File size: 104,444 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:30:20.262984Z"
    },
    "title": "Terminology-Aware Sentence Mining for NMT Domain Adaptation: ADAPT's Submission to the Adap-MT 2020 English-to-Hindi AI Translation Shared Task",
    "authors": [
        {
            "first": "Rejwanul",
            "middle": [],
            "last": "Haque",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Dublin City University Dublin",
                "location": {
                    "country": "Ireland"
                }
            },
            "email": ""
        },
        {
            "first": "Yasmin",
            "middle": [],
            "last": "Moslem",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Dublin City University Dublin",
                "location": {
                    "country": "Ireland"
                }
            },
            "email": ""
        },
        {
            "first": "Andy",
            "middle": [],
            "last": "Way",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Dublin City University Dublin",
                "location": {
                    "country": "Ireland"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper describes the ADAPT Centre's submission to the Adap-MT 2020 AI Translation Shared Task for English-to-Hindi. The neural machine translation (NMT) systems that we built to translate AI domain texts are state-ofthe-art Transformer models. In order to improve the translation quality of our NMT systems, we made use of both in-domain and outof-domain data for training and employed different fine-tuning techniques for adapting our NMT systems to this task, e.g. mixed finetuning and on-the-fly self-training. For this, we mined parallel sentence pairs and monolingual sentences from large out-of-domain data, and the mining process was facilitated through automatic extraction of terminology from the in-domain data. This paper outlines the experiments we carried out for this task and reports the performance of our NMT systems on the evaluation test set.",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper describes the ADAPT Centre's submission to the Adap-MT 2020 AI Translation Shared Task for English-to-Hindi. The neural machine translation (NMT) systems that we built to translate AI domain texts are state-ofthe-art Transformer models. In order to improve the translation quality of our NMT systems, we made use of both in-domain and outof-domain data for training and employed different fine-tuning techniques for adapting our NMT systems to this task, e.g. mixed finetuning and on-the-fly self-training. For this, we mined parallel sentence pairs and monolingual sentences from large out-of-domain data, and the mining process was facilitated through automatic extraction of terminology from the in-domain data. This paper outlines the experiments we carried out for this task and reports the performance of our NMT systems on the evaluation test set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "ADAPT Centre participated in the Adap-MT 2020 Translation Shared Task 1 of the 17th International Conference on Natural Language Processing (ICON 2020). 2 This task aims at evaluating machine translation (MT) systems on the translation of documents from two domains (AI and Chemistry) involving low-resource Indic languages. The task addresses a number of translation directions, and we participated in the English-to-Hindi translation task and focused on translating the AI texts only. To make the readers familiar with the AI translation task and to understand the challenges of this task, we show a couple of sentences from the blind test set in Table 1. (1) Machine learning (ML) is a branch of AI that allows chatbots to identify patterns in human language and learn from past conversations. (2) Approaches include statistical methods, computational intelligence, and traditional symbolic AI. Our MT systems are Transformer models (Vaswani et al., 2017) which were trained using the Marian-NMT toolkit. 3 In this work, we applied different data augmentation and domain adaptation techniques to train our models, such as using synthetic data from target-side monolingual data through the use of back-translation (Sennrich et al., 2016a; Poncelas et al., 2018) , mixed fine-tuning (Chu et al., 2017 ) and on-the-fly model adaption (Chinea-R\u00edos et al., 2017) . As for the latter two approaches, we mined sentences and sentence pairs from large out-of-domain monolingual and parallel corpora, respectively, based on domain terms appearing in the in-domain data. Note that the terms were extracted automatically from the in-domain data.",
                "cite_spans": [
                    {
                        "start": 936,
                        "end": 958,
                        "text": "(Vaswani et al., 2017)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 1008,
                        "end": 1009,
                        "text": "3",
                        "ref_id": null
                    },
                    {
                        "start": 1216,
                        "end": 1240,
                        "text": "(Sennrich et al., 2016a;",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 1241,
                        "end": 1263,
                        "text": "Poncelas et al., 2018)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 1284,
                        "end": 1301,
                        "text": "(Chu et al., 2017",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1334,
                        "end": 1360,
                        "text": "(Chinea-R\u00edos et al., 2017)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 649,
                        "end": 657,
                        "text": "Table 1.",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This remainder of the paper is organized as follows. Section 2 presents our approaches. We describe the resources we utilized for training in Section 3. Section 4 presents the results obtained, and Section 5 concludes our work with avenues for future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The use of unlabeled monolingual data in addition to limited bitexts for NMT training (Sennrich et al., 2016a; Zhang and Zong, 2016; Burlot and Yvon, 2018; Poncelas et al., 2018; Caswell et al., 2019) is nowadays a common practice in MT development (Barrault et al., 2020) . This has even more impact when applied to the specialised domains and many language pairs, for which obtaining parallel data is a challenge.",
                "cite_spans": [
                    {
                        "start": 86,
                        "end": 110,
                        "text": "(Sennrich et al., 2016a;",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 111,
                        "end": 132,
                        "text": "Zhang and Zong, 2016;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 133,
                        "end": 155,
                        "text": "Burlot and Yvon, 2018;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 156,
                        "end": 178,
                        "text": "Poncelas et al., 2018;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 179,
                        "end": 200,
                        "text": "Caswell et al., 2019)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 249,
                        "end": 272,
                        "text": "(Barrault et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training Data Augmentation",
                "sec_num": "2.1"
            },
            {
