File size: 93,955 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:29:43.330762Z"
    },
    "title": "Solving Arithmetic Word Problems with Transformers and Preprocessing of Problem Text",
    "authors": [
        {
            "first": "Kaden",
            "middle": [],
            "last": "Griffith",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Colorado",
                "location": {
                    "addrLine": "1420 Austin Bluffs Parkway",
                    "postCode": "80918",
                    "settlement": "Colorado Springs",
                    "region": "CO"
                }
            },
            "email": "kadengriffith@gmail.com"
        },
        {
            "first": "Jugal",
            "middle": [],
            "last": "Kalita",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Colorado",
                "location": {
                    "addrLine": "1420 Austin Bluffs Parkway",
                    "postCode": "80918",
                    "settlement": "Colorado Springs",
                    "region": "CO"
                }
            },
            "email": "jkalita@uccs.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper outlines the use of Transformer networks trained to translate math word problems to equivalent arithmetic expressions in infix, prefix, and postfix notations. We compare results produced by many neural configurations and find that most configurations outperform previously reported approaches on three of four datasets with significant increases in accuracy of over 20 percentage points. The best neural approaches boost accuracy by 30% when compared to the previous state-of-the-art on some datasets.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper outlines the use of Transformer networks trained to translate math word problems to equivalent arithmetic expressions in infix, prefix, and postfix notations. We compare results produced by many neural configurations and find that most configurations outperform previously reported approaches on three of four datasets with significant increases in accuracy of over 20 percentage points. The best neural approaches boost accuracy by 30% when compared to the previous state-of-the-art on some datasets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Students are exposed to simple arithmetic word problems starting in elementary school, and most become proficient in solving them at a young age. However, it has been challenging to write programs to solve such elementary school level problems well. Even simple word problems, consisting of only a few sentences, can be challenging to understand for an automated system. Solving a math word problem (MWP) starts with one or more sentences describing a transactional situation. The sentences are usually processed to produce an arithmetic expression. These expressions then may be evaluated to yield a numerical value as an answer to the MWP.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Recent neural approaches to solving arithmetic word problems have used various flavors of recurrent neural networks (RNN) and reinforcement learning. However, such methods have had difficulty achieving a high level of generalization. Often, systems extract the relevant numbers successfully but misplace them in the generated expressions. They also get the arithmetic operations wrong. The use of infix notation also requires pairs of parentheses to be placed and balanced correctly, bracketing the right numbers. There have been problems with parentheses placement. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "At the fair Adam bought 13 tickets. After riding the ferris wheel he had 4 tickets left. If each ticket cost 9 dollars, how much money did Adam spend riding the ferris wheel?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Question:",
                "sec_num": null
            },
            {
                "text": "Some possible expressions that can be produced:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Question:",
                "sec_num": null
            },
            {
                "text": "(13 4) \u21e4 9, 9 \u21e4 13 4, 5 \u21e4 13 4, 13 4 \u21e4 9, 13 (4 \u21e4 9), (9 \u21e4 13 4), (9) \u21e4 13 4, (9) \u21e4 13 (4), etc.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Question:",
                "sec_num": null
            },
            {
                "text": "To start, correctly extracting the numbers in the problem is necessary. Figure 1 gives examples of some infix representations that a machine learning solver can potentially produce from a simple word problem using the correct numbers. Of the expressions shown, only the first one is correct. The use of infix notation may itself be a part of the problem because it requires the generation of additional characters, the open and closed parentheses, which must be placed and balanced correctly.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 72,
                        "end": 80,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Question:",
                "sec_num": null
            },
            {
                "text": "The actual numbers appearing in MWPs vary widely from problem to problem. Real numbers take any conceivable value, making it almost impossible for a neural network to learn representations for them. As a result, trained programs sometimes generate expressions that have seemingly random numbers. For example, in some runs, a trained program could generate a potentially inexplicable expression such as (25.01 4) \u21e4 9 for the problem given in Figure 1 , with one or more numbers not in the problem sentences. To obviate this issue, we replace the numbers in the problem statement with generic tags like hii, hqi, and hxi and save their values as a preprocessing step. This approach does not take away from the generality of the solution but suppresses fertility in number generation leading to the introduction of numbers not present in the question sentences. We extend the prepro-cessing methods to ease the understanding through simple expanding and filtering algorithms. For example, some keywords within sentences are likely to cause the choice of operators for us as humans. By focusing on these terms in the context of a word problem, we hypothesize that our neural approach will improve further.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 441,
                        "end": 449,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Question:",
                "sec_num": null
            },
            {
                "text": "In this paper, we use the Transformer model (Vaswani et al., 2017) to solve arithmetic word problems as a particular case of machine translation from text to the language of arithmetic expressions. Transformers in various configurations have become a staple of NLP in the past three years. We do not augment the neural architectures with external modules such as parse trees or deep reinforcement learning. We compare performance on four individual datasets. In particular, we show that our translation-based approach outperforms stateof-the-art results reported by (Wang et al., 2018; Hosseini et al., 2014; Robaidek et al., 2018 ) by a large margin on three of four datasets tested. On average, our best neural architecture outperforms previous results by almost 10%, although our approach is conceptually more straightforward.",
                "cite_spans": [
                    {
                        "start": 44,
                        "end": 66,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 566,
                        "end": 585,
                        "text": "(Wang et al., 2018;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 586,
                        "end": 608,
                        "text": "Hosseini et al., 2014;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 609,
                        "end": 630,
                        "text": "Robaidek et al., 2018",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Question:",
                "sec_num": null
            },
            {
                "text": "We organize our paper as follows. The second section presents related work. Then, we discuss our approach. We follow by an analysis of baseline experimental results and compare them to those of other recent approaches. We then take our best performing model and train it with motivated preprocessing, discussing changes in performance. We follow with a discussion of our successes and shortcomings. Finally, we share our concluding thoughts and end with our direction for future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Question:",
                "sec_num": null
            },
