File size: 85,653 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:27:42.961470Z"
    },
    "title": "Machine Translation Pre-training for Data-to-Text Generation -A Case Study in Czech",
    "authors": [
        {
            "first": "Mihir",
            "middle": [],
            "last": "Kale",
            "suffix": "",
            "affiliation": {},
            "email": "mihirkale@google.com"
        },
        {
            "first": "Scott",
            "middle": [],
            "last": "Roy",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "While there is a large body of research studying deep learning methods for text generation from structured data, almost all of it focuses purely on English. In this paper, we study the effectiveness of machine translation based pre-training for data-to-text generation in non-English languages. Since the structured data is generally expressed in English, text generation into other languages involves elements of translation, transliteration and copying-elements already encoded in neural machine translation systems. Moreover, since data-to-text corpora are typically small, this task can benefit greatly from pre-training. We conduct experiments on Czech, a morphologically complex language. Results show that machine translation pre-training lets us train endto-end models that significantly improve upon unsupervised pre-training and linguistically informed pipelined neural systems, as judged by automatic metrics and human evaluation. We also show that this approach enjoys several desirable properties, including improved performance in low data scenarios and applicability to low resource languages.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "While there is a large body of research studying deep learning methods for text generation from structured data, almost all of it focuses purely on English. In this paper, we study the effectiveness of machine translation based pre-training for data-to-text generation in non-English languages. Since the structured data is generally expressed in English, text generation into other languages involves elements of translation, transliteration and copying-elements already encoded in neural machine translation systems. Moreover, since data-to-text corpora are typically small, this task can benefit greatly from pre-training. We conduct experiments on Czech, a morphologically complex language. Results show that machine translation pre-training lets us train endto-end models that significantly improve upon unsupervised pre-training and linguistically informed pipelined neural systems, as judged by automatic metrics and human evaluation. We also show that this approach enjoys several desirable properties, including improved performance in low data scenarios and applicability to low resource languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Data-to-Text refers to the process of generating accurate and fluent natural language text from structured data such as tables, lists, graphs etc. (Gatt and Krahmer, 2018) For example, consider Figure 1 , in the context of a restaurant booking system. The system must take a meaning representation (MR) as input -in this case represented in the form of a dialogue act (inform) and a list of key value pairs related to the restaurant -and generate fluent text that is firmly grounded in the MR.",
                "cite_spans": [
                    {
                        "start": 147,
                        "end": 171,
                        "text": "(Gatt and Krahmer, 2018)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 194,
                        "end": 202,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this work, we focus on generating text in non-English languages and show that it is possible to significantly reduce this accuracy gap by pre-training fully lexicalized models on an NMT task. For an example motivating the use of NMT, consider Figure 1 once again. In order to generate semantically correct and natural sounding text in Czech (Marathi), a data-to-text model would need to learn the following skills:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 246,
                        "end": 254,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Translate the slot value \"dinner\" to the target language",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Copy the phone number correctly",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Inflect the restaurant name",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In the case of Marathi, which has a different script, there is the additional challenge of Transliterating the restaurant name as well. It is unreasonable to expect neural data-to-text models to learn all these skills, especially since the size of most NLG 1 datasets is quite small. However, modern neural machine translation systems are already fairly adept at translating, transliterating, copying, inflecting etc. Consequently, we hypothesise that the parameters of an NMT model will act as a very strong prior for an NLG model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Earlier work on NLG was mainly studied rulebased pipelined methods (Reiter and Dale, 2000; Siddharthan, 2001; Stent et al., 2004) , but recent works favor end-to-end neural approaches. Wen et al. 2015proposed the Semantically Controlled LSTM and were one of the first to show the success of neural networks for this problem, with applications to task-oriented dialogue. Since then, some works have focused on alternative architectures - Liu et al. (2018) generate text by conditioning language models on tables, while Puduppully et al. (2019) propose to explictly model entities present in the structured data. With the advent of BERT (Devlin et al., 2018) , the unsupervised pre-training + fine-tuning paradigm has shown to be remarkably effective, leading to improvements in many NLP tasks. While the above works focus on unsupervised pre-training, Siddhant et al. (2019) and Schuster et al. (2018) examine transfer learning via neural machine translation for NLU tasks. Recently, Chi et al. (2019) found multilingual unsupervised pretraining techniques to be effective for cross-lingual language generation tasks like summarization and question generation. Similar to our work, Saleh et al. (2019) used machine translation pre-training in their winning entry to the WNGT 2019 shared task (Hayashi et al., 2019) . In this work, we also offer further insights on the usefulness of machine translation by conducting controlled experiments in various settings -limited labeled data, low resource languages, comparison with unsupervised pre-training etc. We also support our findings with human evaluations.",