                "text": "In this task, in order to improve our baseline English-to-Hindi Transformer model, we augmented our training data with target-original synthetic data. As in Caswell et al. (2019) , in order to let the NMT model know that the given source is synthetic, we tag the source sentences of the synthetic data with the extra tokens. Iterative generation and training on synthetic data can yield increasingly better NMT systems, especially in lowresource scenarios (Hoang et al., 2018; Chen et al., 2019) . Since our baseline target-to-source (Hindito-English) MT system is already good in quality, it was used to translate the Hindi monolingual data.",
                "cite_spans": [
                    {
                        "start": 157,
                        "end": 178,
                        "text": "Caswell et al. (2019)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 456,
                        "end": 476,
                        "text": "(Hoang et al., 2018;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 477,
                        "end": 495,
                        "text": "Chen et al., 2019)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training Data Augmentation",
                "sec_num": "2.1"
            },
            {
                "text": "As for adapting our baseline MT model to the AI domain, we implemented mixed fine-tuning of model parameters, where fine-tuning is conducted on the training data that consists of both in-domain and out-of-domain data as described in Chu et al. (2017) . The shared task organisers released parallel training data of the AI domain with a limited number of in-domain examples (only 4,872 sentence pairs). The in-domain data was augmented by oversampling the AI training set several times, and an almost similar sized out-of-domain data set is mined from the parallel (out-of-domain) training corpus on which our baseline NMT system was trained. This strategy worked well for us when we translated business scene dialogue (Jooste et al., 2020) in the WAT 2020 4 (Nakazawa et al., 2020) document-level translation task. However, the adaptation method presented in this paper slightly differs from the conventional mixed finetuning (Chu et al., 2017; Jooste et al., 2020) , and is described below.",
                "cite_spans": [
                    {
                        "start": 233,
                        "end": 250,
                        "text": "Chu et al. (2017)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 718,
                        "end": 739,
                        "text": "(Jooste et al., 2020)",
                        "ref_id": null
                    },
                    {
                        "start": 926,
                        "end": 944,
                        "text": "(Chu et al., 2017;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 945,
                        "end": 965,
                        "text": "Jooste et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mixed Fine-Tuning",
                "sec_num": "2.2"
            },
            {
                "text": "Terms are usually indicators of the nature of a domain and play a critical role in domain-specific MT (Haque et al., 2019 . Sentences that contain in-domain terms are likely to be in-domain sentences. However, an ambiguous term could have more than one potential meaning. As an example of lexical ambiguity, 'cold' has several possible meanings in the Unified Medical Language System Metathesaurus (Humphreys et al., 1998) including 'common cold', 'cold sensation' and 'cold temperature' (Stevenson and Guo, 2010) . Moreover, a polysemous term (e.g. 'cold') could have many translation equivalents in a target language. With this in mind, we mined those training examples (i.e. sentence pairs) from the large out-of-domain domain parallel corpus whose source or target sentences contain at least one domain term. As pointed out earlier, an extracted out-of-domain sentence that contain a domain term may not represent the desired domain; however, the training examples that include such sentences may play a crucial role in minimising lexical selection errors as far as terminology translation in NMT is concerned (Haque et al., 2019 .",
                "cite_spans": [
                    {
                        "start": 102,
                        "end": 121,
                        "text": "(Haque et al., 2019",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 398,
                        "end": 422,
                        "text": "(Humphreys et al., 1998)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 488,
                        "end": 513,
                        "text": "(Stevenson and Guo, 2010)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 1114,
                        "end": 1133,
                        "text": "(Haque et al., 2019",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mixed Fine-Tuning",
                "sec_num": "2.2"
            },
            {
                "text": "To this end, we exploit the approaches of Rayson and Garside (2000) and Haque et al. (2014 Haque et al. ( , 2018 in order to automatically identify terms in the indomain texts. The idea is to identify those words which are most indicative (or characteristic) of the in-domain corpus compared to a reference corpus. Haque et al. (2014 Haque et al. ( , 2018 used a large corpus which is generic in nature as a reference corpus. We adopted their approach and used a large generic corpus in order to identify terms in the in-domain source (English) and target (Hindi) corpora. In our setup, we also used the source and target sides of the out-of-domain training bitexts on which our baseline NMT system was trained as the reference corpora. The intuition is again the same, i.e. to extract those (terminological) expressions from the in-domain data that do not occur or rarely occur in the training data and are more indicative of the indomain AI corpus. Given the lists of source and target terms, we mine sentences independently from the source and target sides of the out-of-domain bilingual corpus. As pointed out above, we select those sentence pairs from the out-of-domain bilingual corpus whose source or target sides contain at least one domain term. In Nayak et al. (2020b) , we empirically showed that such \"pseudo\" in-domain sentences are more effective than those mined using bilingual cross-entropy difference according to the in-domain language model (Axelrod et al., 2011) for NMT model adaptation.",
                "cite_spans": [
                    {
                        "start": 42,
                        "end": 67,
                        "text": "Rayson and Garside (2000)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 72,
                        "end": 90,
                        "text": "Haque et al. (2014",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 91,
                        "end": 112,
                        "text": "Haque et al. ( , 2018",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 315,
                        "end": 333,
                        "text": "Haque et al. (2014",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 334,
                        "end": 355,
                        "text": "Haque et al. ( , 2018",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 1258,
                        "end": 1278,
                        "text": "Nayak et al. (2020b)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 1461,
                        "end": 1483,
                        "text": "(Axelrod et al., 2011)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mixed Fine-Tuning",
                "sec_num": "2.2"
            },
            {
