File size: 128,532 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:27:47.746877Z"
    },
    "title": "Market Comment Generation from Data with Noisy Alignments",
    "authors": [
        {
            "first": "Yumi",
            "middle": [],
            "last": "Hamazono",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Ochanomizu University",
                "location": {}
            },
            "email": "hamazono.yumi@is.ocha.ac.jp"
        },
        {
            "first": "Yui",
            "middle": [],
            "last": "Uehara",
            "suffix": "",
            "affiliation": {},
            "email": "yui.uehara@aist.go.jp"
        },
        {
            "first": "Hiroshi",
            "middle": [],
            "last": "Noji",
            "suffix": "",
            "affiliation": {},
            "email": "noji@aist.go.jp"
        },
        {
            "first": "Yusuke",
            "middle": [],
            "last": "Miyao",
            "suffix": "",
            "affiliation": {},
            "email": "yusuke@is.s.u-tokyo.ac.jp"
        },
        {
            "first": "Hiroya",
            "middle": [],
            "last": "Takamura",
            "suffix": "",
            "affiliation": {},
            "email": "takamura.hiroya@aist.go.jp"
        },
        {
            "first": "Ichiro",
            "middle": [],
            "last": "Kobayashi",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Ochanomizu University",
                "location": {}
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "End-to-end models on data-to-text learn the mapping of data and text from the aligned pairs in the dataset. However, these alignments are not always obtained reliably, especially for the time-series data, for which real time comments are given to some situation and there might be a delay in the comment delivery time compared to the actual event time. To handle this issue of possible noisy alignments in the dataset, we propose a neural network model with multitimestep data and a copy mechanism, which allows the models to learn the correspondences between data and text from the dataset with noisier alignments. We focus on generating market comments in Japanese that are delivered each time an event occurs in the market. The core idea of our approach is to utilize multitimestep data, which is not only the latest market price data when the comment is delivered, but also the data obtained at several timesteps earlier. On top of this, we employ a copy mechanism that is suitable for referring to the content of data records in the market price data. We confirm the superiority of our proposal by two evaluation metrics and show the accuracy improvement of the sentence generation using the time series data by our proposed method.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "End-to-end models on data-to-text learn the mapping of data and text from the aligned pairs in the dataset. However, these alignments are not always obtained reliably, especially for the time-series data, for which real time comments are given to some situation and there might be a delay in the comment delivery time compared to the actual event time. To handle this issue of possible noisy alignments in the dataset, we propose a neural network model with multitimestep data and a copy mechanism, which allows the models to learn the correspondences between data and text from the dataset with noisier alignments. We focus on generating market comments in Japanese that are delivered each time an event occurs in the market. The core idea of our approach is to utilize multitimestep data, which is not only the latest market price data when the comment is delivered, but also the data obtained at several timesteps earlier. On top of this, we employ a copy mechanism that is suitable for referring to the content of data records in the market price data. We confirm the superiority of our proposal by two evaluation metrics and show the accuracy improvement of the sentence generation using the time series data by our proposed method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In recent time, various industries such as finance, pharmaceuticals and telecommunications have increased opportunities to treat large-scale data. Hence, there is an increasing demand to automatically generate a text from large and complex data. In recent studies, neural network-based models have achieved significant progress on the data-to-text which is a text generation task from input data (Puzikov and Gurevych, 2018; Iso et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 396,
                        "end": 424,
                        "text": "(Puzikov and Gurevych, 2018;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 425,
                        "end": 442,
                        "text": "Iso et al., 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "One important issue in constructing a dataset for data-to-text is to obtain the correct alignment between data and text. It is not very problematic when there is a clear correspondence between data and text, for example, when the text is manually provided by an annotator for each input, including E2E NLG Challenge dataset (Puzikov and Gurevych, 2018) . However, this is often not a trivial problem in the wild, in particular for the application of real-time text generation, such as sequential comment generation on sports games (Taniguchi et al., 2019) and stock markets (Murakami et al., 2017) , for which we can only obtain a loose alignment of data and text. This problem has been taken into account in a classical task (Chen and Mooney, 2008) , but has been overlooked in the recent neural-based models cited above.",
                "cite_spans": [
                    {
                        "start": 324,
                        "end": 352,
                        "text": "(Puzikov and Gurevych, 2018)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 531,
                        "end": 555,
                        "text": "(Taniguchi et al., 2019)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 574,
                        "end": 597,
                        "text": "(Murakami et al., 2017)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 726,
                        "end": 749,
                        "text": "(Chen and Mooney, 2008)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In Murakami et al. (2017) , for example, they constructed a dataset for market comment generation in Japanese from a chart of stock price trends and its market reports, wherein the alignments between data and texts sometimes deviate. Figure 1 presents examples of data which are a five-minute chart of Nikkei 225 (Nikkei Stock Average) and comments describing the chart trends. All of the (I) to (III) comments are about an event at \"9:00 am, 29th of January\". However, since there is often a delay in comment delivery time for an event (e.g., (II) and (I II)), if a different movement occurs during this time period, the expressions in comment may not exactly reflect the movement at the delivery time. The word \"rebound\" indicates a downward and then upward movement on three points (the closing prices of the last two days and the latest price). This is valid for the prices at (I) and (II), but does not hold at (III) because the latest price (17039.22 yen) is lower than the last closing price (17041.45 yen). In addition, the expression \"gains 88 yen\" is only valid at the opening time (I) and is not valid at (II). To deal with these inconsistencies, the models have to be aware of these possible mismatch of data and text due to the delay, but a simple encoder-decoder-based 2017, which does not tell the difference between the event and delivery times, may perform an undesirable generalization between data and text. In this study, we extend Murakami et al. (2017) 's model with a new architecture to solve the problem due to the noisy alignments. The presented architecture is a multi-timestep architecture, which employs multiple input vectors to compensate the lack of information about the actual event time, treating it as a hidden variable and learning the correspondences from the ambiguous data. Our model employs a copy mechanism to generate a price value in a text, in which an attention weight to the time can be regarded as an induced alignment between the text and actual event time. The experimental results reveal that our proposed model outperforms the existing model in terms of the correctness of market price movement expressions, in addition to the BLEU scores.",
                "cite_spans": [
                    {
                        "start": 3,
                        "end": 25,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 544,
                        "end": 548,
                        "text": "(II)",
                        "ref_id": null
                    },
                    {
                        "start": 1452,
                        "end": 1474,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 234,
                        "end": 242,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this section, we explain the model proposed by Murakami et al. (2017) , which be used as a base model. They proposed a model for generating a market comment, which is a news headline about the movement of the Nikkei 225, from the timeseries of the stock price of the Nikkei 225. Their model is based on the encoder-decoder (Sutskever et al., 2014) .",
                "cite_spans": [
                    {
                        "start": 50,
                        "end": 72,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 326,
                        "end": 350,
                        "text": "(Sutskever et al., 2014)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generating Market Comments",
                "sec_num": "2"
            },
            {
                "text": "Murakami et al. (2017) use both a long-term vector x long and a short-term vector x short . To capture the long-term price movement, they use a vector consisting of the closing prices of the preceding trading days represented as x long = ( long, 1 , long, 2 , . . . , long, ). Similarly, to capture the short-term price movement, they use a vector consisting of the prices of previous timesteps on the five-minute chart, starting from the comment delivery time (e.g., 10:00 am), represented as x short = ( short, 1 , short, 2 , . . . , short, ). Each of these vectors undergoes the following two preprocessing steps :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Base Model",