                "cite_spans": [
                    {
                        "start": 67,
                        "end": 90,
                        "text": "(Reiter and Dale, 2000;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 91,
                        "end": 109,
                        "text": "Siddharthan, 2001;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 110,
                        "end": 129,
                        "text": "Stent et al., 2004)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 437,
                        "end": 454,
                        "text": "Liu et al. (2018)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 518,
                        "end": 542,
                        "text": "Puduppully et al. (2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 635,
                        "end": 656,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 851,
                        "end": 873,
                        "text": "Siddhant et al. (2019)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 878,
                        "end": 900,
                        "text": "Schuster et al. (2018)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 983,
                        "end": 1000,
                        "text": "Chi et al. (2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1181,
                        "end": 1200,
                        "text": "Saleh et al. (2019)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 1291,
                        "end": 1313,
                        "text": "(Hayashi et al., 2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "We use the transformer (Vaswani et al., 2017) based encoder-decoder architecture by casting data-totext as a seq2seq problem, where the structured data is flattened into a plain string consisting of a series of intents and slot key-value pairs. More exotic architectures have been suggested in prior work, but the findings of Du\u0161ek et al. (2018) show that simple seq2seq models are competitive alternatives, while being simpler to implement. Secondly, the transformer architecture is state-of-the art for NMT. Thirdly, keeping the pre-train and fine-tune architectures the same allows us to easily transfer knowledge between the two steps by parameter initialization.",
                "cite_spans": [
                    {
                        "start": 23,
                        "end": 45,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 326,
                        "end": 345,
                        "text": "Du\u0161ek et al. (2018)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "3"
            },
            {
                "text": "4 Pre-train + Fine-tune Our modeling approach is simple. We first use a parallel corpus to train a sequence-tosequence transformer based neural machine translation model. Next, we fine-tune this NMT model using a data-to-text corpus for a small number of steps. All the model parameters are updated in the fine-tuning process. In practice, we found that a bidirectional model, which can translate from English to the target language and vice-versa, performed slightly better.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "3"
            },
            {
                "text": "We compare with the following baselines: Scratch A baseline where all the parameters are learned from scratch, without any kind of transfer learning. This is a 1-layer Transformer model. Larger models trained from scratch did not improve performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "5"
            },
            {
                "text": "Unsupervised pre-training baseline Monolingual data is generally far easier to obtain than bilingual data, which makes unsupervised pre-training techniques more attractive. Interestingly, Wu and Dredze (2019) and Pires et al. (2019) find that pre-training BERT models on a combination of languages can lead to surprisingly effective crosslingual performance on NLU tasks, without using any parallel data. Of the myriad unsupervised techniques, we choose the span masking objective employed by T5 (Raffel et al., 2019) , MASS (Song et al., 2019) etc. for our baseline since it has been shown to outperform other alternatives like BERT. During pre-training, spans of text are masked in the input sentence and fed to the encoder. The decoder must learn to output the masked spans. TGen is a freely available open-source NLG system based on seq2seq + attention. Du\u0161ek and Jur\u010d\u00ed\u010dek (2019) create a pipelined system consisting of : a TGen based model that outputs delexicalized text, a classifier that ranks the beam search hypotheses and a language model which does the lexicalization by picking the exact surface form. We denote this combined system, consisting of all 3 components as tgen-sota. It is also currently the state-of-the-art for the data-to-text corpus that we use for downstream evaluation. Note that the lexicalization step requires access to lexicon data containing all the morphological forms of words and entities. Unlike tgen-sota, our proposed model is trained end-to-end to directly generate lexicalized outputs, which is a much harder task. We also do not rely on any external lexical data.",
                "cite_spans": [
                    {
                        "start": 188,
                        "end": 208,
                        "text": "Wu and Dredze (2019)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 213,
                        "end": 232,
                        "text": "Pires et al. (2019)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 496,
                        "end": 517,
                        "text": "(Raffel et al., 2019)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 525,
                        "end": 544,
                        "text": "(Song et al., 2019)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 858,
                        "end": 867,
                        "text": "Du\u0161ek and",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "5"
            },
            {
                "text": "Its not realistic to assume that every NLG system is first developed for English. As such, our setting does not assume the existence of a similar dataset in English. Therefore, translation based baselines (eg: first running the English model and then translating the output) are not applicable here.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "5"
            },
            {