                "text": "As in Kobus et al. (2017) , in order to inform the NMT model about the domain during training and decoding, we add a (domain) tag at the begin-ning of the source sentences of the in-domain data, which allows us to control the output domain of the trained system. The NMT system is finally finetuned on the mixture of the in-domain and mined out-of-domain corpora.",
                "cite_spans": [
                    {
                        "start": 6,
                        "end": 25,
                        "text": "Kobus et al. (2017)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mixed Fine-Tuning",
                "sec_num": "2.2"
            },
            {
                "text": "Chinea-R\u00edos et al. 2017demonstrated that in the case of specialised domains where parallel corpora are scarce, sentences of a large monolingual data that are more related to the test set sentences to be translated could be effective for fine-tuning the original general domain NMT model. They select those instances from a large monolingual corpus whose vector-space representation is similar to the representation of the test set instances. The selected sentences are then automatically translated by an NMT system built on a general domain data. Finally, the NMT system is fine-tuned with the resultant synthetic data. The synthetic training data whose source-side sentences are original could be more effective for domain adaptation, and the learning method that uses such training data is called 'self-training' (Ueffing et al., 2007) . In a similar line of research, it has also been shown that an NMT system built on general domain data can be fine-tuned using just a few sentences (Farajian et al., 2017; Wuebker et al., 2018; Huck et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 816,
                        "end": 838,
                        "text": "(Ueffing et al., 2007)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 988,
                        "end": 1011,
                        "text": "(Farajian et al., 2017;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1012,
                        "end": 1033,
                        "text": "Wuebker et al., 2018;",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 1034,
                        "end": 1052,
                        "text": "Huck et al., 2019)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mining Sentences for Fine-tuning",
                "sec_num": "2.3"
            },
            {
                "text": "We followed Chinea-R\u00edos et al. (2017) in order to mine those sentences from large monolingual datasets that could be beneficial for fine-tuning the original NMT model. As in Jooste et al. (2020); Nayak et al. (2020b); Parthasarathy et al. (2020), we first identified terms in the AI test set to be translated, and given the list of extracted terms, English sentences which were mined from large monolingual data are similar in style to the AI test set sentences. To put it another way, we followed the method described in Section 2.2 in order to extract sentences form large monolingual corpus. The monolingual corpus that we used for this purpose contains 95,918,840 sentences which were sampled from CommonCrawl 5 and Wikipedia Dumps. 6 The English source sentences that have been mined were translated into Hindi using the best MT system (cf. through mixed fine-tuning strategy) to create synthetic data (i.e. source-side original synthetic corpus (SOSC)) to be used for fine-tuning the same NMT model.",
                "cite_spans": [
                    {
                        "start": 737,
                        "end": 738,
                        "text": "6",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mining Sentences for Fine-tuning",
                "sec_num": "2.3"
            },
            {
                "text": "For building our baseline models (forward and backward), we used only the bilingual data provided by the task organisers. As for Hindi monolingual sentences for back-translation, we sampled them from AI4Bharat-IndicNLP Corpus . The out-of-domain parallel data is compiled from a variety of existing sources, e.g. OPUS 7 (Tiedemann, 2012) , and after applying standard cleaning procedures including applying a language identifier 8 we are left with just over 1.1 million parallel sentence pairs. (cf . Table 2 ) of the AI English-to-Hindi translation task consists only of 400 sentence pairs. For experimentation, we considered its first 200 sentence pairs as development set and the remainder as the evaluation test set. We used two different sized monolingual datasets for our back-translation experiments (cf. last rows of Table 2 ). As pointed out earlier, our NMT systems are Transformer models. The tokens of the training, evaluation and validation sets are segmented into sub-word units using Byte-Pair Encoding (BPE) (Sennrich et al., 2016b) , and BPE is applied individually on the source and target languages. From our experiences (Jooste et al., 2020; Nayak et al., 2020b,a; Parthasarathy et al., 2020) in the participation in the recent shared translation tasks (Barrault et al., 2020; Mayhew et al., 2020; Nakazawa et al., 2020) involving lowresource language pairs and domains, we found that the following configuration usually leads to the best results in our low-resource translation settings: (i) the BPE vocabulary size: 6,000, (ii) the sizes of the encoder and decoder layers: 4 and 6, respectively, and (iii) learning-rate: 0.0003. As for the remaining hyperparameters, we followed the recommended best setup from Vaswani et al. (2017) . The early stopping criterion is based on cross-entropy; however, the final NMT system is selected as per the highest BLEU score on the validation set. The beam size for search is set to 6. We make our final NMT model with ensembles of 8 models that are sampled from the training run.",
                "cite_spans": [
                    {
                        "start": 320,
                        "end": 337,
                        "text": "(Tiedemann, 2012)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 1024,
                        "end": 1048,
                        "text": "(Sennrich et al., 2016b)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 1140,
                        "end": 1161,
                        "text": "(Jooste et al., 2020;",
                        "ref_id": null
                    },
                    {
                        "start": 1162,
                        "end": 1184,
                        "text": "Nayak et al., 2020b,a;",
                        "ref_id": null
                    },
                    {
                        "start": 1185,
                        "end": 1212,
                        "text": "Parthasarathy et al., 2020)",
                        "ref_id": null
                    },
                    {
                        "start": 1273,
                        "end": 1296,
                        "text": "(Barrault et al., 2020;",
                        "ref_id": null
                    },
                    {
                        "start": 1297,
                        "end": 1317,
                        "text": "Mayhew et al., 2020;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 1318,
                        "end": 1340,
                        "text": "Nakazawa et al., 2020)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 1733,
                        "end": 1754,
                        "text": "Vaswani et al. (2017)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 499,
                        "end": 508,
                        "text": ". Table 2",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 825,
                        "end": 832,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Data Used and Training Setups",
