File size: 85,653 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:27:42.961470Z"
},
"title": "Machine Translation Pre-training for Data-to-Text Generation -A Case Study in Czech",
"authors": [
{
"first": "Mihir",
"middle": [],
"last": "Kale",
"suffix": "",
"affiliation": {},
"email": "mihirkale@google.com"
},
{
"first": "Scott",
"middle": [],
"last": "Roy",
"suffix": "",
"affiliation": {},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "While there is a large body of research studying deep learning methods for text generation from structured data, almost all of it focuses purely on English. In this paper, we study the effectiveness of machine translation based pre-training for data-to-text generation in non-English languages. Since the structured data is generally expressed in English, text generation into other languages involves elements of translation, transliteration and copying-elements already encoded in neural machine translation systems. Moreover, since data-to-text corpora are typically small, this task can benefit greatly from pre-training. We conduct experiments on Czech, a morphologically complex language. Results show that machine translation pre-training lets us train endto-end models that significantly improve upon unsupervised pre-training and linguistically informed pipelined neural systems, as judged by automatic metrics and human evaluation. We also show that this approach enjoys several desirable properties, including improved performance in low data scenarios and applicability to low resource languages.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "While there is a large body of research studying deep learning methods for text generation from structured data, almost all of it focuses purely on English. In this paper, we study the effectiveness of machine translation based pre-training for data-to-text generation in non-English languages. Since the structured data is generally expressed in English, text generation into other languages involves elements of translation, transliteration and copying-elements already encoded in neural machine translation systems. Moreover, since data-to-text corpora are typically small, this task can benefit greatly from pre-training. We conduct experiments on Czech, a morphologically complex language. Results show that machine translation pre-training lets us train endto-end models that significantly improve upon unsupervised pre-training and linguistically informed pipelined neural systems, as judged by automatic metrics and human evaluation. We also show that this approach enjoys several desirable properties, including improved performance in low data scenarios and applicability to low resource languages.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Data-to-Text refers to the process of generating accurate and fluent natural language text from structured data such as tables, lists, graphs etc. (Gatt and Krahmer, 2018) For example, consider Figure 1 , in the context of a restaurant booking system. The system must take a meaning representation (MR) as input -in this case represented in the form of a dialogue act (inform) and a list of key value pairs related to the restaurant -and generate fluent text that is firmly grounded in the MR.",
"cite_spans": [
{
"start": 147,
"end": 171,
"text": "(Gatt and Krahmer, 2018)",
"ref_id": "BIBREF7"
}
],
"ref_spans": [
{
"start": 194,
"end": 202,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In this work, we focus on generating text in non-English languages and show that it is possible to significantly reduce this accuracy gap by pre-training fully lexicalized models on an NMT task. For an example motivating the use of NMT, consider Figure 1 once again. In order to generate semantically correct and natural sounding text in Czech (Marathi), a data-to-text model would need to learn the following skills:",
"cite_spans": [],
"ref_spans": [
{
"start": 246,
"end": 254,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Translate the slot value \"dinner\" to the target language",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Copy the phone number correctly",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Inflect the restaurant name",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In the case of Marathi, which has a different script, there is the additional challenge of Transliterating the restaurant name as well. It is unreasonable to expect neural data-to-text models to learn all these skills, especially since the size of most NLG 1 datasets is quite small. However, modern neural machine translation systems are already fairly adept at translating, transliterating, copying, inflecting etc. Consequently, we hypothesise that the parameters of an NMT model will act as a very strong prior for an NLG model.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Earlier work on NLG was mainly studied rulebased pipelined methods (Reiter and Dale, 2000; Siddharthan, 2001; Stent et al., 2004) , but recent works favor end-to-end neural approaches. Wen et al. 2015proposed the Semantically Controlled LSTM and were one of the first to show the success of neural networks for this problem, with applications to task-oriented dialogue. Since then, some works have focused on alternative architectures - Liu et al. (2018) generate text by conditioning language models on tables, while Puduppully et al. (2019) propose to explictly model entities present in the structured data. With the advent of BERT (Devlin et al., 2018) , the unsupervised pre-training + fine-tuning paradigm has shown to be remarkably effective, leading to improvements in many NLP tasks. While the above works focus on unsupervised pre-training, Siddhant et al. (2019) and Schuster et al. (2018) examine transfer learning via neural machine translation for NLU tasks. Recently, Chi et al. (2019) found multilingual unsupervised pretraining techniques to be effective for cross-lingual language generation tasks like summarization and question generation. Similar to our work, Saleh et al. (2019) used machine translation pre-training in their winning entry to the WNGT 2019 shared task (Hayashi et al., 2019) . In this work, we also offer further insights on the usefulness of machine translation by conducting controlled experiments in various settings -limited labeled data, low resource languages, comparison with unsupervised pre-training etc. We also support our findings with human evaluations.",
