File size: 87,867 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:28:15.103287Z"
    },
    "title": "Text-to-Text Pre-Training for Data-to-Text Tasks",
    "authors": [
        {
            "first": "Mihir",
            "middle": [],
            "last": "Kale",
            "suffix": "",
            "affiliation": {},
            "email": "mihirkale@google.com"
        },
        {
            "first": "Abhinav",
            "middle": [],
            "last": "Rastogi",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We study the pre-train + fine-tune strategy for data-to-text tasks. Our experiments indicate that text-to-text pre-training in the form of T5 (Raffel et al., 2019), enables simple, end-to-end transformer based models to outperform pipelined neural architectures tailored for data-to-text generation, as well as alternative language model based pre-training techniques such as BERT and GPT-2. Importantly, T5 pre-training leads to better generalization, as evidenced by large improvements on out-ofdomain test sets. We hope our work serves as a useful baseline for future research, as transfer learning becomes ever more prevalent for data-to-text tasks.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We study the pre-train + fine-tune strategy for data-to-text tasks. Our experiments indicate that text-to-text pre-training in the form of T5 (Raffel et al., 2019), enables simple, end-to-end transformer based models to outperform pipelined neural architectures tailored for data-to-text generation, as well as alternative language model based pre-training techniques such as BERT and GPT-2. Importantly, T5 pre-training leads to better generalization, as evidenced by large improvements on out-ofdomain test sets. We hope our work serves as a useful baseline for future research, as transfer learning becomes ever more prevalent for data-to-text tasks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Natural language generation from structured data, or data-to-text (Kukich, 1983; McKeown, 1985) , is the task of generating natural language text conditioned on source content provided in the form of structured data such as a table, graph etc. Some example applications include task oriented dialog (Wen et al., 2015) , summarizing weather forecasts (Sripada et al.; Goldberg et al., 1994) , etc.",
                "cite_spans": [
                    {
                        "start": 66,
                        "end": 80,
                        "text": "(Kukich, 1983;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 81,
                        "end": 95,
                        "text": "McKeown, 1985)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 299,
                        "end": 317,
                        "text": "(Wen et al., 2015)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 350,
                        "end": 366,
                        "text": "(Sripada et al.;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 367,
                        "end": 389,
                        "text": "Goldberg et al., 1994)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this work we study the applicability of large scale text-to-text transfer learning learning for this task. In particular, we focus on pre-training in the form of the \"Text-to-Text Transfer Transformer\" (T5) models released by Raffel et al. (2019) . Finetuning T5 achieves state-of-the-art results on diverse benchmarks spanning task oriented dialogue (MultiWoz), tables-to-text (ToTTo) and graph-totext (WebNLG). Empirical results further demonstrate the following:",
                "cite_spans": [
                    {
                        "start": 229,
                        "end": 249,
                        "text": "Raffel et al. (2019)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Pre-training greatly improves robustness of models to out-of-domain inputs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 By leveraging pre-training, a simple end-toend transformer model can outperform sophis-ticated, multi-stage pipelined approaches and other exotic architectures like graph neural networks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 T5 outperforms alternatives like BERT (Devlin et al., 2018) and GPT-2 (Radford et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 40,
                        "end": 61,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 66,
                        "end": 94,
                        "text": "GPT-2 (Radford et al., 2019)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our approach is simple, only scratching the surface of what is possible. There is much to be explored in the space of leveraging unlabelled data, developing unsupervised objectives etc. that are more tailored for generating text from structured data. We hope our work serves as a useful baseline for future research, as pre-training becomes ever more prevalent for this task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Data-to-Text Early research on data-to-text focused on rule-based methods (Reiter and Dale, 2000) , while recent works have favored neural approaches (Wen et al., 2015) . Liu et al. (2018) generate text by conditioning language models on tables, Puduppully et al. (2019) explicitly model entities and Marcheggiani and Perez-Beltrachini (2018) encode structured data using graph convolutional networks. Ferreira et al. 2019and Moryossef et al. (2019) find that neural pipelined approaches perform better than end-to-end models.",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 97,
                        "text": "(Reiter and Dale, 2000)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 150,
                        "end": 168,
                        "text": "(Wen et al., 2015)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 171,
                        "end": 188,
                        "text": "Liu et al. (2018)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 246,
                        "end": 270,
                        "text": "Puduppully et al. (2019)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 426,
                        "end": 449,
                        "text": "Moryossef et al. (2019)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Transfer Learning Devlin et al. (2018) showed that unsupervised pre-training can greatly benefit tasks like, question answering, summarization etc. In particular, Raffel et al. (2019) perform a large scale study of different training objectives, model capacity and size of data. Peng et al. (2020) and Chen et al. (2019b) show that pre-training in the form of GPT-2 can indeed improve performance on the data-to-text task as well. 3 Pre-training",