                "sec_num": "3"
            },
            {
                "text": "This section presents the performance of our MT systems in terms of the automatic evaluation metric BLEU (Papineni et al., 2002) . Additionally, we performed statistical significance tests using bootstrap resampling methods (Koehn, 2004) . We obtained the BLEU scores of our MT systems to evaluate them on the test set, and the scores are reported in Table 3 . The first row of resents our baseline English-to-Hindi MT system. The Hindi-to-English MT system which has been used to translate the Hindi monolingual sentences to English is of good quality (i.e. it produces 28.76 BLEU points on the test set). The BLEU scores of the MT systems (Base2 and Base3) trained on training data that consists of both authentic and synthetic parallel data are shown in the next two rows of Table 3 (cf. Section 2.1).",
                "cite_spans": [
                    {
                        "start": 105,
                        "end": 128,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 224,
                        "end": 237,
                        "text": "(Koehn, 2004)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 351,
                        "end": 358,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 778,
                        "end": 785,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments and Results",
                "sec_num": "4"
            },
            {
                "text": "Source-target sentence pairs were mined from out-of-domain training bitexts for mixed finetuning (see Section 2.2). The number of sentence pairs that have been mined is 167,234. We also augmented the in-domain parallel corpus via oversampling in-domain sentences, and by this, the size of the in-domain bitexts becomes 97,440. We finally fine-tuned Base2 and Base3 on the training data that is a mixture of (augmented) in-domain and (mined) out-of-domain data. The BLEU scores of the MT systems (Base2 + Mixed FT and Base3 + Mixed FT) which are the results of the fine-tuning process are presented in the fourth and fifth rows of Table 3 . One of our three submission (Run1) is with Base3 + Mixed FT. We select Base2 + Mixed FT and Base3 + Mixed FT for further adaptation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 630,
                        "end": 637,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments and Results",
                "sec_num": "4"
            },
            {
                "text": "Following the method described in Section 2.3, we mined English sentences (a total of 27,644 sentences) from a large monolingual corpus (cf. Section 2.3) given the list of terms (a total of 356 terms) appearing in the test set. Then, SOSC was created by translating these mined English sentences into Hindi using the respective MT system. Finally, the best MT systems (Base2 + Mixed FT or Base3 + Mixed FT) were fine-tuned on the resultant SOSC. The BLEU scores of the adapted MT systems on the test set are shown in the last rows of Table 3 . When we compare the original MT systems with the adapted MT systems, we see that (i) the adapted version of Base2 + Mixed FT, Base2 + Mixed FT + ST, produces a 0.98 BLEU point (corresponding to 2.33% relative) improvement over Base2 + Mixed FT, and (ii) the same of Base3 + Mixed FT, Base3 + Mixed FT + ST, produces a 0.48 BLEU point (corresponding to 1.1% relative) improvement over Base3 + Mixed FT. The former improvement is statistically significant but the latter is not.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 534,
                        "end": 541,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments and Results",
                "sec_num": "4"
            },
            {
                "text": "As above, we created the adapted MT systems for the blind test set which consists of 401 sentences. Our terminology extraction model identified 1,599 AI terms in the blind test set. We mined 98,009 English sentences from the large monolingual data given the list of terms. We followed the approach described above for fine-tuning our best two models (Base2 + Mixed FT and Base3 + Mixed FT) in order to translate the blind test set sentences. The BLEU scores of our MT systems on the blind test set, which the task organisers published, are shown in Table 4 ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 549,
                        "end": 556,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments and Results",
                "sec_num": "4"
            },
            {
                "text": "In this paper, we described our MT systems that were submitted to the Adap-MT 2020 AI translation shared task. We presented our results obtained at the time of development of our MT systems. In order to adapt our MT systems to translate texts of AI domains, we subsequently applied two existing fine-tuning techniques while using a term extraction model in the translation pipeline for mining sentences similar to the domain and style of those of the AI data. We showed that, in the case of limited in-domain training data, both out-of-domain data which are selected via term-based mining protocol and in-domain data are useful for fine-tuning model parameters, which essentially provides our best results in this translation task. Furthermore, making use of synthetic parallel data in training also greatly increased the performance of our MT systems. As for the shared task's system rankings, our three submissions Run3, Run2 and Run1 secured second, third and fourth positions, respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "In future, we aim to apply our strategy to other domains and language pairs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "https://ssmt.iiit.ac.in/ machinetranslation.html 2 https://www.iitp.ac.in/\u02dcai-nlp-ml/ icon2020/main_prog.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/marian-nmt/marian",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://lotus.kuee.kyoto-u.ac.jp/WAT/ WAT2020/index.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://web-language-models. s3-website-us-east-1.amazonaws.com/ wmt16/deduped/en-new.xz 6 http://data.statmt.org/wmt20/ translation-task/ps-km/wikipedia.en.lid_ filtered.test_filtered.xz",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://opus.lingfil.uu.se/ 8 https://pypi.org/project/pycld2/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "The ADAPT Centre for Digital Content Technology is funded under the Science Foundation Ireland (SFI) Research Centres Programme (Grant No. 13/RC/2106) and is co-funded under the European Regional Development Fund. The publication has emanated from research supported in part by a research grant from SFI under Grant Number 13/RC/2077 and 18/CRT/6224.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Domain Adaptation via Pseudo In-Domain Data Selection",
                "authors": [
                    {
                        "first": "Amittai",
                        "middle": [],
                        "last": "Axelrod",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "355--362",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011. Domain Adaptation via Pseudo In-Domain Data Selection. In Proceedings of the 2011 Con- ference on Empirical Methods in Natural Language Processing, pages 355-362, Edinburgh, Scotland, UK. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Santanu Pal, Matt Post, and Marcos Zampieri. 2020. Findings of the 2020 Conference on Machine Translation (WMT20). In Proceedings of the Fifth Conference on Machine Translation",
                "authors": [
                    {
                        "first": "Lo\u00efc",
                        "middle": [],