            {
                "text": "Past strategies have used rules and templates to match sentences to arithmetic expressions. Some such approaches seemed to solve problems impressively within a narrow domain but performed poorly otherwise, lacking generality (Bobrow, 1964; Bakman, 2007; Liguda and Pfeiffer, 2012; Shi et al., 2015) . used feature extraction and template-based categorization by representing equations as expression forests and finding a close match. Such methods required human intervention in the form of feature engineering and the development of templates and rules, which is not desirable for expandability and adaptability. Hosseini et al. (Hosseini et al., 2014 ) performed statistical similarity analysis to obtain acceptable results but did not perform well with texts that were dissimilar to training examples.",
                "cite_spans": [
                    {
                        "start": 225,
                        "end": 239,
                        "text": "(Bobrow, 1964;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 240,
                        "end": 253,
                        "text": "Bakman, 2007;",
                        "ref_id": null
                    },
                    {
                        "start": 254,
                        "end": 280,
                        "text": "Liguda and Pfeiffer, 2012;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 281,
                        "end": 298,
                        "text": "Shi et al., 2015)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 629,
                        "end": 651,
                        "text": "(Hosseini et al., 2014",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Existing approaches have used various forms of auxiliary information. Hosseini et al. (Hosseini et al., 2014) used verb categorization to identify important mathematical cues and contexts. Mitra and Baral (Mitra and Baral, 2016) used predefined formulas to assist in matching. Koncel-Kedziorski et al. (Koncel-Kedziorski et al., 2015) parsed the input sentences, enumerated all parses, and learned to match, requiring expensive computations. Roy and Roth (Roy and Roth, 2017) performed searches for semantic trees over large spaces.",
                "cite_spans": [
                    {
                        "start": 86,
                        "end": 109,
                        "text": "(Hosseini et al., 2014)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 205,
                        "end": 228,
                        "text": "(Mitra and Baral, 2016)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 277,
                        "end": 334,
                        "text": "Koncel-Kedziorski et al. (Koncel-Kedziorski et al., 2015)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 455,
                        "end": 475,
                        "text": "(Roy and Roth, 2017)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Some recent approaches have transitioned to using neural networks. Semantic parsing takes advantage of RNN architectures to parse MWPs directly into equations, or expressions in a mathspecific language (Shi et al., 2015; Sun et al., 2019 (Sun et al., 2019 ) used a bidirectional LSTM architecture for math word problems. Huang et al. (Huang et al., 2018) used a deep reinforcement learning model to achieve character placement in both seen and new equation templates. Wang et al. (Wang et al., 2018 ) also used deep reinforcement learning. We take a similar approach to in preprocessing to prevent ambiguous expression representation. This paper builds upon (Griffith and Kalita, 2019) , extending the capability of similar Transformer networks and solving some common issues found in translations. Here, we simplify the tagging technique used in (Griffith and Kalita, 2019) , and apply preprocessing to enhance translations.",
                "cite_spans": [
                    {
                        "start": 202,
                        "end": 220,
                        "text": "(Shi et al., 2015;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 221,
                        "end": 237,
                        "text": "Sun et al., 2019",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 238,
                        "end": 255,
                        "text": "(Sun et al., 2019",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 334,
                        "end": 354,
                        "text": "(Huang et al., 2018)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 468,
                        "end": 498,
                        "text": "Wang et al. (Wang et al., 2018",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 658,
                        "end": 685,
                        "text": "(Griffith and Kalita, 2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 847,
                        "end": 874,
                        "text": "(Griffith and Kalita, 2019)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "We view math word problem solving as a sequenceto-sequence translation problem. RNNs have excelled in sequence-to-sequence problems such as translation and question answering. The introduction of attention mechanisms has improved the performance of RNN models. Vaswani et al. (Vaswani et al., 2017) introduced the Transformer network, which uses stacks of attention layers instead of recurrence. Applications of Transformers have achieved state-of-the-art performance in many NLP tasks. We use this architecture to produce character sequences that are arithmetic expressions. The models we experiment with are easy and efficient to train, allowing us to test several configurations for a comprehensive comparison. We use several configurations of Transformer networks to learn the prefix, postfix, and infix notations of MWP equations independently.",
                "cite_spans": [
                    {
                        "start": 276,
                        "end": 298,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "3"
            },
            {
                "text": "Prefix and postfix representations of equations do not contain parentheses, which has been a source of confusion in some approaches. If the learned target sequences are simple, with fewer characters to generate, it is less likely to make mistakes during generation. Simple targets also may help the learning of the model to be more robust.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "3"
            },
            {
                "text": "We work with four individual datasets. The datasets contain addition, subtraction, multiplication, and division word problems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "3.1"
            },
            {
                "text": "1. AI2 (Hosseini et al., 2014) . AI2 is a collection of 395 addition and subtraction problems containing numeric values, where some may not be relevant to the question.",
                "cite_spans": [
                    {
                        "start": 7,
                        "end": 30,
                        "text": "(Hosseini et al., 2014)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "3.1"
            },
            {
                "text": "2. CC . The Common Core dataset contains 600 2-step questions. The Cognitive Computation Group at the University of Pennsylvania 1 gathered these questions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "3.1"
            },
            {
                "text": "3. IL . The Illinois dataset contains 562 1-step algebra word questions. The Cognitive Computation Group compiled these questions also. -Kedziorski et al., 2016) . MAWPS is a relatively large collection, primarily from other MWP datasets. MAWPS includes problems found in AI2, CC, IL, and other sources. We use 2,373 of 3,915 MWPs from this set. The problems not used were more complex problems that generate systems of equations. We exclude such problems because generating systems of equations is not our focus.",
                "cite_spans": [
                    {
                        "start": 136,
                        "end": 161,
                        "text": "-Kedziorski et al., 2016)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "3.1"
            },
            {
                "text": "We take a randomly sampled 95% of examples from each dataset for training. From each dataset, MWPs not included in training make up the testing data used when generating our results. Training and testing are repeated three times, and reported results are an average of the three outcomes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "MAWPS (Koncel",
                "sec_num": "4."