                "sec_num": "2.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "std = \u2212 ,",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Base Model",
                "sec_num": "2.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "norm = 2 \u00d7 move \u2212 (\u00af max +\u00af min ) max \u2212\u00af min ,",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Base Model",
                "sec_num": "2.1"
            },
            {
                "text": "where is the -th element of x. and are the mean and the standard deviation of the values in the training data, respectively. move is defined to be \u2212 , where is the closing price of the previous trading day.\u00af max and\u00af min are the maximum and the minimum of move , respectively. Equation 1is a standardization method and Equation (2) is a normalization method for moving reference. By applying these preprocessings to x long and x short , we obtain x std long ,x norm long , x std short , and x norm short . In the encoding step, these vectors are passed to multi-layer perceptrons (MLPs) to obtain the vectors h std long , h norm long , h std short , and h norm short . These are then concatenated as h long = [h std long ; h norm long ] and h short = [h std short ; h norm short ]. These vectors are combined to obtain the hidden state m of the encoder:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Base Model",
                "sec_num": "2.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "m = W [h long ; h short ] + b .",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Base Model",
                "sec_num": "2.1"
            },
            {
                "text": "In the decoding step, Murakami et al. (2017) set the initial hidden state s 0 of the decoder as m above, and use LSTM cells (Hochreiter and Schmidhuber, 1997) . They further use additional vectors called time embeddings t. To obtain t, time is discretized into intervals of one hour (e.g., 9:00 am to 10:00 am), and an embedding is obtained for each interval; 9:10 am and 9:30 am are associated with the same embedding. The time embedding of the interval, wherein the delivery time of the comment falls into is used as an additional input in each step of LSTM:",
                "cite_spans": [
                    {
                        "start": 22,
                        "end": 44,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 124,
                        "end": 158,
                        "text": "(Hochreiter and Schmidhuber, 1997)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Base Model",
                "sec_num": "2.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "s = LSTM( [t ; w \u22121 ], s \u22121 ).",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Base Model",
                "sec_num": "2.1"
            },
            {
                "text": "As in the standard LSTM decoder, this output is fed into a linear layer, followed by a softmax layer to calculate the next word probability.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Base Model",
                "sec_num": "2.1"
            },
            {
                "text": "Market comments often mention numerical values including the market prices themselves and the values obtained through arithmetic operations such as difference and rounding. To allow the model to generate numerical values with such computation during decoding, Murakami et al. (2017) introduce generalization tags (Table 1) , which specify which operation should be performed to obtain a value.",
                "cite_spans": [
                    {
                        "start": 260,
                        "end": 282,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 313,
                        "end": 322,
                        "text": "(Table 1)",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Generalization Tags for Estimation of Arithmetic Operations",
                "sec_num": "2.2"
            },
            {
                "text": "In Murakami et al. (2017) , for simplicity, the input value to these operations is fixed as the short,1 , the first (latest) price at the delivery time, which is converted to and in Table 1 (see caption) . However, this simplification ignores the possible mismatch of the delivery and event times (Section 1). We extend this method with a variant of a copy mechanism (Section 3.2), in which the event time is Murakami et al. (2017) used MLPs, convolutional neural networks (CNNs) and long short-term memory networks (LSTMs). We use MLPs in the encoder for our baseline model because the differences of the performance were small in their experiment.",
                "cite_spans": [
                    {
                        "start": 3,
                        "end": 25,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 409,
                        "end": 431,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 182,
                        "end": 203,
                        "text": "Table 1 (see caption)",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Generalization Tags for Estimation of Arithmetic Operations",
                "sec_num": "2.2"
            },
            {
                "text": "Arithmetic operation <operation1> Return <operation2> Round down to the nearest 10 <operation3> Round down to the nearest 100 <operation4> Round up to the nearest 10 <operation5> Round up to the nearest 100 <operation6> Return as it is <operation7> Round down to the nearest 100 <operation8> Round down to the nearest 1,000 <operation9> Round down to the nearest 10,000 <operation10> Round up to the nearest 100 <operation11> Round up to the nearest 1,000 <operation12> Round up to the nearest 10,000 softly predicted with attention and each numerical value is generated on demand during decoding with an operation in Table 1 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 618,
                        "end": 625,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Tag",
                "sec_num": null
            },
            {
                "text": "Murakami et al. 2017's model put an assumption that the event and delivery times are identical. This assumption simplifies the task and thus Murakami et al. 2017propose a model with a basic encoderdecoder architecture. However, due to the time gap between the actual event time and delivery time, this assumption is not realistic. We extend the Murakami et al. (2017) 's model with a multi-timestep architecture, aiming at solving that problem occurred by the noisy alignments. Figure 2 presents our model architecture. To compensating the lack of information caused by the time gap mentioned above, we extend the encoder with additional input vectors. Each additional vector corresponds to x short starting from preceding timesteps instead of the delivery time. This allows us to treat the actual event time as a latent variable. On top of this, we introduce a copy mechanism with attention in the decoder, which facilitates learning correspondences between data and text from the noisy training data.",
                "cite_spans": [
                    {
                        "start": 345,
                        "end": 367,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 478,
                        "end": 486,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Multi-timesteps for Time-series Data",
                "sec_num": "3"
            },
            {
                "text": "For long-term stock prices, we use a long-term vector x long following Murakami et al. (2017) . For short-term stock prices, instead of x short alone, we use x short-0step ,. . . , x short-step which we abbreviate as x 0 ,. . . , x for brevity. Each x is a short-term vector consisting of the stock prices of timesteps, Figure 2 : Overview of Multi-timesteps for Time-series Data which, instead of starting from the comment delivery time, starts from the time steps prior to the delivery time. When the delivery time is 10:00 am, for example, since we use the five-minute chart, our short-term vectors comprise of + 1 vectors corresponding to the vectors starting from 10:00 am, 9:55 am, 9:50 am, and so on.",
                "cite_spans": [
                    {
                        "start": 71,
                        "end": 93,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 320,
                        "end": 328,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Encoder with Multi-timesteps",
                "sec_num": "3.1"
            },
            {
                "text": "We note that each interval of five minutes is not simply associated with one value, but rather with four different values: open (the price at the very beginning of the interval), low (the lowest price in the interval), high (the highest price in the interval), and close (the price at the last of the interval). We encode these as four different vectors x open , x low , x high , and x close . Thus, there are in total 4( + 1) \u2212 1 vectors for short-term prices. In the following, we use\u02dc \u2208 [0, 4( + 1)) as an index for these vectors.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoder with Multi-timesteps",
                "sec_num": "3.1"
            },
            {
                "text": "Each of the input vectors undergoes the preprocessing methods as Murakami et al. (2017) . For long-term vectors, we obtain x std long and x norm long in the same way. Similarity, for each\u02dc , we obtain x std and x norm from x\u02dc . Given these, each MLP emits the corresponding hidden states h long and h\u02dc . Murakami et al. (2017) use only the close prices. We use four values instead since prices could largely move even in a single interval.",
                "cite_spans": [
                    {
                        "start": 65,
                        "end": 87,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 304,
                        "end": 326,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoder with Multi-timesteps",
                "sec_num": "3.1"
            },
            {
                "text": "Following Equation 3, we also obtain the encoder hidden state m with h long and h short . The vector h short depends on a sequence of h\u02dc to which an encoder maps the input data. It is computed as a weighted sum of h\u02dc as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoder with Multi-timesteps",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "h short = 4( +1)\u22121 \u02dc =0 \u02dc h\u02dc .",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Encoder with Multi-timesteps",
                "sec_num": "3.1"