                        "last": "Barrault",
                        "suffix": ""
                    },
                    {
                        "first": "Magdalena",
                        "middle": [],
                        "last": "Biesialska",
                        "suffix": ""
                    },
                    {
                        "first": "Ond\u0159ej",
                        "middle": [],
                        "last": "Bojar",
                        "suffix": ""
                    },
                    {
                        "first": "Marta",
                        "middle": [
                            "R"
                        ],
                        "last": "Costa-Juss\u00e0",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Federmann",
                        "suffix": ""
                    },
                    {
                        "first": "Yvette",
                        "middle": [],
                        "last": "Graham",
                        "suffix": ""
                    },
                    {
                        "first": "Roman",
                        "middle": [],
                        "last": "Grundkiewicz",
                        "suffix": ""
                    },
                    {
                        "first": "Barry",
                        "middle": [],
                        "last": "Haddow",
                        "suffix": ""
                    },
                    {
                        "first": "Matthias",
                        "middle": [],
                        "last": "Huck",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Joanis",
                        "suffix": ""
                    },
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Kocmi",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Chi-Kiu",
                        "middle": [],
                        "last": "Lo",
                        "suffix": ""
                    },
                    {
                        "first": "Nikola",
                        "middle": [],
                        "last": "Ljube\u0161i\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Christof",
                        "middle": [],
                        "last": "Monz",
                        "suffix": ""
                    },
                    {
                        "first": "Makoto",
                        "middle": [],
                        "last": "Morishita",
                        "suffix": ""
                    },
                    {
                        "first": "Masaaki",
                        "middle": [],
                        "last": "Nagata",
                        "suffix": ""
                    },
                    {
                        "first": "Toshiaki",
                        "middle": [],
                        "last": "Nakazawa",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "1--54",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lo\u00efc Barrault, Magdalena Biesialska, Ond\u0159ej Bojar, Marta R. Costa-juss\u00e0, Christian Federmann, Yvette Graham, Roman Grundkiewicz, Barry Haddow, Matthias Huck, Eric Joanis, Tom Kocmi, Philipp Koehn, Chi-kiu Lo, Nikola Ljube\u0161i\u0107, Christof Monz, Makoto Morishita, Masaaki Nagata, Toshi- aki Nakazawa, Santanu Pal, Matt Post, and Mar- cos Zampieri. 2020. Findings of the 2020 Confer- ence on Machine Translation (WMT20). In Pro- ceedings of the Fifth Conference on Machine Trans- lation, pages 1-54, Online. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Using Monolingual Data in Neural Machine Translation: a Systematic Study",
                "authors": [
                    {
                        "first": "Franck",
                        "middle": [],
                        "last": "Burlot",
                        "suffix": ""
                    },
                    {
                        "first": "Fran\u00e7ois",
                        "middle": [],
                        "last": "Yvon",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Third Conference on Machine Translation: Research Papers",
                "volume": "",
                "issue": "",
                "pages": "144--155",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-6315"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Franck Burlot and Fran\u00e7ois Yvon. 2018. Using Mono- lingual Data in Neural Machine Translation: a Sys- tematic Study. In Proceedings of the Third Con- ference on Machine Translation: Research Papers, pages 144-155, Belgium, Brussels. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Tagged Back-Translation",
                "authors": [
                    {
                        "first": "Isaac",
                        "middle": [],
                        "last": "Caswell",
                        "suffix": ""
                    },
                    {
                        "first": "Ciprian",
                        "middle": [],
                        "last": "Chelba",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Grangier",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Fourth Conference on Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "53--63",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W19-5206"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Isaac Caswell, Ciprian Chelba, and David Grangier. 2019. Tagged Back-Translation. In Proceedings of the Fourth Conference on Machine Translation (Vol- ume 1: Research Papers), pages 53-63, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Facebook AI's WAT19 Myanmar-English Translation Task Submission",
                "authors": [
                    {
                        "first": "Peng-Jen",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Jiajun",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "Vishrav",
                        "middle": [],
                        "last": "Chaudhary",
                        "suffix": ""
                    },
                    {
                        "first": "Ahmed",
                        "middle": [],
                        "last": "El-Kishky",
                        "suffix": ""
                    },
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Wenzek",
                        "suffix": ""
                    },
                    {
                        "first": "Myle",
                        "middle": [],
                        "last": "Ott",
                        "suffix": ""
                    },
                    {
                        "first": "Marc'aurelio",
                        "middle": [],
                        "last": "Ranzato",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 6th Workshop on Asian Translation",
                "volume": "",
                "issue": "",
                "pages": "112--122",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-5213"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Peng-Jen Chen, Jiajun Shen, Matthew Le, Vishrav Chaudhary, Ahmed El-Kishky, Guillaume Wenzek, Myle Ott, and Marc'Aurelio Ranzato. 2019. Face- book AI's WAT19 Myanmar-English Translation Task Submission. In Proceedings of the 6th Work- shop on Asian Translation, pages 112-122, Hong Kong, China. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Adapting Neural Machine Translation with Parallel Synthetic Data",
                "authors": [
                    {
                        "first": "Mara",
                        "middle": [],
                        "last": "Chinea-R\u00edos",
                        "suffix": ""
                    },
                    {
                        "first": "\u00c1lvaro",
