File size: 109,812 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:28:10.652586Z"
    },
    "title": "Stable Style Transformer: Delete and Generate Approach with Encoder-Decoder for Text Style Transfer",
    "authors": [
        {
            "first": "Joosung",
            "middle": [],
            "last": "Lee",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Kakao Enterprise Corp",
                "location": {
                    "country": "South Korea"
                }
            },
            "email": "rung.joo@kakaoenterprise.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Text style transfer is the task that generates a sentence by preserving the content of the input sentence and transferring the style. Most existing studies are progressing on non-parallel datasets because parallel datasets are limited and hard to construct. In this work, we introduce a method that follows two stages in nonparallel datasets. The first stage is to delete attribute markers of a sentence directly through a classifier. The second stage is to generate a transferred sentence by combining the content tokens and the target style. We experiment on two benchmark datasets and evaluate context, style, fluency, and semantic. It is difficult to select the best system using only these automatic metrics, but it is possible to select stable systems. We consider only robust systems in all automatic evaluation metrics to be the minimum conditions that can be used in real applications. Many previous systems are difficult to use in certain situations because performance is significantly lower in several evaluation metrics. However, our system is stable in all automatic evaluation metrics and has results comparable to other models. Also, we compare the performance results of our system and the unstable system through human evaluation. Our code and data are available at the link 1 .",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Text style transfer is the task that generates a sentence by preserving the content of the input sentence and transferring the style. Most existing studies are progressing on non-parallel datasets because parallel datasets are limited and hard to construct. In this work, we introduce a method that follows two stages in nonparallel datasets. The first stage is to delete attribute markers of a sentence directly through a classifier. The second stage is to generate a transferred sentence by combining the content tokens and the target style. We experiment on two benchmark datasets and evaluate context, style, fluency, and semantic. It is difficult to select the best system using only these automatic metrics, but it is possible to select stable systems. We consider only robust systems in all automatic evaluation metrics to be the minimum conditions that can be used in real applications. Many previous systems are difficult to use in certain situations because performance is significantly lower in several evaluation metrics. However, our system is stable in all automatic evaluation metrics and has results comparable to other models. Also, we compare the performance results of our system and the unstable system through human evaluation. Our code and data are available at the link 1 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Text style transfer is a task that generates a sentence while preserving the content in a given sentence but changing the source style. The style of the sentence refers to a predefined class (e.g. sentiment, formality, tense) and the content refers to the rest of the sentence except for the style. Lack of parallel data makes text style transfer task difficult. This problem cannot be solved by supervised learning because there are no right sentences.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "1 https://github.com/rungjoo/Stable-Style-Transformer One previous method (Hu et al., 2017; Shen et al., 2017; Fu et al., 2018; Prabhumoye et al., 2018a; Logeswaran et al., 2018 ) of text style transfer is to learn latent representations to separate style and content from sentences. First, these approaches try adversarial training to learn a disentangled latent representation of the content and style. Secondly, a transferred sentence is generated from the decoder by combining the disentangled latent representation and the target style. However, the experimental results of (Lample et al., 2019) report that disentangled latent representation through adversarial training is hard to get and not necessary. Also, adversarial training is not effective to encode a sentence of various lengths into a vector representation of fixed length. Other methods of text style transfer do not depend on disentanglement. Dai et al. (2019a) ; Lample et al. (2019) ; Luo et al. (2019) do not attempt to find the disentangled latent representation in the sentence. Therefore, sentences with different styles are mapped to the same space. Xu et al. (2018a) ; ; Sudhakar et al. (2019) ; neutralize sentences by deleting style-dependent attribute markers. Remaining tokens resulting from the deletion of attribute markers are style independent, and then the content tokens and a style attribute are combined to generate the transferred sentence.",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 91,
                        "text": "(Hu et al., 2017;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 92,
                        "end": 110,
                        "text": "Shen et al., 2017;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 111,
                        "end": 127,
                        "text": "Fu et al., 2018;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 128,
                        "end": 153,
                        "text": "Prabhumoye et al., 2018a;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 154,
                        "end": 177,
                        "text": "Logeswaran et al., 2018",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 579,
                        "end": 600,
                        "text": "(Lample et al., 2019)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 912,
                        "end": 930,
                        "text": "Dai et al. (2019a)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 933,
                        "end": 953,
                        "text": "Lample et al. (2019)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 956,
                        "end": 973,
                        "text": "Luo et al. (2019)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1126,
                        "end": 1143,
                        "text": "Xu et al. (2018a)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 1148,
                        "end": 1170,
                        "text": "Sudhakar et al. (2019)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We propose an approach with two stages using Delete and Generate without adversarial training for disentanglement. (1) Attribute markers of a sentence are extracted by using a pre-trained classifier as a Delete model. Our method is model-agnostic and is not affected by the design of the classifier. Attribute markers found in a sentence are deleted.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(2) A transferred sentence is generated by combining the target attribute and the content tokens after stage-1. The Generate model consists of an encoder and decoder with the Transformer structure.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In the method of deleting attribute markers, deletes attribute markers via a statistical manner using a frequency ratio and Sudhakar et al. (2019) ; Xu et al. (2018b) delete attribute markers using attention weights of a classifier. deletes attribute markers by fusion of the frequency ratio and the attention weights. We introduce an intuitive delete method that uses a change in classifier probability. If a change in classifier probability is significant when limiting certain tokens in a sentence, the token is considered an attribute marker. Our method does not need to build attribute dictionaries or define attention weights like previous methods and easily control the tradeoff between content and style. We test our methods on two text style transfer datasets: sentiment of Yelp reviews and Amazon reviews. Evaluation metrics are conducted in terms of content, fluency, style accuracy, and semantic. The content and style accuracy are measured similarly to previous studies. Fluency is measured in two ways: general-fluency using pre-trained GPT-2 (Radford et al., 2019) and data-fluency using finetuned GPT-1 (Radford, 2018) . Semantic is newly evaluated using BERTscore (Zhang* et al., 2020) in this paper. The goal of BERTscore is to evaluate semantic equivalence between two sentences. In this paper, we use a pre-trained model GPT and BERT (Devlin et al., 2019) that perform well in natural language processing/generation to evaluate transferred sentences with various automatic evaluations. Since automatic evaluations are not perfect evaluations of generated sentences, it is hard to know which system is the best, but we can determine which system has a problem. Comparative models are unstable in some evaluation metrics. But our proposed model has stable results for all automatic evaluations and is called SST (Stable Style Transformer). In addition, we first observe a point that can enhance the style controlling ability by generating sentences through latent space walking in the vector space of the style attribute token.",
