File size: 103,787 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:28:39.731400Z"
    },
    "title": "BERT-Based Simplification of Japanese Sentence-Ending Predicates in Descriptive Text",
    "authors": [
        {
            "first": "Taichi",
            "middle": [],
            "last": "Kato",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Nagoya University",
                "location": {}
            },
            "email": "kato.taichi@d.mbox.nagoya-u.ac.jp"
        },
        {
            "first": "Rei",
            "middle": [],
            "last": "Miyata",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Nagoya University",
                "location": {}
            },
            "email": "miyata.rei@d.mbox.nagoya-u.ac.jp"
        },
        {
            "first": "Satoshi",
            "middle": [],
            "last": "Sato",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Nagoya University",
                "location": {}
            },
            "email": "sato.satoshi@j@d.mbox.nagoya-u.ac.jp"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Japanese sentence-ending predicates intricately combine content words and functional elements, such as aspect, modality, and honorifics; this can often hinder the understanding of language learners and children. Conventional lexical simplification methods, which replace difficult target words with simpler synonyms acquired from lexical resources in a word-byword manner, are not always suitable for the simplification of such Japanese predicates. Given this situation, we propose a BERT-based simplification method, the core feature of which is the high ability to substitute the whole predicates with simple ones while maintaining their core meanings in the context by utilizing pre-trained masked language models. Experimental results showed that our proposed methods consistently outperformed the conventional thesaurus-based method by a wide margin. Furthermore, we investigated in detail the effectiveness of the average token embedding and dropout, and the remaining errors of our BERT-based methods.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Japanese sentence-ending predicates intricately combine content words and functional elements, such as aspect, modality, and honorifics; this can often hinder the understanding of language learners and children. Conventional lexical simplification methods, which replace difficult target words with simpler synonyms acquired from lexical resources in a word-byword manner, are not always suitable for the simplification of such Japanese predicates. Given this situation, we propose a BERT-based simplification method, the core feature of which is the high ability to substitute the whole predicates with simple ones while maintaining their core meanings in the context by utilizing pre-trained masked language models. Experimental results showed that our proposed methods consistently outperformed the conventional thesaurus-based method by a wide margin. Furthermore, we investigated in detail the effectiveness of the average token embedding and dropout, and the remaining errors of our BERT-based methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Lexical simplification (LS) is the process of replacing complex words into easy words or short phrases without changing their meaning to simplify text for an easier understanding (De Belder and Moens, 2010; Paetzold and Specia, 2016) . LS has also shown to be effective in improving the downstream natural language processing tasks, such as machine translation (\u0160tajner and Popovic, 2016) . Popular LS methods use a paraphrase lexicon that pairs complex and easy words, built from various language resources (Pavlick and Callison-Burch, 2016; Nishihara and Kajiwara, 2020) .",
                "cite_spans": [
                    {
                        "start": 183,
                        "end": 206,
                        "text": "Belder and Moens, 2010;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 207,
                        "end": 233,
                        "text": "Paetzold and Specia, 2016)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 361,
                        "end": 388,
                        "text": "(\u0160tajner and Popovic, 2016)",
                        "ref_id": null
                    },
                    {
                        "start": 508,
                        "end": 542,
                        "text": "(Pavlick and Callison-Burch, 2016;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 543,
                        "end": 572,
                        "text": "Nishihara and Kajiwara, 2020)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "However, while the conventional LS methods are widely applicable to various sentences, they are not necessarily effective for tasks in which relatively longer linguistic spans should be treated comprehensively. The simplification of Japanese sentence-ending predicates is one such task. These predicates comprise multiple parts, i.e., a particle, content part (mainly verbs, nouns and adjectives) and functional part (mainly postpositional particles and auxiliary verbs), 1 as shown in Figure 1 . Because the functional part tends to combine aspect, modality, and honorifics, the understanding of language learners and children may be hindered. Figure 1 also shows an example of a manual simplification of the predicate; whole elements in the phrase are jointly rewritten. From this example, it is discovered that although the original meaning of the main verb \"haichisuru (be arranged)\" is reduced to the simpler general word \"aru (there are),\" the core meaning of the sentence can still be successfully conveyed. We assume that this interesting fact may generally hold for a certain type of text, namely, descriptive text, which explains the attributes and states of objects and situations (Robert and Wolfgang, 1981) . In descriptive sentences, core information is chiefly encoded in the arguments and their modifiers rather than the predicates. In fact, in many cases, if predicates are omitted from descriptive sentences, humans can reasonably complement alternative phrases by referring only to the remaining part. This observation motivated us to replicate these human intuitions by utilizing masked language models, which can predict the omitted tokens in a sentence.",
                "cite_spans": [
                    {
                        "start": 1192,
                        "end": 1219,
                        "text": "(Robert and Wolfgang, 1981)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 486,
                        "end": 494,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 645,
                        "end": 653,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Therefore, in this paper, we propose a BERTbased simplification method for Japanese sentenceending predicates. Our key idea is to use a masked language model to sequentially restore a predicate that is masked entirely. Our method also incorporate the mechanisms to partially encode the meaning of original predicates using average token embedding and dropout to generate various simple candidate phrases that are moderately related to the original one. We experimentally evaluated the performance of the proposed method by comparing it with a thesaurus-based LS method; the high ability of our method was revealed with detailed discussions and analyses.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Automatic text simplification (ATS) is a task of rewriting a complex text as simpler text while maintaining its meaning. Inspired by the machine translation (MT) task, recent ATS approaches regard the text simplification as a monolingual MT task (Wubben et al., 2012; Nisioi et al., 2017) . Although sequence-to-sequence neural MT has contributed to better simplification performance, a large amount of parallel data that pairs original-tosimplified text is required. In English, various types of such datasets are available, such as the PWKP dataset (Zhu et al., 2010) , which was constructed by automatically aligning sentences from English Wikipedia and Simple English Wikipedia. 2 Xu et al. (2015) introduced the Newsela corpus, which comprises news articles rewritten by professional editors. Several attempts have also been made to develop datasets for Japanese simplification, such as one built by using crowdsourcing (Katsuta and Yamamoto, 2018) . However, compared with the resources available in English, they are not sufficiently large to build robust models. Therefore, for languages with limited resources of aligned corpora for simplification, even including Japanese, NMT-based ATS methods are not necessarily feasible.",
                "cite_spans": [
                    {
                        "start": 246,
                        "end": 267,
                        "text": "(Wubben et al., 2012;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 268,
                        "end": 288,
                        "text": "Nisioi et al., 2017)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 551,
                        "end": 569,
                        "text": "(Zhu et al., 2010)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 683,
                        "end": 701,
                        "text": "2 Xu et al. (2015)",
                        "ref_id": null
                    },
                    {
                        "start": 925,
                        "end": 953,