                "text": "6 Experimental Setup 6.1 Datasets Pre-training We use the Czech-English parallel corpus provided by the WMT 2019 shared task. The dataset comprises of 57 million translation pairs, automatically mined from the web. In order to facilitate a fair comparison, we use this corpus for our unsupervised pre-training baselines as well. This effectively results in 114 million monolingual sentences, equally split between English and Czech. NLG We use the recently released Czech Restaurant dataset (Du\u0161ek and Jur\u010d\u00ed\u010dek, 2019) . Data related statistics can be found in Table 1 . The delexicalized MRs in the test set never appear in the training set. As a result, models must learn to generalize to MRs with unseen slot and intent combinations.",
                "cite_spans": [
                    {
                        "start": 491,
                        "end": 517,
                        "text": "(Du\u0161ek and Jur\u010d\u00ed\u010dek, 2019)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 560,
                        "end": 567,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Baselines",
                "sec_num": "5"
            },
            {
                "text": "For NMT and MASS, we train transformer models with 93M parameters (6 layers, 8 heads, 512 hidden dimensions). They are trained for 1 million steps with Adam optimizer and a batch size of 1024. For NLG, all our models are fine-tuned for 10K steps with a batch size of 32. We do not perform any hyperparameter tuning. Decoding is performed using beam search, with a beam width of 8. All the transformer based models are implemented in the Lingvo framework (Shen et al., 2019) based on Tensorflow (Abadi et al., 2016) . The tgen-lex baseline is trained using the open-source repository with the exact hyperparameters as used by Du\u0161ek and Jur\u010d\u00ed\u010dek (2019) . The best checkpoints are selected based on validation set BLEU score.",
                "cite_spans": [
                    {
                        "start": 454,
                        "end": 473,
                        "text": "(Shen et al., 2019)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 494,
                        "end": 514,
                        "text": "(Abadi et al., 2016)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 625,
                        "end": 650,
                        "text": "Du\u0161ek and Jur\u010d\u00ed\u010dek (2019)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training details",
                "sec_num": "6.2"
            },
            {
                "text": "Our vocabulary consists of a sentencepiece model with 32,000 tokens (Kudo and Richardson, 2018) shared between English and Czech. It is computed on English and Czech sentences from the pre-training corpus. In order to facilitate a fair comparison, we maintain the same vocabulary across all the transformer based models and baselines. No special rules or pre-processing is done to tokenize the structured data -we simply feed it as a plain string. The input sequence is pre-pended with a task specific token -[TRANSLATE] for translation, [GENERATE] for NLG. Following Aharoni et al. 2019, we pre-pend a second token to specify the desired output language -<2en> for English and <2cs> for Czech.",
                "cite_spans": [
                    {
                        "start": 68,
                        "end": 95,
                        "text": "(Kudo and Richardson, 2018)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data pre-processing",
                "sec_num": "6.3"
            },
            {
                "text": "Following prior work (Du\u0161ek and Jur\u010d\u00ed\u010dek, 2019) , we use the suite of word-overlap-based automatic metrics from the E2E NLG Challenge 2 , supporting BLEU (Papineni et al., 2002) , NIST (Doddington, 2002), ROUGE-L (Lin, 2004) , METEOR (Lavie and Agarwal, 2007) , CIDEr (Vedantam et al., 2015) . We also compute a Slot Error Rate (SER) metric to gauge how well the generated text reflects the structured data. We calculate how many of the slot values in the structured data have been mentioned in the generated text. An example is marked as correct only if all the slot-values in the structured data are present in the output 3 .",
                "cite_spans": [
                    {
                        "start": 21,
                        "end": 47,
                        "text": "(Du\u0161ek and Jur\u010d\u00ed\u010dek, 2019)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 154,
                        "end": 177,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 213,
                        "end": 224,
                        "text": "(Lin, 2004)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 234,
                        "end": 259,
                        "text": "(Lavie and Agarwal, 2007)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 268,
                        "end": 291,
                        "text": "(Vedantam et al., 2015)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Metrics",
                "sec_num": "6.4"
            },
            {
                "text": "We report results in Table 2 . The scratch baseline performs quite poorly, as expected. While unsupervised transfer learning (mass) performs better, pre-training via machine translation (nmt) gives the best results by large margin. nmt brings down the SER to just 1.9, a 20 point gain over mass, while improving the BLEU score by 8 points. Similar trends are observed in the other metrics as well. These results give credence to our hypothesis that machine translation can be a strong pre-training objective for data-to-text generation in non-English languages. Table 2 : Results. \u00d2 implies higher is better, while \u00d3 arrow implies lower is better. : We compute SER metrics on outputs provided to us by the authors. The other metrics are taken from the paper (Du\u0161ek and Jur\u010d\u00ed\u010dek, 2019) Compared to the state-of-the-art pipelined tgensota system, nmt compares favorably, showing improvements on all metrics, including a 4 point improvement in BLEU. Recall that tgen-sota involves training 3 separate models (seq2seq for generation, classifier for ranking and language model to pick the correct surface form). In contrast, our approach is simple and end-to-end.",
                "cite_spans": [
                    {
                        "start": 758,
                        "end": 784,
                        "text": "(Du\u0161ek and Jur\u010d\u00ed\u010dek, 2019)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 21,
                        "end": 28,
                        "text": "Table 2",
                        "ref_id": null
                    },
                    {