            },
            {
                "text": "The weight \u02dc of each h\u02dc is computed by:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoder with Multi-timesteps",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u02dc = exp( \u02dc )/ 4( +1)\u22121 =0 exp( ).",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Encoder with Multi-timesteps",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "e = ( 0 , \u2022 \u2022 \u2022 , 4( +1)\u22121 ) is obtained by MLP [t ; a ; f 0 ; h 0 ; . . . ; f 4( +1)\u22121 ; h 4( +1)\u22121 ] .",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Encoder with Multi-timesteps",
                "sec_num": "3.1"
            },
            {
                "text": "\u02dc scores the importance of x\u02dc , based on the hidden states h\u02dc , time embedding vector t (Section 2.1), and additional two kinds of vectors, five-minute time embedding vectors f\u02dc and article-type embedding vector a.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoder with Multi-timesteps",
                "sec_num": "3.1"
            },
            {
                "text": "f\u02dc is an embedding to identify\u02dc , which maps from the starting time and the kind of price (e.g., open) to a vector. a is a vector obtained whether the comment is regular or irregular. The motivation to use these vectors is that an important x\u02dc is primarily determined by either the price history (encoded by h\u02dc ), or the delivery time (encoded by f\u02dc ), depending on the article type. For instance, when the delivery time is the same as the market opening time, that is, 9:00 am, and the comment is a regular comment, then the comment usually mentions the price at 9:00 am (e.g., \"The opening price is 15,430 yen.\"). In this case, the important x\u02dc is primarily determined by the time encoded by f\u02dc ; that is, for regular comments, the event times are rather fixed regardless of the variations in delivery times. On the other hand, even if the delivery time is the same as the market opening time, when the comment is irregular, the comment mentions some distinguished price movement (e.g. \"The price is over 100 yen higher than the last closing price.\") rather than the mere price at 9:00 am. In this case, the important x\u02dc would be determined by the price history itself. We expect these additional vectors to provide a useful inductive bias for a model to learn those distinctions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoder with Multi-timesteps",
                "sec_num": "3.1"
            },
            {
                "text": "We adapt a copy mechanism (Gu et al., 2016) in our decoder to generate numerical values by attending to the input. Recall that in the current task, the values in the output text usually do not appear in the input data (Section 2.2); rather, they can be obtained by applying an arithmetic operation to the certain value in the data.",
                "cite_spans": [
                    {
                        "start": 26,
                        "end": 43,
                        "text": "(Gu et al., 2016)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder with Copy Mechanism",
                "sec_num": "3.2"
            },
            {
                "text": "We generate a numerical value by an extension of a copy mechanism, wherein a value is generated by applying one of the operations in Table 1 to a data point \u02dc ,1 , which is the first value (latest price) of x\u02dc . Denoting an arithmetic operation as \u2208 { 1 , \u2022 \u2022 \u2022 , 12 }, the value is identified by a pair ( ,\u02dc ). We reduce the generation of numerical values to identification of these pairs, followed by the execution of an operation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 133,
                        "end": 140,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Decoder with Copy Mechanism",
                "sec_num": "3.2"
            },
            {
                "text": "We wish to obtain a probability distribution on numerical values that are determined by ( ,\u02dc ). One consideration for obtaining this is that there can be multiple pairs of ( ,\u02dc ) that result in the same value. For example, for an input \u02dc ,1 = = 3200, 6 7 , and 10 all result in the same value (3200). In practice, we obtain a probability to generate a numerical value by a weighted sum of scores for ( ,\u02dc ), for which ( \u02dc ,1 ) = holds, according to the obtained weights \u02dc in the encoder, which we regard as attention. (\u2022) denotes execution of operation to the input. We note that unlike the standard copy mechanism, we use the fixed attention weights \u02dc throughout the decoder. This is because, in a headline comment, which is our target, the event to be mentioned would not change throughout a single piece of text. In other words, the important x\u02dc would not change throughout a comment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder with Copy Mechanism",
                "sec_num": "3.2"
            },
            {
                "text": "Our model generates all numerical values in the text with this copy mechanism. To do this, we exclude numerical values from the vocabulary of the model. To switch the copy mode and noncopy mode, we add a special token \"<PRICE>\", which is inserted before every numerical value in the training data and indicates that the next token is a price value. Utilizing \"<PRICE>\", we define each conditional probability of generating target word at time as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder with Copy Mechanism",
                "sec_num": "3.2"
            },
            {
                "text": "( | < , m) = ( | < , m), ( \u22121 = \"<PRICE>\") ( | < , m), (otherwise) (8)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder with Copy Mechanism",
                "sec_num": "3.2"
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder with Copy Mechanism",
                "sec_num": "3.2"
            },
            {
                "text": "( |\u2022) and ( |\u2022)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder with Copy Mechanism",
                "sec_num": "3.2"
            },
            {
                "text": "are obtained by the generation mode and the copy mode, respectively. This method is inspired by Pointer-generator network introduced by See et al. (2017). These two probabilities are defined as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder with Copy Mechanism",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "( |\u2022) = [softmax(W v + b )]",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Decoder with Copy Mechanism",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "( |\u2022) = \u02dc , : ( \u02dc ,1 )= (\u02dc , )",
                        "eq_num": "(10)"
                    }
                ],
                "section": "Decoder with Copy Mechanism",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "(\u02dc , ) = \u02dc \u2022 [softmax(W c + b )] .",
                        "eq_num": "(11)"
                    }
                ],
                "section": "Decoder with Copy Mechanism",
                "sec_num": "3.2"
            },
            {
                "text": "v and c are both obtained from the output of decoder LSTM, s , at each step : ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder with Copy Mechanism",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "s = LSTM( [t ; w \u22121 ; q \u22121 ], s \u22121 ) (12) v = W \u210e s + b \u210e (13) c = MLP(s ).",
                        "eq_num": "(14)"
                    }
                ],
                "section": "Decoder with Copy Mechanism",
                "sec_num": "3.2"
            },
            {
                "text": "All MLPs in the model are three layers with hidden dimension of 256. The decoder LSTM is a single layer with hidden dimensions of 256. For the length of short-and long-term vectors, we set = 7 for x long and = 62 for x\u02dc , following Murakami et al. (2017) , changing the range of by setting \u2208 [0, 6].",
                "cite_spans": [
                    {
                        "start": 232,
                        "end": 254,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Settings",
                "sec_num": "4.2"
            },
            {
                "text": "The embedding sizes of a word, five-minute tag f\u02dc , article-tag a, and time tag t are 128, 80, 64, and 64, respectively. We trained the models for 150 epochs with the mini-batch size of 100, using Adam (Kingma and Ba, 2015) optimizer with the initial learning rate 1 \u00d7 10 \u22124 , and saved the parameters every epoch, selecting the model with the highest BLEU score on the validation dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Settings",
                "sec_num": "4.2"
            },
            {
                "text": "We conduct two types of evaluation: one is BLEU (Papineni et al., 2002) to measure the matching degree between the market comments written by humans as references and the output comments generated by the models, and the other is a new evaluation metric that we created. The new metric uses the matching between the market price movement in the data and the movement expressions in the comments. Using (x , w , w ), which are the -th sample of the input data, the market comment written by humans, and the output comment generated by the models, we define the following https://hosted.datascope.reuters.com/ DataScope/ variables:",
                "cite_spans": [
                    {
                        "start": 48,
                        "end": 71,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.3"
            },
            {
                "text": "(w) = \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 (w \u2208 rise ) (w \u2208 fall ) ( \u210e ) (x) = \uf8f1 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f3 (Latest move > 0) (Latest move < 0) ( \u210e ) C = { | (w ) = (x )} C = { | (w ) = (x )} D = { | (w ) \u2260 (x )} D = { | (w ) \u2260 (x )}",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.3"
            },
            {
                "text": "where rise is {\u7d9a\u4f38 (continuous rise), \u53cd\u767a (rebound), \u4e0a\u3052 (up / rise)}, fall is {\u7d9a\u843d (continuous fall), \u53cd\u843d (fall back), \u4e0b\u3052 (down/fall)}, move is the same as move shown in Section 2.1, defined as \u2212 , where is the closing price of the previous trading day. Using the above variables, we obtain the following metrics:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.3"