                "cite_spans": [
                    {
                        "start": 9,
                        "end": 38,
                        "text": "Learning Devlin et al. (2018)",
                        "ref_id": null
                    },
                    {
                        "start": 163,
                        "end": 183,
                        "text": "Raffel et al. (2019)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 279,
                        "end": 297,
                        "text": "Peng et al. (2020)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 302,
                        "end": 321,
                        "text": "Chen et al. (2019b)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "We rely on the T5 pre-trained models released by Raffel et al. (2019) . They consist of a transformer based encoder-decoder architecture. These models were pre-trained in a multitask fashion with an unsupervised \"span masking\" objective on Common Crawl data as well as supervised translation, summarization, classification, and question answering tasks. Note that none of the supervised tasks include language generation from structured data.",
                "cite_spans": [
                    {
                        "start": 49,
                        "end": 69,
                        "text": "Raffel et al. (2019)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "To study the impact of model capacity, we experiment with different T5 variants -Small (60 million parameters), Base (220 million), Large (770 million) and 3B (3 billion).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "1",
                "sec_num": null
            },
            {
                "text": "Our modeling approach is simple. The data-totext task is cast in the text-to-text framework by representing the structured data as a flat string (linearization). Figure 1 shows examples of the input representation for each dataset. We then fine-tune T5 on the data-to-text corpus for a small number of steps.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 162,
                        "end": 170,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Fine-tuning",
                "sec_num": "4"
            },
            {
                "text": "Following (Raffel et al., 2019) , models are finetuned with a constant learning rate of 0.001. We use a batch size of 131,072 tokens, and a maximum input length of 512 tokens. The maximum training steps is set to 5K for WebNLG, while the larger ToTTo dataset is trained for 10K steps. The T5 vocabulary consists of 32,000 sentencepieces. All the model parameters are updated in the fine-tuning process.",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 31,
                        "text": "(Raffel et al., 2019)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fine-tuning",
                "sec_num": "4"
            },
            {
                "text": "The best checkpoint is chosen based on the BLEU (Papineni et al., 2002 ) score on the development set. Decoding is done via greedy search. In the final evaluation, for each dataset we rely on metrics used by prior work.",
                "cite_spans": [
                    {
                        "start": 48,
                        "end": 70,
                        "text": "(Papineni et al., 2002",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fine-tuning",
                "sec_num": "4"
            },
            {
                "text": "We conduct experiments on 3 English datasets spanning a variety of domains. \u2022 MultiWoz (Budzianowski et al., 2018 ) is a corpus of 10K human-human dialogs for developing task oriented dialogue systems. For the NLG task, a meaning representation encapsulating system actions must be verbalized into natural language response.",
                "cite_spans": [
                    {
                        "start": 87,
                        "end": 113,
                        "text": "(Budzianowski et al., 2018",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "5"
            },
            {
                "text": "\u2022 WebNLG (Gardent et al., 2017) , where the task is to convert a graph of subject-objectpredicate triples into a textual description.",
                "cite_spans": [
                    {
                        "start": 9,
                        "end": 31,
                        "text": "(Gardent et al., 2017)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "5"
            },
            {
                "text": "Each dataset uses a different kind of structured data (tables, meaning representations and graph/triples). Table 1 lists the sizes of the three datasets and Figure 1 shows examples for each.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 107,
                        "end": 114,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    },
                    {
                        "start": 157,
                        "end": 165,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "5"
            },
            {
                "text": "Train Dev Test WebNLG 18.1K 2.2k 4.9k ToTTo 120K 7.7k 7.7k Multiwoz 56.8K 7.3k 7.3k 6 Results and Discussion",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": null
            },
            {
                "text": "The evaluation is done using BLEU and METEOR (Lavie and Agarwal, 2007) , similar to (Ferreira et al., 2019) . The test set is split into two partsseen and unseen. The examples in the unseen set are drawn from domains not present in the training set, along with roughly 100 new predicates. Some of the baselines we compare with are: \u2022 Melbourne, a neural encoder-decoder approach, which scored the highest in the automatic evaluation of the WebNLG challenge (Gardent et al., 2017) . The model relies on delexicalization, where entities are replaced with placeholders.",
                "cite_spans": [
                    {
                        "start": 45,
                        "end": 70,
                        "text": "(Lavie and Agarwal, 2007)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 84,
                        "end": 107,
                        "text": "(Ferreira et al., 2019)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 457,
                        "end": 479,
                        "text": "(Gardent et al., 2017)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "WebNLG",
                "sec_num": "6.1"
            },
            {
                "text": "\u2022 GTR-LSTM (Distiawan et al., 2018), which employs a graph based triple encoder.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "WebNLG",