                        "text": "(Katsuta and Yamamoto, 2018)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "LS is a subtask of ATS that aims to substitute complex words with easy words. One of the most popular LS systems uses a simplified syn-2 https://simple.wikipedia.org/ onym lexicon extracted from WordNet and other resources (S. Rebecca and Sven, 2012) . Simple-PPDB (Pavlick and Callison-Burch, 2016 ) is a large-scale complex-to-simple paraphrase dataset built from PPDB (Pavlick et al., 2015) . Glava\u0161 an\u010f Stajner (2015) used word embeddings to obtain synonyms of the target word. A recent study (Zhou et al., 2019) proposed a BERT-based LS method which produces simpler words that are both semantically and contextually similar to the target word. However, these LS methods adopt the word-byword substitution approach, and in principle, do not take longer units of sentences as input, such as Japanese sentence-ending predicates.",
                "cite_spans": [
                    {
                        "start": 227,
                        "end": 250,
                        "text": "Rebecca and Sven, 2012)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 265,
                        "end": 298,
                        "text": "(Pavlick and Callison-Burch, 2016",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 371,
                        "end": 393,
                        "text": "(Pavlick et al., 2015)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 396,
                        "end": 421,
                        "text": "Glava\u0161 an\u010f Stajner (2015)",
                        "ref_id": null
                    },
                    {
                        "start": 497,
                        "end": 516,
                        "text": "(Zhou et al., 2019)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "To manage longer text spans without recourse to sequence-to-sequence generation methods, leveraging the general-purpose monolingual models that are trained on large data might be effective. In recent years, various types of pre-trained models have been proposed and trained for many languages (Qiu et al., 2020) . For Japanese, several models are available, such as BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2018) , which is a transformer-based language model trained with two objectives: masked token prediction and next-sentence prediction. Although BERT has been applied to LS (Zhou et al., 2019; Qiang et al., 2019) , these studies have focused on a single word as a simplification unit. The applicability of BERT in simplifying longer spans of text remains to be investigated.",
                "cite_spans": [
                    {
                        "start": 293,
                        "end": 311,
                        "text": "(Qiu et al., 2020)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 429,
                        "end": 450,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 617,
                        "end": 636,
                        "text": "(Zhou et al., 2019;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 637,
                        "end": 656,
                        "text": "Qiang et al., 2019)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Following the general LS process (Shardlow, 2014) , our proposed simplification process comprises the following four steps: detection of complex predicates, substitution generation, substitution validation, and substitution ranking. The overall process is shown in Figure 2 . Three types of functional expressions (\"de aru,\" \"to naru\" and \"ni naru\") in the input sentences, which in many cases unnecessarily complicate the sentence structures, are to be normalized in advance. ",
                "cite_spans": [
                    {
                        "start": 33,
                        "end": 49,
                        "text": "(Shardlow, 2014)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 265,
                        "end": 273,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Overall Simplification Process",
                "sec_num": "3.1"
            },
            {
                "text": "Step The span of the sentence-ending predicate is first identified using the Japanese predicate analyzer Panzer (Sano et al., 2020) . As shown in Figure 1 , it basically comprises a particle, content part (verbs, nouns, adjectives and adverbs) and functional part (a sequence of functional words). 3 The difficulty of the predicate is then assessed based on the following two criteria, which correspond approximately to the level of Japanese around 10-years-old:",
                "cite_spans": [
                    {
                        "start": 112,
                        "end": 131,
                        "text": "(Sano et al., 2020)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 298,
                        "end": 299,
                        "text": "3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 146,
                        "end": 154,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Detection",
                "sec_num": null
            },
            {
                "text": "\u2022 Verbs, nouns, adjectives and adverbs in the content part are included in the vocabulary up to Level 2 of the Japanese Language Proficiency Test (JLPT). 4",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Detection",
                "sec_num": null
            },
            {
                "text": "\u2022 Linguistic patterns (a sequence of functional words) in the functional part are included in the grammar items up to Level 3 of the JLPT.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Detection",
                "sec_num": null
            },
            {
                "text": "Predicates that do not satisfy the criteria above are detected as difficult. At this stage, if the content part includes a proper noun or a compound word, it is excluded from the substitution generation step because it often represents an important concept that should not/cannot be simplified. In such cases, only the functional part is targeted for substitution if it is assessed as difficult. We used JUMAN++ 5 to identify proper nouns and compound words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Detection",
                "sec_num": null
            },
            {
                "text": "Step For the detected difficult phrase, simpler candidate phrases are generated using the proposed BERT-based method, the core mechanisms of which will be described in Section 3.2. Whereas two different inputs exist depending on the results of the detection step, this process generates two words: if the content part includes a proper noun or a compound word, it generates a particle and a functional word; otherwise, a particle and a content word. The candidates generated by BERT are normalized and restored as complete sentences with reference to the original phrase using the Japanese text generation library HaoriBricks3 (Sato, 2020) . In this study, the reconstructed elements are tense (ta-form), aspects (teiru-form), passive voice (reru/rareru-form), honorifics (desu/masu-form), and negative form (nai-form).",
                "cite_spans": [
                    {
                        "start": 627,
                        "end": 639,
                        "text": "(Sato, 2020)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation",
                "sec_num": null
            },
            {
                "text": "Steps Finally, the generated candidates are validated and ranked in terms of simplicity, fluency, and adequacy. Candidates that do not satisfy the aforementioned difficulty criteria are excluded, which ensures that all the final candidates are simpler than the original predicate. Subsequently, they are ranked using three features, BERT likelihood, cosine similarity, and language model perplexity, which we will describe in Section 3.3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Validation and Ranking",
                "sec_num": null
            },
            {
                "text": "The input representation of the BERT is constructed by summing the token, segment, and position embeddings. To obtain a word whose meaning is similar to that of the original predicate as a whole, we used an average token embedding of the predicate as shown in Figure 3 . We then used BERT to sequentially generate two words, (1) a particle and (2) a content or functional word. Generation of Particles As shown in Figure 3 , average token embedding is used to represent the original predicates, including the particle. Let w = (w 1 , ..., w k , ..., w L ) be the tokens of a sentence of length L, where w k is a particle at the head of the target phrase. We used token embeddings of sequence w k to w L to obtain the average token embedding of the predicate, which is calculated as follows:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 260,
                        "end": 268,
                        "text": "Figure 3",
                        "ref_id": null
                    },
                    {
                        "start": 414,
                        "end": 422,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "BERT-Based Predicate Generation",
                "sec_num": "3.2"
            },
            {
                "text": "+ + + + \u25ef \u25ef \u25ef \u25ef T1 \u25ef \u25ef \u25ef \u25ef T2 content part functional part particle sentence-ending predicate \u25ef \u25ef \u25ef \u25ef T3 \u25ef \u25ef \u25ef \u25ef T4 \u25ef \u25ef \u25ef \u25ef T5 \u25ef \u25ef \u25ef \u25ef Tk=6 \u25ef \u25ef \u25ef \u25ef T7 \u25ef \u25ef \u25ef \u25ef T8 \u25ef \u25ef \u25ef \u25ef T9 \u304c , \u3092",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BERT-Based Predicate Generation",
                "sec_num": "3.2"
            },
            {