                        "middle": [],
                        "last": "Peris",
                        "suffix": ""
                    },
                    {
                        "first": "Francisco",
                        "middle": [],
                        "last": "Casacuberta",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Second Conference on Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "138--147",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-4714"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mara Chinea-R\u00edos,\u00c1lvaro Peris, and Francisco Casacuberta. 2017. Adapting Neural Machine Translation with Parallel Synthetic Data. In Pro- ceedings of the Second Conference on Machine Translation, pages 138-147, Copenhagen, Denmark. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "An Empirical Comparison of Domain Adaptation Methods for Neural Machine Translation",
                "authors": [
                    {
                        "first": "Chenhui",
                        "middle": [],
                        "last": "Chu",
                        "suffix": ""
                    },
                    {
                        "first": "Raj",
                        "middle": [],
                        "last": "Dabre",
                        "suffix": ""
                    },
                    {
                        "first": "Sadao",
                        "middle": [],
                        "last": "Kurohashi",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "385--391",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P17-2061"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017. An Empirical Comparison of Domain Adaptation Methods for Neural Machine Translation. In Pro- ceedings of the 55th Annual Meeting of the Associa- tion for Computational Linguistics (Volume 2: Short Papers), pages 385-391, Vancouver, Canada. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Multi-Domain Neural Machine Translation through Unsupervised Adaptation",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Amin Farajian",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Turchi",
                        "suffix": ""
                    },
                    {
                        "first": "Matteo",
                        "middle": [],
                        "last": "Negri",
                        "suffix": ""
                    },
                    {
                        "first": "Marcello",
                        "middle": [],
                        "last": "Federico",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Second Conference on Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "127--137",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W17-4713"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "M. Amin Farajian, Marco Turchi, Matteo Negri, and Marcello Federico. 2017. Multi-Domain Neural Machine Translation through Unsupervised Adapta- tion. In Proceedings of the Second Conference on Machine Translation, pages 127-137, Copenhagen, Denmark. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Investigating Terminology Translation in Statistical and Neural Machine Translation: A Case Study on English-to-Hindi and Hindito-English",
                "authors": [
                    {
                        "first": "Rejwanul",
                        "middle": [],
                        "last": "Haque",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammed",
                        "middle": [],
                        "last": "Hasanuzzaman",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the International Conference on Recent Advances in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "437--446",
                "other_ids": {
                    "DOI": [
                        "10.26615/978-954-452-056-4_052"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rejwanul Haque, Mohammed Hasanuzzaman, and Andy Way. 2019. Investigating Terminology Trans- lation in Statistical and Neural Machine Transla- tion: A Case Study on English-to-Hindi and Hindi- to-English. In Proceedings of the International Con- ference on Recent Advances in Natural Language Processing (RANLP 2019), pages 437-446, Varna, Bulgaria. INCOMA Ltd.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Analysing Terminology Translation Errors in Statistical and Neural Machine Translation",
                "authors": [
                    {
                        "first": "Rejwanul",
                        "middle": [],
                        "last": "Haque",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammed",
                        "middle": [],
                        "last": "Hasanuzzaman",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rejwanul Haque, Mohammed Hasanuzzaman, and Andy Way. 2020a. Analysing Terminology Transla- tion Errors in Statistical and Neural Machine Trans- lation. Machine Translation (in press), 34.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "The ADAPT System Description for the STAPLE 2020 English-to-Portuguese Translation Task",
                "authors": [
                    {
                        "first": "Rejwanul",
                        "middle": [],
                        "last": "Haque",
                        "suffix": ""
                    },
                    {
                        "first": "Yasmin",
                        "middle": [],
                        "last": "Moslem",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Fourth Workshop on Neural Generation and Translation",
                "volume": "",
                "issue": "",
                "pages": "144--152",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.ngt-1.17"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rejwanul Haque, Yasmin Moslem, and Andy Way. 2020b. The ADAPT System Description for the STAPLE 2020 English-to-Portuguese Translation Task. In Proceedings of the Fourth Workshop on Neural Generation and Translation, pages 144-152, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Bilingual Termbank Creation via Log-Likelihood Comparison and Phrase-Based Statistical Machine Translation",
                "authors": [
                    {
                        "first": "Rejwanul",
                        "middle": [],
                        "last": "Haque",
                        "suffix": ""
                    },
                    {
                        "first": "Sergio",
                        "middle": [],
                        "last": "Penkale",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 4th International Workshop on Computational Terminology (Computerm)",
                "volume": "",
                "issue": "",
                "pages": "42--51",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/W14-4806"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rejwanul Haque, Sergio Penkale, and Andy Way. 2014. Bilingual Termbank Creation via Log-Likelihood Comparison and Phrase-Based Statistical Machine Translation. In Proceedings of the 4th International Workshop on Computational Terminology (Comput- erm), pages 42-51, Dublin, Ireland. Association for Computational Linguistics and Dublin City Univer- sity.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "TermFinder: log-likelihood comparison and phrase-based statistical machine translation models for bilingual terminology extraction. Language Resources and Evaluation",
                "authors": [
                    {
                        "first": "Rejwanul",
                        "middle": [],
                        "last": "Haque",
                        "suffix": ""
                    },
                    {