            },
            {
                "text": "We take a simple approach to convert infix expressions found in the MWPs to the other two representations. Two stacks are filled by iterating through string characters, one with operators found in the equation and the other with the operands. From these stacks, we form a binary tree structure. Traversing an expression tree in preorder results in a prefix conversion. Post-order traversal gives us a postfix expression. We create three versions of our training and testing data to correspond to each type of expression. By training on different representations, we expect our test results to change.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Representation Conversion",
                "sec_num": "3.2"
            },
            {
                "text": "We calculate the reported results, here and in later sections as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Metric Used",
                "sec_num": "3.3"
            },
            {
                "text": "model avg = 1 R R X r=1 \u2713 1 N N X n=1 C 2 D n P 2 D n \u25c6 (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Metric Used",
                "sec_num": "3.3"
            },
            {
                "text": "where R is the number of test repetitions, which is 3; N is the number of test datasets, which is 4; P is the number of MWPs; C is the number of correct equation translations, and D n is the nth dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Metric Used",
                "sec_num": "3.3"
            },
            {
                "text": "The input sequence for a translation is a natural language specification of an arithmetic word problem. We encode the MWP questions and equations using the subword text encoder provided by the Tensor-Flow Datasets library. The output is an expression in prefix, infix, or postfix notation, which then can be manipulated further and solved to obtain a final answer. Each expression style corresponds to a model trained and tested separately on that specific style. For example, data in prefix will not intermix with data in postfix representation. All examples in the datasets contain numbers, some of which are unique or rare in the corpus. Rare terms are adverse for generalization since the network is unlikely to form good representations for them. As a remedy to this issue, our networks do not consider any relevant numbers during training. Before the networks attempt any translation, we preprocess each question and expression by a number mapping algorithm. We consider numbers found to be in word form also, such as \"forty-two\" and \"dozen.\" We convert these words to numbers in all questions (e.g., \"forty-two\" becomes \"42\"). Then by algorithm, we replace each numeric value with a corresponding identifier (e.g., hji, hxi) and remember the necessary mapping. We expect that this approach may significantly improve how networks interpret each question. When translating, the numbers in the original question are tagged and cached. From the encoded English and tags, a predicted sequence resembling an expression presents itself as output. Since each network's learned output resembles an arithmetic expression (e.g.,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Search for High-Performing Models",
                "sec_num": "4"
            },
            {
                "text": "hji + hxi \u21e4 hqi), we use the cached tag mapping to replace the tags with the corresponding numbers and return a final mathematical expression.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Search for High-Performing Models",
                "sec_num": "4"
            },
            {
                "text": "We train and test three representation models: Prefix-Transformer, Postfix-Transformer, and Infix-Transformer. For each experiment, we use representation-specific Transformer architectures. Each model uses the Adam optimizer with beta 1 = 0.95 and beta 2 = 0.99 with a standard epsilon of 1 \u21e5 e 9 . The learning rate is reduced automatically in each training session as the loss decreases. Throughout the training, each model respects a 10% dropout rate. We employ a batch size of 128 for all training. Each model is trained on MWP data for 300 iterations before testing. The networks are trained on a machine using 4 Nvidia 2080 Ti graphics processing unit (GPU).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Search for High-Performing Models",
                "sec_num": "4"
            },
            {
                "text": "We compare medium-sized, small, and minimal networks to show if a smaller network size can increase training and testing efficiency while retaining high accuracy. Networks over six layers have shown to be non-effective for this task. We tried many configurations of our network models but report results with only three configurations of Transformer.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Search for High-Performing Models",
                "sec_num": "4"
            },
            {
                "text": "-Transformer Type 1: This network is a small to medium-sized network consisting of 4 Transformer layers. Each layer utilizes 8 attention heads with a depth of 512 and a feedforward depth of 1024.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Search for High-Performing Models",
                "sec_num": "4"
            },
            {
                "text": "-Transformer Type 2: The second model is small in size, using 2 Transformer layers. The layers utilize 8 attention heads with a depth of 256 and a feed-forward depth of 1024.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Search for High-Performing Models",
                "sec_num": "4"
            },
            {
                "text": "-Transformer Type 3: The third type of model is minimal, using only 1 Transformer layer. This network utilizes 8 attention heads with a depth of 256 and a feed-forward depth of 512.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1: Search for High-Performing Models",
                "sec_num": "4"
            },
            {
                "text": "We calculate the loss in training according to a mean of the sparse categorical cross-entropy formula. Sparse categorical cross-entropy (De Boer et al., 2005) is used for identifying classes from a feature set, assuming a large target classification set. The performance metric evaluates the produced class (predicted token) drawn from the translation classes (all vocabulary subword tokens). During each evaluation, target terms are masked, predicted, and then compared to the masked (known) value. We adjust the model's loss according to the mean of the translation accuracy after predicting every determined subword in a translation.",
                "cite_spans": [
                    {
                        "start": 136,
                        "end": 158,
                        "text": "(De Boer et al., 2005)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Objective Function",
                "sec_num": null
            },
            {
                "text": "This experiment compares our networks to recent previous work. We count a given test score by a simple \"correct versus incorrect\" method. The answer to an expression directly ties to all of the translation terms being correct, which is why we do not consider partial precision. We compare average accuracies over 3 test trials on different randomly sampled test sets from each MWP dataset. This calculation more accurately depicts the generalization of our networks. We present the results of our various outcomes in Table 1 . We compare the three representations of target equations and three architectures of the Transformer model in each test.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 517,
                        "end": 524,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 1 Results",
                "sec_num": "4.1"
            },
            {
                "text": "All of the network configurations used were very successful for our task. The prefix representation overall provides the most stable network performance. We note that while the combined averages of the prefix models outperformed postfix, the postfix representation Transformer produced the highest average for a single model. The type 2 postfix Transformer received the highest testing average of 87.2%. To highlight the capability of our most successful model (type 2 postfix Transformer), we present some outputs of the network in Figure 2 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 533,