                "text": "E avg[particle] = L i=k E w i L \u2212 k + 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BERT-Based Predicate Generation",
                "sec_num": "3.2"
            },
            {
                "text": "We added the special token [MASK] and a Japanese period (\u3002) at the end of the sentence. The [MASK] token is important because it functions as a pseudo content word, which can increase the probability of generating a particle. We removed tokens (w k+1 ,..., w L ) from w and added tokens (w [M ASK] , w\u3002); therefore, w = (w 1 , ..., w k , w [M ASK] , w\u3002) became a new sequence for the BERT input. Subsequently, we replaced token embedding E k with E avg [particle] .",
                "cite_spans": [
                    {
                        "start": 92,
                        "end": 98,
                        "text": "[MASK]",
                        "ref_id": null
                    },
                    {
                        "start": 453,
                        "end": 463,
                        "text": "[particle]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "BERT-Based Predicate Generation",
                "sec_num": "3.2"
            },
            {
                "text": "The particles selected significantly affect the generation of a subsequent word. To obtain a diverse candidate generation, it is crucial to obtain multiple particles at this stage. Our proposed process generates 10 outputs in the descending order of their BERT likelihoods and retain up to two most likely particles. Figures 4 and 5 depict the process of generating a content or a functional word subsequent to the particle, respectively. 6 The input tokens can now be re-expressed as w = (w 1 , ..., w k , ..., w L ), where w k is the generated particle. The average token embeddings for a content word and a functional word are calculated as follows:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 317,
                        "end": 326,
                        "text": "Figures 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "BERT-Based Predicate Generation",
                "sec_num": "3.2"
            },
            {
                "text": "E avg[content] = L i=k+1 Ew i L \u2212 k E avg[f unctional] = L i=k+length(content)+1 Ew i L \u2212 k \u2212 length(content)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation of Content/Functional Words",
                "sec_num": null
            },
            {
                "text": "To obtain a wide range of outputs, we introduced an embedding dropout mechanism (Zhou et al., 2019) , which partially causes the target input embedding to be zero. This can loosen the semantic relation between the original phrase and a word to be predicted, which may expand the diversity of the outputs.",
                "cite_spans": [
                    {
                        "start": 80,
                        "end": 99,
                        "text": "(Zhou et al., 2019)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation of Content/Functional Words",
                "sec_num": null
            },
            {
                "text": "In this study, for each generated particle, our process generates five outputs in descending order of their BERT likelihoods. It is noteworthy that, in rare cases, the BERT might produce undesirable outputs, such as ungrammatical particles; however, we do not filter them out because it is more important to obtain a wide range of candidates. We can manage such cases in the candidate ranking step. Finally, the original predicate is replaced with the generated candidates. As described in Section 3.1, the generated sentences are normalized and restored as complete sentences, and the difficult sentences are excluded.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generation of Content/Functional Words",
                "sec_num": null
            },
            {
                "text": "At this stage, 10 candidates are prepared at the most. To rank the candidates in terms of adequacy (meaning preservation) and fluency, we adopted the average rank of the following three features. The candidates with the same rank are reranked in the descending order of BERT likelihood.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Candidates Ranking",
                "sec_num": "3.3"
            },
            {
                "text": "Bert Likelihood The likelihood score was produced by BERT when each candidate was generated. We assume this is the most basic feature to measure the \"goodness\" of the candidates, as it may indicate how well the generated candidate fits in the context, how relevant it is to the original word (adequacy), and how natural it is as a Japanese expression (fluency). The averaged likelihoods of a generated particle and a content/functional word were used.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Candidates Ranking",
                "sec_num": "3.3"
            },
            {
                "text": "Cosine Similarity The cosine similarity of the embedding vectors between the original predicate and the generated word were used to calculate the semantic similarity (adequacy). If a content word is generated, the similarity between the content word and the original content part is measured. If only a functional part is generated, the similarity between the functional part and the original functional part is measured. For any parts having more than one word, the average of the embedding is used. To obtain the embedding vectors, we used existing Japanese pre-trained word vectors that were trained on Common Crawl and Wikipedia using fastText. 7",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Candidates Ranking",
                "sec_num": "3.3"
            },
            {
                "text": "Language Model Perplexity The scores of the language model were used to measure the fluency in Japanese. We built a transformer-based language model trained from a whole text from Japanese 7 https://fasttext.cc/docs/en/crawl-vectors.html Wikipedia 8 using fairseq toolkit (Ott et al., 2019) . For Japanese tokenization, we used MeCab 9 and sentencepiece. 10 The lower perplexity indicated a better result, that is, a higher rank.",
                "cite_spans": [
                    {
                        "start": 272,
                        "end": 290,
                        "text": "(Ott et al., 2019)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 355,
                        "end": 357,
                        "text": "10",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Candidates Ranking",
                "sec_num": "3.3"
            },
            {
                "text": "We used the following three types of Japanese descriptive text for evaluation: Wikipedia texts, 11 news articles, 12 and expository text on cultural assets that were extracted from leaflets and websites of Japanese cultural assets. 13 For each domain, we randomly extracted 500 sentences. In the detection step, 704 of 1500 predicates were first identified as difficult. Subsequently, 160 phrases were excluded for simplification as they contained a proper noun or compound word with an easy functional part. Hence, as evaluation data, we obtained 544 sentences with difficult predicates to be simplified.",
                "cite_spans": [
                    {
                        "start": 114,
                        "end": 116,
                        "text": "12",
                        "ref_id": null
                    },
                    {
                        "start": 232,
                        "end": 234,
                        "text": "13",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "4.1"
            },
            {
                "text": "BERT-Based Method (Proposed) We tested three BERT-based methods: BERT [Avg+dp] , which uses both the average token embedding and dropout; BERT [Avg] , which uses only the average token embedding; and BERT [MASK] , which uses a special [MASK] token instead of the average token embedding. We used the Japanese BERT model, 14 whose tokenizer is MeCab+WordPiece, and set the dropout ratio to 0.3 following Zhou et al. (2019) .",
                "cite_spans": [
                    {
                        "start": 70,
                        "end": 78,
                        "text": "[Avg+dp]",
                        "ref_id": null
                    },
                    {
                        "start": 143,
                        "end": 148,
                        "text": "[Avg]",
                        "ref_id": null
                    },
                    {
                        "start": 205,
                        "end": 211,
                        "text": "[MASK]",
                        "ref_id": null
                    },
                    {
                        "start": 403,
                        "end": 421,
                        "text": "Zhou et al. (2019)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methods",
                "sec_num": "4.2"
            },
            {
                "text": "Thesaurus-Based Method (Baseline) As a baseline, we also implemented a thesaurus-based LS method that substitutes difficult content words into simpler ones. This method was integrated into our overall process in place of BERT-based generation modules in Figure 2 . To obtain Japanese synonyms, we used three popular thesauri, i.e., Japanese WordNet Synonyms Database, 15 Bunrui 8 The data were obtained from Wikimedia (https://dumps.wikimedia.org/). 9 http://taku910.github.io/mecab/ 10 https://github.com/google/sentencepiece 11 https://dumps.wikimedia.org/ 12 https://www3.nhk.or.jp/news/ 13 We treated highly technical terms contained in the expository text on cultural assets as proper nouns using the existing terminology of Japanese cultural assets (Kyoto bunkazai hogo kikin, 1989).",