                        "start": 562,
                        "end": 569,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Main Results",
                "sec_num": "7.1"
            },
            {
                "text": "Since automatic metrics have been shown to be inadequate for generation tasks, we also conduct human evaluations on a set of 200 examples randomly sampled from the test set. Concretely, we measure two metrics -accuracy and fluency Accuracy: Human raters are shown the gold text and the predicted text and are instructed to mark the generated text as accurate if it correctly conveys the meaning of the gold text. This effectively catches errors due to hallucinations, incorrect grounding etc. Each example is rated by 3 raters, and we consider an example to be correct if at least two raters say so.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Human Evaluation",
                "sec_num": "7.2"
            },
            {
                "text": "Fluency: We show the predicted text to raters and ask them how natural and fluent the text sounds on a 1-5 scale, with 5 being the highest score. Again, each example is rated by 3 raters. We average the scores across all the ratings to get the fluency score.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Human Evaluation",
                "sec_num": "7.2"
            },
            {
                "text": "We conduct accuracy and fluency evaluations for our best model (nmt), mass and tgen-sota. Results are reported in table 3. tgen-sota produces accurate output, but lags behind nmt and mass in terms of fluency. mass produces fluent output on account of its strong language model but scores low on accuracy. nmt on the other hand, gets the highest scores on both metrics -97.5% for accuracy and 4.83 for fluency.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Human Evaluation",
                "sec_num": "7.2"
            },
            {
                "text": "Overall, automatic and human evaluation results strongly point to the applicability of this approach to real-world NLG systems. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Human Evaluation",
                "sec_num": "7.2"
            },
            {
                "text": "In this section we study the effects of transfer learning when the size of the fine-tuning corpus is small. We create two random subsets from the NLG training data of size 100 and 1000. Results are reported in Table 4 . We find that once again, nmt offers substantial gains over mass. When fine-tuning on 1000 examples, pre-training with NMT is substantially better than fine-tuning mass on the entire dataset ( 3.5k examples). Remarkably, with just 100 examples, our model outperforms training from scratch on the entire training set. These results lead us to believe that machine translation based pre-training can lead to substantial cost savings with respect to training data annotation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 210,
                        "end": 217,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Low resource NLG",
                "sec_num": "7.3"
            },
            {
                "text": "Our previous experiments use NMT models trained on a fairly large corpus. However, for many languages, the amount of available parallel data can be small. Therefore, to study the impact of the size of bitext corpus, we run experiments in a simulated low-resource setting. We train machine translation models on 10% (5.7 million examples, medium resource, denoted as nmt-5m) and 1% (570K examples, low resource, denoted as nmt-500k ) of the data and use them for fine-tuning the NLG task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Low-resource machine translation",
                "sec_num": "7.4"
            },
            {
                "text": "Next, we fine-tune each of these models on the data-to-text task. From the results in Table 4 , we see that while the high resource model performs the best, the medium resource models is not far behind in terms of BLEU. Both the high and medium resource models have a comparable SER. Even the low resource model, pre-trained on just 1% of the translation corpora is significantly better than mass, which has been pre-trained on almost 1.6 billion tokens. The results indicate that machine translation based transfer learning can be successfully applied even when the size of parallel corpus is small, and thus holds promise for low-resource languages.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 86,
                        "end": 93,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Low-resource machine translation",
                "sec_num": "7.4"
            },
            {
                "text": "In this work we investigated neural machine translation based transfer learning for data-to-text generation in non-English languages. Using Czech as a target language, we showed that such an approach enables us to learn simple, fully lexicalized end-toend models that outperform competitive baselines. Experimental results suggest several desirable properties including improved sample efficiency, robustness to unseen values and potential applications to low resource languages. At the same time, the approach can also be leveraged to improve performance of delexicalized models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            },
            {
                "text": "Studying pre-training on a wide variety of languages, especially those with different scripts, is a direct line of future work. Combining unsupervised and translation based pre-training is also a promising avenue and has already shown good results for NLU tasks (Lample and Conneau, 2019) .",
                "cite_spans": [
                    {
                        "start": 262,
                        "end": 288,
                        "text": "(Lample and Conneau, 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "8"
            },
            {
                "text": "While NLG is a broad term, in this paper, we use NLG and data-to-text interchangeably.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/tuetschek/e2e-metrics 3 Note that SER can be reliably computed only for delexicalizable slots. As a result, the binary kids allowed slot is ignored.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "We would like to thank Markus Freitag for insightful discussions and Ond\u0159ej Du\u0161ek for providing the tgen-sota model outputs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Tensorflow: A system for large-scale machine learning",
                "authors": [
                    {
