly extracted the target reference is easy (assuming that the instruction is correct), as we can identify it from the symbolic representation. For the instructions in the test set, we obtain an accuracy of 89%. In 5% of the instructions, the parser does not identify any target block. When it comes to the landmark blocks, a fully objective evaluation is not possible, as here the instruction givers had some choice. We can identify from the state representation which blocks are close to the target location; 86% of the blocks that the parser identified as landmarks overlapped with this set in their respective scenes. We also manually checked 100 randomly selected parsed instructions against the images, and found an even slightly higher accuracy (88%). These numbers lead us to assume that we can put some trust in the output of the parser; which is important as it has a role to play in the evaluation of our models discussed below.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing",
                "sec_num": "3.3.1"
            },
            {
                "text": "The scene parser extracts information from the symbolic state representations. Target block and potential landmarks are extracted as described above in the evaluation of the instruction parser. The objective spatial relation between target location and landmark candidate can be determined pro-grammatically from the angle between the two coordinates. We segment the circle around the landmark candidate into equal-sized segments and classify the relation using compass directions N, NE, E, SE, S, SW, W, NW. We also similarly categorise the direction in which the target block was moved.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing",
                "sec_num": "3.3.1"
            },
            {
                "text": "With this in hand, we can investigate the complexity of the language in the corpus (and hence that of the generation task), and whether there are any biases in the data that would give a learning algorithm opportunities to find shortcuts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing",
                "sec_num": "3.3.1"
            },
            {
                "text": "As mentioned above, the main driver of linguistic complexity in this dataset is the specification of the intended target location. In a substantial subset of the training split our instruction parser identifies the mention of more than one landmark (14.4%; vs. 83.3% with only one, and 2.3% where none was identified). Table 3 shows some examples of spatial expressions, for the relative configuration north of and southeast of. For the cardinal direction north, there is more re-use of the same expression (\"above\"), indicating that this direction is somewhat easier to express. This is confirmed by the analysis in Table 4 , which shows a tendency for verbalisations of diagonal directions to be longer and more unique. This is in line with previous findings on the complexity of expressions for different spatial configurations. Mast et al. (2014) found that segmentations of space that are finer-grained than the basic concepts of left, right, front, back require more complex spatial expressions.",
                "cite_spans": [
                    {
                        "start": 832,
                        "end": 850,
                        "text": "Mast et al. (2014)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 319,
                        "end": 326,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 617,
                        "end": 624,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Complexity",
                "sec_num": "3.3.2"
            },
            {
                "text": "First, we investigate whether the dataset contains biases for particular actions. As Figure 3 (left) shows, most movements of blocks were towards the right of the board. However, as the direction of movement (as opposed to the relation between landmark and target location) is rarely mentioned in the data, this bias is harmless for the generation task. Figure 3 (right) shows that among the landmarks mentioned by the instructors, cardinal directions dominate. In other words, in the data, the blocks that are to be placed more often form straight lines along the major axes.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 85,
                        "end": 100,
                        "text": "Figure 3 (left)",
                        "ref_id": "FIGREF2"
                    },
                    {
                        "start": 354,
                        "end": 362,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Bias",
                "sec_num": "3.3.3"
            },
            {
                "text": "We also investigated other potential influences of block configuration on the structure of the instructions. In the training data, 78.44% of the instructions contain a reference to the block that is positioned closest to the moved block's target position, leading us to assume that landmarks in this setting are typically chosen from the objects close to the target. However, this cannot be considered a (negative) bias in the data, but rather indicates a task-specific strategy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Bias",
                "sec_num": "3.3.3"
            },
            {
                "text": "We have already mentioned above that due to the design of the task in the original dataset, there is a bias for the landmark to be an \"alphabetically close\" block. (That is, in the final configuration, block 3 will be next to blocks 2 and 4, and so on; the same with a canonical ordering of the logo blocks.) This is a bias that a learner could indeed pick up on and use to simplify the task of naming a landmark; if the visual task of identifying the target block succeeded, a likely landmark can be named without verifying visually. However, correctly identifying the spatial relation still requires input from the scene.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Bias",
                "sec_num": "3.3.3"
            },
            {
                "text": "We release BLOCKS gen , an augmentation of BLOCKS for the tasks of IG-BA. Besides the instruction and scene parsers described above, the augmentation also contains a rule-based generator that creates simple and correct instructions out of the symbolic state representations. The templates we use are shown in the Appendix. The original dataset is available from https:// groundedlanguage.github.io/. By the time of the conference, we will make our additions publicly available as well.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BLOCKS gen",
                "sec_num": "3.4"
            },
            {
                "text": "4 Baselines for IG-BA",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BLOCKS gen",
                "sec_num": "3.4"
            },
            {
                "text": "The main task of IG-BA is as defined above: Given a pair (i t , i t+1 ) of Before and After images, generate a verbal instruction e that would tell an imagined instruction follower how to turn the former state into the latter; the generator is to be trained on the respective instructions E t\u2192t+1 found in the corpus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Variants",
                "sec_num": "4.1"
            },
            {