                "cite_spans": [
                    {
                        "start": 591,
                        "end": 593,
                        "text": "13",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 254,
                        "end": 262,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Methods",
                "sec_num": "4.2"
            },
            {
                "text": "14 https://github.com/cl-tohoku/BERT-japanese: BERTbase mecabipadic-bpe-32k whole-word-mask 15 http://compling.hss.ntu.edu.sg/wnja/ Fluency Adequacy (meaning preservation) 1 Grammatically correct",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methods",
                "sec_num": "4.2"
            },
            {
                "text": "The core meaning of the sentence is correctly conveyed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methods",
                "sec_num": "4.2"
            },
            {
                "text": "The core meaning of the sentence may be conveyed depending on the context of usage. 3 Grammatically incorrect The core meaning of the sentence is not conveyed. Goi Hyo (Word List by Semantic Principles), 16 and SNOW D2 (Lexical Paraphrase Lexicon of Japanese Content Words). 17 For candidate ranking, we used the two features, cosine similarity and language model perplexity (excluding BERT likelihood).",
                "cite_spans": [
                    {
                        "start": 204,
                        "end": 206,
                        "text": "16",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Slightly awkward",
                "sec_num": "2"
            },
            {
                "text": "Because a large-scale human gold standard for the simplification of Japanese predicates is unavailable, we adopted human evaluation. We recruited four native speakers of Japanese as evaluators. We divided the output sentences generated via the four methods into two sets (A and B) and respectively assigned two evaluators. Each sentence was evaluated on the basis of two metrics, i.e., fluency and adequacy, as shown in Table 1 . Table 2 shows the inter-rater agreement scores, i.e., the weighted Cohen's Kappa coefficients (Cohen, 1968 ), between two evaluators for each evaluation set and metric. All scores were above 0.7, indicating a fairly reliable agreement (Artstein and Poesio, 2008) .",
                "cite_spans": [
                    {
                        "start": 524,
                        "end": 536,
                        "text": "(Cohen, 1968",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 665,
                        "end": 692,
                        "text": "(Artstein and Poesio, 2008)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 420,
                        "end": 427,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 430,
                        "end": 437,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Human Evaluation",
                "sec_num": "4.3"
            },
            {
                "text": "We regarded candidates whose fluency and adequacy were rated as 1 by the two evaluators as good candidates, and those whose fluency and adequacy were rated as 1 by at least one evaluator as acceptable candidates. 18 Table 3 shows the statistics of the generated candidates. The total numbers of candidates generated by the BERT-based methods were much higher than that by the thesaurus-based method. The results also show that the BERT-based methods generated more good and acceptable candidates than the thesaurus-based method. Table 4 shows the statistics of target sentences that obtained any candidate. It is noteworthy that for most of the target sentences, the BERTbased methods generated at least one candidate. Meanwhile, the thesaurus-based method, which is constrained by the amount of language resources, could not generate any candidate for 46% of the sentences. Moreover, the total numbers of sentences having acceptable candidates via the BERTbased methods were nearly three times that obtained via the thesaurus-based method. These results strongly demonstrate the powerful generation ability of BERT compared with the conventional method. This suggests that the basic architecture of the masked language model is crucial.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 216,
                        "end": 223,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 529,
                        "end": 536,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5.1"
            },
            {
                "text": "Acceptable@N shown in Table 5 is the rate at which any acceptable candidate is included in the top-N candidates of the ranked list. Acceptable@1 is an important indicator for developing a fully automatic simplification system because the system must select only one candidate, whereas Acceptable@5 provides useful insight into the application to the simplification support system that provides a list of candidates for human writers. The left part of Table 5 shows the results when all the ranking features were used. The results of Acceptable@1 show that even though the BERT-based methods",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 22,
                        "end": 29,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 451,
                        "end": 458,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Total",
                "sec_num": null
            },
            {
                "text": "All ranking features -w/o LM perplexity -w/o cosine similarity -w/o BERT likelihood @1 @5 @1 @5 @1 @5 @1 @5",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methods",
                "sec_num": null
            },
            {
                "text": "Thesaurus Table 5 : Results of Acceptable@N (@1 and @5) and effectiveness of each ranking feature, with the ratio to the 544 target sentences given in parentheses. delivered significantly higher performance than the thesaurus-based method, the scores were in the range of 0.4-0.5, indicating opportunity for improvement. Meanwhile, BERT[Avg+dp] achieved 0.686 for Acceptable@5, which implies that our proposed method can be useful for providing human writers with candidates for selection. Table 6 shows an example of a Japanese predicate and part of the generated candidates. Whereas the thesaurus-based method could not generate even one candidate, all the BERT-based methods can generate some candidates and good candidates \"ga arimasu (there is)\" were ranked top. Even though the generated phrase \"ga arimasu (there is)\" and the original phrase \"ga m\u014dke rareteimasu (be arranged)\" are not synonyms per se, they become synonymous when the entire sentence is considered. Importantly, all of the BERT-based methods produced the similar candidate lists. This suggests that the masked language model functions well and simulates human intuitions for predicting omitted predicates by referring only to the preceding context, as mentioned in Section 1. Meanwhile, the thesaurus-based method, which does not take into account the context, could not generate such candidates.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 10,
                        "end": 17,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 490,
                        "end": 497,
                        "text": "Table 6",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Methods",
                "sec_num": null
            },
            {
                "text": "To examine the effectiveness of the usage of the average token embedding and dropout, with a focus on the sentences that obtained at least one acceptable candidate in [Avg] was 0.5504. This implies that the combination of the average token embedding and dropout is particularly important for this simplification task. Table 7 shows an example of the effectiveness of average token embedding; the target predicate \"ga z\u014dkasuru (increase)\" is difficult to determine only from the context, and BERT [MASK] , which does not use the information of the original phrase, could not generate any good candidate. In such cases, the average token embedding that encodes the information of the original can improve the performance. Furthermore, whereas the thesaurus-based method generated one good candidate, BERT[Avg] generated four good candidates in the top-5 list. Table 8 : Example of the effectiveness of average token embedding and dropout (boldface: acceptable candidates; underline: good candidates; \"?\" preceding the candidates: awkward or ungrammatical candidates). Table 8 shows an example of the effectiveness of average token embedding and dropout. BERT [MASK] , which does not use the information of the original predicate, could not generate any acceptable candidate; however, the other two models, which encode the information of the original predicate by using the average token embedding, generated acceptable candidates. Moreover, only BERT[Avg+dp] successfully generated a good candidate. BERT[Avg+dp] partially encodes target tokens and can generate wider candidates similar to those part of the original expressions.",
                "cite_spans": [
                    {
                        "start": 167,
                        "end": 172,
                        "text": "[Avg]",
                        "ref_id": null
                    },
                    {
                        "start": 496,
                        "end": 502,
                        "text": "[MASK]",
                        "ref_id": null
                    },
                    {