                "cite_spans": [
                    {
                        "start": 124,
                        "end": 146,
                        "text": "Sudhakar et al. (2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 149,
                        "end": 166,
                        "text": "Xu et al. (2018b)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 1057,
                        "end": 1079,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 1119,
                        "end": 1134,
                        "text": "(Radford, 2018)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 1181,
                        "end": 1202,
                        "text": "(Zhang* et al., 2020)",
                        "ref_id": null
                    },
                    {
                        "start": 1354,
                        "end": 1375,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "One line of text style transfer research (Shen et al., 2017; Fu et al., 2018; Hu et al., 2017; Prabhumoye et al., 2018b; Logeswaran et al., 2018) is to separate content and style from sentences through disentangled learning. Hu et al. (2017) uses the VAE model to derive the disentanglement of the content between the generated sentence and the original sen-tence through KL loss. Shen et al. (2017) introduce the aligned auto-encoder and the cross aligned autoencoder using learning discriminators. Fu et al. (2018) propose a multi-decoder and StyleEmbedding model. The multi-decoder model has decoders for each style, and the style embedding model uses only one decoder by inserting style embedding into the decoder. The methods of Prabhumoye et al. 2018b; Logeswaran et al. (2018) used backtranslation to learn latent representations.",
                "cite_spans": [
                    {
                        "start": 41,
                        "end": 60,
                        "text": "(Shen et al., 2017;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 61,
                        "end": 77,
                        "text": "Fu et al., 2018;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 78,
                        "end": 94,
                        "text": "Hu et al., 2017;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 95,
                        "end": 120,
                        "text": "Prabhumoye et al., 2018b;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 121,
                        "end": 145,
                        "text": "Logeswaran et al., 2018)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 225,
                        "end": 241,
                        "text": "Hu et al. (2017)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 381,
                        "end": 399,
                        "text": "Shen et al. (2017)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 500,
                        "end": 516,
                        "text": "Fu et al. (2018)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 759,
                        "end": 783,
                        "text": "Logeswaran et al. (2018)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "The second line of text style transfer research is not to rely on learning for latent representation. The first approach (Xu et al., 2018b; Sudhakar et al., 2019; is to find and delete tokens called attribute markers that are highly related to style. uses the delete method of attribute markers as a statistical method based on frequency ratio, and Sudhakar et al. 2019; Xu et al. (2018b) use the attention scores of the Transformer classifier and LSTM classifier, respectively. deletes attribute markers by fusion of the frequency ratio and attention scores. The second approach (Dai et al., 2019b; Lample et al., 2019; Luo et al., 2019) does not attempt to control content and style separately. Therefore, sentences with different styles are encoded to gather in the same latent representation space. Dai et al. (2019b) ; Lample et al. (2019) are based on the learning method using cycle reconstruction loss. Lample et al. (2019) reported that disentanglement is not easy and that latent representations learned through adversarial training are unnecessary because learned latent representations depend on style. Unlike the previous models, (Luo et al., 2019) learns dual models in two directions: style1 (e.g. negative) to style2 (e.g. positive) and style2 (e.g. positive) to style1 (e.g. negative) by reinforcement learning.",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 139,
                        "text": "(Xu et al., 2018b;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 140,
                        "end": 162,
                        "text": "Sudhakar et al., 2019;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 371,
                        "end": 388,
                        "text": "Xu et al. (2018b)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 580,
                        "end": 599,
                        "text": "(Dai et al., 2019b;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 600,
                        "end": 620,
                        "text": "Lample et al., 2019;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 621,
                        "end": 638,
                        "text": "Luo et al., 2019)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 803,
                        "end": 821,
                        "text": "Dai et al. (2019b)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 824,
                        "end": 844,
                        "text": "Lample et al. (2019)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 911,
                        "end": 931,
                        "text": "Lample et al. (2019)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1143,
                        "end": 1161,
                        "text": "(Luo et al., 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In language model research, the RNN-based language model is weak in long dependency. Therefore, the recent study of text style transfer (Dai et al., 2019b; Sudhakar et al., 2019; has been conducted with Transformer (Vaswani et al., 2017) which is known to have good performance in language modeling. Dai et al. (2019b) uses a method of using the encoder and the decoder of the Transformer, and Sudhakar et al. (2019) uses a method of fine-tuning the decoder to the style transfer datasets with the pre-trained GPT-1 as an initial state. solved the problem of text style transfer in a similar way to Text Infill- Figure 1 : The proposed model framework consists of Delete and Generate process. Delete process is a method using a pre-trained classifier, and the Generate process consists of an encoder and a decoder. In the training time, our model receives feedback from the classifier's probability of the generated sentence.",
                "cite_spans": [
                    {
                        "start": 136,
                        "end": 155,
                        "text": "(Dai et al., 2019b;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 156,
                        "end": 178,
                        "text": "Sudhakar et al., 2019;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 215,
                        "end": 237,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 300,
                        "end": 318,
                        "text": "Dai et al. (2019b)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 612,
                        "end": 620,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "ing or Cloze by presenting Attribute Conditional Masked Language Model (AC-MLM) using pretrained BERT.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In this paper, we chose the first approach (Delete and Generate) that does not rely on latent representations in the second research line, referring to the results of Lample et al. (2019) . Our system has a Transformer encoder and decoder because the style transfer task is given input text. If the system uses only a decoder such as Sudhakar et al. (2019) , there is a disadvantage that it cannot include bidirectional encoding of the content token. Or, if only bidirectional encoders are used, such as AC-MLM, the position and length of the masking tokens to be filled in a sentence is not flexible.",
                "cite_spans": [
                    {
                        "start": 167,
                        "end": 187,
                        "text": "Lample et al. (2019)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 334,