                        "end": 541,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 1 Analysis",
                "sec_num": "4.1.1"
            },
            {
                "text": "The models respect the syntax of math expressions, even when incorrect. For most questions, our translators were able to determine operators based solely on the context of language. adults going, how many vans will they need?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 1 Analysis",
                "sec_num": "4.1.1"
            },
            {
                "text": "Translation produced: 2 6 + 4 / Table 1 provides detailed results of Experiment 1. The numbers are absolute accuracies, i.e., they correspond to cases where the arithmetic expression generated is 100% correct, leading to the correct numeric answer. Results by (Wang et al., 2018; Hosseini et al., 2014; Robaidek et al., 2018) are sparse but indicate the scale of success compared to recent past approaches. Prefix, postfix, and infix representations in Table 1 show that network capabilities are changed by how teachable the target data is.",
                "cite_spans": [
                    {
                        "start": 260,
                        "end": 279,
                        "text": "(Wang et al., 2018;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 280,
                        "end": 302,
                        "text": "Hosseini et al., 2014;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 303,
                        "end": 325,
                        "text": "Robaidek et al., 2018)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 32,
                        "end": 39,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 453,
                        "end": 460,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 1 Analysis",
                "sec_num": "4.1.1"
            },
            {
                "text": "While our networks fell short of Wang, et al. AI2 testing accuracy (Wang et al., 2018) , we present state-of-the-art results for the remaining three datasets in Table 1 . The AI2 dataset is tricky because its questions contain numeric values that are extraneous or irrelevant to the actual computation, whereas the other datasets have only relevant numeric values. Following these observations, we continue to more involved experiments with only the type 2 postfix Transformer. The next sections will introduce our preprocessing methods. Note that we start from scratch in our training for all experiments following this section.",
                "cite_spans": [
                    {
                        "start": 67,
                        "end": 86,
                        "text": "(Wang et al., 2018)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 161,
                        "end": 168,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 1 Analysis",
                "sec_num": "4.1.1"
            },
            {
                "text": "We use various additional preprocessing methods to improve the training and testing of MWP data. One goal of this section is to improve the notably low performance on the AI2 tests. We introduce eight techniques for improvement and report our results as an average of 3 separate training and testing sessions. These techniques are also tested together in some cases to observe their combined effects.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2: Preprocessing for Improved Results",
                "sec_num": "5"
            },
            {
                "text": "We take note of previous pitfalls that have prevented neural approaches from applying to general MWP question answering. To improve English to equation translation further, we apply some transformation processes before the training step in our neural pipeline. First, we optionally remove all stop words in the questions. Then, again optionally, the words are transformed into a lemma to prevent easy mistakes caused by plurals. These simple transformations can be applied in both training and testing and require only base language knowledge. We also try minimalistic manipulation approaches in preprocessing and analyze the results. While in most cases, the tagged numbers are relevant and necessary when translating; in some cases, there are tagged numbers that do not appear in equations. To avoid this, we attempt three different methods of preprocessing: Selective Tagging, Exclusive Tagging, and Label-Selective Tagging.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing Algorithms",
                "sec_num": "5.1"
            },
            {
                "text": "When applying Selective Tagging, we iterate through the words in each question and only replace numbers appearing in the equation with a tag representation (e.g., hji). In this method, we leave the original numeric values in each sentence, which have do not collect importance in network translations. Similarly, we optionally apply Exclusive Tagging, which is nearly identical to Selective Tagging, but instead of leaving the numbers not appearing in the equation, we remove them. These two preprocessing algorithms prevent irrelevant numbers from mistakenly being learned as relevant. These methods are only applicable to training.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing Algorithms",
                "sec_num": "5.1"
            },
            {
                "text": "It is common in MWPs to provide a label or indication of what a number represents in a question. For example, if we observe the statement \"George has 2 peaches and 4 apples. Lauren gives George 5 of her peaches. How many peaches does George have?\" we only need to know quantifiers for the label \"peach.\" We consider \"peaches\" and \"apples\" as labels for the number tags. For the most basic interpretation of this series of mathematical prose, we know that we are supposed to use the number of peaches that George and Lauren have to formulate an expression to solve the MWP. Thus, determining the correct labels or tags for the numbers in an MWP is likely to be helpful. Similar to Selective Tagging and Exclusive Tagging, we avoid tagging irrelevant numbers when applying Label-Selective Tagging. Here, the quantity we need to ignore for a reliable translation is: \"4 apples.\" This is as if we are associating each number with the appropriate unit notation, like \"kilogram\" or \"meter.\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing Algorithms",
                "sec_num": "5.1"
            },
            {
                "text": "The Label-Selective Tagging method iterates through every word in an MWP question. We first count the occurrence of words in the question sentences and create an ordered list of all terms. In our example, we note that the word \"peaches\" occurs three times in the sentence. Compared to the word \"apples\" (occurring only once), we reduce our search for numbers to only the most common terms in each question. We impose a check to verify that the most common term appears in the sentence ending in a question mark, and if it is not, the Label-Selective Tagging fails and produces tags for all numbers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing Algorithms",
                "sec_num": "5.1"
            },
            {
                "text": "If we can identify the label reliably, we then look at each number. We assume that labels for quantities are within a window of three (either before the number or after). When we detect a number, we then look at four words before the number and four words after the number, and before any punctuation for the most common word we have previously identified. If we find the assumed label, we tag the number, indicating it is relevant. Otherwise, we leave the word as a number, which indicates that it is irrelevant. This method can be applied in training and testing equally because we do not require any knowledge about our target translation equation. We could have performed noun phrase chunking and some additional processing to identify nouns and their numeric quantifiers. However, our heuristic method works very well.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing Algorithms",