                        "first": "Mart\u00edn",
                        "middle": [],
                        "last": "Abadi",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Barham",
                        "suffix": ""
                    },
                    {
                        "first": "Jianmin",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifeng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Davis",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Dean",
                        "suffix": ""
                    },
                    {
                        "first": "Matthieu",
                        "middle": [],
                        "last": "Devin",
                        "suffix": ""
                    },
                    {
                        "first": "Sanjay",
                        "middle": [],
                        "last": "Ghemawat",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [],
                        "last": "Irving",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Isard",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "12th tUSENIXu Symposium on Operating Systems Design and Implementation (tOSDIu 16)",
                "volume": "",
                "issue": "",
                "pages": "265--283",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mart\u00edn Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th tUSENIXu Symposium on Operating Systems Design and Implementation (tOSDIu 16), pages 265-283.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Massively multilingual neural machine translation",
                "authors": [
                    {
                        "first": "Roee",
                        "middle": [],
                        "last": "Aharoni",
                        "suffix": ""
                    },
                    {
                        "first": "Melvin",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "Orhan",
                        "middle": [],
                        "last": "Firat",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1903.00089"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019. Massively multilingual neural machine translation. arXiv preprint arXiv:1903.00089.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Cross-lingual natural language generation via pre-training",
                "authors": [
                    {
                        "first": "Zewen",
                        "middle": [],
                        "last": "Chi",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Furu",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "Wenhui",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Xian-Ling",
                        "middle": [],
                        "last": "Mao",
                        "suffix": ""
                    },
                    {
                        "first": "Heyan",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1909.10481"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zewen Chi, Li Dong, Furu Wei, Wenhui Wang, Xian- Ling Mao, and Heyan Huang. 2019. Cross-lingual natural language generation via pre-training. arXiv preprint arXiv:1909.10481.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.04805"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understand- ing. arXiv preprint arXiv:1810.04805.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Automatic evaluation of machine translation quality using n-gram cooccurrence statistics",
                "authors": [
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Doddington",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the second international conference on Human Language Technology Research",
                "volume": "",
                "issue": "",
                "pages": "138--145",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "George Doddington. 2002. Automatic evaluation of machine translation quality using n-gram co- occurrence statistics. In Proceedings of the sec- ond international conference on Human Language Technology Research, pages 138-145. Morgan Kauf- mann Publishers Inc.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Neural generation for czech: Data and baselines",
                "authors": [
                    {
                        "first": "Ond\u0159ej",
                        "middle": [],
                        "last": "Du\u0161ek",
                        "suffix": ""
                    },
                    {
                        "first": "Filip",
                        "middle": [],
                        "last": "Jur\u010d\u00ed\u010dek",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.05298"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ond\u0159ej Du\u0161ek and Filip Jur\u010d\u00ed\u010dek. 2019. Neural gener- ation for czech: Data and baselines. arXiv preprint arXiv:1910.05298.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Findings of the e2e nlg challenge",
                "authors": [
                    {
                        "first": "Ond\u0159ej",
                        "middle": [],
                        "last": "Du\u0161ek",
                        "suffix": ""
                    },
                    {
                        "first": "Jekaterina",
                        "middle": [],
                        "last": "Novikova",
                        "suffix": ""
                    },
                    {
                        "first": "Verena",
                        "middle": [],
                        "last": "Rieser",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.01170"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ond\u0159ej Du\u0161ek, Jekaterina Novikova, and Verena Rieser. 2018. Findings of the e2e nlg challenge. arXiv preprint arXiv:1810.01170.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Survey of the state of the art in natural language generation: Core tasks, applications and evaluation",
                "authors": [
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Journal of Artificial Intelligence Research",
                "volume": "61",
                "issue": "",
                "pages": "65--170",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Albert Gatt and Emiel Krahmer. 2018. Survey of the state of the art in natural language generation: Core tasks, applications and evaluation. Journal of Artifi- cial Intelligence Research, 61:65-170.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Findings of the third workshop on neural generation and translation",
                "authors": [
                    {
                        "first": "Hiroaki",
                        "middle": [],