                "sec_num": "6.1"
            },
            {
                "text": "\u2022",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "WebNLG",
                "sec_num": "6.1"
            },
            {
                "text": "Step-by-Step (Moryossef et al., 2019) which splits the generation procedure into a planning stage followed by a neural generation stage.",
                "cite_spans": [
                    {
                        "start": 13,
                        "end": 37,
                        "text": "(Moryossef et al., 2019)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "WebNLG",
                "sec_num": "6.1"
            },
            {
                "text": "\u2022 Pipeline-Transformer (Ferreira et al., 2019), a pipelined neural system consisting of discourse ordering, text structuring, lexicalization and referring expression generation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "WebNLG",
                "sec_num": "6.1"
            },
            {
                "text": "\u2022 DualEnc (Zhao et al., 2020) , the current stateof-the-art system. It consists of a graph convolution network based planning model which first predicts the order of the triples, followed by a separate LSTM with attention and copy mechanism model to generate the text. To train the planning model, the approach relies on extra annotations for the triple ordering. Such annotations are can be expensive and time consuming to obtain, especially for large, complex inputs.",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 29,
                        "text": "(Zhao et al., 2020)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "WebNLG",
                "sec_num": "6.1"
            },
            {
                "text": "Results are reported in ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "WebNLG",
                "sec_num": "6.1"
            },
            {
                "text": "Following (Parikh et al., 2020), BLEU and PAR-ENT are employed as evaluation metrics for this table-to-text generation task. PARENT is a reference less, word-overlap based metric that reflects the factual accuracy of generated text relative to the structured data. Dhingra et al. (2019) find that PARENT correlates better with human factual accuracy judgements in comparison to other generation metrics like ROGUE (Lin, 2004) and METEOR. The following baseline models are compared:",
                "cite_spans": [
                    {
                        "start": 265,
                        "end": 286,
                        "text": "Dhingra et al. (2019)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 414,
                        "end": 425,
                        "text": "(Lin, 2004)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ToTTo",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 Pointer Generator (See et al., 2017b) -An LSTM based seq2seq model with attention and pointer network based copy mechanism.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ToTTo",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 BERT-to-BERT (Rothe et al., 2019) -A transformer based encoder-decoder model, where both the encoder and decoder are initialized with BERT.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ToTTo",
                "sec_num": "6.2"
            },
            {
                "text": "Since it deals with open domain tables, ToTTo is arguably the most challenging dataset. Notably, it features a hidden test set, which is split into two halves -Overlap and Non-Overlap. The Non-Overlap test set features examples that are out-ofdomain from the training set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ToTTo",
                "sec_num": "6.2"
            },
            {
                "text": "Results are reported in Table 3 . T5-3B 2 achieves state-of-the-art results 3 , improving upon the BERT baseline by 5.5 BLEU and 5.8 PARENT. Moreover, the model is more robust to out-of-domain tables, with larger improvements of 6.6 BLEU and 7.5 PARENT on the Non-Overlap test set. Table  4 reports results on the development set for the different T5 model sizes. T5-Small outperforms BERT-to-BERT, even though it has 3x fewer parameters (220M vs 60M). (Chen et al., 2019a) 6.3 MultiWoz Evaluation on MultiWoz is done using BLEU and SER (Slot Error Rate). SER is the fraction of examples where at least one slot value from the structured data is not expressed in the predicted response. 4 Our baselines are",
                "cite_spans": [
                    {
                        "start": 453,
                        "end": 473,
                        "text": "(Chen et al., 2019a)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 687,
                        "end": 688,
                        "text": "4",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 24,
                        "end": 31,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 282,
                        "end": 290,
                        "text": "Table  4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "ToTTo",
                "sec_num": "6.2"
            },
            {
                "text": "\u2022 HDSA (Chen et al., 2019a ) is a transformer based architecture that encodes the dialog acts into a multi-layer hierarchical graph, with individual attention heads modeling specific nodes in graph.",
                "cite_spans": [
                    {
                        "start": 7,
                        "end": 26,
                        "text": "(Chen et al., 2019a",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "\u2022 SC-GPT2 (Peng et al., 2020 ) is a GPT-2 (345M parameters) model that is further pretrained on a large data-to-text dialog corpus consisting of 400,000 examples and finally fine-tuned on MultiWoz. This 2 stage pretraining approach is currently state-of-the-art for Multiwoz.",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 28,
                        "text": "(Peng et al., 2020",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "Results are reported in Table 5 . All T5 based models (including T5-small which has 5x fewer parameters) outperform SC-GPT2 by 4-5 BLEU 2 We used beam search with a width of 10 for the test set submission.",
                "cite_spans": [
                    {
                        "start": 136,
                        "end": 137,
                        "text": "2",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 24,
                        "end": 31,