                        "end": 356,
                        "text": "Sudhakar et al. (2019)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In this section, we introduce our proposed method. The style transfer problem definition is described in Section 3.1. An overview of the model is shown in Section 3.2. The proposed generation process is introduced in Sections 3.3 and 3.4. The learning mechanism is described in Section 3.5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "3"
            },
            {
                "text": "Given a dataset consist of sentence and label:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "3.1"
            },
            {
                "text": "D = {(x 1 , s 1 ), \u2022 \u2022 \u2022 , (x N , s N )}",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "3.1"
            },
            {
                "text": "where x i is a sentence and s i is a style attribute (e.g. sentiment) and N is the number of sentences in the dataset. Our goal is to train the model to generate a sentence y i with a different style while preserving the content of the sentence x i . For example, if x i is \"The food is salty and tasteless\" and s i is \"negative\" attribute, then y i is generated to mean \"The food is not salty and delicious\" which has a \"positive\" attribute. However the dataset is non-parallel, so the model cannot access y i aligned with x i .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Problem Statement",
                "sec_num": "3.1"
            },
            {
                "text": "Our approach consists of two stages: Delete and Generate framework in Fig. 1 . The first stage is the Delete process with a pre-trained style classifier. The pre-trained style classifier finds and deletes tokens that contain a lot of style attributes. The second stage is encoding the content tokens and combine them with a target style to generate a sentence. Both the encoder and the decoder have the Transformer structure, which is better than RNN and robust to long dependency.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 70,
                        "end": 76,
                        "text": "Fig. 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Model Overview",
                "sec_num": "3.2"
            },
            {
                "text": "The stage-1 is the process of finding and deleting tokens for a given sentence and style attribute. In the previous studies, the strategies of deleting attribute markers are the frequency-ratio method and the classifier's attention score (or fusion of both). However, the frequency ratio method requires a pre-built vocabulary for the training dataset and it is difficult to understand contextual information. The attention score method has a limitation on the structure of the classifier, because it must learn the style classifier using self-attention regardless of accuracy. It is also unclear whether the attention score is directly proportional to the attribute.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stage-1: Delete process",
                "sec_num": "3.3"
            },
            {
                "text": "We propose a novel method of removing attribute markers using a pre-trained classifier without a pre-built dictionary and attention scores. Our method is a model-agnostic method and it is more intuitive to find attribute markers than the previous method. Given an input sentence x, the style probability follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stage-1: Delete process",
                "sec_num": "3.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p x = p \u03b8 C (s|x)",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Stage-1: Delete process",
                "sec_num": "3.3"
            },
            {
                "text": "where p is a probability predicted by the classifier and s is style label. If we delete token t i from the sentence x, the style probability changes as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stage-1: Delete process",
                "sec_num": "3.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p x,t i = p \u03b8 C (s|x, t i )",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Stage-1: Delete process",
                "sec_num": "3.3"
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stage-1: Delete process",
                "sec_num": "3.3"
            },
            {
                "text": "x = (t 1 , t 2 , \u2022 \u2022 \u2022 , t n )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stage-1: Delete process",
                "sec_num": "3.3"
            },
            {
                "text": "and n is the number of tokens in x. The probability difference between Eq. 1 and Eq. 2 is defined as Important Score(IS) of the token(t i ):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stage-1: Delete process",
                "sec_num": "3.3"
            },
            {
                "text": "IS k t i = p x k \u2212 p x k ,t i (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stage-1: Delete process",
                "sec_num": "3.3"
            },
            {
                "text": "where x k is the remained tokens after k tokens are deleted. The value of IS k t i determines how much the token t i affects the style classifier. The token is deleted in order of the largest IS, and the Delete process ends if only one of the following two conditions: (1) p x k is less than \u03b1, or (2) the ratio of content tokens is less than \u03b2. \u03b1 is a hyperparameter that determines that a sentence no longer has a source style attribute. \u03b2 is a hyperparameter that determines how much of the content is preserved. The two hyperparameters make it easy to control the trade-off of content and style, and the experimental results are explained in Section 4.8.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stage-1: Delete process",
                "sec_num": "3.3"
            },
            {
                "text": "Our model generates a transferred sentence with the encoder and the decoder of the Transformer.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Stage-2: Generate process",
                "sec_num": "3.4"
            },
            {
                "text": "All content tokens given as a result of Delete process are input to a bidirectional self-attention the Transformer encoder. Explicitly, the Transformer encoder maps content tokens",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoder",
                "sec_num": "3.4.1"
            },
            {
                "text": "x c = (t 1 , \u2022 \u2022 \u2022 , t m ) to the continuous representation z = (z 1 , \u2022 \u2022 \u2022 , z m ) as follow: (z 1 , \u2022 \u2022 \u2022 , z m ) = Encoder(t 1 , \u2022 \u2022 \u2022 , t m ; \u03b8 E ) (4)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoder",
                "sec_num": "3.4.1"
            },
            {
                "text": "In order to generate a sentence with the desired style, two special tokens, style and start, are initially input to the decoder in Fig. 1 . The position of special tokens is always fixed in front, so we did not add positional embedding. We use teacher-forcing at training time and no teacher-forcing at test time to generate sentences. If the generated token is the special token end, the Generate process ends. The decoder auto-regressively predicts the conditional probability of the next step token as follows:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 131,
                        "end": 137,
                        "text": "Fig. 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Decoder",
                "sec_num": "3.4.2"
            },
            {
                "text": "softmax(y j ) = p \u03b8 D (t j |t 1 , \u2022 \u2022 \u2022 , t j\u22121 ,s, z) (5)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder",
                "sec_num": "3.4.2"
            },
            {
                "text": "where y j is the logit vector of the decoder,s is a desired style and t j is the predicted token in j step.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder",
                "sec_num": "3.4.2"
            },
            {
                "text": "Since we only have non-parallel datasets, we can't do supervised learning about transferred sentences. Therefore, we train SST to minimize two losses according to style conditions: s (source style) or\u015d (target style).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.5"
            },
            {
                "text": "SST reconstructs the original sentence x conditioned on x c and source style s. Reconstruction loss follows the equation:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reconstruction loss",
                "sec_num": "3.5.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "L rec = \u2212log p \u03b8 E ,\u03b8 G (x|x c , s)",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Reconstruction loss",
                "sec_num": "3.5.1"