            },
            {
                "text": "Concord = |C \u2229 C | |C | Concord = |C \u2229 C | |C | Diff = |D \u2229 D | |D | Diff = |D \u2229 D | |D | .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.3"
            },
            {
                "text": "These metrics can be seen as a proxy for the model's ability to attend to an intermediate (not latest) step according to the movement in the data. To know the frequency of these concordances and differences in the data, we count them in the training and valid dataset, which we summarize in Table 2 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 291,
                        "end": 298,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.3"
            },
            {
                "text": "We evaluate the BLEU scores for both validation and test sets, while we performed the correspondence evaluation, which will be described below, only for the validation set. We train models with six different seeds for each setting and report the macro averages on them. According to the experimental results provided in Table 3 , our models mostly outperformed the baseline, especially when used with the copy mechanism. For the test set, our models always outperformed the baseline. In particular, = 2 with the copy mechanism achieved the highest score, 7.68 points improvement on the BLEU score compared to the baseline (see the bold font in Table 3) . Conversely, the result shows that just adding attention to the encoder (+Attention), keeping the decoder the same as the baseline, is not helpful. It shows that simply applying the attention mechanism does not enable the model to obtain the correspondence between data and text correctly, while the copy mechanism certainly helps to obtain the correspondence. In a comparison among the models using = 6, increasing the number of steps does not necessarily contribute to improving the BLEU score.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 320,
                        "end": 327,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 644,
                        "end": 652,
                        "text": "Table 3)",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.3"
            },
            {
                "text": "Furthermore, Table 4 indicates that most of our models outperformed the baseline. However, in the same tendency as the BLEU score evaluation, this result further reveals that increasing the number of steps is not necessarily an important factor in improving the score. Figure 3 depicts distributions regarding the time gap between the comment delivery time and the event occurrence time. When we use = 5, we can cover 89.05% in training data and 94.07% in validation set of their time gap data (i.e., sum of an Irregular value and 0 to 5 of Regular values in Figure 3 ). Alternatively, using more x\u02dc would add more noise, therefore, they would be related to the transactions. According to Table 3, Table 4 and Figure 3 , using = 3 or = 4, covered around 80% are considered as the best choice in this dataset. Table 5 provides examples of the generated comments where our model generated the correct movement expression while the baseline generated an incorrect expression (see, the bold font in Table 5 ). Moreover, the method with copy mentioned the cor- Figure 3 : Data distribution regarding the time gap between the comment delivery time and the event occurrence time. First, we classified a human-written market comment in the dataset into two types, whether it was a regular comment (Regular) or not (Irregular) using the expressions specific to regular comments. In the case of a regular comment, it is classified by the time gap between that event occurrence time and the comment delivery time in five-minute increments, for example, 0 = from 0 min to 5 min gap, 1 = from 5 min to 10 min gap.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 13,
                        "end": 20,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 269,
                        "end": 277,
                        "text": "Figure 3",
                        "ref_id": null
                    },
                    {
                        "start": 559,
                        "end": 567,
                        "text": "Figure 3",
                        "ref_id": null
                    },
                    {
                        "start": 689,
                        "end": 705,
                        "text": "Table 3, Table 4",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 710,
                        "end": 718,
                        "text": "Figure 3",
                        "ref_id": null
                    },
                    {
                        "start": 809,
                        "end": 816,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 995,
                        "end": 1002,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 1056,
                        "end": 1064,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4.4"
            },
            {
                "text": "rect numerical value, while the baseline generated an incorrect numerical value. However, there is another problem with the fluency. For instance, at the expression of \"in the higher yen range\", the numerical value should be a round number, e.g., round to the nearest 100, 1,000, or 10,000. However, the model with the copy mechanism generates a specific number (see, the underline font in Table 5 )",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 390,
                        "end": 397,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4.4"
            },
            {
                "text": "The task of generating text describing input data, which is called data-to-text, has been worked on various domains, for instance weather forecasts (Belz, 2007; Angeli et al., 2010) , healthcare (Portet et al., 2009; Banaee et al., 2013) , and sports (Liang et al., 2009) . Traditionally, data-to-text is divided into two sub-problems (Kukich, 1983; Goldberg et al., 1994) : content selection, which is about \"what to say\", and surface realization, which is about \"how to say\". Moreover, Reiter and Dale (1997) divides three modules, adding micro planning between the above sub-problems. In the early stage of this task, surface realization is often realized using templates (van Deemter et al., 2005) or statistically learned models with hand-crafted features (Belz, 2008; Konstas and Lapata, 2012) .",
                "cite_spans": [
                    {
                        "start": 148,
                        "end": 160,
                        "text": "(Belz, 2007;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 161,
                        "end": 181,
                        "text": "Angeli et al., 2010)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 195,
                        "end": 216,
                        "text": "(Portet et al., 2009;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 217,
                        "end": 237,
                        "text": "Banaee et al., 2013)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 251,
                        "end": 271,
                        "text": "(Liang et al., 2009)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 335,
                        "end": 349,
                        "text": "(Kukich, 1983;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 350,
                        "end": 372,
                        "text": "Goldberg et al., 1994)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 488,
                        "end": 510,
                        "text": "Reiter and Dale (1997)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 675,
                        "end": 701,
                        "text": "(van Deemter et al., 2005)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 761,
                        "end": 773,
                        "text": "(Belz, 2008;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 774,
                        "end": 799,
                        "text": "Konstas and Lapata, 2012)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "In recent times, various industries such as finance, pharmaceuticals, and telecommunications Nikkei opens with a continual rise slightly. \u00d7 The price is in the higher 17024 yen range. \u65e5\u7d4c\u5e73\u5747\u3001\u5c0f\u5e45\u7d9a\u4f38\u3067\u59cb\u307e\u308b 17024\u5186\u53f0\u5f8c\u534a Table 5 : Generated comment. The latest stock price movement of comment delivery time is -48.91 yen, so that (x) is . Conc (concordance) row shows whether the movement expression in the comment matches the movement with the latest stock price ( ) or not (\u00d7).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 208,
                        "end": 215,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "have been increased providing opportunities to treat various types of large-scale data, so that they are interested in automatically learning a correspondence relationship from data to text and generating a description of this relationship. Therefore, recent works have focused on generating text from data with neural networks, that can solve the above sub-tasks in one through. Especially the models, which utilize an encoder-decoder model (Sutskever et al., 2014 ) have proven to be useful (Mei et al., 2016; Lebret et al., 2016) . While text generation by neural network can describe the text fluently, they do not describe the exact entities or numbers. Therefore, a copy mechanism (Vinyals et al., 2015; Gu et al., 2016) , which provides a way to directly copy words from the input, has been utilized. By these neural networks, the works such as conditional language generation based on tables (Yang et al., 2017) , short biographies generation from Wikipedia tables (Lebret et al., 2016; Chisholm et al., 2017; and sports scoreboards (Wiseman et al., 2017; Li and Wan, 2018; Puduppully et al., 2019) are well performed. Contrastingly, they can only generate the superficial contents that appear in their input table, and cannot generate contents that require arithmetic operations.",
                "cite_spans": [
                    {
                        "start": 442,
                        "end": 465,
                        "text": "(Sutskever et al., 2014",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 493,
                        "end": 511,
                        "text": "(Mei et al., 2016;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 512,
                        "end": 532,