                        "text": "Table 5",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "3 The leaderboard can be found at https://github.com/google-research-datasets/totto. 4 The metric is noisy since the comparison is done via exact match, does not accoutn for paraphrases and does not cover all slots.",
                "cite_spans": [
                    {
                        "start": 85,
                        "end": 86,
                        "text": "4",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "without any in-domain pre-training. We note that the SER score on MultiWOZ is slightly worse in comparison with SC-GPT. SC-GPT generates 5 predictions for each input and then ranks them based on the SER score itself, which naturally leads to better slot error rates. On the other hand, we generate a single output.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model",
                "sec_num": null
            },
            {
                "text": "Unseen Nat Acc Nat Acc DualEnc 2.30 89.2 1.99 66 T5-Large 2.39 92.0 2.33 90.0 ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Seen",
                "sec_num": null
            },
            {
                "text": "We conduct a human evaluation study on WebNLG. Human raters are presented with predicted text, along with up to 3 ground truth references. They are asked to judge the prediction along two axes -(1) Accuracy -A binary rating to gauge whether the prediction conveys the same information as the gold references and (2) Naturalness -A five point scale between 1-3, with 3 indicating a perfectly fluent and grammatical response. Each prediction is rated by 3 raters. For accuracy, we take the majority vote and for naturalness we take the average. We evaluate 500 examples, equally split between the Seen and Unseen test sets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Human Evaluation",
                "sec_num": "6.4"
            },
            {
                "text": "The evaluation is performed for T5-Large and the current state-of-the-art DualEnc model. Results are reported in Table 6 . On the Seen set, both models perform well, with T5 being rated better across both metrics. On the Unseen set, DualEnc shows a large drop of 24% in accuracy while the fluency degrades to just 1.99. Remarkably, T5 sees only a marginal drop, scoring 90% on accuracy and 2.33 on fluency. Table 7 shows some qualitative examples.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 113,
                        "end": 120,
                        "text": "Table 6",
                        "ref_id": "TABREF8"
                    },
                    {
                        "start": 407,
                        "end": 414,
                        "text": "Table 7",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "Human Evaluation",
                "sec_num": "6.4"
            },
            {
                "text": "Our experiments with different T5 variants of varying sizes shed some light on how model capacity impacts performance. The results suggest that it largely depends on the size and complexity of the dataset. For instance, MultiWoz exhibits the least variation in the structured data and is fairly large at 56k examples. Here, even the smallest model T5-Small, is on par with the larger models. WebNLG has only 18K examples and features roughly 200 distinct relations. On the seen test set, all models perform comparably. However, on the unseen test set we notice that performance increases with model size. In particular, there is a stark jump of 10 BLEU when going from T5-Small to T5-Base, implying that model capacity is critical for out-of-domain generalization. A similar trend is observed for ToTTo (Table 4) , with a noticeable improvement from Small to Base, followed by smaller improvements upto T5-3B.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 803,
                        "end": 812,
                        "text": "(Table 4)",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Impact of model capacity",
                "sec_num": "6.5"
            },
            {
                "text": "In this study we evaluated pre-training in the form of T5 for the data-to-text task. We found that it leads to state-of-the-art results, while greatly improving robustness to out-of-domain inputs. In the future, we hope to design unsupervised pre-training objectives that are specifically tailored for the datato-text task. We also hope to extend this work to multiple languages, especially low resource ones.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "Initial experiments with T5 variants trained on a purely unsupervised objective did not show any difference in performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Multiwoz-a largescale multi-domain wizard-of-oz dataset for taskoriented dialogue modelling",
                "authors": [
                    {
                        "first": "Pawe\u0142",
                        "middle": [],
                        "last": "Budzianowski",
                        "suffix": ""
                    },
                    {
                        "first": "Tsung-Hsien",
                        "middle": [],
                        "last": "Wen",
                        "suffix": ""
                    },
                    {
                        "first": "Bo-Hsiang",
                        "middle": [],
                        "last": "Tseng",
                        "suffix": ""
                    },
                    {
                        "first": "I\u00f1igo",
                        "middle": [],
                        "last": "Casanueva",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [],
                        "last": "Ultes",
                        "suffix": ""
                    },
                    {
                        "first": "Milica",
                        "middle": [],
                        "last": "Osman Ramadan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gasic",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "5016--5026",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pawe\u0142 Budzianowski, Tsung-Hsien Wen, Bo-Hsiang Tseng, I\u00f1igo Casanueva, Stefan Ultes, Osman Ra- madan, and Milica Gasic. 2018. Multiwoz-a large- scale multi-domain wizard-of-oz dataset for task- oriented dialogue modelling. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 5016-5026.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Semantically conditioned dialog response generation via hierarchical disentangled self-attention",
                "authors": [
                    {
                        "first": "Wenhu",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Jianshu",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Pengda",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Xifeng",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [
                            "Yang"
                        ],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "3696--3709",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wenhu Chen, Jianshu Chen, Pengda Qin, Xifeng Yan, and William Yang Wang. 2019a. Semantically con- ditioned dialog response generation via hierarchical disentangled self-attention. In Proceedings of the 57th Annual Meeting of the Association for Compu- tational Linguistics, pages 3696-3709.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Few-shot nlg with pre-trained language model",
                "authors": [
                    {
                        "first": "Zhiyu",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Harini",
                        "middle": [],
                        "last": "Eavani",
                        "suffix": ""
                    },
                    {
                        "first": "Yinyin",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [
                            "Yang"
                        ],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1904.09521"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zhiyu Chen, Harini Eavani, Yinyin Liu, and William Yang Wang. 2019b. Few-shot nlg with pre-trained language model. arXiv preprint arXiv:1904.09521.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.04805"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understand- ing. arXiv preprint arXiv:1810.04805.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Handling divergent reference texts when evaluating table-to-text generation",
                "authors": [
                    {
                        "first": "Bhuwan",
                        "middle": [],
                        "last": "Dhingra",
                        "suffix": ""
                    },
                    {
                        "first": "Manaal",
                        "middle": [],
                        "last": "Faruqui",
                        "suffix": ""
                    },
                    {
                        "first": "Ankur",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4884--4895",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bhuwan Dhingra, Manaal Faruqui, Ankur Parikh, Ming-Wei Chang, Dipanjan Das, and William Co- hen. 2019. Handling divergent reference texts when evaluating table-to-text generation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 4884-4895.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Gtr-lstm: A triple encoder for sentence generation from rdf data",
                "authors": [
                    {
                        "first": "Jianzhong",
                        "middle": [],
                        "last": "Bayu Distiawan",
                        "suffix": ""
                    },
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Qi",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1627--1637",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bayu Distiawan, Jianzhong Qi, Rui Zhang, and Wei Wang. 2018. Gtr-lstm: A triple encoder for sentence generation from rdf data. In Proceedings of the 56th Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers), pages 1627-1637.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Neural datato-text generation: A comparison between pipeline and end-to-end architectures",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Thiago Castro Ferreira",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Van Der Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Emiel Van Miltenburg",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "552--562",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thiago Castro Ferreira, Chris van der Lee, Emiel van Miltenburg, and Emiel Krahmer. 2019. Neural data- to-text generation: A comparison between pipeline and end-to-end architectures. In Proceedings of the 2019 Conference on Empirical Methods in Natu- ral Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 552-562.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "The webnlg challenge: Generating text from rdf data",
                "authors": [
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Gardent",
                        "suffix": ""
                    },
                    {
                        "first": "Anastasia",
                        "middle": [],
                        "last": "Shimorina",
                        "suffix": ""
                    },
                    {
                        "first": "Shashi",
                        "middle": [],
                        "last": "Narayan",
                        "suffix": ""
                    },
                    {
                        "first": "Laura",
                        "middle": [],
                        "last": "Perez-Beltrachini",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 10th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "124--133",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. 2017. The webnlg challenge: Generating text from rdf data. In Pro- ceedings of the 10th International Conference on Natural Language Generation, pages 124-133.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Using natural-language processing to produce weather forecasts",
                "authors": [
                    {
                        "first": "Eli",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Norbert",
                        "middle": [],
                        "last": "Driedger",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [
                            "I"
                        ],
                        "last": "Kittredge",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "IEEE Expert",
                "volume": "9",
                "issue": "2",
                "pages": "45--53",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eli Goldberg, Norbert Driedger, and Richard I Kit- tredge. 1994. Using natural-language processing to produce weather forecasts. IEEE Expert, 9(2):45- 53.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Design of a knowledge-based report generator",
                "authors": [
                    {
                        "first": "Karen",
                        "middle": [],
                        "last": "Kukich",
                        "suffix": ""
                    }
                ],
                "year": 1983,