            },
            {
                "text": "In non-parallel datasets, the reconstruction loss cannot be calculated if the style of the generated sentence is\u015d.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reconstruction loss",
                "sec_num": "3.5.1"
            },
            {
                "text": "If the model is only trained with reconstruction loss, the decoder will not see how to transform the style. Therefore, a discrepancy occurs between training time and test time. To learn how to generate sentencex with a target style\u015d, we introduce style loss as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Style loss",
                "sec_num": "3.5.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "L style = \u2212log p \u03b8 C (x =\u015d|x c ,\u015d)",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Style loss",
                "sec_num": "3.5.2"
            },
            {
                "text": "Style loss is measured by a pre-trained classifier to determine whether the transferred sentence has a\u015d. Since the generated sentence is a discrete space, we utilize soft-embedding of predicted tokens to optimize through style loss. When the SST is trained, the parameters of the classifier are not finetuned.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Style loss",
                "sec_num": "3.5.2"
            },
            {
                "text": "The Transformer encoder and decoder consist of 3 layers, and each layer has 4 heads. The style classifier consists of 5 convolution filters based on Kim (2014) . Text is tokenized using Byte-Pair-Encoding, and (word, style, position) embeddings ",
                "cite_spans": [
                    {
                        "start": 149,
                        "end": 159,
                        "text": "Kim (2014)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Details",
                "sec_num": "3.6"
            },
            {
                "text": "In this paper, we test our model on two datasets, YELP and AMAZON, which are provided in . The Yelp dataset is for business reviews, and the Amazon dataset is product reviews. Both datasets are labeled negative and positive and statistics are shown in Table 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 252,
                        "end": 259,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiments 4.1 Dataset",
                "sec_num": "4"
            },
            {
                "text": "Human references are used to measure human-BLEU and BERTscore. We used 2 Yelp human references and 1 Amazon human reference. Yelp: ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Human References",
                "sec_num": "4.2"
            },
            {
                "text": "We compare the previous models with three approaches. The first comparisons are CrossAligned (Shen et al., 2017) , [StyleEmbedding, multi-decoder] (Fu et al., 2018) , and BackTranslation (Prabhumoye et al., 2018b), which attempt to separate content and style through latent representation learning.",
                "cite_spans": [
                    {
                        "start": 93,
                        "end": 112,
                        "text": "(Shen et al., 2017)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 147,
                        "end": 164,
                        "text": "(Fu et al., 2018)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Previous Method",
                "sec_num": "4.3"
            },
            {
                "text": "The second comparisons are [DeleteOnly, DeleteAn-dRetrieve] , UnpariedRL (Xu et al., 2018b) and [B-GST, G-GST] (Sudhakar et al., 2019) , which delete attribute markers and then generate the sentence. [TemplateBased, RetrieveOnly] return the target sentence through retrieve without generating. The final comparison is DualRL (Luo et al., 2019) , which does not distinguish between content and style.",
                "cite_spans": [
                    {
                        "start": 73,
                        "end": 91,
                        "text": "(Xu et al., 2018b)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 111,
                        "end": 134,
                        "text": "(Sudhakar et al., 2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 200,
                        "end": 229,
                        "text": "[TemplateBased, RetrieveOnly]",
                        "ref_id": null
                    },
                    {
                        "start": 325,
                        "end": 343,
                        "text": "(Luo et al., 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Previous Method",
                "sec_num": "4.3"
            },
            {
                "text": "We evaluated the systems in 4 ways and results are shown in Table 2 and 3.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 60,
                        "end": 67,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Automatic Evaluation",
                "sec_num": "4.4"
            },
            {
                "text": "Content preserving intensity is measured by G-BLEU, the geometric mean of self-BLEU and human-BLEU, as in previous works. A high BLEU score indicates that the model is good at content preservation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Content",
                "sec_num": "4.4.1"
            },
            {
                "text": "In the Yelp dataset, RetireveOnly and BackTranslation are considered unstable models because G-BELU score is too low compared to other systems. In the Amazon datasets, CrossAligned and Re-trieveOnly are too low compared to other systems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Content",
                "sec_num": "4.4.1"
            },
            {
                "text": "Most style transfer studies measure style accuracy using a classifier. We also evaluate style accuracy with a classifier (note that this is different from the one used in training).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Attribute",
                "sec_num": "4.4.2"
            },
            {
                "text": "In the Yelp dataset, StyleEmbedding, multidecoder, and UnpairedRL have quite a low accuracy. In the Amazon datasets, StyleEmbedding, DeleteOnly, and DeleteAndRetrieve are unstable in style transfer.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Attribute",
                "sec_num": "4.4.2"
            },
            {
                "text": "Fluency is considered the perplexity of the transferred sentence. We use GPT-1 and GPT-2, which is known to perform well as a language model. General-fluency (g-PPL) is measured using pretrained GPT-2 and data-fluency (d-PPL) is measured using GPT-1 (instead of GPT-2 due to GPU memory) finetuned to the dataset. General-Fluency is a general view because the language model is not fitted to the data, and data-fluency is an evaluation metric in terms of the specific data of style transfer tasks. The total-fluency (t-PPL) is the geometric mean of d-PPL and g-PPL, and lower values indicate better fluency.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fluency",
                "sec_num": "4.4.3"
            },
            {
                "text": "In the Yelp dataset, TemplateBased is unstable because t-PPL is much larger than other systems. In the Amazon dataset, it is determined that the fluency of B-GST and G-GST is unstable.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fluency",
                "sec_num": "4.4.3"
            },
            {
                "text": "Semantic is measured using BERTscore. Unlike BLEU and ROUGE, BERTscore is an evaluation metric defined in continuous space. Pretrained model is used to calculate cosine similarity by extracting the contextual token embed-dings from a human reference and a transferred sentence. BERTscore solves the limitations of previous metrics and measures a better correlation between the reference and the candidate. The original BERTscore ranged from 0 to 1, but we rescale it from 0 to 100 to clearly see the difference.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic",
                "sec_num": "4.4.4"
            },
            {
                "text": "We set the unstable threshold as a margin point lower than the mean of all systems. The margin point is a gap between an average and a lower bound with 95% confidence considering all systems as the gaussian distribution in the BERTscore evaluation. CrossAligned, multi-decoder, Re-trieveOnly, and BackTranslation have limitations on Yelp datasets. CrossAligned, multi-decoder, and RetrieveOnly have limitations on Amazon datasets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic",
                "sec_num": "4.4.4"
            },
            {