                "text": "To analyse where the difficulties in this task lie for the various model types that we apply, we also define variants of this task at the image understanding and at the language generation phase. For image understanding, we support the model by performing simple pixel-wise operations, resulting in modified versions of the image pair: subtracted (i t+1 \u2212 i t ), in which only the moved block remains visible; added (i t+1 + i t ), in which all blocks remain visible, with the target block differing visually. Figure 4 provides an example respectively. In both, we put subtract and add side-by-side. We also side-step image processing completely, by turning the symbolic state representations into a 112-dimensional input vector: 20 dimensions for a one-hot encoding of the target block identity, 8 dimensions for the movement direction; and for up to 3 possible landmarks, their identity (20 dimensions) and spatial relation to the target location (8 dimensions), parsed from the states using the instruction parser (see 3.3). This variant will be called symbolic-state below.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 510,
                        "end": 518,
                        "text": "Figure 4",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Task Variants",
                "sec_num": "4.1"
            },
            {
                "text": "On the language generation side, we simplify the task by using output of the template generator from section 3.4 as training material, hence massively reducing the variability on the output side. (Below, synthetic-out.) These modifications give us a range of combinations that allow us to quantify the difficulty of the component tasks, with the expectation that symbolic-state/synthetic-out should be the easiest variant, and full (no preprocessing) the hardest.",
                "cite_spans": [
                    {
                        "start": 196,
                        "end": 219,
                        "text": "(Below, synthetic-out.)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Task Variants",
                "sec_num": "4.1"
            },
            {
                "text": "We also test different types of generation models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Types",
                "sec_num": "4.2"
            },
            {
                "text": "As a baseline, we use a retrieval approach (as done for example by Devlin et al. (2015) for image captioning). We put the images of the pair side-by-side and encode the resulting image using a pretrained ResNet101 (He et al., 2016) up to the final pre-classification layer (d = 2048). The width of the concatenated image is 240 pixel, the height 180 as we resize it after concatenation to half the size. At test time, we retrieve the nearest neighbour of the test image in the training data and sample an instruction from its instruction set.",
                "cite_spans": [
                    {
                        "start": 67,
                        "end": 87,
                        "text": "Devlin et al. (2015)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 214,
                        "end": 231,
                        "text": "(He et al., 2016)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NN-retrieve",
                "sec_num": null
            },
            {
                "text": "CNN+LSTM A simple, but efficient approach to Image Captioning is to use an encoder-decoder architecture with a pretrained image model as encoder and a language model as decoder (Vinyals et al., 2014) . We study to what degree this approach can also work for our task. We again encode images using a pretrained ResNet101 (He et al., 2016) , resulting in a 2048-dimensional representation. The language model is implemented using a standard LSTM with hidden size 512. We initialize the hidden state of the LSTM by feeding in the feature vector produced by the image encoder at time step t i\u22121 . Initial experiments showed that also adding the image vector at each successive step did not improve quality (supporting similar findings by Vinyals et al. (2014) ).",
                "cite_spans": [
                    {
                        "start": 177,
                        "end": 199,
                        "text": "(Vinyals et al., 2014)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 320,
                        "end": 337,
                        "text": "(He et al., 2016)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 734,
                        "end": 755,
                        "text": "Vinyals et al. (2014)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NN-retrieve",
                "sec_num": null
            },
            {
                "text": "CNN+LSTM+Attention This model type extends the previous one in two aspects: first, it initializes hidden and cell state of the LSTM directly, meaning the initial encoded image features are transformed with a linear layer and passed to the network. In the simple version, the hidden state is initialized by feeding the feature vector as input before the first time step. Second, an Attention mechanism is used to produce a weighted image feature vector on each time step conditioned by the current hidden state of the LSTM. For prediction, this feature vector is concatenated with the previously generated word and fed into the network, following Xu et al. (2015) . We set the hidden size of the LSTM to 512 and the Attention dimension to 128 dimensions. The images are encoded as above. Template Generator Given symbolically represented states, we can also use the template generator described above to generate instructions for the test set. The generated instructions are guaranteed to express correct information, at the cost of naturalness, and so can serve as an upper bound on semantic metrics.",
                "cite_spans": [
                    {
                        "start": 646,
                        "end": 662,
                        "text": "Xu et al. (2015)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "NN-retrieve",
                "sec_num": null
            },
            {
                "text": "In the test set, we have available both the symbolic representation of the states (and hence objectively know what the required change is) and the set of reference instructions E. We define metrics making use of either.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.3"
            },
            {
                "text": "We use common metrics from caption generation: BLEU-4, measuring token overlap up to 4grams (Papineni et al., 2002) ; CIDEr, measuring overlap based on the consensus of reference instructions (Vedantam et al., 2015) , METEOR (Banerjee and Lavie, 2005), measuring unigram overlap with advanced normalization like stemming and synonym comparison, and ROUGE-L (Lin, 2004) which measures similarity based on longest common subsequences. We apply each individual metric by comparing the generated instruction against all available reference instructions for the respective image pair using the pycocoevalcap library. 4 To better analyse task performance, where it matters that the blocks are correctly referred to, we also parse the generated instructions using our instruction parser, to extract what was mentioned as target block and as landmark. We can then compare these to either the objectively determined action parameters (we will call this variant Ground Truth (GT) below) or to those mentioned in the reference set (Ref ) . The target block will be identical in both, but as discussed above, there is some variance in which blocks were considered landmarks. For GT, we compare the landmarks against the three blocks closest to the target position (cf. 3.3.1).",
                "cite_spans": [
                    {
                        "start": 92,
                        "end": 115,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 192,
                        "end": 215,
                        "text": "(Vedantam et al., 2015)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 357,
                        "end": 368,
                        "text": "(Lin, 2004)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 612,
                        "end": 613,
                        "text": "4",