                "sec_num": "5.1"
            },
            {
                "text": "In addition to restrictive tagging methods, we also try replacing all words with an equivalent partof-speech denotation. The noun, \"George,\" will appear as \"NN,\" for example. There are two ways we employ this method. The first substitutes the word with its part-of-speech counterpart, and the second adds on the part-of-speech tag like \"(NN George),\" for each word in the sentence. These two algorithms can be applied both in training and testing since the part-of-speech tag comes from the underlying English language.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing Algorithms",
                "sec_num": "5.1"
            },
            {
                "text": "We also try reordering the sentences in each MWP. For each of the questions, we sort the sentences in random order, not requiring the question within the MWP to appear last, as it typically does.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing Algorithms",
                "sec_num": "5.1"
            },
            {
                "text": "The situational context is not linear in most cases when applying this transformation. We check to see if the network relies on the linear nature of MWP information to be successful.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing Algorithms",
                "sec_num": "5.1"
            },
            {
                "text": "The eight algorithms presented are applied solo and in combination, when applicable. For a summary of the preprocessing algorithms, refer to Table 2. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preprocessing Algorithms",
                "sec_num": "5.1"
            },
            {
                "text": "We present the results of Experiment 2 in Table  3 . From the results in Table 3 , we see that Label-Selective Tagging is very successful in improving the translation quality of MWPs. Other methods, such as removing stop words, improve accuracy due to the reduction in the necessary vocabulary, but fail to outperform LST for three of the four datasets. Using a frequency measure of terms to determine number relevancy is a simple addition to the network training pipeline and significantly outperforms our standalone Transformer network base. The LST algorithm was successful for two reasons. The first reason LST is more realistic in this application is its applicability to inference time translations. Because the method relies only on each question's vocabulary, there are no restrictions on usability. This method reliably produces the same results in the evaluation as in training, which is a unique characteristic of only a subset of the preprocessing algorithms tested. The second reason LST is better for our purpose is that it prevents unnecessary learning of irrelevant numbers in the questions. One challenge in the AI2 dataset is that some numbers present in the questions are irrelevant to the intended translation. Without some preprocessing, we see that our network sometimes struggles to determine irrelevancy for a given number. LST also reduces compute time for other areas of the data pipeline. Only a fraction of the numbers in some questions need to be tagged for the network, which produces less stress on our number tagging process. Still some common operator inference mistakes were made while using LST, shown in Figure 3 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 42,
                        "end": 50,
                        "text": "Table  3",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 73,
                        "end": 80,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 1640,
                        "end": 1648,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 2 Results and Analysis",
                "sec_num": "5.1.1"
            },
            {
                "text": "The removal of stop words is a common practice in language classification tasks and was somewhat successful in translation tasks. We see an improvement on all datasets, suggesting that stop words are mostly ignored in successful translations and paid attention to more when the network makes mistakes. There is a significant drop in reliability when we transform words into their base lemmas. Likely, the cause of this drop is the loss of information by imposing two filtering techniques at once.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2 Results and Analysis",
                "sec_num": "5.1.1"
            },
            {
                "text": "Along with the successes of the tested preprocessing came some disappointing results. Raw partof-speech tagging produces slightly improved results from the base model, but including the words and the corresponding part-of-speech denotations fail in our application.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2 Results and Analysis",
                "sec_num": "5.1.1"
            },
            {
                "text": "Reordering of the question sentences produced significantly worse results. The accuracy difference mostly comes from the random position of the question, sometimes appearing with no context to the transaction. Some form of limited sentence reordering may improve the results, but likely not the degree of success of the other methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment 2 Results and Analysis",
                "sec_num": "5.1.1"
            },
            {
                "text": "By incorporating simple preprocessing techniques, we grow the generality of the Transformer architecture to this sequence-to-sequence task. Table 3 shows that the Transformer architecture with simple preprocessing outperforms previous state-of-the-art results in all four tested datasets. While the Transformer architecture has been wellproven in other tasks, we show that applying the attention schema here improves MWP solving. With our work, we show that relatively small networks are more stable for our task. Postfix and prefix both are a better choice for training neural networks, with the implication that infix can be re-derived if it is preferred by the user of a solver system. The use of alternative mathematical representation contributes greatly to the success of our translations.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 140,
                        "end": 147,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Experiment 2 Results and Analysis",
                "sec_num": "5.1.1"
            },
            {
                "text": "In this paper, we have shown that the use of Transformer networks improves automatic math word problem-solving. We have also shown that postfix target expressions perform better than the other two expression formats. Our improvements are well-motivated but straightforward and easy to use, demonstrating that the well-acclaimed Transformer architecture for language processing can handle MWPs well, obviating the need to build specialized neural architectures for this task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "6"
            },
            {
                "text": "In the future, we wish to work with more complex MWP datasets. Our datasets contain basic arithmetic expressions of +, -, *, and /, and only up to 3 of them. For example, datasets such as Dol-phin18k (Huang et al., 2016) , consisting of webanswered questions from Yahoo! Answers, require a wider variety of language to be understood by the system.",
                "cite_spans": [
                    {
                        "start": 200,
                        "end": 220,
                        "text": "(Huang et al., 2016)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "6"
            },
            {
                "text": "We wish to use other architectures stemming from the base Transformer to maximize the accuracy of the system. For our experiments, we use the 2017 variation of the Transformer (Vaswani et al., 2017) , to show that generally applicable neural architectures work well for this task. With that said, we also note the importance of a strategically designed architecture to improve our results.",
                "cite_spans": [
                    {
                        "start": 176,
                        "end": 198,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "6"
            },
            {