                "venue": "Proceedings of the 21st annual meeting on Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "145--150",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Karen Kukich. 1983. Design of a knowledge-based re- port generator. In Proceedings of the 21st annual meeting on Association for Computational Linguis- tics, pages 145-150. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Meteor: An automatic metric for mt evaluation with high levels of correlation with human judgments",
                "authors": [
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Lavie",
                        "suffix": ""
                    },
                    {
                        "first": "Abhaya",
                        "middle": [],
                        "last": "Agarwal",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Second Workshop on Statistical Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "228--231",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alon Lavie and Abhaya Agarwal. 2007. Meteor: An automatic metric for mt evaluation with high levels of correlation with human judgments. In Proceed- ings of the Second Workshop on Statistical Machine Translation, pages 228-231. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Rouge: A package for automatic evaluation of summaries",
                "authors": [
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Text summarization branches out",
                "volume": "",
                "issue": "",
                "pages": "74--81",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out, pages 74-81.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Table-to-text generation by structure-aware seq2seq learning",
                "authors": [
                    {
                        "first": "Tianyu",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Kexiang",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Lei",
                        "middle": [],
                        "last": "Sha",
                        "suffix": ""
                    },
                    {
                        "first": "Baobao",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifang",
                        "middle": [],
                        "last": "Sui",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhifang Sui. 2018. Table-to-text generation by structure-aware seq2seq learning. In Thirty-Second AAAI Conference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Deep graph convolutional encoders for structured data to text generation",
                "authors": [
                    {
                        "first": "Diego",
                        "middle": [],
                        "last": "Marcheggiani",
                        "suffix": ""
                    },
                    {
                        "first": "Laura",
                        "middle": [],
                        "last": "Perez-Beltrachini",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 11th International Conference on Natural Language Generation",
                "volume": "",
                "issue": "",
                "pages": "1--9",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diego Marcheggiani and Laura Perez-Beltrachini. 2018. Deep graph convolutional encoders for struc- tured data to text generation. In Proceedings of the 11th International Conference on Natural Language Generation, pages 1-9.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Text generation: using discourse strategies and focus constraints to generate natural language text",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kathleen R Mckeown",
                        "suffix": ""
                    }
                ],
                "year": 1985,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kathleen R McKeown. 1985. Text generation: using discourse strategies and focus constraints to generate natural language text.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Step-by-step: Separating planning from realization in neural data-to-text generation",
                "authors": [
                    {
                        "first": "Amit",
                        "middle": [],
                        "last": "Moryossef",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    },
                    {
                        "first": "Ido",
                        "middle": [],
                        "last": "Dagan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "2267--2277",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019. Step-by-step: Separating planning from realization in neural data-to-text generation. In Proceedings of the 2019 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2267-2277.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th annual meeting on association for computational linguistics",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. Bleu: a method for automatic eval- uation of machine translation. In Proceedings of the 40th annual meeting on association for compu- tational linguistics, pages 311-318. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Totto: A controlled table-to-text generation dataset",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Ankur",
                        "suffix": ""
                    },
                    {
                        "first": "Xuezhi",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Manaal",
                        "middle": [],
                        "last": "Gehrmann",
                        "suffix": ""
                    },
                    {
                        "first": "Bhuwan",
                        "middle": [],
                        "last": "Faruqui",
                        "suffix": ""
                    },
                    {
                        "first": "Diyi",
                        "middle": [],
                        "last": "Dhingra",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2004.14373"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ankur P Parikh, Xuezhi Wang, Sebastian Gehrmann, Manaal Faruqui, Bhuwan Dhingra, Diyi Yang, and Dipanjan Das. 2020. Totto: A controlled table-to-text generation dataset. arXiv preprint arXiv:2004.14373.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Few-shot natural language generation for task-oriented dialog",
                "authors": [
                    {
                        "first": "Baolin",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Chenguang",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Chunyuan",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Xiujun",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Jinchao",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Zeng",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2002.12328"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Baolin Peng, Chenguang Zhu, Chunyuan Li, Xi- ujun Li, Jinchao Li, Michael Zeng, and Jian- feng Gao. 2020. Few-shot natural language gen- eration for task-oriented dialog. arXiv preprint arXiv:2002.12328.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Data-to-text generation with content selection and planning",