                        "text": "Lebret et al., 2016)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 687,
                        "end": 709,
                        "text": "(Vinyals et al., 2015;",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 710,
                        "end": 726,
                        "text": "Gu et al., 2016)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 900,
                        "end": 919,
                        "text": "(Yang et al., 2017)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 973,
                        "end": 994,
                        "text": "(Lebret et al., 2016;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 995,
                        "end": 1017,
                        "text": "Chisholm et al., 2017;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1041,
                        "end": 1063,
                        "text": "(Wiseman et al., 2017;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 1064,
                        "end": 1081,
                        "text": "Li and Wan, 2018;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1082,
                        "end": 1106,
                        "text": "Puduppully et al., 2019)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "However, Joulin and Mikolov (2015) and Neelakantan et al. (2016) indicate that current neural models have difficulties in learning arithmetic operations such as addition and comparisons by neural program inductions. Thus, there have been some methods to prepare the numerical values with arithmetic operations in advance. Murakami et al. (2017) post-process the price by extending the copy mechanism and replacing numerical values with defined arithmetic operations after generation. Nie et al. (2018) utilizes information from pre-computed operations on raw data to consider incorporating the facts that can be inferred from the input data to guide the generation process. Our model prepares numerical values with defined arithmetic operations as Murakami et al. (2017) for copy and that copy target is guided by encoded input.",
                "cite_spans": [
                    {
                        "start": 9,
                        "end": 34,
                        "text": "Joulin and Mikolov (2015)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 39,
                        "end": 64,
                        "text": "Neelakantan et al. (2016)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 322,
                        "end": 344,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 484,
                        "end": 501,
                        "text": "Nie et al. (2018)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 748,
                        "end": 770,
                        "text": "Murakami et al. (2017)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "In this paper, we have proposed an encoder-decoder model with multi-timestep data and a copy mechanism for generating the market comment from data with the noisy alignments. Both BLEU scores and our proposal evaluation showed the accuracy of sentence generation with time-series data has been improved by our proposed method, especially utilizing a copy mechanism.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "t is the time embedding defined in Section 2.1. Comparing to Equation (4), we add q to the input to the LSTM. Each element of q is (\u02dc , ). We add this vector to properly propagate the information about an applied arithmetic operation, which may not be kept directly in s .4 Experiments4.1 DatasetsWe used a five-minute chart of the Nikkei 225 from March 2013 to October 2016 as numerical",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This paper is based on results obtained from projects commissioned by the New Energy and Industrial Technology Development Organization (NEDO) JPNP20006 and JPNP15009, and JSPS KAKENHI Grant Number JP20H04217.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A simple domain-independent probabilistic approach to generation",
                "authors": [
                    {
                        "first": "Gabor",
                        "middle": [],
                        "last": "Angeli",
                        "suffix": ""
                    },
                    {
                        "first": "Percy",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "502--512",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gabor Angeli, Percy Liang, and Dan Klein. 2010. A simple domain-independent probabilistic approach to generation. In Proceedings of the 2010 Conference on Empirical Methods in Natural Language Process- ing, pages 502-512, Cambridge, MA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Towards NLG for physiological data monitoring with body area networks",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hadi Banaee",
                        "suffix": ""
                    },
                    {
                        "first": "Amy",
                        "middle": [],
                        "last": "Mobyen Uddin Ahmed",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Loutfi",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 14th European Workshop on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "193--197",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hadi Banaee, Mobyen Uddin Ahmed, and Amy Loutfi. 2013. Towards NLG for physiological data monitor- ing with body area networks. In Proceedings of the 14th European Workshop on Natural Language Gen- eration, pages 193-197, Sofia, Bulgaria. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Probabilistic generation of weather forecast texts",
                "authors": [
                    {
                        "first": "Anja",
                        "middle": [],
                        "last": "Belz",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference",
                "volume": "",
                "issue": "",
                "pages": "164--171",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anja Belz. 2007. Probabilistic generation of weather forecast texts. In Human Language Technologies 2007: The Conference of the North American Chap- ter of the Association for Computational Linguistics; Proceedings of the Main Conference, pages 164-171, Rochester, New York. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Automatic generation of weather forecast texts using comprehensive probabilistic generation-space models",
                "authors": [
                    {
                        "first": "Anja",
                        "middle": [],
                        "last": "Belz",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Natural Language Engineering",
                "volume": "14",
                "issue": "4",
                "pages": "431--455",
                "other_ids": {
                    "DOI": [
                        "10.1017/S1351324907004664"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Anja Belz. 2008. Automatic generation of weather forecast texts using comprehensive probabilistic generation-space models. Natural Language Engi- neering, 14(4):431-455.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Learning to sportscast: A test of grounded language acquisition",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "David",
                        "suffix": ""
                    },
                    {
                        "first": "Raymond",
                        "middle": [
                            "J"
                        ],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mooney",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the 25th International Conference on Machine Learning, ICML '08",
                "volume": "",
                "issue": "",
                "pages": "128--135",
                "other_ids": {
                    "DOI": [
                        "10.1145/1390156.1390173"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "David L. Chen and Raymond J. Mooney. 2008. Learn- ing to sportscast: A test of grounded language ac- quisition. In Proceedings of the 25th International Conference on Machine Learning, ICML '08, page 128-135, New York, NY, USA. Association for Com- puting Machinery.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Learning to generate one-sentence biographies from Wikidata",
                "authors": [
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Chisholm",
                        "suffix": ""
                    },
                    {
                        "first": "Will",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Hachey",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "633--642",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andrew Chisholm, Will Radford, and Ben Hachey. 2017. Learning to generate one-sentence biogra- phies from Wikidata. In Proceedings of the 15th Conference of the European Chapter of the Associa- tion for Computational Linguistics: Volume 1, Long Papers, pages 633-642, Valencia, Spain. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Real versus template-based natural language generation: A false opposition?",
                "authors": [
                    {
                        "first": "Mariet",
                        "middle": [],
                        "last": "Kees Van Deemter",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Theune",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Computational Linguistics",
                "volume": "31",
                "issue": "",
                "pages": "15--24",
                "other_ids": {
                    "DOI": [
                        "10.1162/0891201053630291"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kees van Deemter, Mariet Theune, and Emiel Krahmer. 2005. Real versus template-based natural language generation: A false opposition? Computational Lin- guistics, 31:15-24.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Using natural-language processing to produce weather forecasts",
                "authors": [
                    {
                        "first": "Eli",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Norbert",
                        "middle": [],
                        "last": "Driedger",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [
                            "I"
                        ],
                        "last": "Kittredge",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "IEEE Expert",
                "volume": "9",
                "issue": "2",