"cite_spans": [
{
"start": 67,
"end": 90,
"text": "(Reiter and Dale, 2000;",
"ref_id": "BIBREF18"
},
{
"start": 91,
"end": 109,
"text": "Siddharthan, 2001;",
"ref_id": "BIBREF23"
},
{
"start": 110,
"end": 129,
"text": "Stent et al., 2004)",
"ref_id": "BIBREF25"
},
{
"start": 437,
"end": 454,
"text": "Liu et al. (2018)",
"ref_id": "BIBREF13"
},
{
"start": 518,
"end": 542,
"text": "Puduppully et al. (2019)",
"ref_id": "BIBREF16"
},
{
"start": 635,
"end": 656,
"text": "(Devlin et al., 2018)",
"ref_id": "BIBREF3"
},
{
"start": 851,
"end": 873,
"text": "Siddhant et al. (2019)",
"ref_id": "BIBREF22"
},
{
"start": 878,
"end": 900,
"text": "Schuster et al. (2018)",
"ref_id": "BIBREF20"
},
{
"start": 983,
"end": 1000,
"text": "Chi et al. (2019)",
"ref_id": "BIBREF2"
},
{
"start": 1181,
"end": 1200,
"text": "Saleh et al. (2019)",
"ref_id": "BIBREF19"
},
{
"start": 1291,
"end": 1313,
"text": "(Hayashi et al., 2019)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "We use the transformer (Vaswani et al., 2017) based encoder-decoder architecture by casting data-totext as a seq2seq problem, where the structured data is flattened into a plain string consisting of a series of intents and slot key-value pairs. More exotic architectures have been suggested in prior work, but the findings of Du\u0161ek et al. (2018) show that simple seq2seq models are competitive alternatives, while being simpler to implement. Secondly, the transformer architecture is state-of-the art for NMT. Thirdly, keeping the pre-train and fine-tune architectures the same allows us to easily transfer knowledge between the two steps by parameter initialization.",
"cite_spans": [
{
"start": 23,
"end": 45,
"text": "(Vaswani et al., 2017)",
"ref_id": "BIBREF26"
},
{
"start": 326,
"end": 345,
"text": "Du\u0161ek et al. (2018)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "3"
},
{
"text": "4 Pre-train + Fine-tune Our modeling approach is simple. We first use a parallel corpus to train a sequence-tosequence transformer based neural machine translation model. Next, we fine-tune this NMT model using a data-to-text corpus for a small number of steps. All the model parameters are updated in the fine-tuning process. In practice, we found that a bidirectional model, which can translate from English to the target language and vice-versa, performed slightly better.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "3"
},
{
"text": "We compare with the following baselines: Scratch A baseline where all the parameters are learned from scratch, without any kind of transfer learning. This is a 1-layer Transformer model. Larger models trained from scratch did not improve performance.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Baselines",
"sec_num": "5"
},
{
"text": "Unsupervised pre-training baseline Monolingual data is generally far easier to obtain than bilingual data, which makes unsupervised pre-training techniques more attractive. Interestingly, Wu and Dredze (2019) and Pires et al. (2019) find that pre-training BERT models on a combination of languages can lead to surprisingly effective crosslingual performance on NLU tasks, without using any parallel data. Of the myriad unsupervised techniques, we choose the span masking objective employed by T5 (Raffel et al., 2019) , MASS (Song et al., 2019) etc. for our baseline since it has been shown to outperform other alternatives like BERT. During pre-training, spans of text are masked in the input sentence and fed to the encoder. The decoder must learn to output the masked spans. TGen is a freely available open-source NLG system based on seq2seq + attention. Du\u0161ek and Jur\u010d\u00ed\u010dek (2019) create a pipelined system consisting of : a TGen based model that outputs delexicalized text, a classifier that ranks the beam search hypotheses and a language model which does the lexicalization by picking the exact surface form. We denote this combined system, consisting of all 3 components as tgen-sota. It is also currently the state-of-the-art for the data-to-text corpus that we use for downstream evaluation. Note that the lexicalization step requires access to lexicon data containing all the morphological forms of words and entities. Unlike tgen-sota, our proposed model is trained end-to-end to directly generate lexicalized outputs, which is a much harder task. We also do not rely on any external lexical data.",
"cite_spans": [
{
"start": 188,
"end": 208,
"text": "Wu and Dredze (2019)",
"ref_id": "BIBREF29"
},
{
"start": 213,
"end": 232,
"text": "Pires et al. (2019)",
"ref_id": "BIBREF15"
},
{
"start": 496,
"end": 517,
"text": "(Raffel et al., 2019)",
"ref_id": "BIBREF17"
},
{
"start": 525,
"end": 544,
"text": "(Song et al., 2019)",
"ref_id": "BIBREF24"
},
{
"start": 858,
"end": 867,
"text": "Du\u0161ek and",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Baselines",
"sec_num": "5"
},
{