                "authors": [
                    {
                        "first": "Ratish",
                        "middle": [],
                        "last": "Puduppully",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "33",
                "issue": "",
                "pages": "6908--6915",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ratish Puduppully, Li Dong, and Mirella Lapata. 2019. Data-to-text generation with content selection and planning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6908-6915.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Language models are unsupervised multitask learners",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "OpenAI Blog",
                "volume": "",
                "issue": "8",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI Blog, 1(8).",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
                "authors": [
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Raffel",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Roberts",
                        "suffix": ""
                    },
                    {
                        "first": "Katherine",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Sharan",
                        "middle": [],
                        "last": "Narang",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Matena",
                        "suffix": ""
                    },
                    {
                        "first": "Yanqi",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Peter J",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.10683"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text trans- former. arXiv preprint arXiv:1910.10683.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Building natural language generation systems",
                "authors": [
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Reiter",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Dale",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ehud Reiter and Robert Dale. 2000. Building natural language generation systems. Cambridge university press.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Leveraging pre-trained checkpoints for sequence generation tasks",
                "authors": [
                    {
                        "first": "Sascha",
                        "middle": [],
                        "last": "Rothe",
                        "suffix": ""
                    },
                    {
                        "first": "Shashi",
                        "middle": [],
                        "last": "Narayan",
                        "suffix": ""
                    },
                    {
                        "first": "Aliaksei",
                        "middle": [],
                        "last": "Severyn",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1907.12461"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sascha Rothe, Shashi Narayan, and Aliaksei Sev- eryn. 2019. Leveraging pre-trained checkpoints for sequence generation tasks. arXiv preprint arXiv:1907.12461.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Get to the point: Summarization with pointer-generator networks",
                "authors": [
                    {
                        "first": "Abigail",
                        "middle": [],
                        "last": "See",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1073--1083",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-1099"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Abigail See, Peter J. Liu, and Christopher D. Man- ning. 2017a. Get to the point: Summarization with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for Com- putational Linguistics (Volume 1: Long Papers), pages 1073-1083, Vancouver, Canada. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Get to the point: Summarization with pointer-generator networks",
                "authors": [
                    {
                        "first": "Abigail",
                        "middle": [],
                        "last": "See",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher D",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1073--1083",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Abigail See, Peter J Liu, and Christopher D Man- ning. 2017b. Get to the point: Summarization with pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers), pages 1073-1083.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Sumtime-mousam: Configurable marine weather forecast generator",
                "authors": [
                    {
                        "first": "Somayajulu",
                        "middle": [],
                        "last": "Sripada",
                        "suffix": ""
                    },
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Reiter",
                        "suffix": ""
                    },
                    {
                        "first": "Ian",
                        "middle": [],
                        "last": "Davy",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Somayajulu Sripada, Ehud Reiter, and Ian Davy. Sumtime-mousam: Configurable marine weather forecast generator.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Semantically conditioned lstm-based natural language generation for spoken dialogue systems",
                "authors": [
                    {
                        "first": "Milica",
                        "middle": [],
                        "last": "Tsung-Hsien Wen",
                        "suffix": ""
                    },
                    {
                        "first": "Nikola",
                        "middle": [],
                        "last": "Gasic",
                        "suffix": ""
                    },
                    {
                        "first": "Pei-Hao",
                        "middle": [],
                        "last": "Mrksic",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Vandyke",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1508.01745"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei- Hao Su, David Vandyke, and Steve Young. 2015. Se- mantically conditioned lstm-based natural language generation for spoken dialogue systems. arXiv preprint arXiv:1508.01745.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Bridging the structural gap between encoding and decoding for data-to-text generation",