                "pages": "45--53",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eli Goldberg, Norbert Driedger, and Richard I Kittredge. 1994. Using natural-language processing to produce weather forecasts. IEEE Expert, 9(2):45-53.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Incorporating copying mechanism in sequence-to-sequence learning",
                "authors": [
                    {
                        "first": "Jiatao",
                        "middle": [],
                        "last": "Gu",
                        "suffix": ""
                    },
                    {
                        "first": "Zhengdong",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Hang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [
                            "K"
                        ],
                        "last": "Victor",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1631--1640",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P16-1154"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li. 2016. Incorporating copying mechanism in sequence-to-sequence learning. In Proceedings of the 54th Annual Meeting of the Association for Com- putational Linguistics (Volume 1: Long Papers), pages 1631-1640, Berlin, Germany. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Long short-term memory",
                "authors": [
                    {
                        "first": "Sepp",
                        "middle": [],
                        "last": "Hochreiter",
                        "suffix": ""
                    },
                    {
                        "first": "J\u00fcrgen",
                        "middle": [],
                        "last": "Schmidhuber",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Neural Computation",
                "volume": "9",
                "issue": "8",
                "pages": "1735--1780",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long short-term memory. Neural Computation, 9(8):1735-1780.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Learning to select, track, and generate for data-to-text",
                "authors": [
                    {
                        "first": "Hayate",
                        "middle": [],
                        "last": "Iso",
                        "suffix": ""
                    },
                    {
                        "first": "Yui",
                        "middle": [],
                        "last": "Uehara",
                        "suffix": ""
                    },
                    {
                        "first": "Tatsuya",
                        "middle": [],
                        "last": "Ishigaki",
                        "suffix": ""
                    },
                    {
                        "first": "Hiroshi",
                        "middle": [],
                        "last": "Noji",
                        "suffix": ""
                    },
                    {
                        "first": "Eiji",
                        "middle": [],
                        "last": "Aramaki",
                        "suffix": ""
                    },
                    {
                        "first": "Ichiro",
                        "middle": [],
                        "last": "Kobayashi",
                        "suffix": ""
                    },
                    {
                        "first": "Yusuke",
                        "middle": [],
                        "last": "Miyao",
                        "suffix": ""
                    },
                    {
                        "first": "Naoaki",
                        "middle": [],
                        "last": "Okazaki",
                        "suffix": ""
                    },
                    {
                        "first": "Hiroya",
                        "middle": [],
                        "last": "Takamura",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2102--2113",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1202"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hayate Iso, Yui Uehara, Tatsuya Ishigaki, Hiroshi Noji, Eiji Aramaki, Ichiro Kobayashi, Yusuke Miyao, Naoaki Okazaki, and Hiroya Takamura. 2019. Learn- ing to select, track, and generate for data-to-text. In Proceedings of the 57th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 2102- 2113, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Inferring algorithmic patterns with stack-augmented recurrent nets",
                "authors": [
                    {
                        "first": "Armand",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "28",
                "issue": "",
                "pages": "190--198",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Armand Joulin and Tomas Mikolov. 2015. Inferring al- gorithmic patterns with stack-augmented recurrent nets. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 190-198. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Adam: A method for stochastic optimization",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Diederik",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "3rd International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In 3rd Inter- national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Unsupervised concept-to-text generation with hypergraphs",
                "authors": [
                    {
                        "first": "Ioannis",
                        "middle": [],
                        "last": "Konstas",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "752--761",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ioannis Konstas and Mirella Lapata. 2012. Unsuper- vised concept-to-text generation with hypergraphs. In Proceedings of the 2012 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, pages 752-761, Montr\u00e9al, Canada. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Design of a knowledge-based report generator",
                "authors": [
                    {
                        "first": "Karen",
                        "middle": [],
                        "last": "Kukich",
                        "suffix": ""
                    }
                ],
                "year": 1983,
                "venue": "21st Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "145--150",
                "other_ids": {
                    "DOI": [
                        "10.3115/981311.981340"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Karen Kukich. 1983. Design of a knowledge-based report generator. In 21st Annual Meeting of the As- sociation for Computational Linguistics, pages 145- 150, Cambridge, Massachusetts, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Neural text generation from structured data with application to the biography domain",
                "authors": [
                    {
                        "first": "R\u00e9mi",
                        "middle": [],
                        "last": "Lebret",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Grangier",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Auli",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1203--1213",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D16-1128"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "R\u00e9mi Lebret, David Grangier, and Michael Auli. 2016. Neural text generation from structured data with ap- plication to the biography domain. In Proceedings of the 2016 Conference on Empirical Methods in Natu- ral Language Processing, pages 1203-1213, Austin, Texas. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Point precisely: Towards ensuring the precision of data in generated texts using delayed copy mechanism",
                "authors": [
                    {
                        "first": "Liunian",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaojun",
                        "middle": [],
                        "last": "Wan",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1044--1055",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Liunian Li and Xiaojun Wan. 2018. Point precisely: Towards ensuring the precision of data in generated texts using delayed copy mechanism. In Proceed- ings of the 27th International Conference on Com- putational Linguistics, pages 1044-1055, Santa Fe, New Mexico, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Learning semantic correspondences with less supervision",
                "authors": [
                    {
                        "first": "Percy",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Jordan",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP",
                "volume": "",
                "issue": "",
                "pages": "91--99",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Percy Liang, Michael Jordan, and Dan Klein. 2009. Learning semantic correspondences with less super- vision. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th In- ternational Joint Conference on Natural Language Processing of the AFNLP, pages 91-99, Suntec, Sin- gapore. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Table-to-text generation by structure-aware seq2seq learning",
                "authors": [
                    {
                        "first": "Tianyu",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Kexiang",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Lei",
                        "middle": [],
                        "last": "Sha",
                        "suffix": ""
                    },
                    {
                        "first": "Baobao",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifang",
                        "middle": [],
                        "last": "Sui",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhifang Sui. 2018. Table-to-text generation by structure-aware seq2seq learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "What to talk about and how? selective generation using LSTMs with coarse-to-fine alignment",
                "authors": [
                    {
                        "first": "Hongyuan",
                        "middle": [],
                        "last": "Mei",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [
                            "R"
                        ],
                        "last": "Walter",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "720--730",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N16-1086"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. 2016. What to talk about and how? selective gen- eration using LSTMs with coarse-to-fine alignment. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, pages 720-730, San Diego, California. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Learning to generate market comments from stock prices",