                        "first": "Sergio",
                        "middle": [],
                        "last": "Penkale",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "52",
                "issue": "",
                "pages": "365--400",
                "other_ids": {
                    "DOI": [
                        "10.1007/s10579-018-9412-4"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rejwanul Haque, Sergio Penkale, and Andy Way. 2018. TermFinder: log-likelihood comparison and phrase-based statistical machine translation models for bilingual terminology extraction. Language Re- sources and Evaluation, 52(2):365-400.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Iterative Back-Translation for Neural Machine Translation",
                "authors": [
                    {
                        "first": "Duy",
                        "middle": [],
                        "last": "Vu Cong",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Hoang",
                        "suffix": ""
                    },
                    {
                        "first": "Gholamreza",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Trevor",
                        "middle": [],
                        "last": "Haffari",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Cohn",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2nd Workshop on Neural Machine Translation and Generation",
                "volume": "",
                "issue": "",
                "pages": "18--24",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-2703"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Vu Cong Duy Hoang, Philipp Koehn, Gholamreza Haffari, and Trevor Cohn. 2018. Iterative Back- Translation for Neural Machine Translation. In Pro- ceedings of the 2nd Workshop on Neural Machine Translation and Generation, pages 18-24, Mel- bourne, Australia. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Better OOV Translation with Bilingual Terminology Mining",
                "authors": [
                    {
                        "first": "Matthias",
                        "middle": [],
                        "last": "Huck",
                        "suffix": ""
                    },
                    {
                        "first": "Viktor",
                        "middle": [],
                        "last": "Hangya",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Fraser",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "5809--5815",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1581"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matthias Huck, Viktor Hangya, and Alexander Fraser. 2019. Better OOV Translation with Bilingual Termi- nology Mining. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin- guistics, pages 5809-5815, Florence, Italy. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "The Unified Medical Language System: An Informatics Research Collaboration",
                "authors": [
                    {
                        "first": "Betsy",
                        "middle": [
                            "L"
                        ],
                        "last": "Humphreys",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "B"
                        ],
                        "last": "Donald",
                        "suffix": ""
                    },
                    {
                        "first": "Harold",
                        "middle": [
                            "M"
                        ],
                        "last": "Lindberg",
                        "suffix": ""
                    },
                    {
                        "first": "G. Octo",
                        "middle": [],
                        "last": "Schoolman",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Barnett",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Journal of the American Medical Informatics Association",
                "volume": "5",
                "issue": "1",
                "pages": "1--11",
                "other_ids": {
                    "DOI": [
                        "10.1136/jamia.1998.0050001"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Betsy L. Humphreys, Donald A. B. Lindberg, Harold M. Schoolman, and G. Octo Barnett. 1998. The Unified Medical Language System: An Infor- matics Research Collaboration. Journal of the Amer- ican Medical Informatics Association, 5(1):1-11.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "2020. The ADAPT Centre's Neural MT Systems for the WAT 2020 Document-Level Translation Task",
                "authors": [
                    {
                        "first": "Wandri",
                        "middle": [],
                        "last": "Jooste",
                        "suffix": ""
                    },
                    {
                        "first": "Rejwanul",
                        "middle": [],
                        "last": "Haque",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Proceedings of the the 7th Workshop on Asian Translation (WAT 2020), AACL-IJCNLP 2020, page",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wandri Jooste, Rejwanul Haque, and Andy Way. 2020. The ADAPT Centre's Neural MT Systems for the WAT 2020 Document-Level Translation Task. In Proceedings of the the 7th Workshop on Asian Trans- lation (WAT 2020), AACL-IJCNLP 2020, page (in press), Suzhou, China.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Domain Control for Neural Machine Translation",
                "authors": [
                    {
                        "first": "Catherine",
                        "middle": [],
                        "last": "Kobus",
                        "suffix": ""
                    },
                    {
                        "first": "Josep",
                        "middle": [],
                        "last": "Crego",
                        "suffix": ""
                    },
                    {
                        "first": "Jean",
                        "middle": [],
                        "last": "Senellart",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the International Conference Recent Advances in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "372--378",
                "other_ids": {
                    "DOI": [
                        "10.26615/978-954-452-049-6_049"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Catherine Kobus, Josep Crego, and Jean Senellart. 2017. Domain Control for Neural Machine Trans- lation. In Proceedings of the International Confer- ence Recent Advances in Natural Language Process- ing, RANLP 2017, pages 372-378, Varna, Bulgaria. INCOMA Ltd.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Statistical Significance Tests for Machine Translation Evaluation",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "388--395",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philipp Koehn. 2004. Statistical Significance Tests for Machine Translation Evaluation. In Proceed- ings of the 2004 Conference on Empirical Meth- ods in Natural Language Processing, pages 388- 395, Barcelona, Spain. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Embeddings for Indic Languages",
                "authors": [
                    {
                        "first": "Anoop",
                        "middle": [],
                        "last": "Kunchukuttan",
                        "suffix": ""
                    },
                    {
                        "first": "Divyanshu",
                        "middle": [],
                        "last": "Kakwani",
                        "suffix": ""
                    },
                    {
                        "first": "Satish",