                "authors": [
                    {
                        "first": "Chao",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Marilyn",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    },
                    {
                        "first": "Snigdha",
                        "middle": [],
                        "last": "Chaturvedi",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chao Zhao, Marilyn Walker, and Snigdha Chaturvedi. 2020. Bridging the structural gap between encod- ing and decoding for data-to-text generation. In Pro- ceedings of the 58th Annual Meeting of the Associa- tion for Computational Linguistics (Volume 1: Long Papers).",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "text": "Examples from each dataset -The first row is WebNLG, second is Multiwoz and third is ToTTo. Each row illustrates the structured data (left), its linearized representation (top) and the target text(bottom)",
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "num": null,
                "text": "ToTTo (Parikh et al., 2020)  consists of Wikipedia tables paired with natural language descriptions. The input is a set of cells from a table, along with metadata such as the title of the table.",
                "uris": null,
                "type_str": "figure"
            },
            "TABREF0": {
                "num": null,
                "html": null,
                "type_str": "table",
                "text": "Dataset sizes.",
                "content": "<table/>"
            },
            "TABREF1": {
                "num": null,
                "html": null,
                "type_str": "table",
                "text": "45.1 54.5 33.3 0.37 0.41 0.33 GTR-LSTM : 37.1 54.0 29.2 0.31 0.37 0.28 Pipe-Trans 51.7 56.4 38.9 0.32 0.41 0.21 Step",
                "content": "<table><tr><td>Model</td><td>O</td><td>BLEU S</td><td>U</td><td>O</td><td>METEOR S U</td></tr><tr><td>Melbourne :</td><td/><td/><td/><td/><td/></tr><tr><td>:</td><td colspan=\"5\">47.4 53.3 34.4 0.39 0.44 0.34</td></tr><tr><td>DualEnc</td><td colspan=\"5\">51.4 63.4 36.7 0.41 0.45 0.37</td></tr><tr><td>T5-Small</td><td colspan=\"5\">52.0 62.6 38.8 0.41 0.45 0.37</td></tr><tr><td>T5-Base</td><td colspan=\"5\">55.2 64.7 49.4 0.43 0.46 0.41</td></tr><tr><td>T5-Large</td><td colspan=\"5\">57.1 63.9 52.8 0.44 0.46 0.41</td></tr><tr><td>T5-3B</td><td colspan=\"5\">54.0 62.8 52.0 0.43 0.45 0.42</td></tr></table>"
            },
            "TABREF2": {
                "num": null,
                "html": null,
                "type_str": "table",
                "text": "Results on WebNLG. O stands for Overall test set, S for Seen and U for Unseen. Pipe-Trans is Pipeline-Transformer.",
                "content": "<table/>"
            },
            "TABREF3": {
                "num": null,
                "html": null,
                "type_str": "table",
                "text": ", for the overall test set as well as the Seen and Unseen splits. T5-Large performs the best across BLEU as well as METEOR. It improves over DualEnc by 4.3 BLEU on the overall test set. It also displays excellent generalization to new domains and relations, with a 14 BLEU improvement on the unseen test set. The results indicate that with pre-training, end-to-end neural models can surpass sophisticated pipelined approaches while being much more robust to domain shift.",
                "content": "<table><tr><td>Model</td><td colspan=\"4\">Overall BLEU PAR BLEU PAR Non-Overlap</td></tr><tr><td>PGen</td><td>41.6</td><td>51.6</td><td>32.2</td><td>45.2</td></tr><tr><td>BERT-to-BERT</td><td>44.0</td><td>52.6</td><td>34.8</td><td>46.7</td></tr><tr><td>T5-3B</td><td>49.5</td><td>58.4</td><td>41.4</td><td>54.2</td></tr></table>"
            },
            "TABREF4": {
                "num": null,
                "html": null,
                "type_str": "table",
                "text": "Results on the ToTTo test set. PAR is short for PARENT. PGen stands for Pointer Generetator(See et al., 2017a).",
                "content": "<table><tr><td>Model</td><td colspan=\"3\">Overall BLEU PAR BLEU PAR Non-Overlap</td></tr><tr><td colspan=\"2\">BERT-to-BERT 44.0</td><td>52.6 34.8</td><td>46.7</td></tr><tr><td>T5-Small</td><td>45.7</td><td>55.9 37.7</td><td>51.6</td></tr><tr><td>T5-Base</td><td>47.7</td><td>57.1 39.6</td><td>52.6</td></tr><tr><td>T5-Large</td><td>48.1</td><td>57.3 39.8</td><td>52.8</td></tr><tr><td>T5-3B</td><td>48.4</td><td>57.8 40.4</td><td>53.3</td></tr></table>"
            },
            "TABREF5": {
                "num": null,
                "html": null,
                "type_str": "table",
                "text": "",
                "content": "<table/>"
            },
            "TABREF7": {
                "num": null,
                "html": null,
                "type_str": "table",
                "text": "",
                "content": "<table/>"
            },
            "TABREF8": {
                "num": null,
                "html": null,
                "type_str": "table",
                "text": "Human evaluation on WebNLG. Nat is short for Naturalness and Acc is short for Accuracy.",
                "content": "<table/>"
            },
            "TABREF9": {
                "num": null,
                "html": null,
                "type_str": "table",
                "text": "Input <aidastella, christening date, 2013-03-16> DualEnc Aidastella was inaugurated on March 16 , 2013 . T5 Aidastella was christened on March 16 , 2013 . Input <Andra (singer). genre , rhythm and blues> DualEnc Andra singer is rhythm and blues . T5 Andra is a singer who plays rhythm and blues . Input <Aaron deer, genre, indie rock><Aaron Deer, origin, Indiana><Aaron Deer, origin, United States> DualEnc Aaron Deer , indie rock , has a origin of Indiana and is located in United States . T5 Aaron Deer is an American from Indiana who is part of the genre of indie rock . Input <Alvah Sabin, birth date, 1793-10-23><Alvah Sabin, office (worked at , worked as), secretary of state of Vermont> DualEnc Alvah Sabin was born on October 23 , 1793 and is in secretary of state of Vermont . T5 Alvah Sabin was born on 23 October 1793 and served as secretary of state of Vermont .",
                "content": "<table/>"
            },
            "TABREF10": {
                "num": null,
                "html": null,
                "type_str": "table",
                "text": "Model predictions on the WebNLG Unseen set. DualEnc struggles to verbalize predicates and produces ungrammatical output. T5 output is accurate and more grammatical.",
                "content": "<table/>"
            }
        }
    }
}