                "authors": [
                    {
                        "first": "Soichiro",
                        "middle": [],
                        "last": "Murakami",
                        "suffix": ""
                    },
                    {
                        "first": "Akihiko",
                        "middle": [],
                        "last": "Watanabe",
                        "suffix": ""
                    },
                    {
                        "first": "Akira",
                        "middle": [],
                        "last": "Miyazawa",
                        "suffix": ""
                    },
                    {
                        "first": "Keiichi",
                        "middle": [],
                        "last": "Goshima",
                        "suffix": ""
                    },
                    {
                        "first": "Toshihiko",
                        "middle": [],
                        "last": "Yanase",
                        "suffix": ""
                    },
                    {
                        "first": "Hiroya",
                        "middle": [],
                        "last": "Takamura",
                        "suffix": ""
                    },
                    {
                        "first": "Yusuke",
                        "middle": [],
                        "last": "Miyao",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1374--1384",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-1126"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Soichiro Murakami, Akihiko Watanabe, Akira Miyazawa, Keiichi Goshima, Toshihiko Yanase, Hi- roya Takamura, and Yusuke Miyao. 2017. Learning to generate market comments from stock prices. In Proceedings of the 55th Annual Meeting of the As- sociation for Computational Linguistics (Volume 1: Long Papers), pages 1374-1384, Vancouver, Canada. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Neural programmer: Inducing latent programs with gradient descent",
                "authors": [
                    {
                        "first": "Arvind",
                        "middle": [],
                        "last": "Neelakantan",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Quoc",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "4th International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. 2016. Neural programmer: Inducing latent pro- grams with gradient descent. In 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Con- ference Track Proceedings.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Operation-guided neural networks for high fidelity data-to-text generation",
                "authors": [
                    {
                        "first": "Feng",
                        "middle": [],
                        "last": "Nie",
                        "suffix": ""
                    },
                    {
                        "first": "Jinpeng",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Jin-Ge",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Rong",
                        "middle": [],
                        "last": "Pan",
                        "suffix": ""
                    },
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "3879--3889",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1422"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Feng Nie, Jinpeng Wang, Jin-Ge Yao, Rong Pan, and Chin-Yew Lin. 2018. Operation-guided neu- ral networks for high fidelity data-to-text genera- tion. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3879-3889, Brussels, Belgium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {
                    "DOI": [
                        "10.3115/1073083.1073135"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. Bleu: a method for automatic eval- uation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Com- putational Linguistics, pages 311-318, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Automatic generation of textual summaries from neonatal intensive care data",
                "authors": [
                    {
                        "first": "Fran\u00e7ois",
                        "middle": [],
                        "last": "Portet",
                        "suffix": ""
                    },
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Reiter",
                        "suffix": ""
                    },
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "Jim",
                        "middle": [],
                        "last": "Hunter",
                        "suffix": ""
                    },
                    {
                        "first": "Somayajulu",
                        "middle": [],
                        "last": "Sripada",
                        "suffix": ""
                    },
                    {
                        "first": "Yvonne",
                        "middle": [],
                        "last": "Freer",
                        "suffix": ""
                    },
                    {
                        "first": "Cindy",
                        "middle": [],
                        "last": "Sykes",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Artificial Intelligence",
                "volume": "173",
                "issue": "7",
                "pages": "789--816",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.artint.2008.12.002"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Fran\u00e7ois Portet, Ehud Reiter, Albert Gatt, Jim Hunter, Somayajulu Sripada, Yvonne Freer, and Cindy Sykes. 2009. Automatic generation of textual summaries from neonatal intensive care data. Artificial Intelli- gence, 173(7):789 -816.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Data-to-text generation with entity modeling",
                "authors": [
                    {
                        "first": "Ratish",
                        "middle": [],
                        "last": "Puduppully",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2023--2035",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1195"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ratish Puduppully, Li Dong, and Mirella Lapata. 2019. Data-to-text generation with entity modeling. In Pro- ceedings of the 57th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 2023- 2035, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "E2E NLG challenge: Neural models vs. templates",
                "authors": [
                    {
                        "first": "Yevgeniy",
                        "middle": [],
                        "last": "Puzikov",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 11th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "463--471",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-6557"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yevgeniy Puzikov and Iryna Gurevych. 2018. E2E NLG challenge: Neural models vs. templates. In Proceed- ings of the 11th International Conference on Natural Language Generation, pages 463-471, Tilburg Uni- versity, The Netherlands. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Building applied natural language generation systems",
                "authors": [
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Reiter",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Dale",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Natural Language Engineering",
                "volume": "3",
                "issue": "1",
                "pages": "57--87",
                "other_ids": {
                    "DOI": [
                        "10.1017/S1351324997001502"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ehud Reiter and Robert Dale. 1997. Building applied natural language generation systems. Natural Lan- guage Engineering, 3(1):57-87.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Get to the point: Summarization with pointergenerator networks",
                "authors": [
                    {
                        "first": "Abigail",
                        "middle": [],
                        "last": "See",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1073--1083",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-1099"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summarization with pointer- generator networks. In Proceedings of the 55th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1073- 1083, Vancouver, Canada. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Orderplanning neural text generation from structured data",
                "authors": [
                    {
                        "first": "Lei",
                        "middle": [],
                        "last": "Sha",
                        "suffix": ""
                    },
                    {
                        "first": "Lili",
                        "middle": [],
                        "last": "Mou",
                        "suffix": ""
                    },
                    {
                        "first": "Tianyu",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Pascal",
                        "middle": [],
                        "last": "Poupart",
                        "suffix": ""
                    },
                    {
                        "first": "Sujian",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Baobao",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifang",
                        "middle": [],
                        "last": "Sui",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lei Sha, Lili Mou, Tianyu Liu, Pascal Poupart, Sujian Li, Baobao Chang, and Zhifang Sui. 2018. Order- planning neural text generation from structured data. In Proceedings of the Thirty-Second AAAI Confer- ence on Artificial Intelligence.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Sequence to sequence learning with neural networks",
                "authors": [
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    },
                    {
                        "first": "Oriol",
                        "middle": [],
                        "last": "Vinyals",
                        "suffix": ""
                    },
                    {
                        "first": "Quoc V",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Advances in Neural Information Processing Systems",
                "authors": [
                    {
                        "first": "K",