                        "start": 1157,
                        "end": 1163,
                        "text": "[MASK]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 318,
                        "end": 325,
                        "text": "Table 7",
                        "ref_id": "TABREF12"
                    },
                    {
                        "start": 858,
                        "end": 865,
                        "text": "Table 8",
                        "ref_id": null
                    },
                    {
                        "start": 1066,
                        "end": 1073,
                        "text": "Table 8",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Detailed Comparison of Methods",
                "sec_num": "5.2.1"
            },
            {
                "text": "To understand the limitations of our methods and devise ways to improve their performances, we analyzed the cases in which all of the BERT-based methods could not generate any acceptable candidates. We manually classified all such cases, totaling 140 cases, in a bottom-up manner. Table 9 presents the constructed error categories.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 281,
                        "end": 288,
                        "text": "Table 9",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "5.2.2"
            },
            {
                "text": "Two error types were relevant to the detection step (see also Figure 2 ): incorrect identification of phrasal span and incorrect identification of proper nouns/compound words. The former type was often caused by idiomatic expressions. As shown in Table 9 , the predicate \"isai wo hanatte imasu (stands out conspicuously)\" is an idiomatic expression that should be treated as one unit. However, our detection process separated this expression and detected only \"wo hanatte imasu\" as a predicate. Because it is impossible to substitute only one part of an idiom, idiomatic dictionaries are required to achieve a more accurate identification of predicates. The latter type of error is attributable to errors in upstream natural language processing tools and dictionaries. Hence, it is important to incorporate a mechanism for their automatic identification to mitigate the insufficiency in language pre-processing.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 62,
                        "end": 70,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 247,
                        "end": 254,
                        "text": "Table 9",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "5.2.2"
            },
            {
                "text": "The generation step contains three error types. The first error type includes cases in which our method could theoretically generate some candidates 19 but failed to do so. To further increase the generation capability, we must consider the use of other models or the construction of a large phrase-level paraphrase dictionary. The next error type stems mainly from the deficiency in the reconstruction process of functional parts. Although our method can reconstruct the four functional words of JLPT level 4 (the easiest level) and the one functional word of JLPT level 3, we may need to expand (They were intercepting the Allies' radio messages.) Table 9 : Error category for cases in which no acceptable candidate was generated.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 650,
                        "end": 657,
                        "text": "Table 9",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "5.2.2"
            },
            {
                "text": "them. However, an excessive reconstruction of the functional part may induce textual difficulty, which we intend to avoid. The last error type is architectural incapability. The predicate \"wo b\u014dju shite ita (were intercepting)\" in the example sentence can be rewritten as \"wo kakurete kiite ita (were secretly listening to)\"; however, they comprise two content words. Because our method can generate only one content word, it must be extended to address this problem. For example, a method can be developed that does not place a period at the end of the sentence and continues to generate words until BERT outputs a period. However, more generated words result in more combinations; hence, the control and ranking of the candidates become more difficult.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "5.2.2"
            },
            {
                "text": "In this paper, we proposed a BERT-based method for generating simplified substitutions for Japanese sentence-ending predicates in descriptive text. The principal feature of our method is that it can generate candidate predicates that conform to the target context and retain the core meaning of the original one, even though the candidates themselves may not always be exactly synonymous to the original one. Furthermore, our method does not rely on conventional language resources such as thesauri but utilizes a large pre-trained language model and can generate an output for almost any input. The evaluation results showed that the proposed method generated simple, fluent candidates that conveyed the original meaning for 54% of difficult predicates and substantially outperformed the conventional thesaurus-based method. Furthermore, we investigated the effectiveness of using average token embedding and dropout in the BERT model and systematically analyzed the critical errors.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "In future studies, we plan to extend our architecture to manage idiomatic expressions and produce multiple content words to improve expressiveness. We will then develop a simplification support system integrating our proposed method that can return a list of candidates for human writers. We will also aim to examine our method for other text types, such as narrative and argumentative texts (Robert and Wolfgang, 1981) . In this regard, important information is encoded in predicates, which renders the task more challenging.",
                "cite_spans": [
                    {
                        "start": 392,
                        "end": 419,
                        "text": "(Robert and Wolfgang, 1981)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "In this study, we extended the definition of the Japanese predicate byKawahara et al. (2002) to include a preceding particle, which is useful for the simplification task. As Japanese is a head-final language, the main predicate of a sentence is usually located at the end of the sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Linguistically, Japanese particles attach to the preceding words, but, based on our observation, it is useful to jointly include them in sentence-ending predicates.4 https://www.jlpt.jp/ 5 http://nlp.ist.i.kyoto-u.ac.jp/index.php?JUMAN++",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "As described in Section 3.1, if the content part includes a compound word or a proper noun, then only the functional part is substituted.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/masayu-a/WLSP 17 http://www.jnlp.org/SNOW/D2 18 Acceptable candidates include good candidates.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "To ascertain the theoretical possibility, we attempted to create any candidates using human linguistic introspection.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was supported by JSPS KAKENHI Grant Number 19K20628 and by the Research Grant Program of KDDI Foundation, Japan. The human evaluation work was supported by BAOBAB Inc.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Inter-coder agreement for computational linguistics",
                "authors": [
                    {
                        "first": "Ron",
                        "middle": [],
                        "last": "Artstein",
                        "suffix": ""
                    },
                    {
                        "first": "Massimo",
                        "middle": [],
                        "last": "Poesio",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Computational Linguistics",
                "volume": "34",
                "issue": "4",
                "pages": "555--596",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ron Artstein and Massimo Poesio. 2008. Inter-coder agreement for computational linguistics. Computa- tional Linguistics, 34(4):555-596.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Weighted kappa: Nominal scale agreement with provision for scaled disagreement or partial credit",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    }
                ],
                "year": 1968,
                "venue": "Psychological bulletin",
                "volume": "70",
                "issue": "4",
                "pages": "213--220",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Cohen. 1968. Weighted kappa: Nominal scale agreement with provision for scaled disagreement or partial credit. Psychological bulletin, 70(4):213- 220.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Text simplification for children",
                "authors": [
                    {
                        "first": "Jan",
                        "middle": [
                            "De"
                        ],
                        "last": "Belder",
                        "suffix": ""
                    },
                    {
                        "first": "Marie-Francine",
                        "middle": [],
                        "last": "Moens",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 2010 SIGIR Workshop on Accessible Search Systems",
                "volume": "",
                "issue": "",