                        "ref_id": null
                    },
                    {
                        "start": 1020,
                        "end": 1026,
                        "text": "(Ref )",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.3"
            },
            {
                "text": "Correct Targets All Generated Targets",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Starget =",
                "sec_num": null
            },
            {
                "text": "(1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Starget =",
                "sec_num": null
            },
            {
                "text": "S landmarks = N i |G i \u2229P i | |P i | N (2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Starget =",
                "sec_num": null
            },
            {
                "text": "where N is the total number of predicted instructions. G i is the set of all correct landmarks and P i the set of all predicted landmarks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Starget =",
                "sec_num": null
            },
            {
                "text": "We train all of our models on the BLOCKS dataset using the original splits. Depending on task variant, we either provide a single template-generated instruction as training example, or the 9 humangenerated ones from the original corpus. We train and evaluate separately for the logo and digits variants. We train the models for a maximum of 50 epochs and early stopping with patience of 15 epochs. The parameters are optimized using the Adam Optimization Algorithm (Kingma and Ba, 2015). The CNN+LSTM is configured with hidden size and embedding size of 512 dimensions (except for the task variant using manually extracted feature vectors where the input size is 116 dimensions). The extended version using an attended image input at each time step t is configured with the same embedding and hidden size. Additionally, the attention dimensions are set to 128 and dropout with p = 0.5 is applied to the output of the LSTM before it is fed into the linear prediction layer.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4.4"
            },
            {
                "text": "All models reach a performance plateau within the maximum number of epochs. The results of the baselines are reported in Table 6 for experiments with the logo data. For the digit data, the performance in general is worse but supports the same conclusions (see Appendix C and D). This might be due to the image encoder working better with logos than numbers.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 121,
                        "end": 128,
                        "text": "Table 6",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "First, we present some samples of the generated instruction from the various models in table 5. They are randomly picked from the set of all generated Table 5 : Generated instructions by neural and template-based models for image pairs I b (add and subtract modification combined) on logo data. The sample images provided here are not the ones used for prediction, because it would be much harder to see the individual blocks on those. Arrows and boxes only for visual aid.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 151,
                        "end": 158,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "instructions. Some of the generated instructions are not fully correct, e.g. the one in the first row of table 5 uses an incorrect reference block. This indicates the model's weakness in correctly understanding spatial relations. In the second and third sample, models use the correct relative position (left/right), so they were able to learn at least some of the spatial information. Next, we discuss the results in terms of the metrics presented in section 4.3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "NN-retrieve is the lower bound baseline and performs poorly. This indicates that the image encodings are not enough to retrieve appropriate instructions for an unseen image pair. The CNN+LSTM based models can improve on this lower bound. BLEU score jumps up by over 0.2 so the model is able to produce instructions that are more similar to the references than those NN-retrieve selects from the most similar pair. Target and landmark match improve as well, however only landmark by a bigger margin.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "This model type improves further when presented with the pre-processed image (here, only both is shown; a more detailed discussion will be given below). It improves on all metrics, which suggests that the image component cannot on its own extract the information that the pre-processing makes available.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "Adding an attention mechanism improves (CNN+LSTM+Att vs CNN+LSTM), but the gain of pre-processing the image (CNN+LSTM+Att+I b ) remains. Overall, that model achieves the best results (among the trained models). Interestingly, the improvement on the task-specific metrics Target and Landmark is not directly reflected by improvements on the string-based metrics. For example, on BLEU, the full model is substantially worse than the variant without attention, even though it is substantially better at naming the target block.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "Generally, all generation models conditioned on images in Table 6 achieve a target accuracy that is rather unsatisfactory or even dramatically low (e.g. the CNN-LSTM model). Since instructions that do not mention the right target block have an extremely low chance of being communicatively successful when interacting with a user, none of the models can be considered ready to be tested in a dialogue set-up.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 58,
                        "end": 65,
                        "text": "Table 6",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "5"
            },
            {
                "text": "To investigate the contribution of the various component-tasks , we zoom into one of the mod- As Table 7 shows, all image modifications provide useful additional information to the model, which improves its performance on naming the target block correctly. Interestingly, only the both variant (which was already listed in Table 6 above) leads to an improvement on the landmarks as well. Side-stepping the image processing (state) improves the output substantially, suggesting that the very simple image encoding that we use here, which served the image captioning task well in the original papers by Vinyals et al. (2014) and Xu et al. (2015) , is not enough for this task. Finally, giving the model an easier generation target (synthetic) improves the performance to a degree that comes near that of the template generator. (This is perhaps not too surprising, but still good to see.)",
                "cite_spans": [
                    {
                        "start": 601,
                        "end": 622,
                        "text": "Vinyals et al. (2014)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 627,
                        "end": 643,
                        "text": "Xu et al. (2015)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 97,
                        "end": 104,
                        "text": "Table 7",
                        "ref_id": "TABREF10"
                    },
                    {
                        "start": 323,
                        "end": 330,
                        "text": "Table 6",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Model study",
                "sec_num": "5.1"
            },
            {