                        "middle": [
                            "Q"
                        ],
                        "last": "Lawrence",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Weinberger",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "27",
                "issue": "",
                "pages": "3104--3112",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 27, pages 3104-3112. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Generating live soccermatch commentary from play data",
                "authors": [
                    {
                        "first": "Yasufumi",
                        "middle": [],
                        "last": "Taniguchi",
                        "suffix": ""
                    },
                    {
                        "first": "Yukun",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Hiroya",
                        "middle": [],
                        "last": "Takamura",
                        "suffix": ""
                    },
                    {
                        "first": "Manabu",
                        "middle": [],
                        "last": "Okumura",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "33",
                "issue": "",
                "pages": "7096--7103",
                "other_ids": {
                    "DOI": [
                        "10.1609/aaai.v33i01.33017096"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yasufumi Taniguchi, Yukun Feng, Hiroya Takamura, and Manabu Okumura. 2019. Generating live soccer- match commentary from play data. In Proceedings of the AAAI Conference on Artificial Intelligence, vol- ume 33, pages 7096-7103.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Pointer networks",
                "authors": [
                    {
                        "first": "Oriol",
                        "middle": [],
                        "last": "Vinyals",
                        "suffix": ""
                    },
                    {
                        "first": "Meire",
                        "middle": [],
                        "last": "Fortunato",
                        "suffix": ""
                    },
                    {
                        "first": "Navdeep",
                        "middle": [],
                        "last": "Jaitly",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In C. Cortes, N. D.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Advances in Neural Information Processing Systems",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "D"
                        ],
                        "last": "Lawrence",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Sugiyama",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Garnett",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "28",
                "issue": "",
                "pages": "2692--2700",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 2692-2700. Curran Associates, Inc.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Challenges in data-to-document generation",
                "authors": [
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Wiseman",
                        "suffix": ""
                    },
                    {
                        "first": "Stuart",
                        "middle": [],
                        "last": "Shieber",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2253--2263",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1239"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sam Wiseman, Stuart Shieber, and Alexander Rush. 2017. Challenges in data-to-document generation. In Proceedings of the 2017 Conference on Empiri- cal Methods in Natural Language Processing, pages 2253-2263, Copenhagen, Denmark. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Reference-aware language models",
                "authors": [
                    {
                        "first": "Zichao",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Phil",
                        "middle": [],
                        "last": "Blunsom",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Wang",
                        "middle": [],
                        "last": "Ling",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1850--1859",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1197"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zichao Yang, Phil Blunsom, Chris Dyer, and Wang Ling. 2017. Reference-aware language models. In Pro- ceedings of the 2017 Conference on Empirical Meth- ods in Natural Language Processing, pages 1850- 1859, Copenhagen, Denmark. Association for Com- putational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "num": null,
                "text": "Nikkei stock average starts with rebound, gains 86 yen, a positive response in high price of crude oil. The stock price of Toyota increased. (III) 09:19 continuous fall dropped 2 yen Tosho begins with rebound. A positive response in high price of crude oil, Fanuc share prices dropped significantly.",
                "uris": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "num": null,
                "text": "Nikkei 225 and market comments about an event at 9:00 am, 29th of January model ofMurakami et al.",
                "uris": null
            },
            "TABREF0": {
                "num": null,
                "content": "<table/>",
                "html": null,
                "text": "Generalization tags and corresponding arithmetic operations. is defined as the latest price, and is defined as the difference between and the closing price of the previous trading day.",
                "type_str": "table"
            },
            "TABREF2": {
                "num": null,
                "content": "<table><tr><td>: Statistics of the data</td></tr><tr><td>time-series data, which were collected from Thom-</td></tr><tr><td>son Reuters DataScope Select . As market com-</td></tr><tr><td>ments, we used 18,489 headlines of Nikkei Quick</td></tr><tr><td>News (NQN) that describe the Nikkei 225 behavior.</td></tr><tr><td>They were provided by Nikkei, Inc. and written</td></tr><tr><td>in Japanese. We divided them into three parts on</td></tr><tr><td>the basis of the period of publication: 15,035 for</td></tr><tr><td>training (December 2010-October 2015), 1,759 for</td></tr><tr><td>validation (October 2015-April 2016) and 1,695</td></tr><tr><td>for testing (April-October 2016).</td></tr></table>",
                "html": null,
                "text": "",
                "type_str": "table"
            },
            "TABREF3": {
                "num": null,
                "content": "<table><tr><td/><td colspan=\"5\">Valid Test Valid Test Valid Test</td></tr><tr><td colspan=\"2\">Baseline 21.37 21.30</td><td>-</td><td>-</td><td>-</td><td>-</td></tr><tr><td colspan=\"2\">Multi-timesteps</td><td colspan=\"2\">+Attention</td><td>+Copy</td></tr><tr><td>= 0</td><td colspan=\"5\">21.63 22.66 21.33 22.38 28.16 28.68</td></tr><tr><td>1</td><td colspan=\"5\">21.59 22.74 21.43 22.25 27.90 28.54</td></tr><tr><td>2</td><td colspan=\"5\">21.64 23.03 21.20 22.47 28.31 28.98</td></tr><tr><td>3</td><td colspan=\"5\">21.82 23.11 21.02 21.94 27.29 27.75</td></tr><tr><td>4</td><td colspan=\"5\">21.68 22.92 20.59 21.71 28.13 28.93</td></tr><tr><td>5</td><td colspan=\"5\">21.73 22.89 20.71 21.74 27.29 27.78</td></tr><tr><td>6</td><td colspan=\"5\">21.73 22.66 20.51 21.62 26.68 27.25</td></tr></table>",
                "html": null,
                "text": "summarizes the BLEU scores on the validation and test sets, andTable 4presents the correspondence evaluation on the validation set.",
                "type_str": "table"
            },
            "TABREF4": {
                "num": null,
                "content": "<table><tr><td>: BLEU (%)</td></tr></table>",
                "html": null,
                "text": "",
                "type_str": "table"
            },
            "TABREF5": {
                "num": null,
                "content": "<table><tr><td/><td colspan=\"2\">Concord</td><td>Diff</td><td/><td colspan=\"2\">Concord</td><td>Diff</td><td/><td colspan=\"2\">Concord</td><td>Diff</td></tr><tr><td/><td>P</td><td>R</td><td>P</td><td>R</td><td>P</td><td>R</td><td>P</td><td>R</td><td>P</td><td>R</td><td>P</td><td>R</td></tr><tr><td colspan=\"5\">Baseline 98.68 98.78 27.57 24.72</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></tr><tr><td colspan=\"2\">Multi-timesteps</td><td/><td/><td/><td/><td colspan=\"2\">+Attention</td><td/><td/><td colspan=\"2\">+Copy</td></tr><tr><td>= 0</td><td>98.61</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr></table>",
                "html": null,
                "text": "98.94 41.00 33.93 98.90 99.08 51.35 45.28 98.85 99.25 53.90 42.61 1 98.77 99.02 46.03 40.52 98.76 99.28 56.83 41.91 98.81 99.02 45.86 39.80 2 98.79 98.47 40.66 46.13 98.99 98.78 45.00 49.74 98.71 99.06 47.08 38.56 3 98.82 98.61 43.12 46.20 98.93 98.87 44.65 46.25 98.73 98.95 45.38 38.79 4 98.88 98.86 46.58 47.05 98.80 98.44 30.60 36.29 98.68 98.68 36.46 36.06 5 98.88 98.91 44.13 43.47 98.69 98.14 27.88 34.92 98.57 98.57 34.04 31.54 6 98.80 98.70 41.88 43.43 98.70 97.11 25.54 38.74 98.46 98.81 32.35 26.17",
                "type_str": "table"
            },
            "TABREF6": {
                "num": null,
                "content": "<table><tr><td>Model</td><td>Generated Comment</td><td>Conc</td></tr><tr><td>Gold</td><td>Nikkei opens with a continual rise.</td><td/></tr><tr><td/><td>The price is 17024 yen, 9 yen higher.</td><td>\u00d7</td></tr><tr><td/><td>\u65e5\u7d4c\u5e73\u5747\u3001\u7d9a\u4f38\u3067\u59cb\u307e\u308b</td><td/></tr><tr><td/><td>9\u5186\u9ad8\u306e17024\u5186</td><td/></tr><tr><td>Baseline</td><td>Nikkei opens with a fall back.</td><td/></tr><tr><td/><td>The price is 16900 yen level.</td><td/></tr><tr><td/><td>\u65e5\u7d4c\u5e73\u5747\u3001\u53cd\u843d\u3067\u59cb\u307e\u308b 16900\u5186\u53f0</td><td/></tr><tr><td colspan=\"2\">Multi-timesteps</td><td/></tr><tr><td>= 3</td><td>Nikkei opens with a continual rise slightly.</td><td>\u00d7</td></tr><tr><td/><td>\u65e5\u7d4c\u5e73\u5747\u3001\u5c0f\u5e45\u7d9a\u4f38\u3067\u59cb\u307e\u308b</td><td/></tr><tr><td colspan=\"2\">+Attention Nikkei opens with a continual rise slightly.</td><td>\u00d7</td></tr><tr><td/><td>\u65e5\u7d4c\u5e73\u5747\u3001\u5c0f\u5e45\u7d9a\u4f38\u3067\u59cb\u307e\u308b</td><td/></tr><tr><td>+Copy</td><td/><td/></tr></table>",
                "html": null,
                "text": "The correspondence evaluation on validation set (%, P=precision, R=recall)",
                "type_str": "table"
            }
        }
    }
}