                "text": "To further the interest in automatic solving of math word problems, we have released all of the code used on GitHub. 2 ",
                "cite_spans": [
                    {
                        "start": 117,
                        "end": 118,
                        "text": "2",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "6"
            },
            {
                "text": "https://cogcomp.seas.upenn.edu/page/ demos/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Natural Language Input for a Computer Problem Solving System",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Daniel",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Bobrow",
                        "suffix": ""
                    }
                ],
                "year": 1964,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel G Bobrow. 1964. Natural Language Input for a Computer Problem Solving System. Ph.D. thesis, Massachusetts Institute Of Technology.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A tutorial on the crossentropy method",
                "authors": [
                    {
                        "first": "Pieter-Tjerk De",
                        "middle": [],
                        "last": "Boer",
                        "suffix": ""
                    },
                    {
                        "first": "Dirk",
                        "middle": [
                            "P"
                        ],
                        "last": "Kroese",
                        "suffix": ""
                    },
                    {
                        "first": "Shie",
                        "middle": [],
                        "last": "Mannor",
                        "suffix": ""
                    },
                    {
                        "first": "Reuven",
                        "middle": [
                            "Y"
                        ],
                        "last": "Rubinstein",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Annals of operations research",
                "volume": "134",
                "issue": "1",
                "pages": "19--67",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. 2005. A tutorial on the cross- entropy method. Annals of operations research, 134(1):19-67.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Solving arithmetic word problems automatically using transformer and unambiguous representations",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Griffith",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kalita",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "2019 International Conference on Computational Science and Computational Intelligence (CSCI)",
                "volume": "",
                "issue": "",
                "pages": "526--532",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Griffith and J. Kalita. 2019. Solving arithmetic word problems automatically using transformer and un- ambiguous representations. In 2019 International Conference on Computational Science and Compu- tational Intelligence (CSCI), pages 526-532.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Learning to solve arithmetic word problems with verb categorization",
                "authors": [
                    {
                        "first": "Mohammad Javad",
                        "middle": [],
                        "last": "Hosseini",
                        "suffix": ""
                    },
                    {
                        "first": "Hannaneh",
                        "middle": [],
                        "last": "Hajishirzi",
                        "suffix": ""
                    },
                    {
                        "first": "Oren",
                        "middle": [],
                        "last": "Etzioni",
                        "suffix": ""
                    },
                    {
                        "first": "Nate",
                        "middle": [],
                        "last": "Kushman",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "523--533",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. 2014. Learning to solve arithmetic word problems with verb catego- rization. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 523-533.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Neural math word problem solver with reinforcement learning",
                "authors": [
                    {
                        "first": "Danqing",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Jing",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "213--223",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian Yin. 2018. Neural math word problem solver with rein- forcement learning. In Proceedings of the 27th Inter- national Conference on Computational Linguistics, pages 213-223, Santa Fe, New Mexico, USA. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "How well do computers solve math word problems? large-scale dataset construction and evaluation",
                "authors": [
                    {
                        "first": "Danqing",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Shuming",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    },
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Ying",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "887--896",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin, and Wei-Ying Ma. 2016. How well do comput- ers solve math word problems? large-scale dataset construction and evaluation. In Proceedings of the 54th Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers), pages 887-896.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Parsing algebraic word problems into equations",
                "authors": [
                    {
                        "first": "Rik",
                        "middle": [],
                        "last": "Koncel-Kedziorski",
                        "suffix": ""
                    },
                    {
                        "first": "Hannaneh",
                        "middle": [],
                        "last": "Hajishirzi",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Sabharwal",
                        "suffix": ""
                    },
                    {
                        "first": "Oren",
                        "middle": [],
                        "last": "Etzioni",
                        "suffix": ""
                    },
                    {
                        "first": "Siena",
                        "middle": [],
                        "last": "Dumas Ang",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "3",
                "issue": "",
                "pages": "585--597",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas Ang. 2015. Parsing algebraic word problems into equa- tions. Transactions of the Association for Computa- tional Linguistics, 3:585-597.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Mawps: A math word problem repository",
                "authors": [
                    {
                        "first": "Rik",
                        "middle": [],
                        "last": "Koncel-Kedziorski",
                        "suffix": ""
                    },
                    {
                        "first": "Subhro",
                        "middle": [],
                        "last": "Roy",
                        "suffix": ""
                    },
                    {
                        "first": "Aida",
                        "middle": [],
                        "last": "Amini",
                        "suffix": ""
                    },
                    {
                        "first": "Nate",
                        "middle": [],
                        "last": "Kushman",
                        "suffix": ""
                    },
                    {
                        "first": "Hannaneh",
                        "middle": [],
                        "last": "Hajishirzi",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "1152--1157",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi. 2016. Mawps: A math word problem repository. In Proceedings of the 2016 Conference of the North American Chap- ter of the Association for Computational Linguistics: Human Language Technologies, pages 1152-1157.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Learning to automatically solve algebra word problems",