                "text": "As a final check, we report the performance of the template generation model (see Table 6 ). Compared to the CNN+LSTM model that is conditioned on state representations, it performs quite poorly on BLEU, as it captures very little of the variance of the natural data. However, on the task-specific metrics, it performs near optimal. (The difference to 1 on the landmark selection is due to the fact that the instruction givers sometimes picked differently from the scene parser, which is to be expected.)",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 82,
                        "end": 89,
                        "text": "Table 6",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Model study",
                "sec_num": "5.1"
            },
            {
                "text": "We have introduced the task of Instruction Giving from Before/After Images (IG-BA), and shown that an existing dataset for instruction following can be used to train a model for this task. For the model, we used established architectures that have served the task of image captioning well. Through various analyses of the model, we have shown that their image processing capabilities seem to form a bottleneck; when provided with a pre-parsed scene representation, the quality of the generated instructions improves considerably. This suggests a clear route for future work, namely to improve the image processing capabilities, possibly along the lines of the recent, related work on change captioning (Park et al., 2019) . The results that we have achieved are nevertheless encouraging that a performance can be achieved that can support our ultimate goal, which is to construct a system for interactive and collaborative instruction following in an assembly domain like shown in figure 1.",
                "cite_spans": [
                    {
                        "start": 702,
                        "end": 721,
                        "text": "(Park et al., 2019)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "In comparison to the blocks data set, figures of assembly instructions are much more complex as they include changes of point of view, rotations on different axis and special informative pictograms (e.g. the cordless drill driver in figure 1). Additionally, the instructions may refer to previous steps or have more variability because of the less defined naming. For example, the figure above may requires the model to describe \"the screw with the long, smaller head must be screwed without a drill driver until its middle par hits the wood surface\". For future work, the language generation component of such system must be able to generate the instruction incrementally and describe the actions including advice of execution in the instruction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "From https://bit.ly/34pmKCt, (C) IKEA.2 Related settings have been explored in human/computer interaction, e.g. byKontogiorgos et al. (2018), but not from",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://hunspell.github.io; https: //spacy.io/models/en#en_core_web_md",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/salaniz/pycocoevalcap",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Visionand-language navigation: Interpreting visuallygrounded navigation instructions in real environments",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Anderson",
                        "suffix": ""
                    },
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Damien",
                        "middle": [],
                        "last": "Teney",
                        "suffix": ""
                    },
                    {
                        "first": "Jake",
                        "middle": [],
                        "last": "Bruce",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "Niko",
                        "middle": [],
                        "last": "S\u00fcnderhauf",
                        "suffix": ""
                    },
                    {
                        "first": "Ian",
                        "middle": [],
                        "last": "Reid",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Gould",
                        "suffix": ""
                    },
                    {
                        "first": "Anton",
                        "middle": [],
                        "last": "Van Den",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hengel",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko S\u00fcnderhauf, Ian Reid, Stephen Gould, and Anton van den Hengel. 2018. Vision- and-language navigation: Interpreting visually- grounded navigation instructions in real environ- ments. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "METEOR: An automatic metric for MT evaluation with improved correlation with human judgments",
                "authors": [
                    {
                        "first": "Satanjeev",
                        "middle": [],
                        "last": "Banerjee",
                        "suffix": ""
                    },
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Lavie",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization",
                "volume": "",
                "issue": "",
                "pages": "65--72",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with im- proved correlation with human judgments. In Pro- ceedings of the ACL Workshop on Intrinsic and Ex- trinsic Evaluation Measures for Machine Transla- tion and/or Summarization, pages 65-72, Ann Ar- bor, Michigan. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Automatic description generation from images: A survey of models, datasets, and evaluation measures",
                "authors": [
                    {
                        "first": "Raffaella",
                        "middle": [],
                        "last": "Bernardi",
                        "suffix": ""
                    },
                    {
                        "first": "Ruket",
                        "middle": [],
                        "last": "Cakici",
                        "suffix": ""
                    },
                    {
                        "first": "Desmond",
                        "middle": [],
                        "last": "Elliott",
                        "suffix": ""
                    },
                    {
                        "first": "Aykut",
                        "middle": [],
                        "last": "Erdem",
                        "suffix": ""
                    },
                    {
                        "first": "Erkut",
                        "middle": [],
                        "last": "Erdem",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "J. Artif. Int. Res",
                "volume": "55",
                "issue": "1",
                "pages": "409--442",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Raffaella Bernardi, Ruket Cakici, Desmond Elliott, Aykut Erdem, Erkut Erdem, Nazli Ikizler-Cinbis, Frank Keller, Adrian Muscat, and Barbara Plank. 2016. Automatic description generation from im- ages: A survey of models, datasets, and evaluation measures. J. Artif. Int. Res., 55(1):409-442.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Towards a dataset for human computer communication via grounded language acquisition",
                "authors": [
                    {
                        "first": "Yonatan",
                        "middle": [],
                        "last": "Bisk",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Marcu",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Wong",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yonatan Bisk, Daniel Marcu, and William Wong. 2016. Towards a dataset for human computer communi- cation via grounded language acquisition. AAAI Workshop -Technical Report, WS-16-01 -WS-16- 15:729-732.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Generating instructions in virtual environments (GIVE): A challenge and an evaluation testbed for NLG",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Byron",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Koller",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Oberlander",