                        "last": "Hayashi",
                        "suffix": ""
                    },
                    {
                        "first": "Yusuke",
                        "middle": [],
                        "last": "Oda",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Birch",
                        "suffix": ""
                    },
                    {
                        "first": "Ioannis",
                        "middle": [],
                        "last": "Konstas",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Finch",
                        "suffix": ""
                    },
                    {
                        "first": "Minh-Thang",
                        "middle": [],
                        "last": "Luong",
                        "suffix": ""
                    },
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Neubig",
                        "suffix": ""
                    },
                    {
                        "first": "Katsuhito",
                        "middle": [],
                        "last": "Sudoh",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.13299"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioan- nis Konstas, Andrew Finch, Minh-Thang Luong, Graham Neubig, and Katsuhito Sudoh. 2019. Find- ings of the third workshop on neural generation and translation. arXiv preprint arXiv:1910.13299.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing",
                "authors": [
                    {
                        "first": "Taku",
                        "middle": [],
                        "last": "Kudo",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Richardson",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1808.06226"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Taku Kudo and John Richardson. 2018. Sentencepiece: A simple and language independent subword tok- enizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Crosslingual language model pretraining",
                "authors": [
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Lample",
                        "suffix": ""
                    },
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Conneau",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1901.07291"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Guillaume Lample and Alexis Conneau. 2019. Cross- lingual language model pretraining. arXiv preprint arXiv:1901.07291.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Meteor: An automatic metric for mt evaluation with high levels of correlation with human judgments",
                "authors": [
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Lavie",
                        "suffix": ""
                    },
                    {
                        "first": "Abhaya",
                        "middle": [],
                        "last": "Agarwal",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Second Workshop on Statistical Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "228--231",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alon Lavie and Abhaya Agarwal. 2007. Meteor: An automatic metric for mt evaluation with high levels of correlation with human judgments. In Proceed- ings of the Second Workshop on Statistical Machine Translation, pages 228-231. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Rouge: A package for automatic evaluation of summaries",
                "authors": [
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Text summarization branches out",
                "volume": "",
                "issue": "",
                "pages": "74--81",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out, pages 74-81.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Table-to-text generation by structure-aware seq2seq learning",
                "authors": [
                    {
                        "first": "Tianyu",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Kexiang",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Lei",
                        "middle": [],
                        "last": "Sha",
                        "suffix": ""
                    },
                    {
                        "first": "Baobao",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifang",
                        "middle": [],
                        "last": "Sui",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhifang Sui. 2018. Table-to-text generation by structure-aware seq2seq learning. In Thirty-Second AAAI Conference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th annual meeting on association for computational linguistics",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. Bleu: a method for automatic eval- uation of machine translation. In Proceedings of the 40th annual meeting on association for compu- tational linguistics, pages 311-318. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "How multilingual is multilingual bert? arXiv preprint",
                "authors": [
                    {
                        "first": "Telmo",
                        "middle": [],
                        "last": "Pires",
                        "suffix": ""
                    },
                    {
                        "first": "Eva",
                        "middle": [],
                        "last": "Schlinger",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Garrette",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1906.01502"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is multilingual bert? arXiv preprint arXiv:1906.01502.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Data-to-text generation with content selection and planning",
                "authors": [
                    {
                        "first": "Ratish",
                        "middle": [],
                        "last": "Puduppully",
                        "suffix": ""
                    },
                    {
                        "first": "Li",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "33",
                "issue": "",
                "pages": "6908--6915",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ratish Puduppully, Li Dong, and Mirella Lapata. 2019. Data-to-text generation with content selection and planning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6908-6915.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
                "authors": [
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Raffel",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Roberts",
                        "suffix": ""
                    },
                    {