                "authors": [
                    {
                        "first": "Nate",
                        "middle": [],
                        "last": "Kushman",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Artzi",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    },
                    {
                        "first": "Regina",
                        "middle": [],
                        "last": "Barzilay",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "271--281",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. 2014. Learning to automatically solve algebra word problems. In Proceedings of the 52nd Annual Meeting of the Association for Compu- tational Linguistics (Volume 1: Long Papers), pages 271-281.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Modeling math word problems with augmented semantic networks",
                "authors": [
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Liguda",
                        "suffix": ""
                    },
                    {
                        "first": "Thies",
                        "middle": [],
                        "last": "Pfeiffer",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "International Conference on Application of Natural Language to Information Systems",
                "volume": "",
                "issue": "",
                "pages": "247--252",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christian Liguda and Thies Pfeiffer. 2012. Modeling math word problems with augmented semantic net- works. In International Conference on Application of Natural Language to Information Systems, pages 247-252. Springer.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Learning to use formulas to solve simple arithmetic problems",
                "authors": [
                    {
                        "first": "Arindam",
                        "middle": [],
                        "last": "Mitra",
                        "suffix": ""
                    },
                    {
                        "first": "Chitta",
                        "middle": [],
                        "last": "Baral",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "2144--2153",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Arindam Mitra and Chitta Baral. 2016. Learning to use formulas to solve simple arithmetic problems. In Proceedings of the 54th Annual Meeting of the As- sociation for Computational Linguistics (Volume 1: Long Papers), pages 2144-2153.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Automatically solving two-variable linear algebraic word problems using text mining",
                "authors": [
                    {
                        "first": "Sharifullah",
                        "middle": [],
                        "last": "Tayyeba Rehman",
                        "suffix": ""
                    },
                    {
                        "first": "Gwo-Jen",
                        "middle": [],
                        "last": "Khan",
                        "suffix": ""
                    },
                    {
                        "first": "Muhammad Azeem",
                        "middle": [],
                        "last": "Hwang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Abbas",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Expert Systems",
                "volume": "36",
                "issue": "2",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tayyeba Rehman, Sharifullah Khan, Gwo-Jen Hwang, and Muhammad Azeem Abbas. 2019. Automat- ically solving two-variable linear algebraic word problems using text mining. Expert Systems, 36(2):e12358.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Data-driven methods for solving algebra word problems",
                "authors": [
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Robaidek",
                        "suffix": ""
                    },
                    {
                        "first": "Rik",
                        "middle": [],
                        "last": "Koncel-Kedziorski",
                        "suffix": ""
                    },
                    {
                        "first": "Hannaneh",
                        "middle": [],
                        "last": "Hajishirzi",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1804.10718"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Benjamin Robaidek, Rik Koncel-Kedziorski, and Han- naneh Hajishirzi. 2018. Data-driven methods for solving algebra word problems. arXiv preprint arXiv:1804.10718.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Solving general arithmetic word problems",
                "authors": [
                    {
                        "first": "Subhro",
                        "middle": [],
                        "last": "Roy",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "1743--1752",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1608.01413"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Subhro Roy and Dan Roth. 2015. Solving gen- eral arithmetic word problems. arXiv preprint arXiv:1608.01413, pages 1743-1752.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Unit dependency graph and its application to arithmetic word problem solving",
                "authors": [
                    {
                        "first": "Subhro",
                        "middle": [],
                        "last": "Roy",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Thirty-First AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Subhro Roy and Dan Roth. 2017. Unit dependency graph and its application to arithmetic word problem solving. In Thirty-First AAAI Conference on Artifi- cial Intelligence.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Reasoning about quantities in natural language. Transactions of the Association for Computational Linguistics",
                "authors": [
                    {
                        "first": "Subhro",
                        "middle": [],
                        "last": "Roy",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Vieira",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "3",
                "issue": "",
                "pages": "1--13",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Subhro Roy, Tim Vieira, and Dan Roth. 2015. Reason- ing about quantities in natural language. Transac- tions of the Association for Computational Linguis- tics, 3:1-13.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Automatically solving number word problems by semantic parsing and reasoning",
                "authors": [
                    {
                        "first": "Shuming",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    },
                    {
                        "first": "Yuehui",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaojiang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yong",
                        "middle": [],
                        "last": "Rui",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1132--1142",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang Liu, and Yong Rui. 2015. Automatically solving number word problems by semantic parsing and rea- soning. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1132-1142.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "A neural semantic parser for math problems incorporating multi-sentence information",
                "authors": [
                    {
                        "first": "Ruiyong",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Yijia",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Keyu",
                        "middle": [],
                        "last": "Ding",
                        "suffix": ""
                    },
                    {
                        "first": "Shijin",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Cui",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "ACM Transactions on Asian and Low-Resource Language Information Processing (TAL-LIP)",
                "volume": "18",