"text": "Its not realistic to assume that every NLG system is first developed for English. As such, our setting does not assume the existence of a similar dataset in English. Therefore, translation based baselines (eg: first running the English model and then translating the output) are not applicable here.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Baselines",
"sec_num": "5"
},
{
"text": "6 Experimental Setup 6.1 Datasets Pre-training We use the Czech-English parallel corpus provided by the WMT 2019 shared task. The dataset comprises of 57 million translation pairs, automatically mined from the web. In order to facilitate a fair comparison, we use this corpus for our unsupervised pre-training baselines as well. This effectively results in 114 million monolingual sentences, equally split between English and Czech. NLG We use the recently released Czech Restaurant dataset (Du\u0161ek and Jur\u010d\u00ed\u010dek, 2019) . Data related statistics can be found in Table 1 . The delexicalized MRs in the test set never appear in the training set. As a result, models must learn to generalize to MRs with unseen slot and intent combinations.",
"cite_spans": [
{
"start": 491,
"end": 517,
"text": "(Du\u0161ek and Jur\u010d\u00ed\u010dek, 2019)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [
{
"start": 560,
"end": 567,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Baselines",
"sec_num": "5"
},
{
"text": "For NMT and MASS, we train transformer models with 93M parameters (6 layers, 8 heads, 512 hidden dimensions). They are trained for 1 million steps with Adam optimizer and a batch size of 1024. For NLG, all our models are fine-tuned for 10K steps with a batch size of 32. We do not perform any hyperparameter tuning. Decoding is performed using beam search, with a beam width of 8. All the transformer based models are implemented in the Lingvo framework (Shen et al., 2019) based on Tensorflow (Abadi et al., 2016) . The tgen-lex baseline is trained using the open-source repository with the exact hyperparameters as used by Du\u0161ek and Jur\u010d\u00ed\u010dek (2019) . The best checkpoints are selected based on validation set BLEU score.",
"cite_spans": [
{
"start": 454,
"end": 473,
"text": "(Shen et al., 2019)",
"ref_id": "BIBREF21"
},
{
"start": 494,
"end": 514,
"text": "(Abadi et al., 2016)",
"ref_id": "BIBREF0"
},
{
"start": 625,
"end": 650,
"text": "Du\u0161ek and Jur\u010d\u00ed\u010dek (2019)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Training details",
"sec_num": "6.2"
},
{
"text": "Our vocabulary consists of a sentencepiece model with 32,000 tokens (Kudo and Richardson, 2018) shared between English and Czech. It is computed on English and Czech sentences from the pre-training corpus. In order to facilitate a fair comparison, we maintain the same vocabulary across all the transformer based models and baselines. No special rules or pre-processing is done to tokenize the structured data -we simply feed it as a plain string. The input sequence is pre-pended with a task specific token -[TRANSLATE] for translation, [GENERATE] for NLG. Following Aharoni et al. 2019, we pre-pend a second token to specify the desired output language -<2en> for English and <2cs> for Czech.",
"cite_spans": [
{
"start": 68,
"end": 95,
"text": "(Kudo and Richardson, 2018)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data pre-processing",
"sec_num": "6.3"
},
{
"text": "Following prior work (Du\u0161ek and Jur\u010d\u00ed\u010dek, 2019) , we use the suite of word-overlap-based automatic metrics from the E2E NLG Challenge 2 , supporting BLEU (Papineni et al., 2002) , NIST (Doddington, 2002), ROUGE-L (Lin, 2004) , METEOR (Lavie and Agarwal, 2007) , CIDEr (Vedantam et al., 2015) . We also compute a Slot Error Rate (SER) metric to gauge how well the generated text reflects the structured data. We calculate how many of the slot values in the structured data have been mentioned in the generated text. An example is marked as correct only if all the slot-values in the structured data are present in the output 3 .",
"cite_spans": [
{
"start": 21,
"end": 47,
"text": "(Du\u0161ek and Jur\u010d\u00ed\u010dek, 2019)",
"ref_id": "BIBREF5"
},
{
"start": 154,
"end": 177,
"text": "(Papineni et al., 2002)",
"ref_id": "BIBREF14"
},
{
"start": 213,
"end": 224,
"text": "(Lin, 2004)",
"ref_id": "BIBREF12"
},
{
"start": 234,
"end": 259,
"text": "(Lavie and Agarwal, 2007)",
"ref_id": "BIBREF11"
},
{
"start": 268,
"end": 291,
"text": "(Vedantam et al., 2015)",
"ref_id": "BIBREF27"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Metrics",
"sec_num": "6.4"
},
{
"text": "We report results in Table 2 . The scratch baseline performs quite poorly, as expected. While unsupervised transfer learning (mass) performs better, pre-training via machine translation (nmt) gives the best results by large margin. nmt brings down the SER to just 1.9, a 20 point gain over mass, while improving the BLEU score by 8 points. Similar trends are observed in the other metrics as well. These results give credence to our hypothesis that machine translation can be a strong pre-training objective for data-to-text generation in non-English languages. Table 2 : Results. \u00d2 implies higher is better, while \u00d3 arrow implies lower is better. : We compute SER metrics on outputs provided to us by the authors. The other metrics are taken from the paper (Du\u0161ek and Jur\u010d\u00ed\u010dek, 2019) Compared to the state-of-the-art pipelined tgensota system, nmt compares favorably, showing improvements on all metrics, including a 4 point improvement in BLEU. Recall that tgen-sota involves training 3 separate models (seq2seq for generation, classifier for ranking and language model to pick the correct surface form). In contrast, our approach is simple and end-to-end.",