                "text": "SST : For comparison with other systems, we select the \u03b1 and \u03b2 of the appropriate trade-off points for style transfer and content preservation. When experimenting with the Yelp datasets, SST model is evaluated in two cases where (\u03b1, \u03b2) is (0.7, 0.5) and (0.7, 0.75). SST(0.7, 0.5) changes styles better with style accuracy of 79.5%, but SST(0.7, 0.75) has better performance on other metrics. In the Amazon datasets, SST model is evaluated when (\u03b1, \u03b2) is (0.6, 0.5). The effects of \u03b1 and \u03b2 are discussed in detail in Section 4.8. Table 4 shows human evaluation results for content, fluecy, and style. Comparison models, StyleEmbedding and TemplatedBased, each have weaknesses in attribute and fluency. BackTranslation has weaknesses in content and semantic in automatic evaluation. In the yelp test set, we randomly sampled 250 and gave 6 people hired through the Amazon mechanical turk 2 evaluate content, fluency, and style between 1 and 5 points. As a result, BackTranslation and StyleEmbedding show the worst results for content, fluency, and style, respectively. Since humans evaluate fluency from a general point of view, the fluency performance of BackTranslation, which is poor in overall performance, and TemplateBased, which has poor t-PPL performance, are similarly bad. We confirm that our system has adequate performance in human evaluation as well as automatic evaluation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 530,
                        "end": 537,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Semantic",
                "sec_num": "4.4.4"
            },
            {
                "text": "Human systems do not obtain the highest performance scores except for human-BLEU and BERTscore, which are calculated using human references. But which of the sentences in human and machines is actually realistic? Probably human. It is difficult to determine the best system with only automatic evaluation, but it is possible to determine which system is stable or unstable. If a system has significantly lower performance during the evaluation, it is considered unstable. The stable systems in the Yelp dataset are SST, DeleteOnly, DeleteAn-dRetireve, DualRL, B-GST, and G-GST. For the Amazon dataset, the stable systems are SST and TemplateBased. For all the metrics in both datasets, the stable systems are SST and DualRL. In automatic evaluation, DualRL outperforms SST, but DualRL does not share the model parameters of positive to negative and negative to positive tasks. Therefore, direct comparison is difficult because DualRL is regarded as two models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Result Analysis",
                "sec_num": "4.6"
            },
            {
                "text": "We trained SST by changing the random seed of the model initialization several times and found that SST can always yield similar and comparable results. SST can be inferred as a stable system for the following reasons: (1) G-BLEU: Delete and Generate approaches show the stable performance of G-BLEU because the methods generate a sentence based on content tokens. There is no guarantee that content tokens will always be maintained, but content tokens help the generator. (2) Attribute: Our delete process is a method of determining whether certain tokens are deleted with Important Score. The direct and model-agnostic deletion is effective for neutralizing sentences. SST also improves a style accuracy by adding style control loss. (3) Fluency: TemplatedBased, B-GST, and G-GST show non-ideal fluency in d-PPL. TemplatedBased is considered unstable because it simply inserts attribute tokens of training data when generating test sentences. Since B-GST and G-GST use pre-trained GPT, they also have the ability to predict the distribution of tokens that are not in training data. The ability to predict generalized tokens is usually helpful, but can sometimes be harmful to d-PPL. SST, the Transformer encoder-decoder structure, learns only the distribution of given data and therefore has a stable d-PPL. (4) Semantic: Transformer language modeling is known to perform better on various tasks than RNN. Even in the style transfer task, the Transformer-based structures seem to reflect the linguistic characteristics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Result Analysis",
                "sec_num": "4.6"
            },
            {
                "text": "We observed that unstable systems performed poorly in human evaluation as well in automatic Table 4 : Human evaluation results. The higher the number, the better. Red means the worst result in the corresponding evaluation term.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 92,
                        "end": 99,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Result Analysis",
                "sec_num": "4.6"
            },
            {
                "text": "evaluation. However, since performing human evaluation every time is expensive, choosing a stable system with automatic evaluation can be helpful. Table 5 shows the samples of the generation of the models, which shows the lack of comparison models. In Yelp's negative to positive example, there are only SST and DualRL models that change the style while preserving content that includes taste and price of the food. In Yelp's positive to negative example, the professionals word contains a combination of style and content. In this case, the deletion and generation framework has the disadvantage of corrupting content information.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 147,
                        "end": 154,
                        "text": "Table 5",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Result Analysis",
                "sec_num": "4.6"
            },
            {
                "text": "If we use style loss for SST training, Table 6 shows that the style accuracy has 4 point gain. Fluency",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 39,
                        "end": 46,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Ablation Study",
                "sec_num": "4.7"
            },
            {
                "text": "Yelp (negative to positive) Yelp (positive to negative) Input (source) the food was so-so and very over priced for what you get . these two women are professionals . SST the service is so-so and very reasonably priced for what you get . these two women are rude . CrossAligned the food was fantastic and very very nice for what you . these two dogs are hard down . StyleEmbedding the food was so-so and very over priced for what you get . these two pot everywhere was . DeleteOnly the food was so-so and very over priced for what you get . i would n't like these two women are professionals .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ablation Study",
                "sec_num": "4.7"
            },
            {
                "text": "DeleteAndRetrieve the service is fantastic and the food was so-so and the food is very priced for what you get . these two scam women are professionals .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ablation Study",
                "sec_num": "4.7"
            },
            {
                "text": "Back-translation the food is delicious and the staff are very good for me . this place is just not good . UnpariredRL the food was so-so and very over priced for what great qualities . these two women are great . DualRL the food was surprising and very reasonably priced for what you get . these two women are unprofessional . B-GST the food was amazing -so fresh and very good for what you get . these two women are terrible liars . G-GST the food was priced right -so nice and very good for what you get . these two women are condescending . Human DRG the food was great and perfectly priced these two women are not professionals . Human DualRL the food was good and the price is low . these two women are not professionals at all Amazon (negative to positive)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ablation Study",
                "sec_num": "4.7"
            },
            {
                "text": "Amazon (positive to negative) Input (source) i have to lower the rating another notch . it seems to be of very good quality in its build . SST love the rating another one , it seems to be of very poor quality in its build . CrossAligned i would recommend this for the price . it s not be for a good game for my phone . StyleEmbedding i have to get by a one market . it seems to be the num extend is good nice high cases .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Ablation Study",
                "sec_num": "4.7"
            },
            {