                        "first": "Katherine",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Sharan",
                        "middle": [],
                        "last": "Narang",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Matena",
                        "suffix": ""
                    },
                    {
                        "first": "Yanqi",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Peter J",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.10683"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text trans- former. arXiv preprint arXiv:1910.10683.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Building natural language generation systems",
                "authors": [
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Reiter",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Dale",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ehud Reiter and Robert Dale. 2000. Building natural language generation systems. Cambridge university press.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Naver labs Europe's systems for the document-level generation and translation task at WNGT 2019",
                "authors": [
                    {
                        "first": "Fahimeh",
                        "middle": [],
                        "last": "Saleh",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandre",
                        "middle": [],
                        "last": "Berard",
                        "suffix": ""
                    },
                    {
                        "first": "Ioan",
                        "middle": [],
                        "last": "Calapodescu",
                        "suffix": ""
                    },
                    {
                        "first": "Laurent",
                        "middle": [],
                        "last": "Besacier",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 3rd Workshop on Neural Generation and Translation",
                "volume": "",
                "issue": "",
                "pages": "273--279",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-5631"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Fahimeh Saleh, Alexandre Berard, Ioan Calapodescu, and Laurent Besacier. 2019. Naver labs Europe's systems for the document-level generation and trans- lation task at WNGT 2019. In Proceedings of the 3rd Workshop on Neural Generation and Transla- tion, pages 273-279, Hong Kong. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Cross-lingual transfer learning for multilingual task oriented dialog",
                "authors": [
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Schuster",
                        "suffix": ""
                    },
                    {
                        "first": "Sonal",
                        "middle": [],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "Rushin",
                        "middle": [],
                        "last": "Shah",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.13327"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sebastian Schuster, Sonal Gupta, Rushin Shah, and Mike Lewis. 2018. Cross-lingual transfer learning for multilingual task oriented dialog. arXiv preprint arXiv:1810.13327.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Lingvo: a modular and scalable framework for sequence-to-sequence modeling",
                "authors": [
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Yonghui",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifeng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Mia",
                        "suffix": ""
                    },
                    {
                        "first": "Ye",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Anjuli",
                        "middle": [],
                        "last": "Jia",
                        "suffix": ""
                    },
                    {
                        "first": "Tara",
                        "middle": [],
                        "last": "Kannan",
                        "suffix": ""
                    },
                    {
                        "first": "Yuan",
                        "middle": [],
                        "last": "Sainath",
                        "suffix": ""
                    },
                    {
                        "first": "Chung-Cheng",
                        "middle": [],
                        "last": "Cao",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Chiu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1902.08295"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X Chen, Ye Jia, Anjuli Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, et al. 2019. Lingvo: a modular and scalable framework for sequence-to-sequence modeling. arXiv preprint arXiv:1902.08295.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Evaluating the cross-lingual effectiveness of massively multilingual neural machine translation",
                "authors": [
                    {
                        "first": "Aditya",
                        "middle": [],
                        "last": "Siddhant",
                        "suffix": ""
                    },
                    {
                        "first": "Melvin",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "Henry",
                        "middle": [],
                        "last": "Tsai",
                        "suffix": ""
                    },
                    {
                        "first": "Naveen",
                        "middle": [],
                        "last": "Arivazhagan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1909.00437"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Aditya Siddhant, Melvin Johnson, Henry Tsai, Naveen Arivazhagan, Jason Riesa, Ankur Bapna, Orhan Fi- rat, and Karthik Raman. 2019. Evaluating the cross-lingual effectiveness of massively multilin- gual neural machine translation. arXiv preprint arXiv:1909.00437.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Ehud reiter and robert dale. building natural language generation systems. cambridge university press",
                "authors": [
                    {
                        "first": "Advaith",
                        "middle": [],
                        "last": "Siddharthan",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Natural Language Engineering",
                "volume": "7",
                "issue": "3",