"cite_spans": [
{
"start": 758,
"end": 784,
"text": "(Du\u0161ek and Jur\u010d\u00ed\u010dek, 2019)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [
{
"start": 21,
"end": 28,
"text": "Table 2",
"ref_id": null
},
{
"start": 562,
"end": 569,
"text": "Table 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Main Results",
"sec_num": "7.1"
},
{
"text": "Since automatic metrics have been shown to be inadequate for generation tasks, we also conduct human evaluations on a set of 200 examples randomly sampled from the test set. Concretely, we measure two metrics -accuracy and fluency Accuracy: Human raters are shown the gold text and the predicted text and are instructed to mark the generated text as accurate if it correctly conveys the meaning of the gold text. This effectively catches errors due to hallucinations, incorrect grounding etc. Each example is rated by 3 raters, and we consider an example to be correct if at least two raters say so.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Human Evaluation",
"sec_num": "7.2"
},
{
"text": "Fluency: We show the predicted text to raters and ask them how natural and fluent the text sounds on a 1-5 scale, with 5 being the highest score. Again, each example is rated by 3 raters. We average the scores across all the ratings to get the fluency score.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Human Evaluation",
"sec_num": "7.2"
},
{
"text": "We conduct accuracy and fluency evaluations for our best model (nmt), mass and tgen-sota. Results are reported in table 3. tgen-sota produces accurate output, but lags behind nmt and mass in terms of fluency. mass produces fluent output on account of its strong language model but scores low on accuracy. nmt on the other hand, gets the highest scores on both metrics -97.5% for accuracy and 4.83 for fluency.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Human Evaluation",
"sec_num": "7.2"
},
{
"text": "Overall, automatic and human evaluation results strongly point to the applicability of this approach to real-world NLG systems. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Human Evaluation",
"sec_num": "7.2"
},
{
"text": "In this section we study the effects of transfer learning when the size of the fine-tuning corpus is small. We create two random subsets from the NLG training data of size 100 and 1000. Results are reported in Table 4 . We find that once again, nmt offers substantial gains over mass. When fine-tuning on 1000 examples, pre-training with NMT is substantially better than fine-tuning mass on the entire dataset ( 3.5k examples). Remarkably, with just 100 examples, our model outperforms training from scratch on the entire training set. These results lead us to believe that machine translation based pre-training can lead to substantial cost savings with respect to training data annotation.",
"cite_spans": [],
"ref_spans": [
{
"start": 210,
"end": 217,
"text": "Table 4",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Low resource NLG",
"sec_num": "7.3"
},
{
"text": "Our previous experiments use NMT models trained on a fairly large corpus. However, for many languages, the amount of available parallel data can be small. Therefore, to study the impact of the size of bitext corpus, we run experiments in a simulated low-resource setting. We train machine translation models on 10% (5.7 million examples, medium resource, denoted as nmt-5m) and 1% (570K examples, low resource, denoted as nmt-500k ) of the data and use them for fine-tuning the NLG task.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Low-resource machine translation",
"sec_num": "7.4"
},
{
"text": "Next, we fine-tune each of these models on the data-to-text task. From the results in Table 4 , we see that while the high resource model performs the best, the medium resource models is not far behind in terms of BLEU. Both the high and medium resource models have a comparable SER. Even the low resource model, pre-trained on just 1% of the translation corpora is significantly better than mass, which has been pre-trained on almost 1.6 billion tokens. The results indicate that machine translation based transfer learning can be successfully applied even when the size of parallel corpus is small, and thus holds promise for low-resource languages.",
"cite_spans": [],
"ref_spans": [
{
"start": 86,
"end": 93,
"text": "Table 4",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Low-resource machine translation",
"sec_num": "7.4"
},
{
"text": "In this work we investigated neural machine translation based transfer learning for data-to-text generation in non-English languages. Using Czech as a target language, we showed that such an approach enables us to learn simple, fully lexicalized end-toend models that outperform competitive baselines. Experimental results suggest several desirable properties including improved sample efficiency, robustness to unseen values and potential applications to low resource languages. At the same time, the approach can also be leveraged to improve performance of delexicalized models.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "8"
},
{
"text": "Studying pre-training on a wide variety of languages, especially those with different scripts, is a direct line of future work. Combining unsupervised and translation based pre-training is also a promising avenue and has already shown good results for NLU tasks (Lample and Conneau, 2019) .",
"cite_spans": [
{
"start": 262,
"end": 288,
"text": "(Lample and Conneau, 2019)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "8"
},
{