                "text": "DeleteOnly i have to lower the rating and it fits into another notch . i have previously charged num num different bt headsets that last num num hours longer . DeleteAndRetrieve i have to lower the rating another notch and i love it . initially it was very good quality in its build . B-GST i have lower levels for the other notch . it seems to be of very good quality in taste . G-GST i have lower the steel another notch . it seems to be of very good value in return . Human DRG i have to raise the rating another notch . it seems to be of very poor quality in its build Table 6 : Ablation result of style loss in the Yelp dataset. (Con: content, Attr: attribute, Flu: Fluency, Sem: Semantic) and semantic are slightly better. It is observed that style loss improves the data-fluency, resulting in better total fluency. However, style loss decreases G-BLUE slightly by allowing the transferred sentence to change the attribute better.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 573,
                        "end": 580,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Ablation Study",
                "sec_num": "4.7"
            },
            {
                "text": "With \u03b1 and \u03b2 we can simply adjust the trade-off of content and style. The results of Yelp are shown in Source(negative) when i was finally there , i was very disappointed . after deletion when i finally , i very . style: negative when i finally left , i was very disappointed .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Trade-off between Content and Style",
                "sec_num": "4.8"
            },
            {
                "text": "\u2193 when i finally left , i was very disappointed. when i finally walked in , i was very disappointed . when i finally got , i was very happy . style: positive when i finally got , i was very happy . Table 7 : One sample of the Yelp dataset. SST generates a sentence from style vector space to negative to positive Fig. 2 . Smaller \u03b1 and \u03b2 allow the model to focus on style changes, while larger \u03b1 and \u03b2 allow the model to focus on content preserving. The tradeoff of content and style changes linearly with \u03b1 and is sensitive to \u03b2. The appropriate \u03b1 and \u03b2 depend on datasets.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 198,
                        "end": 205,
                        "text": "Table 7",
                        "ref_id": null
                    },
                    {
                        "start": 313,
                        "end": 319,
                        "text": "Fig. 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Trade-off between Content and Style",
                "sec_num": "4.8"
            },
            {
                "text": "In this section we observe the transferred sentences according to the weight of positive and negative in the continuous style vector space. Ideally, a neutral sentence should be generated when the style attribute has the same weight for negative and positive. An example is shown in Table 7 . A lot of data, like this example, don't show a neutral sentence even if the style has the same weight for the negative and positive. If we train our model to reflect this problem, we can expect better style control.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 283,
                        "end": 290,
                        "text": "Table 7",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Latent Space Walking",
                "sec_num": "4.9"
            },
            {
                "text": "We propose Stable Style Transformer (SST) that rewrites the sentences with Delete and Generate. SST is a system that can be used in the real world with overall stable results compared to other comparable systems. We show that filtering out unstable systems through human evaluation is expensive, so selecting a stable system through automatic evaluation can be helpful. The proposed direct and model-agnostic deletion method allows the classifier to intuitively delete attribute markers and easily handle the trade-off of content and style. In future work, we will study solutions for the case where attribute markers also contain content in the deletion and generation framework.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "5"
            },
            {
                "text": "https://www.mturk.com/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Style transformer: Unpaired text style transfer without disentangled latent representation",
                "authors": [
                    {
                        "first": "Ning",
                        "middle": [],
                        "last": "Dai",
                        "suffix": ""
                    },
                    {
                        "first": "Jianze",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Xipeng",
                        "middle": [],
                        "last": "Qiu",
                        "suffix": ""
                    },
                    {
                        "first": "Xuanjing",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "5997--6007",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1601"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ning Dai, Jianze Liang, Xipeng Qiu, and Xuanjing Huang. 2019a. Style transformer: Unpaired text style transfer without disentangled latent represen- tation. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics, pages 5997-6007, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Style transformer: Unpaired text style transfer without disentangled latent representation",
                "authors": [
                    {
                        "first": "Ning",
                        "middle": [],
                        "last": "Dai",
                        "suffix": ""
                    },
                    {
                        "first": "Jianze",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Xipeng",
                        "middle": [],
                        "last": "Qiu",
                        "suffix": ""
                    },
                    {
                        "first": "Xuanjing",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "5997--6007",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1601"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ning Dai, Jianze Liang, Xipeng Qiu, and Xuanjing Huang. 2019b. Style transformer: Unpaired text style transfer without disentangled latent represen- tation. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics, pages 5997-6007, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Style transfer in text: Exploration and evaluation",
                "authors": [
                    {
                        "first": "Zhenxin",
                        "middle": [],
                        "last": "Fu",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoye",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Nanyun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Dongyan",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. 2018. Style transfer in text: Explo- ration and evaluation. In Thirty-Second AAAI Con- ference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Toward controlled generation of text",
                "authors": [
                    {
                        "first": "Zhiting",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Zichao",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodan",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [
                            "P"
                        ],
                        "last": "Xing",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 34th International Conference on Machine Learning",
                "volume": "70",
                "issue": "",
                "pages": "1587--1596",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. 2017. Toward controlled generation of text. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1587-1596. JMLR. org.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Convolutional neural networks for sentence classification",
                "authors": [
                    {
                        "first": "Yoon",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "1746--1751",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/D14-1181"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yoon Kim. 2014. Convolutional neural networks for sentence classification. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1746-1751, Doha, Qatar. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Multiple-attribute text rewriting",
                "authors": [
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Lample",
                        "suffix": ""
                    },
                    {
                        "first": "Sandeep",
                        "middle": [],
                        "last": "Subramanian",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "Ludovic",
                        "middle": [],
                        "last": "Denoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Marc'aurelio",
                        "middle": [],
                        "last": "Ranzato",
                        "suffix": ""
                    },
                    {
                        "first": "Y-Lan",
                        "middle": [],