                "pages": "19--26",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jan De Belder and Marie-Francine Moens. 2010. Text simplification for children. In Proceedings of the 2010 SIGIR Workshop on Accessible Search Sys- tems, pages 19-26, New York.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.04805"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional transformers for language under- standing. arXiv preprint arXiv:1810.04805.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Simplifying lexical simplification: Do we need simplified corpora?",
                "authors": [
                    {
                        "first": "Goran",
                        "middle": [],
                        "last": "Glava\u0161",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sanja\u0161tajner",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "63--68",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P15-2011"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Goran Glava\u0161 and Sanja\u0160tajner. 2015. Simplifying lex- ical simplification: Do we need simplified corpora? In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Lan- guage Processing, pages 63-68, Beijing, China.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Crowdsourced corpus of sentence simplification with core vocabulary",
                "authors": [
                    {
                        "first": "Akihiro",
                        "middle": [],
                        "last": "Katsuta",
                        "suffix": ""
                    },
                    {
                        "first": "Kazuhide",
                        "middle": [],
                        "last": "Yamamoto",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 11th International Conference on Language Resources and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "461--466",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Akihiro Katsuta and Kazuhide Yamamoto. 2018. Crowdsourced corpus of sentence simplification with core vocabulary. In Proceedings of the 11th In- ternational Conference on Language Resources and Evaluation, pages 461-466, Miyazaki, Japan.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Construction of a Japanese relevance-tagged corpus",
                "authors": [
                    {
                        "first": "Daisuke",
                        "middle": [],
                        "last": "Kawahara",
                        "suffix": ""
                    },
                    {
                        "first": "Sadao",
                        "middle": [],
                        "last": "Kurohashi",
                        "suffix": ""
                    },
                    {
                        "first": "K\u00f4iti",
                        "middle": [],
                        "last": "Hasida",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 3rd International Conference on Language Resources and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "2008--2013",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daisuke Kawahara, Sadao Kurohashi, and K\u00f4iti Hasida. 2002. Construction of a Japanese relevance-tagged corpus. In Proceedings of the 3rd International Conference on Language Resources and Evaluation, pages 2008-2013, Las Palmas, Canary Islands.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Bunkazai Yougo Jiten",
                "authors": [],
                "year": 1989,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kyoto bunkazai hogo kikin, editor. 1989. Bunkazai Yougo Jiten [Terminology of Cultural Assets].",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Word complexity estimation for Japanese lexical simplification",
                "authors": [
                    {
                        "first": "Daiki",
                        "middle": [],
                        "last": "Nishihara",
                        "suffix": ""
                    },
                    {
                        "first": "Tomoyuki",
                        "middle": [],
                        "last": "Kajiwara",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of The 12th Language Resources and Evaluation Conference",
                "volume": "",
                "issue": "",
                "pages": "3114--3120",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daiki Nishihara and Tomoyuki Kajiwara. 2020. Word complexity estimation for Japanese lexical simplifi- cation. In Proceedings of The 12th Language Re- sources and Evaluation Conference, pages 3114- 3120.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Exploring neural text simplification models",
                "authors": [
                    {
                        "first": "Sergiu",
                        "middle": [],
                        "last": "Nisioi",
                        "suffix": ""
                    },
                    {
                        "first": "Simone",
                        "middle": [
                            "Paolo"
                        ],
                        "last": "Sanja\u0161tajner",
                        "suffix": ""
                    },
                    {
                        "first": "Liviu",
                        "middle": [
                            "P"
                        ],
                        "last": "Ponzetto",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dinu",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "85--91",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sergiu Nisioi, Sanja\u0160tajner, Simone Paolo Ponzetto, and Liviu P. Dinu. 2017. Exploring neural text sim- plification models. In Proceedings of the 55th An- nual Meeting of the Association for Computational Linguistics, pages 85-91, Vancouver, Canada.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "fairseq: A fast, extensible toolkit for sequence modeling",
                "authors": [
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Sergey",
                        "middle": [],
                        "last": "Edunov",
                        "suffix": ""
                    },
                    {
                        "first": "Alexei",
                        "middle": [],
                        "last": "Baevski",
                        "suffix": ""
                    },
                    {
                        "first": "Angela",
                        "middle": [],
                        "last": "Fan",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Gross",
                        "suffix": ""
                    },
                    {
                        "first": "Nathan",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Grangier",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Auli",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)",
                "volume": "",
                "issue": "",
                "pages": "48--53",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. 2019. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of the 2019 Conference of the North American Chap- ter of the Association for Computational Linguistics (Demonstrations), pages 48-53, Minneapolis, Min- nesota.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Unsupervised lexical simplification for non-native speakers",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Gustavo",
                        "suffix": ""
                    },
                    {
                        "first": "Lucia",
                        "middle": [],
                        "last": "Paetzold",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Specia",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 30th Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "3761--3767",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gustavo H Paetzold and Lucia Specia. 2016. Unsuper- vised lexical simplification for non-native speakers. In Proceedings of the 30th Association for the Ad- vancement of Artificial Intelligence Conference on Artificial Intelligence, pages 3761-3767, Phoenix, Arizona, USA.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Simple PPDB: A paraphrase database for simplification",
                "authors": [
                    {
                        "first": "Ellie",
                        "middle": [],
                        "last": "Pavlick",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Callison-Burch",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "143--148",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P16-2024"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ellie Pavlick and Chris Callison-Burch. 2016. Simple PPDB: A paraphrase database for simplification. In Proceedings of the 54th Annual Meeting of the As- sociation for Computational Linguistics, pages 143- 148, Berlin, Germany.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "PPDB 2.0: Better paraphrase ranking, finegrained entailment relations, word embeddings, and style classification",
                "authors": [
                    {
                        "first": "Ellie",
                        "middle": [],
                        "last": "Pavlick",
                        "suffix": ""
                    },
                    {
                        "first": "Pushpendre",
                        "middle": [],
                        "last": "Rastogi",
                        "suffix": ""
                    },
                    {
                        "first": "Juri",
                        "middle": [],