"text": "While NLG is a broad term, in this paper, we use NLG and data-to-text interchangeably.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://github.com/tuetschek/e2e-metrics 3 Note that SER can be reliably computed only for delexicalizable slots. As a result, the binary kids allowed slot is ignored.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "We would like to thank Markus Freitag for insightful discussions and Ond\u0159ej Du\u0161ek for providing the tgen-sota model outputs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Tensorflow: A system for large-scale machine learning",
"authors": [
{
"first": "Mart\u00edn",
"middle": [],
"last": "Abadi",
"suffix": ""
},
{
"first": "Paul",
"middle": [],
"last": "Barham",
"suffix": ""
},
{
"first": "Jianmin",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Zhifeng",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Davis",
"suffix": ""
},
{
"first": "Jeffrey",
"middle": [],
"last": "Dean",
"suffix": ""
},
{
"first": "Matthieu",
"middle": [],
"last": "Devin",
"suffix": ""
},
{
"first": "Sanjay",
"middle": [],
"last": "Ghemawat",
"suffix": ""
},
{
"first": "Geoffrey",
"middle": [],
"last": "Irving",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Isard",
"suffix": ""
}
],
"year": 2016,
"venue": "12th tUSENIXu Symposium on Operating Systems Design and Implementation (tOSDIu 16)",
"volume": "",
"issue": "",
"pages": "265--283",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mart\u00edn Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In 12th tUSENIXu Symposium on Operating Systems Design and Implementation (tOSDIu 16), pages 265-283.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Massively multilingual neural machine translation",
"authors": [
{
"first": "Roee",
"middle": [],
"last": "Aharoni",
"suffix": ""
},
{
"first": "Melvin",
"middle": [],
"last": "Johnson",
"suffix": ""
},
{
"first": "Orhan",
"middle": [],
"last": "Firat",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1903.00089"
]
},
"num": null,
"urls": [],
"raw_text": "Roee Aharoni, Melvin Johnson, and Orhan Firat. 2019. Massively multilingual neural machine translation. arXiv preprint arXiv:1903.00089.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Cross-lingual natural language generation via pre-training",
"authors": [
{
"first": "Zewen",
"middle": [],
"last": "Chi",
"suffix": ""
},
{
"first": "Li",
"middle": [],
"last": "Dong",
"suffix": ""
},
{
"first": "Furu",
"middle": [],
"last": "Wei",
"suffix": ""
},
{
"first": "Wenhui",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Xian-Ling",
"middle": [],
"last": "Mao",
"suffix": ""
},
{
"first": "Heyan",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1909.10481"
]
},
"num": null,
"urls": [],
"raw_text": "Zewen Chi, Li Dong, Furu Wei, Wenhui Wang, Xian- Ling Mao, and Heyan Huang. 2019. Cross-lingual natural language generation via pre-training. arXiv preprint arXiv:1909.10481.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1810.04805"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understand- ing. arXiv preprint arXiv:1810.04805.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Automatic evaluation of machine translation quality using n-gram cooccurrence statistics",
"authors": [
{
"first": "George",
"middle": [],
"last": "Doddington",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of the second international conference on Human Language Technology Research",
"volume": "",
"issue": "",
"pages": "138--145",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "George Doddington. 2002. Automatic evaluation of machine translation quality using n-gram co- occurrence statistics. In Proceedings of the sec- ond international conference on Human Language Technology Research, pages 138-145. Morgan Kauf- mann Publishers Inc.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Neural generation for czech: Data and baselines",
"authors": [
{
"first": "Ond\u0159ej",
"middle": [],
"last": "Du\u0161ek",
"suffix": ""
},
{
"first": "Filip",
"middle": [],
"last": "Jur\u010d\u00ed\u010dek",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1910.05298"
]
},
"num": null,
"urls": [],
"raw_text": "Ond\u0159ej Du\u0161ek and Filip Jur\u010d\u00ed\u010dek. 2019. Neural gener- ation for czech: Data and baselines. arXiv preprint arXiv:1910.05298.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Findings of the e2e nlg challenge",
"authors": [
{
"first": "Ond\u0159ej",
"middle": [],
"last": "Du\u0161ek",
"suffix": ""
},
{
"first": "Jekaterina",
"middle": [],
"last": "Novikova",
"suffix": ""
},
{
"first": "Verena",
"middle": [],
"last": "Rieser",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1810.01170"
]
},
"num": null,
"urls": [],
"raw_text": "Ond\u0159ej Du\u0161ek, Jekaterina Novikova, and Verena Rieser. 2018. Findings of the e2e nlg challenge. arXiv preprint arXiv:1810.01170.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Survey of the state of the art in natural language generation: Core tasks, applications and evaluation",
"authors": [
{
"first": "Albert",
"middle": [],
"last": "Gatt",
"suffix": ""
},
{
"first": "Emiel",
"middle": [],
"last": "Krahmer",
"suffix": ""
}
],
"year": 2018,
"venue": "Journal of Artificial Intelligence Research",
"volume": "61",
"issue": "",
"pages": "65--170",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Albert Gatt and Emiel Krahmer. 2018. Survey of the state of the art in natural language generation: Core tasks, applications and evaluation. Journal of Artifi- cial Intelligence Research, 61:65-170.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Findings of the third workshop on neural generation and translation",
"authors": [
{