                        "suffix": ""
                    },
                    {
                        "first": "Laura",
                        "middle": [],
                        "last": "Stoia",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Striegnitz",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Workshop on Shared Tasks and Comparative Evaluation in Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Byron, Alexander Koller, J. Oberlander, Laura Stoia, and K. Striegnitz. 2007. Generating instructions in virtual environments (GIVE): A challenge and an evaluation testbed for NLG. Proceedings of the Workshop on Shared Tasks and Comparative Eval- uation in Natural Language Generation, Arlington.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "NeuralREG: An end-to-end approach to referring expression generation",
                "authors": [
                    {
                        "first": "Diego",
                        "middle": [],
                        "last": "Thiago Castro Ferreira",
                        "suffix": ""
                    },
                    {
                        "first": "\u00c1kos",
                        "middle": [],
                        "last": "Moussallem",
                        "suffix": ""
                    },
                    {
                        "first": "Sander",
                        "middle": [],
                        "last": "K\u00e1d\u00e1r",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Wubben",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1959--1969",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thiago Castro Ferreira, Diego Moussallem,\u00c1kos K\u00e1d\u00e1r, Sander Wubben, and Emiel Krahmer. 2018. NeuralREG: An end-to-end approach to referring ex- pression generation. In Proceedings of the 56th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1959- 1969, Melbourne, Australia. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Exploring nearest neighbor approaches for image captioning",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Saurabh",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "Ross",
                        "middle": [
                            "B"
                        ],
                        "last": "Girshick",
                        "suffix": ""
                    },
                    {
                        "first": "Margaret",
                        "middle": [],
                        "last": "Mitchell",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "Lawrence"
                        ],
                        "last": "Zitnick",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Saurabh Gupta, Ross B. Girshick, Mar- garet Mitchell, and C. Lawrence Zitnick. 2015. Ex- ploring nearest neighbor approaches for image cap- tioning. CoRR, abs/1505.04467.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "The GIVE-2 corpus of giving instructions in virtual environments",
                "authors": [
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Gargett",
                        "suffix": ""
                    },
                    {
                        "first": "Konstantina",
                        "middle": [],
                        "last": "Garoufi",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Koller",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Striegnitz",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andrew Gargett, Konstantina Garoufi, Alexander Koller, and Kristina Striegnitz. 2010. The GIVE- 2 corpus of giving instructions in virtual environ- ments. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10), Valletta, Malta. European Language Re- sources Association (ELRA).",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "What a neural language model tells us about spatial relations",
                "authors": [
                    {
                        "first": "Mehdi",
                        "middle": [],
                        "last": "Ghanimifard",
                        "suffix": ""
                    },
                    {
                        "first": "Simon",
                        "middle": [],
                        "last": "Dobnik",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Combined Workshop on Spatial Language Understanding (SpLU) and Grounded Communication for Robotics (RoboNLP)",
                "volume": "",
                "issue": "",
                "pages": "71--81",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mehdi Ghanimifard and Simon Dobnik. 2019a. What a neural language model tells us about spatial rela- tions. In Proceedings of the Combined Workshop on Spatial Language Understanding (SpLU) and Grounded Communication for Robotics (RoboNLP), pages 71-81, Minneapolis, Minnesota. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "What goes into a word: generating image descriptions with top-down spatial knowledge",
                "authors": [
                    {
                        "first": "Mehdi",
                        "middle": [],
                        "last": "Ghanimifard",
                        "suffix": ""
                    },
                    {
                        "first": "Simon",
                        "middle": [],
                        "last": "Dobnik",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 12th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "540--551",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mehdi Ghanimifard and Simon Dobnik. 2019b. What goes into a word: generating image descriptions with top-down spatial knowledge. In Proceedings of the 12th International Conference on Natural Lan- guage Generation, pages 540-551, Tokyo, Japan. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Deep residual learning for image recognition",
                "authors": [
                    {
                        "first": "Kaiming",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Xiangyu",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Shaoqing",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition",
                "volume": "",
                "issue": "",
                "pages": "770--778",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recog- nition. In Proceedings of the IEEE Computer So- ciety Conference on Computer Vision and Pattern Recognition, volume 2016-December, pages 770- 778. IEEE Computer Society.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "A comprehensive survey of deep learning for image captioning",
                "authors": [
                    {
                        "first": "Ferdous",
                        "middle": [],
                        "last": "Md. Zakir Hossain",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sohel",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ACM Comput. Surv",
                "volume": "",
                "issue": "6",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "MD. Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shi- ratuddin, and Hamid Laga. 2019. A comprehensive survey of deep learning for image captioning. ACM Comput. Surv., 51(6).",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Adam: A method for stochastic optimization",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Diederik",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [
                            "Lei"