                        "last": "Ganitkevitch",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Van Durme",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Callison-Burch",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "425--430",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/P15-2070"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch, Benjamin Van Durme, and Chris Callison-Burch. 2015. PPDB 2.0: Better paraphrase ranking, fine- grained entailment relations, word embeddings, and style classification. In Proceedings of the 53rd An- nual Meeting of the Association for Computational Linguistics and the 7th International Joint Confer- ence on Natural Language Processing, pages 425- 430, Beijing, China.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A simple bert-based approach for lexical simplification",
                "authors": [
                    {
                        "first": "Jipeng",
                        "middle": [],
                        "last": "Qiang",
                        "suffix": ""
                    },
                    {
                        "first": "Yun",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Yi",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Yunhao",
                        "middle": [],
                        "last": "Yuan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.06226"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jipeng Qiang, Yun Li, Yi Zhu, and Yunhao Yuan. 2019. A simple bert-based approach for lexical simplifica- tion. arXiv preprint arXiv:1907.06226.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Pre-trained models for natural language processing: A survey",
                "authors": [
                    {
                        "first": "Xipeng",
                        "middle": [],
                        "last": "Qiu",
                        "suffix": ""
                    },
                    {
                        "first": "Tianxiang",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Yige",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Yunfan",
                        "middle": [],
                        "last": "Shao",
                        "suffix": ""
                    },
                    {
                        "first": "Ning",
                        "middle": [],
                        "last": "Dai",
                        "suffix": ""
                    },
                    {
                        "first": "Xuanjing",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. 2020. Pre-trained models for natural language processing: A survey.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Introduction to Text Linguistics",
                "authors": [
                    {
                        "first": "Beaugrande",
                        "middle": [],
                        "last": "Robert",
                        "suffix": ""
                    },
                    {
                        "first": "Dressler",
                        "middle": [],
                        "last": "De",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wolfgang",
                        "suffix": ""
                    }
                ],
                "year": 1981,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Beaugrande Robert, de and Dressler Wolfgang. 1981. Introduction to Text Linguistics. Routledge, New York.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "WordNet-based lexical simplification of a document",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [
                            "S"
                        ],
                        "last": "Rebecca",
                        "suffix": ""
                    },
                    {
                        "first": "Anderson",
                        "middle": [],
                        "last": "Sven",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 11th Conference on Natural Language Processing (KONVENS)",
                "volume": "",
                "issue": "",
                "pages": "80--88",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas S. Rebecca and Anderson Sven. 2012. WordNet-based lexical simplification of a document. In Proceedings of the 11th Conference on Natural Language Processing (KONVENS), pages 80-88.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Detection of functional expressions in Japanese sentence-ending predicative phrases and its application to estimation of rhetorical relation between sentences",
                "authors": [
                    {
                        "first": "Masahiro",
                        "middle": [],
                        "last": "Sano",
                        "suffix": ""
                    },
                    {
                        "first": "Satoshi",
                        "middle": [],
                        "last": "Sato",
                        "suffix": ""
                    },
                    {
                        "first": "Rei",
                        "middle": [],
                        "last": "Miyata",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 26th Annual Meeting of the Association for Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1483--1486",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Masahiro Sano, Satoshi Sato, and Rei Miyata. 2020. Detection of functional expressions in Japanese sentence-ending predicative phrases and its applica- tion to estimation of rhetorical relation between sen- tences. In Proceedings of the 26th Annual Meeting of the Association for Natural Language Processing, pages 1483-1486, Online. (in Japanese).",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "HaoriBricks3: A domain-specific language for Japanese sentence composition",
                "authors": [
                    {
                        "first": "Satoshi",
                        "middle": [],
                        "last": "Sato",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Journal of Natural Language Processing",
                "volume": "27",
                "issue": "",
                "pages": "411--444",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Satoshi Sato. 2020. HaoriBricks3: A domain-specific language for Japanese sentence composition. Jour- nal of Natural Language Processing, 27(2):411-444. (in Japanese).",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "A survey of automated text simplification",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Shardlow",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Special Issue on Natural Language Processing",
                "volume": "4",
                "issue": "",
                "pages": "581--701",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew Shardlow. 2014. A survey of automated text simplification. International Journal of Advanced Computer Science and Applications, Special Issue on Natural Language Processing 2014, 4(1):581- 701.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Can text simplification help machine translation?",
                "authors": [
                    {
                        "first": "Maja",
                        "middle": [],
                        "last": "Sanja\u0161tajner",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Popovic",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 19th Annual Conference of the European Association for Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "230--242",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sanja\u0160tajner and Maja Popovic. 2016. Can text simpli- fication help machine translation? In Proceedings of the 19th Annual Conference of the European Associ- ation for Machine Translation, pages 230-242, Riga, Latvia.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Sentence simplification by monolingual machine translation",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sander Wubben",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Van Den",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Bosch",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1015--1024",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sander Wubben, Antal van den Bosch, and Emiel Krah- mer. 2012. Sentence simplification by monolingual machine translation. In Proceedings of the 50th An- nual Meeting of the Association for Computational Linguistics, pages 1015-1024, Jeju Island, Korea.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Problems in current text simplification research: New data can help",
                "authors": [
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Callison-Burch",
                        "suffix": ""
                    },
                    {
                        "first": "Courtney",
                        "middle": [],
                        "last": "Napoles",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "3",
                "issue": "",
                "pages": "283--297",
                "other_ids": {
                    "DOI": [
                        "10.1162/tacl_a_00139"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wei Xu, Chris Callison-Burch, and Courtney Napoles. 2015. Problems in current text simplification re- search: New data can help. Transactions of the Asso- ciation for Computational Linguistics, 3:283-297.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "BERT-based lexical substitution",
                "authors": [
                    {
                        "first": "Wangchunshu",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Ge",
                        "suffix": ""
                    },
                    {