                        "last": "Boureau",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guillaume Lample, Sandeep Subramanian, Eric Smith, Ludovic Denoyer, Marc'Aurelio Ranzato, and Y- Lan Boureau. 2019. Multiple-attribute text rewrit- ing. In International Conference on Learning Rep- resentations.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Delete, retrieve, generate: a simple approach to sentiment and style transfer",
                "authors": [
                    {
                        "first": "Juncen",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Robin",
                        "middle": [],
                        "last": "Jia",
                        "suffix": ""
                    },
                    {
                        "first": "He",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Percy",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "1865--1874",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-1169"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Juncen Li, Robin Jia, He He, and Percy Liang. 2018a. Delete, retrieve, generate: a simple approach to sen- timent and style transfer. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1865-1874, New Orleans, Louisiana. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Delete, retrieve, generate: a simple approach to sentiment and style transfer",
                "authors": [
                    {
                        "first": "Juncen",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Robin",
                        "middle": [],
                        "last": "Jia",
                        "suffix": ""
                    },
                    {
                        "first": "He",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Percy",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "1865--1874",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-1169"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Juncen Li, Robin Jia, He He, and Percy Liang. 2018b. Delete, retrieve, generate: a simple approach to sen- timent and style transfer. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 1865-1874, New Orleans, Louisiana. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Content preserving text generation with attribute controls",
                "authors": [
                    {
                        "first": "Lajanugen",
                        "middle": [],
                        "last": "Logeswaran",
                        "suffix": ""
                    },
                    {
                        "first": "Honglak",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Samy",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "5103--5113",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lajanugen Logeswaran, Honglak Lee, and Samy Ben- gio. 2018. Content preserving text generation with attribute controls. In Advances in Neural Informa- tion Processing Systems, pages 5103-5113.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "A dual reinforcement learning framework for unsupervised text style transfer",
                "authors": [
                    {
                        "first": "Fuli",
                        "middle": [],
                        "last": "Luo",
                        "suffix": ""
                    },
                    {
                        "first": "Peng",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Jie",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Pengcheng",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Baobao",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Xu",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifang",
                        "middle": [],
                        "last": "Sui",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19",
                "volume": "",
                "issue": "",
                "pages": "5116--5122",
                "other_ids": {
                    "DOI": [
                        "10.24963/ijcai.2019/711"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Fuli Luo, Peng Li, Jie Zhou, Pengcheng Yang, Baobao Chang, Xu Sun, and Zhifang Sui. 2019. A dual rein- forcement learning framework for unsupervised text style transfer. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intel- ligence, IJCAI-19, pages 5116-5122. International Joint Conferences on Artificial Intelligence Organi- zation.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Style transfer through back-translation",
                "authors": [
                    {
                        "first": "Yulia",
                        "middle": [],
                        "last": "Shrimai Prabhumoye",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Tsvetkov",
                        "suffix": ""
                    },
                    {
                        "first": "Alan",
                        "middle": [
                            "W"
                        ],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Black",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "866--876",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1080"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhut- dinov, and Alan W Black. 2018a. Style transfer through back-translation. In Proceedings of the 56th Annual Meeting of the Association for Com- putational Linguistics (Volume 1: Long Papers), pages 866-876, Melbourne, Australia. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Style transfer through back-translation",
                "authors": [
                    {
                        "first": "Yulia",
                        "middle": [],
                        "last": "Shrimai Prabhumoye",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Tsvetkov",
                        "suffix": ""
                    },
                    {
                        "first": "Alan",
                        "middle": [
                            "W"
                        ],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Black",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "866--876",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1080"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shrimai Prabhumoye, Yulia Tsvetkov, Ruslan Salakhut- dinov, and Alan W Black. 2018b. Style transfer through back-translation. In Proceedings of the 56th Annual Meeting of the Association for Com- putational Linguistics (Volume 1: Long Papers), pages 866-876, Melbourne, Australia. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Improving language understanding by generative pre-training",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford. 2018. Improving language understand- ing by generative pre-training.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Language models are unsupervised multitask learners",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "OpenAI Blog",
                "volume": "",
                "issue": "8",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI Blog, 1(8).",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Style transfer from non-parallel text by cross-alignment",
                "authors": [
                    {
                        "first": "Tianxiao",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Lei",
                        "suffix": ""
                    },
                    {
                        "first": "Regina",
                        "middle": [],
                        "last": "Barzilay",
                        "suffix": ""
                    },
                    {
                        "first": "Tommi",
                        "middle": [],
                        "last": "Jaakkola",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "6830--6841",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2017. Style transfer from non-parallel text by cross-alignment. In Advances in neural informa- tion processing systems, pages 6830-6841.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "transforming\" delete, retrieve, generate approach for controlled text style transfer",
                "authors": [
                    {
                        "first": "Akhilesh",
                        "middle": [],
                        "last": "Sudhakar",
                        "suffix": ""
                    },
                    {
                        "first": "Bhargav",
                        "middle": [],
                        "last": "Upadhyay",
                        "suffix": ""
                    },
                    {
                        "first": "Arjun",
                        "middle": [],
                        "last": "Maheswaran",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Ma- heswaran. 2019. \"transforming\" delete, retrieve, generate approach for controlled text style transfer. In Proceedings of the 2019 Conference on Empiri- cal Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "30",
                "issue": "",