                        ],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "3rd International Conference on Learning Representations, ICLR 2015 -Conference Track Proceedings. International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam: A method for stochastic optimization. In 3rd Inter- national Conference on Learning Representations, ICLR 2015 -Conference Track Proceedings. Inter- national Conference on Learning Representations, ICLR.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "MC-saar-instruct: a platform for Minecraft instruction giving agents",
                "authors": [],
                "year": null,
                "venue": "Proceedings of the 21th",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "MC-saar-instruct: a platform for Minecraft in- struction giving agents. In Proceedings of the 21th",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Annual Meeting of the Special Interest Group on Discourse and Dialogue",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "53--56",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Annual Meeting of the Special Interest Group on Dis- course and Dialogue, pages 53-56, 1st virtual meet- ing. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Multimodal reference resolution in collaborative assembly tasks",
                "authors": [
                    {
                        "first": "Dimosthenis",
                        "middle": [],
                        "last": "Kontogiorgos",
                        "suffix": ""
                    },
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Sibirtseva",
                        "suffix": ""
                    },
                    {
                        "first": "Andre",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    },
                    {
                        "first": "Gabriel",
                        "middle": [],
                        "last": "Skantze",
                        "suffix": ""
                    },
                    {
                        "first": "Joakim",
                        "middle": [],
                        "last": "Gustafson",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 4th International Workshop on Multimodal Analyses Enabling Artificial Agents in Human-Machine Interaction, MA3HMI'18",
                "volume": "",
                "issue": "",
                "pages": "38--42",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dimosthenis Kontogiorgos, Elena Sibirtseva, Andre Pereira, Gabriel Skantze, and Joakim Gustafson. 2018. Multimodal reference resolution in collabo- rative assembly tasks. In Proceedings of the 4th In- ternational Workshop on Multimodal Analyses En- abling Artificial Agents in Human-Machine Inter- action, MA3HMI'18, page 38-42, New York, NY, USA. Association for Computing Machinery.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Computational generation of referring expressions: A survey",
                "authors": [
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kees Van Deemter",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Comput. Linguist",
                "volume": "38",
                "issue": "1",
                "pages": "173--218",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emiel Krahmer and Kees van Deemter. 2012. Compu- tational generation of referring expressions: A sur- vey. Comput. Linguist., 38(1):173-218.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "MNIST handwritten digit database",
                "authors": [
                    {
                        "first": "Yann",
                        "middle": [],
                        "last": "Lecun",
                        "suffix": ""
                    },
                    {
                        "first": "Corinna",
                        "middle": [],
                        "last": "Cortes",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yann LeCun and Corinna Cortes. 2010. MNIST hand- written digit database. Technical report, New York University.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "ROUGE: A package for automatic evaluation of summaries",
                "authors": [
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Text Summarization Branches Out",
                "volume": "",
                "issue": "",
                "pages": "74--81",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chin-Yew Lin. 2004. ROUGE: A package for auto- matic evaluation of summaries. In Text Summariza- tion Branches Out, pages 74-81, Barcelona, Spain. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Boundaries and prototypes in categorizing direction",
                "authors": [
                    {
                        "first": "Vivien",
                        "middle": [],
                        "last": "Mast",
                        "suffix": ""
                    },
                    {
                        "first": "Diedrich",
                        "middle": [],
                        "last": "Wolter",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Klippel",
                        "suffix": ""
                    },
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Oliver Wallgr\u00fcn",
                        "suffix": ""
                    },
                    {
                        "first": "Thora",
                        "middle": [],
                        "last": "Tenbrink",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
                "volume": "8684",
                "issue": "",
                "pages": "92--107",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vivien Mast, Diedrich Wolter, Alexander Klippel, Jan Oliver Wallgr\u00fcn, and Thora Tenbrink. 2014. Boundaries and prototypes in categorizing direc- tion. In Lecture Notes in Computer Science (includ- ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8684 LNAI, pages 92-107.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences",
                "authors": [
                    {
                        "first": "Hongyuan",
                        "middle": [],
                        "last": "Mei",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [
                            "R"
                        ],
                        "last": "Walter",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "AAAI'16: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "2772--2778",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. 2016. Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences. In AAAI'16: Proceedings of the Thirtieth AAAI Confer- ence on Artificial Intelligence, pages 2772-2778.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Mapping instructions to actions in 3D environments with visual goal prediction",
                "authors": [
                    {
                        "first": "Dipendra",
                        "middle": [],
                        "last": "Misra",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Bennett",
                        "suffix": ""
                    },
                    {
                        "first": "Valts",
                        "middle": [],
                        "last": "Blukis",
                        "suffix": ""
                    },
                    {
                        "first": "Eyvind",
                        "middle": [],
                        "last": "Niklasson",
                        "suffix": ""
                    },
                    {
                        "first": "Max",
                        "middle": [],
                        "last": "Shatkhin",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Artzi",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dipendra Misra, Andrew Bennett, Valts Blukis, Eyvind Niklasson, Max Shatkhin, and Yoav Artzi. 2018. Mapping instructions to actions in 3D environments with visual goal prediction. In Proceedings of the 2018 Conference on Empirical Methods in Natu- ral Language Processing. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Trends in integration of vision and language research: A survey of tasks, datasets, and methods",