                "issue": "4",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruiyong Sun, Yijia Zhao, Qi Zhang, Keyu Ding, Shijin Wang, and Cui Wei. 2019. A neural semantic parser for math problems incorporating multi-sentence in- formation. ACM Transactions on Asian and Low- Resource Language Information Processing (TAL- LIP), 18(4):37.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "\u0141ukasz",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "5998--6008",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in neural information pro- cessing systems, pages 5998-6008.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Mathdqn: Solving arithmetic word problems via deep reinforcement learning",
                "authors": [
                    {
                        "first": "Lei",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Dongxiang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Lianli",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Jingkuan",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "Long",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    },
                    {
                        "first": "Heng Tao",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Thirty-Second AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan Song, Long Guo, and Heng Tao Shen. 2018. Math- dqn: Solving arithmetic word problems via deep re- inforcement learning. In Thirty-Second AAAI Con- ference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Template-based math word problem solvers with recursive neural networks",
                "authors": [
                    {
                        "first": "Lei",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Dongxiang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jipeng",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xing",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Lianli",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [
                            "Tian"
                        ],
                        "last": "Dai",
                        "suffix": ""
                    },
                    {
                        "first": "Heng Tao",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "33",
                "issue": "",
                "pages": "7144--7151",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu, Lianli Gao, Bing Tian Dai, and Heng Tao Shen. 2019. Template-based math word problem solvers with recursive neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, vol- ume 33, pages 7144-7151.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "Possible generated expressions for an MWP.",
                "num": null,
                "uris": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "text": "Successful postfix translations.AI2A spaceship traveled 0.5 light-year from earth to planet x and 0.1 light-year from planet x to planet y. Then it traveled 0.1 light-year from planet y back to Earth. How many light-years did the spaceship travel in all? friends playing a video game online when 7 players quit. If each player left had 8 lives, how many lives did they have total? class is going on a field trip to the zoo. If each van can hold 4 people and there are 2 students and 6",
                "num": null,
                "uris": null
            },
            "FIGREF2": {
                "type_str": "figure",
                "text": "Example of an unsuccessful translation using type 2 postfix Transformer and LST.MAWPSThere were 73 bales of hay in the barn. Jason stacked bales in the barn today. There are now 96 bales of hay in the barn . How many bales did he store in the barn?",
                "num": null,
                "uris": null
            },
            "TABREF1": {
                "html": null,
                "type_str": "table",
                "text": "Test results for Experiment 1 (* denotes averages on present values only).",
                "num": null,
                "content": "<table><tr><td>(Type) Model</td><td>AI2</td><td>CC</td><td>IL</td><td>MAWPS</td><td>Average</td></tr><tr><td>(Hosseini et al., 2014)</td><td>77.7</td><td>-</td><td>-</td><td>-</td><td>\u21e4 77.7</td></tr><tr><td>(Kushman et al., 2014)</td><td>64.0</td><td>73.7</td><td>2.3</td><td>-</td><td>\u21e4 46.7</td></tr><tr><td>(Roy et al., 2015)</td><td>-</td><td>-</td><td>52.7</td><td>-</td><td>\u21e4 52.7</td></tr><tr><td>(Robaidek et al., 2018)</td><td>-</td><td>-</td><td>-</td><td>62.8</td><td>\u21e4 62.8</td></tr><tr><td>(Wang et al., 2018)</td><td>78.5</td><td>75.5</td><td>73.3</td><td>-</td><td>\u21e4 75.4</td></tr><tr><td>(1) Prefix-Transformer</td><td>71.9</td><td>94.4</td><td>95.2</td><td>83.4</td><td>86.3</td></tr><tr><td>(1) Postfix-Transformer</td><td>73.7</td><td>81.1</td><td>92.9</td><td>75.7</td><td>80.8</td></tr><tr><td>(1) Infix-Transformer</td><td>77.2</td><td>73.3</td><td>61.9</td><td>56.8</td><td>67.3</td></tr><tr><td>(2) Prefix-Transformer</td><td>71.9</td><td>94.4</td><td>94.1</td><td>84.7</td><td>86.3</td></tr><tr><td>(2) Postfix-Transformer</td><td>77.2</td><td>94.4</td><td>94.1</td><td>83.1</td><td>87.2</td></tr><tr><td>(2) Infix-Transformer</td><td>77.2</td><td>76.7</td><td>66.7</td><td>61.5</td><td>70.5</td></tr><tr><td>(3) Prefix-Transformer</td><td>71.9</td><td>93.3</td><td>95.2</td><td>84.1</td><td>86.2</td></tr><tr><td>(3) Postfix-Transformer</td><td>77.2</td><td>94.4</td><td>94.1</td><td>82.4</td><td>87.0</td></tr><tr><td>(3) Infix-Transformer</td><td>77.2</td><td>76.7</td><td>66.7</td><td>62.4</td><td>70.7</td></tr></table>"
            },
            "TABREF2": {
                "html": null,
                "type_str": "table",
                "text": "Summary of Algorithms.",
                "num": null,
                "content": "<table><tr><td>Name</td><td>Abbreviation</td></tr><tr><td>Remove Stop Words</td><td>SW</td></tr><tr><td>Lemmatize</td><td>L</td></tr><tr><td>Selective Tagging</td><td>ST</td></tr><tr><td>Label-Selective Tagging</td><td>LST</td></tr><tr><td>Exclusive Tagging</td><td>ET</td></tr><tr><td>Part of Speech</td><td>POS</td></tr><tr><td>Part of Speech w/ Words</td><td>WPOS</td></tr><tr><td>Sentence Reordering</td><td>R</td></tr></table>"
            },
            "TABREF3": {
                "html": null,
                "type_str": "table",
                "text": "Test results for Experiment 2 (* denotes averages on present values only). Rows after the top 5 indicate type 2 postfix Transformer results.",
                "num": null,
                "content": "<table><tr><td>Preprocessing Method</td><td>AI2</td><td>CC</td><td>IL</td><td>MAWPS</td><td>Average</td></tr><tr><td>(Hosseini et al., 2014)</td><td>77.7</td><td>-</td><td>-</td><td>-</td><td>\u21e4 77.7</td></tr><tr><td>(Kushman et al., 2014)</td><td>64.0</td><td>73.7</td><td>2.3</td><td>-</td><td>\u21e4 46.7</td></tr><tr><td>(Roy et al., 2015)</td><td>-</td><td>-</td><td>52.7</td><td>-</td><td>\u21e4 52.7</td></tr><tr><td>(Robaidek et al., 2018)</td><td>-</td><td>-</td><td>-</td><td>62.8</td><td>\u21e4 62.8</td></tr><tr><td>(Wang et al., 2018)</td><td>78.5</td><td>75.5</td><td>73.3</td><td>-</td><td>\u21e4 75.4</td></tr><tr><td>Type 2 Postfix-Transformer</td><td/><td/><td/><td/><td/></tr><tr><td>None</td><td>77.2</td><td>94.4</td><td>94.1</td><td>83.1</td><td>87.2</td></tr><tr><td>SW</td><td>73.7</td><td>100.0</td><td>100.0</td><td>94.0</td><td>91.9</td></tr><tr><td>L</td><td>63.2</td><td>86.7</td><td>80.9</td><td>68.1</td><td>74.7</td></tr><tr><td>SW + L</td><td>61.4</td><td>60.0</td><td>57.1</td><td>66.4</td><td>61.2</td></tr><tr><td>ST</td><td>80.7</td><td>93.3</td><td>100.0</td><td>84.3</td><td>89.6</td></tr><tr><td>SW + ST</td><td>71.9</td><td>93.3</td><td>100.0</td><td>83.5</td><td>87.2</td></tr><tr><td>SW + L + ST</td><td>50.9</td><td>63.3</td><td>48.8</td><td>64.1</td><td>56.8</td></tr><tr><td>LST</td><td>82.5</td><td>100.0</td><td>100.0</td><td>93.7</td><td>94.0</td></tr><tr><td>SW + LST</td><td>70.2</td><td>100.0</td><td>100.0</td><td>92.6</td><td>90.7</td></tr><tr><td>SW + L + LST</td><td>54.4</td><td>71.1</td><td>50.0</td><td>68.1</td><td>60.9</td></tr><tr><td>ET</td><td>80.7</td><td>93.3</td><td>100.0</td><td>84.0</td><td>89.5</td></tr><tr><td>SW + ET</td><td>70.2</td><td>93.3</td><td>100.0</td><td>84.0</td><td>86.9</td></tr><tr><td>SW + L + ET</td><td>59.6</td><td>63.3</td><td>53.6</td><td>66.1</td><td>60.7</td></tr><tr><td>POS</td><td>79.0</td><td>100.0</td><td>73.8</td><td>91.5</td><td>86.1</td></tr><tr><td>WPOS</td><td>40.4</td><td>0.0</td><td>84.5</td><td>53.0</td><td>44.5</td></tr><tr><td>R</td><td>38.0</td><td>59.6</td><td>58.7</td><td>42.3</td><td>49.6</td></tr></table>"
            }
        }
    }
}