"first": "Hiroaki",
"middle": [],
"last": "Hayashi",
"suffix": ""
},
{
"first": "Yusuke",
"middle": [],
"last": "Oda",
"suffix": ""
},
{
"first": "Alexandra",
"middle": [],
"last": "Birch",
"suffix": ""
},
{
"first": "Ioannis",
"middle": [],
"last": "Konstas",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Finch",
"suffix": ""
},
{
"first": "Minh-Thang",
"middle": [],
"last": "Luong",
"suffix": ""
},
{
"first": "Graham",
"middle": [],
"last": "Neubig",
"suffix": ""
},
{
"first": "Katsuhito",
"middle": [],
"last": "Sudoh",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1910.13299"
]
},
"num": null,
"urls": [],
"raw_text": "Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioan- nis Konstas, Andrew Finch, Minh-Thang Luong, Graham Neubig, and Katsuhito Sudoh. 2019. Find- ings of the third workshop on neural generation and translation. arXiv preprint arXiv:1910.13299.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing",
"authors": [
{
"first": "Taku",
"middle": [],
"last": "Kudo",
"suffix": ""
},
{
"first": "John",
"middle": [],
"last": "Richardson",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1808.06226"
]
},
"num": null,
"urls": [],
"raw_text": "Taku Kudo and John Richardson. 2018. Sentencepiece: A simple and language independent subword tok- enizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Crosslingual language model pretraining",
"authors": [
{
"first": "Guillaume",
"middle": [],
"last": "Lample",
"suffix": ""
},
{
"first": "Alexis",
"middle": [],
"last": "Conneau",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1901.07291"
]
},
"num": null,
"urls": [],
"raw_text": "Guillaume Lample and Alexis Conneau. 2019. Cross- lingual language model pretraining. arXiv preprint arXiv:1901.07291.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Meteor: An automatic metric for mt evaluation with high levels of correlation with human judgments",
"authors": [
{
"first": "Alon",
"middle": [],
"last": "Lavie",
"suffix": ""
},
{
"first": "Abhaya",
"middle": [],
"last": "Agarwal",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of the Second Workshop on Statistical Machine Translation",
"volume": "",
"issue": "",
"pages": "228--231",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alon Lavie and Abhaya Agarwal. 2007. Meteor: An automatic metric for mt evaluation with high levels of correlation with human judgments. In Proceed- ings of the Second Workshop on Statistical Machine Translation, pages 228-231. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Rouge: A package for automatic evaluation of summaries",
"authors": [
{
"first": "Chin-Yew",
"middle": [],
"last": "Lin",
"suffix": ""
}
],
"year": 2004,
"venue": "Text summarization branches out",
"volume": "",
"issue": "",
"pages": "74--81",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out, pages 74-81.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Table-to-text generation by structure-aware seq2seq learning",
"authors": [
{
"first": "Tianyu",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Kexiang",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Lei",
"middle": [],
"last": "Sha",
"suffix": ""
},
{
"first": "Baobao",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Zhifang",
"middle": [],
"last": "Sui",
"suffix": ""
}
],
"year": 2018,
"venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhifang Sui. 2018. Table-to-text generation by structure-aware seq2seq learning. In Thirty-Second AAAI Conference on Artificial Intelligence.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Bleu: a method for automatic evaluation of machine translation",
"authors": [
{
"first": "Kishore",
"middle": [],
"last": "Papineni",
"suffix": ""
},
{
"first": "Salim",
"middle": [],
"last": "Roukos",
"suffix": ""
},
{
"first": "Todd",
"middle": [],
"last": "Ward",
"suffix": ""
},
{
"first": "Wei-Jing",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of the 40th annual meeting on association for computational linguistics",
"volume": "",
"issue": "",
"pages": "311--318",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. Bleu: a method for automatic eval- uation of machine translation. In Proceedings of the 40th annual meeting on association for compu- tational linguistics, pages 311-318. Association for Computational Linguistics.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "How multilingual is multilingual bert? arXiv preprint",
"authors": [
{
"first": "Telmo",
"middle": [],
"last": "Pires",
"suffix": ""
},
{
"first": "Eva",
"middle": [],
"last": "Schlinger",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Garrette",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1906.01502"
]
},
"num": null,
"urls": [],
"raw_text": "Telmo Pires, Eva Schlinger, and Dan Garrette. 2019. How multilingual is multilingual bert? arXiv preprint arXiv:1906.01502.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Data-to-text generation with content selection and planning",
"authors": [
{
"first": "Ratish",
"middle": [],
"last": "Puduppully",
"suffix": ""
},
{
"first": "Li",
"middle": [],
"last": "Dong",
"suffix": ""
},
{
"first": "Mirella",
"middle": [],
"last": "Lapata",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
"volume": "33",
"issue": "",
"pages": "6908--6915",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ratish Puduppully, Li Dong, and Mirella Lapata. 2019. Data-to-text generation with content selection and planning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 6908-6915.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Exploring the limits of transfer learning with a unified text-to-text transformer",
"authors": [
{
"first": "Colin",
"middle": [],