                "authors": [
                    {
                        "first": "Aditya",
                        "middle": [],
                        "last": "Mogadala",
                        "suffix": ""
                    },
                    {
                        "first": "Marimuthu",
                        "middle": [],
                        "last": "Kalimuthu",
                        "suffix": ""
                    },
                    {
                        "first": "Dietrich",
                        "middle": [],
                        "last": "Klakow",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aditya Mogadala, Marimuthu Kalimuthu, and Dietrich Klakow. 2019. Trends in integration of vision and language research: A survey of tasks, datasets, and methods. CoRR, abs/1907.09358.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Fully convolutional captionnet: Siamese difference captioning attention model",
                "authors": [
                    {
                        "first": "Ariyo",
                        "middle": [],
                        "last": "Oluwasanmi",
                        "suffix": ""
                    },
                    {
                        "first": "Enoch",
                        "middle": [],
                        "last": "Frimpong",
                        "suffix": ""
                    },
                    {
                        "first": "Muhammad",
                        "middle": [
                            "Umar"
                        ],
                        "last": "Aftab",
                        "suffix": ""
                    },
                    {
                        "first": "Edward",
                        "middle": [
                            "Y"
                        ],
                        "last": "Baagyere",
                        "suffix": ""
                    },
                    {
                        "first": "Zhiquang",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Kifayat",
                        "middle": [],
                        "last": "Ullah",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "IEEE Access",
                "volume": "7",
                "issue": "",
                "pages": "175929--175939",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ariyo Oluwasanmi, Enoch Frimpong, Muham- mad Umar Aftab, Edward Y. Baagyere, Zhiquang Qin, and Kifayat Ullah. 2019. Fully convolutional captionnet: Siamese difference captioning attention model. IEEE Access, 7:175929-175939.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. Bleu: a method for automatic eval- uation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Com- putational Linguistics, pages 311-318, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "IEEE/CVF International Conference on Computer Vision (ICCV)",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "4623--4632",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "IEEE/CVF International Conference on Computer Vision (ICCV), pages 4623-4632.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Cider: Consensus-based image description evaluation",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "Lawrence"
                        ],
                        "last": "Ramakrishna Vedantam",
                        "suffix": ""
                    },
                    {
                        "first": "Devi",
                        "middle": [],
                        "last": "Zitnick",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "CVPR",
                "volume": "",
                "issue": "",
                "pages": "4566--4575",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. 2015. Cider: Consensus-based image description evaluation. In CVPR, pages 4566-4575. IEEE Computer Society.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Show and Tell: A Neural Image Caption Generator",
                "authors": [
                    {
                        "first": "Oriol",
                        "middle": [],
                        "last": "Vinyals",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Toshev",
                        "suffix": ""
                    },
                    {
                        "first": "Samy",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    },
                    {
                        "first": "Dumitru",
                        "middle": [],
                        "last": "Erhan",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition",
                "volume": "",
                "issue": "",
                "pages": "3156--3164",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2014. Show and Tell: A Neural Im- age Caption Generator. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June-2015:3156- 3164.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Show, attend and tell: Neural image caption generation with visual attention",
                "authors": [
                    {
                        "first": "Kelvin",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [
                            "Lei"
                        ],
                        "last": "Ba",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Kiros",
                        "suffix": ""
                    },
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    },
                    {
                        "first": "Aaron",
                        "middle": [],
                        "last": "Courville",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [
                            "S"
                        ],
                        "last": "Zemel",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "32nd International Conference on Machine Learning",
                "volume": "3",
                "issue": "",
                "pages": "2048--2057",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdinov, Richard S. Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neural image caption generation with visual attention. In 32nd International Confer- ence on Machine Learning, ICML 2015, volume 3, pages 2048-2057. International Machine Learning Society (IMLS).",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Decoding strategies for neural referring expression generation",
                "authors": [
                    {
                        "first": "Sina",
                        "middle": [],
                        "last": "Zarrie\u00df",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Schlangen",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 11th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "503--512",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sina Zarrie\u00df and David Schlangen. 2018. Decoding strategies for neural referring expression generation. In Proceedings of the 11th International Conference on Natural Language Generation, pages 503-512, Tilburg University, The Netherlands. Association for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "A Visual Instruction (Step 2 of Assembling IKEA's \"Godmorgon\" Case)"
            },
            "FIGREF1": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "An image pair from BLOCKS annotated with the natural language instruction \"Bring block 6 down and place it above block 7\". The associated action is indicated with an arrow and boxes for visual aid.the perspective of NLP / natural language generation."
            },
            "FIGREF2": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Left: Block movement on the board: relative count that the target block was moved in a direction (training data). Right: Target location relative to landmark."