                "pages": "271--274",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Advaith Siddharthan. 2001. Ehud reiter and robert dale. building natural language generation systems. cam- bridge university press, 2000. Natural Language En- gineering, 7(3):271-274.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Mass: Masked sequence to sequence pre-training for language generation",
                "authors": [
                    {
                        "first": "Kaitao",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "Xu",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    },
                    {
                        "first": "Tie-Yan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1905.02450"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie- Yan Liu. 2019. Mass: Masked sequence to sequence pre-training for language generation. arXiv preprint arXiv:1905.02450.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Trainable sentence planning for complex information presentations in spoken dialog systems",
                "authors": [
                    {
                        "first": "Amanda",
                        "middle": [],
                        "last": "Stent",
                        "suffix": ""
                    },
                    {
                        "first": "Rashmi",
                        "middle": [],
                        "last": "Prasad",
                        "suffix": ""
                    },
                    {
                        "first": "Marilyn",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04)",
                "volume": "",
                "issue": "",
                "pages": "79--86",
                "other_ids": {
                    "DOI": [
                        "10.3115/1218955.1218966"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Amanda Stent, Rashmi Prasad, and Marilyn Walker. 2004. Trainable sentence planning for complex in- formation presentations in spoken dialog systems. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL- 04), pages 79-86, Barcelona, Spain.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "\u0141ukasz",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "5998--6008",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information pro- cessing systems, pages 5998-6008.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Cider: Consensus-based image description evaluation",
                "authors": [
                    {
                        "first": "Ramakrishna",
                        "middle": [],
                        "last": "Vedantam",
                        "suffix": ""
                    },
                    {
                        "first": "Lawrence",
                        "middle": [],
                        "last": "Zitnick",
                        "suffix": ""
                    },
                    {
                        "first": "Devi",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the IEEE conference on computer vision and pattern recognition",
                "volume": "",
                "issue": "",
                "pages": "4566--4575",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. 2015. Cider: Consensus-based image de- scription evaluation. In Proceedings of the IEEE conference on computer vision and pattern recogni- tion, pages 4566-4575.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Semantically conditioned lstm-based natural language generation for spoken dialogue systems",
                "authors": [
                    {
                        "first": "Milica",
                        "middle": [],
                        "last": "Tsung-Hsien Wen",
                        "suffix": ""
                    },
                    {
                        "first": "Nikola",
                        "middle": [],
                        "last": "Gasic",
                        "suffix": ""
                    },
                    {
                        "first": "Pei-Hao",
                        "middle": [],
                        "last": "Mrksic",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "Steve",
                        "middle": [],
                        "last": "Vandyke",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1508.01745"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei- Hao Su, David Vandyke, and Steve Young. 2015. Se- mantically conditioned lstm-based natural language generation for spoken dialogue systems. arXiv preprint arXiv:1508.01745.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Beto, bentz, becas: The surprising cross-lingual effectiveness of bert",
                "authors": [
                    {
                        "first": "Shijie",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Dredze",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1904.09077"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Shijie Wu and Mark Dredze. 2019. Beto, bentz, be- cas: The surprising cross-lingual effectiveness of bert. arXiv preprint arXiv:1904.09077.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "uris": null,
                "text": "Generating text from structured data. Aligned segments from the structured data and natural language have the same color.",
                "num": null
            },
            "TABREF1": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "Czech NLG dataset statistics. The unique MRs are counted after delexicalizing the slots.",
                "content": "<table/>"
            },
            "TABREF4": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "",
                "content": "<table><tr><td colspan=\"4\">: Human evaluations for accuracy and fluency</td></tr><tr><td colspan=\"4\">Training Size Model BLEU \u00d2 SER \u00d3</td></tr><tr><td/><td colspan=\"2\">scratch 3.03</td><td>78.5</td></tr><tr><td>100</td><td>mass</td><td>4.42</td><td>78.74</td></tr><tr><td/><td>nmt</td><td>15.45</td><td>31.82</td></tr><tr><td/><td colspan=\"2\">scratch 7.37</td><td>70.19</td></tr><tr><td>1000</td><td>mass</td><td>9.80</td><td>66.15</td></tr><tr><td/><td>nmt</td><td>21.17</td><td>4.51</td></tr><tr><td/><td colspan=\"2\">scratch 11.66</td><td>63.18</td></tr><tr><td>Full</td><td>mass</td><td>17.72</td><td>24.82</td></tr><tr><td/><td>nmt</td><td>26.35</td><td>1.9</td></tr></table>"
            },
            "TABREF5": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "Experiments with low-resource NLG",
                "content": "<table/>"
            },
            "TABREF7": {
                "type_str": "table",
                "html": null,
                "num": null,
                "text": "NLG fine-tuning with low-resource NMT. The first column indicates the number of tokens used for pre-training.",
                "content": "<table/>"
            }
        }
    }
}