"last": "Raffel",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Shazeer",
"suffix": ""
},
{
"first": "Adam",
"middle": [],
"last": "Roberts",
"suffix": ""
},
{
"first": "Katherine",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Sharan",
"middle": [],
"last": "Narang",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Matena",
"suffix": ""
},
{
"first": "Yanqi",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Peter J",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1910.10683"
]
},
"num": null,
"urls": [],
"raw_text": "Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2019. Exploring the limits of transfer learning with a unified text-to-text trans- former. arXiv preprint arXiv:1910.10683.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Building natural language generation systems",
"authors": [
{
"first": "Ehud",
"middle": [],
"last": "Reiter",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Dale",
"suffix": ""
}
],
"year": 2000,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ehud Reiter and Robert Dale. 2000. Building natural language generation systems. Cambridge university press.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Naver labs Europe's systems for the document-level generation and translation task at WNGT 2019",
"authors": [
{
"first": "Fahimeh",
"middle": [],
"last": "Saleh",
"suffix": ""
},
{
"first": "Alexandre",
"middle": [],
"last": "Berard",
"suffix": ""
},
{
"first": "Ioan",
"middle": [],
"last": "Calapodescu",
"suffix": ""
},
{
"first": "Laurent",
"middle": [],
"last": "Besacier",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 3rd Workshop on Neural Generation and Translation",
"volume": "",
"issue": "",
"pages": "273--279",
"other_ids": {
"DOI": [
"10.18653/v1/D19-5631"
]
},
"num": null,
"urls": [],
"raw_text": "Fahimeh Saleh, Alexandre Berard, Ioan Calapodescu, and Laurent Besacier. 2019. Naver labs Europe's systems for the document-level generation and trans- lation task at WNGT 2019. In Proceedings of the 3rd Workshop on Neural Generation and Transla- tion, pages 273-279, Hong Kong. Association for Computational Linguistics.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Cross-lingual transfer learning for multilingual task oriented dialog",
"authors": [
{
"first": "Sebastian",
"middle": [],
"last": "Schuster",
"suffix": ""
},
{
"first": "Sonal",
"middle": [],
"last": "Gupta",
"suffix": ""
},
{
"first": "Rushin",
"middle": [],
"last": "Shah",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Lewis",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1810.13327"
]
},
"num": null,
"urls": [],
"raw_text": "Sebastian Schuster, Sonal Gupta, Rushin Shah, and Mike Lewis. 2018. Cross-lingual transfer learning for multilingual task oriented dialog. arXiv preprint arXiv:1810.13327.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Lingvo: a modular and scalable framework for sequence-to-sequence modeling",
"authors": [
{
"first": "Jonathan",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "Patrick",
"middle": [],
"last": "Nguyen",
"suffix": ""
},
{
"first": "Yonghui",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Zhifeng",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "X",
"middle": [],
"last": "Mia",
"suffix": ""
},
{
"first": "Ye",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Anjuli",
"middle": [],
"last": "Jia",
"suffix": ""
},
{
"first": "Tara",
"middle": [],
"last": "Kannan",
"suffix": ""
},
{
"first": "Yuan",
"middle": [],
"last": "Sainath",
"suffix": ""
},
{
"first": "Chung-Cheng",
"middle": [],
"last": "Cao",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Chiu",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1902.08295"
]
},
"num": null,
"urls": [],
"raw_text": "Jonathan Shen, Patrick Nguyen, Yonghui Wu, Zhifeng Chen, Mia X Chen, Ye Jia, Anjuli Kannan, Tara Sainath, Yuan Cao, Chung-Cheng Chiu, et al. 2019. Lingvo: a modular and scalable framework for sequence-to-sequence modeling. arXiv preprint arXiv:1902.08295.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Evaluating the cross-lingual effectiveness of massively multilingual neural machine translation",
"authors": [
{
"first": "Aditya",
"middle": [],
"last": "Siddhant",
"suffix": ""
},
{
"first": "Melvin",
"middle": [],
"last": "Johnson",
"suffix": ""
},
{
"first": "Henry",
"middle": [],
"last": "Tsai",
"suffix": ""
},
{
"first": "Naveen",
"middle": [],
"last": "Arivazhagan",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1909.00437"
]
},
"num": null,
"urls": [],
"raw_text": "Aditya Siddhant, Melvin Johnson, Henry Tsai, Naveen Arivazhagan, Jason Riesa, Ankur Bapna, Orhan Fi- rat, and Karthik Raman. 2019. Evaluating the cross-lingual effectiveness of massively multilin- gual neural machine translation. arXiv preprint arXiv:1909.00437.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Ehud reiter and robert dale. building natural language generation systems. cambridge university press",
"authors": [
{
"first": "Advaith",
"middle": [],
"last": "Siddharthan",
"suffix": ""
}
],
"year": 2000,
"venue": "Natural Language Engineering",
"volume": "7",
"issue": "3",
"pages": "271--274",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Advaith Siddharthan. 2001. Ehud reiter and robert dale. building natural language generation systems. cam- bridge university press, 2000. Natural Language En- gineering, 7(3):271-274.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Mass: Masked sequence to sequence pre-training for language generation",
"authors": [
{
"first": "Kaitao",
"middle": [],
"last": "Song",
"suffix": ""
},
{
"first": "Xu",
"middle": [],
"last": "Tan",
"suffix": ""
},
{
"first": "Tao",
"middle": [],
"last": "Qin",
"suffix": ""
},
{