            },
            "FIGREF3": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Snippets of samples for the add (left side) and subtract (right side) operation on an image pair. Arrows and boxes only for visual aid. The right side is inverted in colors for better printing."
            },
            "FIGREF4": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Architecture of the Show, Attend and Tell model applied to Blocks Dataset. The input image looks distorted, because we halve the original image widths for horizontal concatenation while keeping the heights."
            },
            "TABREF1": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table/>",
                "text": "Statistics of the MNIST subset of the BLOCKS dataset."
            },
            "TABREF2": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>Pattern &amp; Example</td><td>Logo</td><td>Digit</td><td>Total</td><td colspan=\"2\">Instr. Instr.</td></tr><tr><td/><td/><td/><td/><td colspan=\"2\">Logo Digit</td></tr><tr><td>$BLOCK? (number)? $DECORATION</td><td>5782</td><td>8931</td><td colspan=\"2\">14713 0.47</td><td>0.71</td></tr><tr><td>Total</td><td colspan=\"3\">13126 13551 26777</td><td/></tr></table>",
                "text": "move block 11 to the right of block 6 ups should be south of twitter and northwest of bmw (the)? (number)? $DECORATION $BLOCK? 7344 4620 11964 0.60 0.36 move the 14 to sit on top of the number 15, move ups so it is below twitter, 11 should be east of 6 move the bmw block below the adidas block"
            },
            "TABREF3": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table/>",
                "text": ""
            },
            "TABREF4": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>N (N=2889)</td><td>SE (N=637)</td></tr></table>",
                "text": "aboveBLOCK (0.14)   to the right of BLOCK (0.08) north of BLOCK (0.08) southeast of BLOCK (0.06) in the first open space above BLOCK (0.05) below (0.06) north of (0.04) then (0.05) so it is above BLOCK (0.04) southeast of (0.04) so its bottom edge touches BLOCK 's top edge (0.03) up (0.03) on top of BLOCK (0.03) down (0.03)"
            },
            "TABREF5": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td colspan=\"2\">Relation Instructions*</td><td colspan=\"3\">Tokens Phrases Unique Example phrase</td></tr><tr><td/><td/><td>/ phrase</td><td colspan=\"2\">/ instr. phrases</td></tr><tr><td>N</td><td>2225</td><td>6.05</td><td>1.30</td><td>0.23 above BLOCK</td></tr><tr><td>S</td><td>1777</td><td>6.20</td><td>1.35</td><td>0.26 under BLOCK</td></tr><tr><td>E</td><td>1368</td><td>7.41</td><td>1.43</td><td>0.25 to the right of BLOCK</td></tr><tr><td>W</td><td>2121</td><td>7.40</td><td>1.41</td><td>0.21 left of BLOCK</td></tr><tr><td>NE</td><td>763</td><td>9.18</td><td>1.68</td><td>0.26 in the first open space northeast of BLOCK</td></tr><tr><td>NW</td><td>420</td><td>9.82</td><td>1.68</td><td>0.37 above and to the left of BLOCK</td></tr><tr><td>SE</td><td>358</td><td>10.34</td><td>1.78</td><td>0.44 so it is below and to the right of BLOCK</td></tr><tr><td>SW</td><td>766</td><td>9.23</td><td>1.60</td><td>0.31 in the first open space southwest of BLOCK</td></tr></table>",
                "text": "The most frequent spatial expressions for two of the 8 target-landmark configurations (*includes only instructions that mentioned exactly one landmark)"
            },
            "TABREF6": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table/>",
                "text": ""
            },
            "TABREF9": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td colspan=\"4\">els, CNN+LSTM, and show its performance on the</td></tr><tr><td colspan=\"4\">variant tasks defined above. (The attention model</td></tr><tr><td colspan=\"4\">is not suited to work with the symbolic input repre-</td></tr><tr><td colspan=\"3\">sentation and hence is not used here.)</td><td/></tr><tr><td>Modification</td><td colspan=\"2\">\u2206 BLEU \u2206 GTT</td><td>\u2206 GTLM</td></tr><tr><td>none</td><td>(0.3565)</td><td colspan=\"2\">(0.0809) (0.193)</td></tr><tr><td>add</td><td>-0.026</td><td>0.0497</td><td>-0.0055</td></tr><tr><td>sub</td><td>-0.0583</td><td>0.0939</td><td>-0.0055</td></tr><tr><td>both</td><td>0.0673</td><td>0.2155</td><td>0.0387</td></tr><tr><td>state</td><td>0.2058</td><td>0.8287</td><td>0.6133</td></tr><tr><td colspan=\"2\">state + synthetic 0.5047</td><td>0.8950</td><td>0.7182</td></tr></table>",
                "text": "Model performance on the BLOCKS data with logos with natural instructions. I b denotes the both variant of the image. For the Template model, we compare each template instruction with the human references. In each column, the highest score (except those from template model) is marked in bold."
            },
            "TABREF10": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table/>",
                "text": "Delta of CNN+LSTM performance with modified image inputs on logo data and natural instructions."
            }
        }
    }
}