                "pages": "5998--6008",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141 ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Pro- cessing Systems 30, pages 5998-6008. Curran Asso- ciates, Inc.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Mask and infill: Applying masked language model for sentiment transfer",
                "authors": [
                    {
                        "first": "Xing",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Liangjun",
                        "middle": [],
                        "last": "Zang",
                        "suffix": ""
                    },
                    {
                        "first": "Jizhong",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Songlin",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19",
                "volume": "",
                "issue": "",
                "pages": "5271--5277",
                "other_ids": {
                    "DOI": [
                        "10.24963/ijcai.2019/732"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xing Wu, Tao Zhang, Liangjun Zang, Jizhong Han, and Songlin Hu. 2019. Mask and infill: Apply- ing masked language model for sentiment transfer. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI- 19, pages 5271-5277. International Joint Confer- ences on Artificial Intelligence Organization.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach",
                "authors": [
                    {
                        "first": "Jingjing",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Xu",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Zeng",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xuancheng",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    },
                    {
                        "first": "Houfeng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Wenjie",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "979--988",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1090"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jingjing Xu, Xu Sun, Qi Zeng, Xiaodong Zhang, Xu- ancheng Ren, Houfeng Wang, and Wenjie Li. 2018a. Unpaired sentiment-to-sentiment translation: A cy- cled reinforcement learning approach. In Proceed- ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 979-988, Melbourne, Australia. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Unpaired sentiment-to-sentiment translation: A cycled reinforcement learning approach",
                "authors": [
                    {
                        "first": "Jingjing",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Xu",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Zeng",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xuancheng",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    },
                    {
                        "first": "Houfeng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Wenjie",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "979--988",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1090"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jingjing Xu, Xu Sun, Qi Zeng, Xiaodong Zhang, Xu- ancheng Ren, Houfeng Wang, and Wenjie Li. 2018b. Unpaired sentiment-to-sentiment translation: A cy- cled reinforcement learning approach. In Proceed- ings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 979-988, Melbourne, Australia. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "2020. {BERTS}core: Evaluating text generation with {bert}",
                "authors": [
                    {
                        "first": "Tianyi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "*",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Varsha",
                        "middle": [],
                        "last": "Kishore",
                        "suffix": ""
                    },
                    {
                        "first": "*",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "*",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Kilian",
                        "middle": [
                            "Q"
                        ],
                        "last": "Weinberger",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Artzi",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. 2020. {BERTS}core: Evaluating text generation with {bert}. In Interna- tional Conference on Learning Representations.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "provides 1 human reference and 3 additional human references inLuo et al. (2019). We used 2 human references, one from and one (the best performance in automatic evaluation) fromLuo et al. (2019), to increase reliability. Amazon: We used the human reference provided by.",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "FIGREF1": {
                "text": "(a) Trade-off curve of G-BLEU and Style accuracy according to \u03b1 (at \u03b2 = 0.5) in Yelp (b) Trade-off curve of G-BLEU and Style accuracy according to \u03b2 (at \u03b1 = 0.7) in Yelp.",
                "num": null,
                "type_str": "figure",
                "uris": null
            },
            "TABREF2": {
                "num": null,
                "type_str": "table",
                "html": null,
                "text": "",
                "content": "<table><tr><td colspan=\"9\">: Automatic evaluation results of the Yelp dataset (s: self, h: human, G: geometric mean, f: fine-tuned, p:</td></tr><tr><td colspan=\"9\">pre-trained). The red indicates that the evaluation score is significantly worse than other systems. Our model is</td></tr><tr><td colspan=\"9\">referred to as SST(\u03b1, \u03b2). The bold black indicates the better performance of our systems for the four metrics that</td></tr><tr><td colspan=\"2\">determine it is a stable system.</td><td/><td/><td/><td/><td/><td/><td/></tr><tr><td/><td/><td>Content</td><td/><td>Attribute</td><td/><td>Fluency</td><td/><td>Semantic</td></tr><tr><td>Model</td><td colspan=\"4\">s-BLEU h-BLEU G-BLEU Classifier(%)</td><td>d-PPL</td><td>g-PPL</td><td>t-PPL</td><td>BERTscore</td></tr><tr><td>SST (0.6, 0.5)</td><td>45.47</td><td>20.34</td><td>30.41</td><td>66.5</td><td>4.51</td><td>367.73</td><td>40.72</td><td>89.17</td></tr><tr><td>CrossAligned</td><td>0.76</td><td>0.61</td><td>0.68</td><td>74.8</td><td>1.11</td><td>119.37</td><td>11.51</td><td>85.95</td></tr><tr><td>StyleEmbedding</td><td>32.03</td><td>12.95</td><td>20.37</td><td>42.4</td><td>3.42</td><td>369.24</td><td>35.54</td><td>87.39</td></tr><tr><td>multi decoder</td><td>16.48</td><td>6.61</td><td>10.44</td><td>70.3</td><td>1.39</td><td>343.72</td><td>21.86</td><td>86.09</td></tr><tr><td>TemplateBased</td><td>68.54</td><td>33.79</td><td>48.12</td><td>64.8</td><td>5.36</td><td>368.41</td><td>44.44</td><td>90.65</td></tr><tr><td>DeleteOnly</td><td>57.48</td><td>28.56</td><td>40.52</td><td>50</td><td>2.78</td><td>251.24</td><td>26.43</td><td>90.55</td></tr><tr><td>DeleteAndRetrieve</td><td>60.75</td><td>30.83</td><td>43.28</td><td>52.4</td><td>2.43</td><td>221.92</td><td>23.22</td><td>90.92</td></tr><tr><td>RetrieveOnly</td><td>2.82</td><td>1.23</td><td>1.86</td><td>82.3</td><td>5.65</td><td>135.22</td><td>27.64</td><td>85.54</td></tr><tr><td>B GST</td><td>58.21</td><td>25.47</td><td>38.5</td><td>59.1</td><td colspan=\"3\">12448.44 193.73 1552.94</td><td>91.23</td></tr><tr><td>G GST</td><td>51.02</td><td>21.1</td><td>32.81</td><td>57.3</td><td>18106</td><td colspan=\"2\">458.93 2882.6</td><td>89.48</td></tr><tr><td>human: DRG</td><td>47.67</td><td>100</td><td>69.04</td><td>46.9</td><td>12.38</td><td>132.18</td><td>40.45</td><td>100</td></tr><tr><td>input copy</td><td>100</td><td>47.6</td><td>68.99</td><td>18.5</td><td>3.76</td><td>188.33</td><td>26.61</td><td>93.77</td></tr></table>"
            },
            "TABREF3": {
                "num": null,
                "type_str": "table",
                "html": null,
                "text": "Automatic evaluation results of the Amazon dataset. Evaluation metrics are the same as Yelp, but Back-Translation, UnpariedRL, and DualRL do not provide results from Amazon datasets.",
                "content": "<table><tr><td>Model</td><td colspan=\"3\">Content Fluency Style</td></tr><tr><td>SST(0.7, 0.75)</td><td>3.32</td><td>3.37</td><td>3.3</td></tr><tr><td>BackTranslation</td><td>2.69</td><td>3.15</td><td>2.99</td></tr><tr><td>TemplatedBased</td><td>3.18</td><td>3.16</td><td>3.19</td></tr><tr><td>StyleEmbedding</td><td>3.56</td><td>3.49</td><td>2.88</td></tr></table>"
            },
            "TABREF4": {
                "num": null,
                "type_str": "table",
                "html": null,
                "text": "Examples of comparison of generated sentences of AI systems. SST is our model. Attributes are colored. Red is negative and blue is positive.",
                "content": "<table><tr><td/><td>Con</td><td>Attr</td><td>Flu</td><td>Sem</td></tr><tr><td>Model</td><td colspan=\"4\">G-BLEU Cls(%) t-PPL BERTscore</td></tr><tr><td>SST (0.7, 0)</td><td>19.11</td><td>82.2</td><td>306.65</td><td>89.96</td></tr><tr><td>-Style loss</td><td>19.78</td><td>78.2</td><td>341.51</td><td>89.84</td></tr></table>"
            }
        }
    }
}