"first": "Jianfeng",
"middle": [],
"last": "Lu",
"suffix": ""
},
{
"first": "Tie-Yan",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1905.02450"
]
},
"num": null,
"urls": [],
"raw_text": "Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie- Yan Liu. 2019. Mass: Masked sequence to sequence pre-training for language generation. arXiv preprint arXiv:1905.02450.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Trainable sentence planning for complex information presentations in spoken dialog systems",
"authors": [
{
"first": "Amanda",
"middle": [],
"last": "Stent",
"suffix": ""
},
{
"first": "Rashmi",
"middle": [],
"last": "Prasad",
"suffix": ""
},
{
"first": "Marilyn",
"middle": [],
"last": "Walker",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04)",
"volume": "",
"issue": "",
"pages": "79--86",
"other_ids": {
"DOI": [
"10.3115/1218955.1218966"
]
},
"num": null,
"urls": [],
"raw_text": "Amanda Stent, Rashmi Prasad, and Marilyn Walker. 2004. Trainable sentence planning for complex in- formation presentations in spoken dialog systems. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL- 04), pages 79-86, Barcelona, Spain.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Attention is all you need",
"authors": [
{
"first": "Ashish",
"middle": [],
"last": "Vaswani",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Shazeer",
"suffix": ""
},
{
"first": "Niki",
"middle": [],
"last": "Parmar",
"suffix": ""
},
{
"first": "Jakob",
"middle": [],
"last": "Uszkoreit",
"suffix": ""
},
{
"first": "Llion",
"middle": [],
"last": "Jones",
"suffix": ""
},
{
"first": "Aidan",
"middle": [
"N"
],
"last": "Gomez",
"suffix": ""
},
{
"first": "\u0141ukasz",
"middle": [],
"last": "Kaiser",
"suffix": ""
},
{
"first": "Illia",
"middle": [],
"last": "Polosukhin",
"suffix": ""
}
],
"year": 2017,
"venue": "Advances in neural information processing systems",
"volume": "",
"issue": "",
"pages": "5998--6008",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information pro- cessing systems, pages 5998-6008.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Cider: Consensus-based image description evaluation",
"authors": [
{
"first": "Ramakrishna",
"middle": [],
"last": "Vedantam",
"suffix": ""
},
{
"first": "Lawrence",
"middle": [],
"last": "Zitnick",
"suffix": ""
},
{
"first": "Devi",
"middle": [],
"last": "Parikh",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the IEEE conference on computer vision and pattern recognition",
"volume": "",
"issue": "",
"pages": "4566--4575",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ramakrishna Vedantam, C Lawrence Zitnick, and Devi Parikh. 2015. Cider: Consensus-based image de- scription evaluation. In Proceedings of the IEEE conference on computer vision and pattern recogni- tion, pages 4566-4575.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Semantically conditioned lstm-based natural language generation for spoken dialogue systems",
"authors": [
{
"first": "Milica",
"middle": [],
"last": "Tsung-Hsien Wen",
"suffix": ""
},
{
"first": "Nikola",
"middle": [],
"last": "Gasic",
"suffix": ""
},
{
"first": "Pei-Hao",
"middle": [],
"last": "Mrksic",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Su",
"suffix": ""
},
{
"first": "Steve",
"middle": [],
"last": "Vandyke",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Young",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1508.01745"
]
},
"num": null,
"urls": [],
"raw_text": "Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Pei- Hao Su, David Vandyke, and Steve Young. 2015. Se- mantically conditioned lstm-based natural language generation for spoken dialogue systems. arXiv preprint arXiv:1508.01745.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Beto, bentz, becas: The surprising cross-lingual effectiveness of bert",
"authors": [
{
"first": "Shijie",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Dredze",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1904.09077"
]
},
"num": null,
"urls": [],
"raw_text": "Shijie Wu and Mark Dredze. 2019. Beto, bentz, be- cas: The surprising cross-lingual effectiveness of bert. arXiv preprint arXiv:1904.09077.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"type_str": "figure",
"uris": null,
"text": "Generating text from structured data. Aligned segments from the structured data and natural language have the same color.",
"num": null
},
"TABREF1": {
"type_str": "table",
"html": null,
"num": null,
"text": "Czech NLG dataset statistics. The unique MRs are counted after delexicalizing the slots.",
"content": "<table/>"
},
"TABREF4": {
"type_str": "table",
"html": null,
"num": null,
"text": "",
"content": "<table><tr><td colspan=\"4\">: Human evaluations for accuracy and fluency</td></tr><tr><td colspan=\"4\">Training Size Model BLEU \u00d2 SER \u00d3</td></tr><tr><td/><td colspan=\"2\">scratch 3.03</td><td>78.5</td></tr><tr><td>100</td><td>mass</td><td>4.42</td><td>78.74</td></tr><tr><td/><td>nmt</td><td>15.45</td><td>31.82</td></tr><tr><td/><td colspan=\"2\">scratch 7.37</td><td>70.19</td></tr><tr><td>1000</td><td>mass</td><td>9.80</td><td>66.15</td></tr><tr><td/><td>nmt</td><td>21.17</td><td>4.51</td></tr><tr><td/><td colspan=\"2\">scratch 11.66</td><td>63.18</td></tr><tr><td>Full</td><td>mass</td><td>17.72</td><td>24.82</td></tr><tr><td/><td>nmt</td><td>26.35</td><td>1.9</td></tr></table>"
},
"TABREF5": {
"type_str": "table",
"html": null,
"num": null,
"text": "Experiments with low-resource NLG",
"content": "<table/>"
},
"TABREF7": {
"type_str": "table",
"html": null,
"num": null,
"text": "NLG fine-tuning with low-resource NMT. The first column indicates the number of tokens used for pre-training.",
"content": "<table/>"
}
}
}
} |