                        "first": "Ke",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Furu",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3368--3373",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wangchunshu Zhou, Tao Ge, Ke Xu, Furu Wei, and Ming Zhou. 2019. BERT-based lexical substitution. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3368-3373, Florence, Italy.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "A monolingual tree-based translation model for sentence simplification",
                "authors": [
                    {
                        "first": "Zhemin",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Delphine",
                        "middle": [],
                        "last": "Bernhard",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 23rd International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1353--1361",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych. 2010. A monolingual tree-based translation model for sentence simplification. In Proceedings of the 23rd International Conference on Computational Linguistics, pages 1353-1361, Beijing, China.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "circular windows are arranged on the first floor.) Ikkai niwa, hanenkei no mado wo haichishi-teiru 1\u968e\u306b\u306f\u3001\u534a\u5186\u5f62\u306e\u7a93\u304c\u3042\u308b (There are semi-circular windows on the first floor.) Ikkai niwa, hanenkei no mado ga aru sentence-ending predicate partpart Example of Japanese sentence-ending predicate and its simplified version.",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "FIGREF1": {
                "text": "Overall process of simplification of sentence-ending predicates.",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "FIGREF2": {
                "text": "Generation of a particle by BERT with average token embedding. [CLS] and [SEP] are two special tokens in BERT; [CLS] is added in front of input tokens and [SEP] is a special separator token. Generation of a functional word.",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "TABREF2": {
                "type_str": "table",
                "num": null,
                "text": "Human evaluation metrics.",
                "html": null,
                "content": "<table><tr><td colspan=\"4\">Sets # of unique sentences Fluency Adequacy</td></tr><tr><td>A</td><td>3480</td><td>0.733</td><td>0.707</td></tr><tr><td>B</td><td>1739</td><td>0.831</td><td>0.846</td></tr></table>"
            },
            "TABREF3": {
                "type_str": "table",
                "num": null,
                "text": "Weighted Cohen's Kappa coefficients.",
                "html": null,
                "content": "<table><tr><td>Methods</td><td>Total</td><td>Good</td><td>Acceptable</td></tr><tr><td>Thesaurus-based</td><td>641</td><td>111/641</td><td>183/641</td></tr><tr><td>BERT[MASK]</td><td colspan=\"2\">3158 439/3158</td><td>844/3158</td></tr><tr><td>BERT[Avg]</td><td colspan=\"2\">3031 451/3031</td><td>817/3031</td></tr><tr><td>BERT[Avg+dp]</td><td colspan=\"2\">3059 459/3059</td><td>853/3059</td></tr></table>"
            },
            "TABREF4": {
                "type_str": "table",
                "num": null,
                "text": "Number of generated candidates.",
                "html": null,
                "content": "<table/>"
            },
            "TABREF6": {
                "type_str": "table",
                "num": null,
                "text": "Number of target sentences that have any good or acceptable candidate, with the ratio to the 544 target sentences given in parentheses.",
                "html": null,
                "content": "<table/>"
            },
            "TABREF9": {
                "type_str": "table",
                "num": null,
                "text": "Example of the advantage of BERT-based methods over the thesaurus-based method. Top-5 outputs are shown (boldface: acceptable candidates; underline: good candidates; \"?\" preceding the candidates: awkward or ungrammatical candidates).",
                "html": null,
                "content": "<table/>"
            },
            "TABREF10": {
                "type_str": "table",
                "num": null,
                "text": "",
                "html": null,
                "content": "<table><tr><td>, we applied Mc-</td></tr></table>"
            },
            "TABREF11": {
                "type_str": "table",
                "num": null,
                "text": "Input\u30cf\u30e0\u30b9\u30c8\u30ea\u30f3\u30b0\u30b9\u306a\u3069\u306e\u7b4b\u91cf\u304c \u304c \u304c\u5897 \u5897 \u5897\u52a0 \u52a0 \u52a0\u3059 \u3059 \u3059\u308b \u308b \u308b Hamusutoringusu nadono kinry\u014d ga z\u014dkasuru (The amount of muscle such as hamstrings increases.)",
                "html": null,
                "content": "<table><tr><td/><td>\u304c \u304c \u304c\u5897 \u5897 \u5897\u3059 \u3059 \u3059</td><td/><td/><td/></tr><tr><td>Thesaurus-based</td><td>ga masu</td><td/><td/><td/></tr><tr><td/><td>(increase)</td><td/><td/><td/></tr><tr><td/><td>\u3092\u6e2c\u5b9a\u3059\u308b</td><td>\u3092\u793a\u3059</td><td>\u3092\u6e2c\u308b</td><td>\u3092\u8868\u3059</td><td>\u3092\u7528\u3044\u308b</td></tr><tr><td>BERT[MASK]</td><td colspan=\"3\">wo sokuteisuru wo shimesu wo hakaru</td><td>wo arawasu</td><td>wo moch\u012bru</td></tr><tr><td/><td>(measure)</td><td>(indicate)</td><td>(measure)</td><td>(show)</td><td>(use)</td></tr><tr><td/><td>\u304c\u591a\u3044</td><td>\u304c \u304c \u304c\u5897 \u5897 \u5897\u3048 \u3048 \u3048\u308b \u308b \u308b</td><td>\u3092 \u3092 \u3092\u5897 \u5897 \u5897\u3084 \u3084 \u3084\u3059 \u3059 \u3059</td><td>\u3092 \u3092 \u3092\u9ad8 \u9ad8 \u9ad8\u3081 \u3081 \u3081\u308b \u308b \u308b</td><td>\u304c \u304c \u304c\u5897 \u5897 \u5897\u3059 \u3059 \u3059</td></tr><tr><td>BERT[Avg]</td><td>ga\u014di</td><td>ga fueru</td><td colspan=\"2\">wo fuyasu wo takameru</td><td>ga masu</td></tr><tr><td/><td>(many)</td><td>(increase)</td><td>(increase)</td><td>(increase)</td><td>(increase)</td></tr></table>"
            },
            "TABREF12": {
                "type_str": "table",
                "num": null,
                "text": "Example of the effectiveness of average token embedding. Top-5 outputs are shown (boldface: acceptable candidates; underline: good candidates).",
                "html": null,
                "content": "<table><tr><td/><td colspan=\"3\">\u8abf\u67fb\u958b\u59cb\u4ee5\u6765\u6700\u3082\u591a\u304f\u306a\u308b\u898b \u898b \u898b\u901a \u901a \u901a\u3057 \u3057 \u3057\u3067 \u3067 \u3067\u3059 \u3059 \u3059\u3002</td></tr><tr><td>Input</td><td colspan=\"3\">Ch\u014dsa kaishi irai mottomo\u014dku naru mit\u014dshi desu.</td></tr><tr><td/><td colspan=\"3\">(This is predicted to be the highest number since the survey began.)</td></tr><tr><td/><td>\u6570\u5b57\u3067\u3059</td><td>\u8a18\u9332\u3067\u3059</td><td/></tr><tr><td>Bert[MASK]</td><td>s\u016bji desu</td><td>kiroku desu</td><td/></tr><tr><td/><td>(is the number)</td><td>(is the record)</td><td/></tr><tr><td/><td>\u4e88 \u4e88 \u4e88\u5b9a \u5b9a \u5b9a\u3067 \u3067 \u3067\u3059 \u3059 \u3059</td><td>?\u3067\u3059</td><td>?\u307e\u3059</td></tr><tr><td>Bert[Avg]</td><td>yotei desu</td><td>desu</td><td>masu</td></tr><tr><td/><td>(is planned to)</td><td>(is)</td><td>(is)</td></tr><tr><td/><td>\u4e88 \u4e88 \u4e88\u5b9a \u5b9a \u5b9a\u3067 \u3067 \u3067\u3059 \u3059 \u3059</td><td>\u6c34\u6e96\u3067\u3059</td><td>\u4e88 \u4e88 \u4e88\u6e2c \u6e2c \u6e2c\u3067 \u3067 \u3067\u3059 \u3059 \u3059</td></tr><tr><td>Bert[Avg+dropout]</td><td>yotei desu</td><td>suijun desu</td><td>yosoku desu</td></tr><tr><td/><td colspan=\"3\">(is planned to) (is the number) (is expected to)</td></tr></table>"
            },
            "TABREF13": {
                "type_str": "table",
                "num": null,
                "text": "\u6238\u53e3\u3092\u8a2d\u3051\u308b\u306a\u3069\u7570 \u7570 \u7570\u5f69 \u5f69 \u5f69\u3092 \u3092 \u3092\u653e \u653e \u653e\u3063 \u3063 \u3063\u3066 \u3066 \u3066\u3044 \u3044 \u3044\u307e \u307e \u307e\u3059 \u3059 \u3059\u3002 Toguchi wo m\u014dkeru nado isai wo hanatte imasu. (It stands out conspicuously as the door is installed.) Incorrect identification of proper nouns/compound words 7 \u5b89\u7965\u5bfa\u304b\u3089\u79fb\u3057\u3066\u672c \u672c \u672c\u5c0a \u5c0a \u5c0a\u3068 \u3068 \u3068\u3057 \u3057 \u3057\u307e \u307e \u307e\u3057 \u3057 \u3057\u305f \u305f \u305f\u3002 Ansh\u014dji kara utsushite honzon to shimashita. (It was moved from the Anshoji temple and became the principal deity.) \u98a8\u8239\u3092\u7a7a\u306b\u5411\u304b\u3063\u3066\u653e \u653e \u653e\u3061 \u3061 \u3061\u307e \u307e \u307e\u3057 \u3057 \u3057\u305f \u305f \u305f\u3002 F\u016bsen wo sora ni mukatte hanachi mashita. (They released the balloons up into the sky.) \uff11\u4eba30\u30b0\u30e9\u30e0\u307e \u307e \u307e\u3067 \u3067 \u3067\u6240 \u6240 \u6240\u6301 \u6301 \u6301\u3059 \u3059 \u3059\u308b \u308b \u308b\u3053 \u3053 \u3053\u3068 \u3068 \u3068\u304c \u304c \u304c\u3067 \u3067 \u3067\u304d \u304d \u304d\u307e \u307e \u307e\u3059 \u3059 \u3059\u3002 1-Ri 30-guramu made shoji suru koto ga dekimasu (Each person can possess up to 30 grams.)Architectural incapability 30\u9023\u5408\u56fd\u306e\u7121\u7dda\u3092 \u3092 \u3092\u508d \u508d \u508d\u53d7 \u53d7 \u53d7\u3057 \u3057 \u3057\u3066 \u3066 \u3066\u3044 \u3044 \u3044\u305f \u305f \u305f\u3002 Reng\u014dkoku no musen wo b\u014dju shite ita.",
                "html": null,
                "content": "<table><tr><td>Process</td><td>Error category</td><td>#</td><td>Example</td></tr><tr><td/><td>Incorrect identification of phrasal span</td><td>2</td><td/></tr><tr><td>Detection</td><td/><td/><td/></tr><tr><td/><td>No acceptable candidate</td><td>99</td><td/></tr><tr><td>Generation</td><td>Failure to reconstruct functional part</td><td>2</td><td/></tr></table>"
            }
        }
    }
}