                        "middle": [],
                        "last": "Golla",
                        "suffix": ""
                    },
                    {
                        "first": "Avik",
                        "middle": [],
                        "last": "Bhattacharyya",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Mitesh",
                        "suffix": ""
                    },
                    {
                        "first": "Pratyush",
                        "middle": [],
                        "last": "Khapra",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2005.00085"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Anoop Kunchukuttan, Divyanshu Kakwani, Satish Golla, Avik Bhattacharyya, Mitesh M Khapra, Pratyush Kumar, et al. 2020. AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Em- beddings for Indic Languages. arXiv preprint arXiv:2005.00085.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Simultaneous Translation and Paraphrase for Language Education",
                "authors": [
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Mayhew",
                        "suffix": ""
                    },
                    {
                        "first": "Klinton",
                        "middle": [],
                        "last": "Bicknell",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Brust",
                        "suffix": ""
                    },
                    {
                        "first": "Bill",
                        "middle": [],
                        "last": "Mcdowell",
                        "suffix": ""
                    },
                    {
                        "first": "Will",
                        "middle": [],
                        "last": "Monroe",
                        "suffix": ""
                    },
                    {
                        "first": "Burr",
                        "middle": [],
                        "last": "Settles",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Fourth Workshop on Neural Generation and Translation",
                "volume": "",
                "issue": "",
                "pages": "232--243",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.ngt-1.28"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill McDowell, Will Monroe, and Burr Settles. 2020. Simultaneous Translation and Paraphrase for Lan- guage Education. In Proceedings of the Fourth Workshop on Neural Generation and Translation, pages 232-243, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Overview of the 7th Workshop on Asian Translation",
                "authors": [
                    {
                        "first": "Toshiaki",
                        "middle": [],
                        "last": "Nakazawa",
                        "suffix": ""
                    },
                    {
                        "first": "Hideki",
                        "middle": [],
                        "last": "Nakayama",
                        "suffix": ""
                    },
                    {
                        "first": "Chenchen",
                        "middle": [],
                        "last": "Ding",
                        "suffix": ""
                    },
                    {
                        "first": "Raj",
                        "middle": [],
                        "last": "Dabre",
                        "suffix": ""
                    },
                    {
                        "first": "Hideya",
                        "middle": [],
                        "last": "Mino",
                        "suffix": ""
                    },
                    {
                        "first": "Isao",
                        "middle": [],
                        "last": "Goto",
                        "suffix": ""
                    },
                    {
                        "first": "Win",
                        "middle": [
                            "Pa"
                        ],
                        "last": "Pa",
                        "suffix": ""
                    },
                    {
                        "first": "Anoop",
                        "middle": [],
                        "last": "Kunchukuttan",
                        "suffix": ""
                    },
                    {
                        "first": "Shantipriya",
                        "middle": [],
                        "last": "Parida",
                        "suffix": ""
                    },
                    {
                        "first": "Ond\u0159ej",
                        "middle": [],
                        "last": "Bojar",
                        "suffix": ""
                    },
                    {
                        "first": "Sadao",
                        "middle": [],
                        "last": "Kurohashi",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 7th Workshop on Asian Translation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Toshiaki Nakazawa, Hideki Nakayama, Chenchen Ding, Raj Dabre, Hideya Mino, Isao Goto, Win Pa Pa, Anoop Kunchukuttan, Shantipriya Parida, Ond\u0159ej Bojar, and Sadao Kurohashi. 2020. Overview of the 7th Workshop on Asian Transla- tion. In Proceedings of the 7th Workshop on Asian Translation, Suzhou, China. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "The ADAPT Centre's Participation in WAT 2020 English-to-Odia Translation Task",
                "authors": [
                    {
                        "first": "Prashanth",
                        "middle": [],
                        "last": "Nayak",
                        "suffix": ""
                    },
                    {
                        "first": "Rejwanul",
                        "middle": [],
                        "last": "Haque",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the the 7th Workshop on Asian Translation (WAT 2020), AACL-IJCNLP 2020, page",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Prashanth Nayak, Rejwanul Haque, and Andy Way. 2020a. The ADAPT Centre's Participation in WAT 2020 English-to-Odia Translation Task. In Proceed- ings of the the 7th Workshop on Asian Translation (WAT 2020), AACL-IJCNLP 2020, page (in press), Suzhou, China.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "The ADAPT's submissions to the WMT20 biomedical translation task",
                "authors": [
                    {
                        "first": "Prashanth",
                        "middle": [],
                        "last": "Nayak",
                        "suffix": ""
                    },
                    {
                        "first": "Rejwanul",
                        "middle": [],
                        "last": "Haque",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Fifth Conference on Machine Translation (Shared Task Papers (Biomedical)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Prashanth Nayak, Rejwanul Haque, and Andy Way. 2020b. The ADAPT's submissions to the WMT20 biomedical translation task. In Proceedings of the Fifth Conference on Machine Translation (Shared Task Papers (Biomedical), Punta Cana, Dominican Republic.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "BLEU: a Method for Automatic Evaluation of Machine Translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {
                    "DOI": [
                        "10.3115/1073083.1073135"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. BLEU: a Method for Automatic Evaluation of Machine Translation. In Proceed- ings of the 40th Annual Meeting of the Associa- tion for Computational Linguistics, pages 311-318, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Rejwanul Haque, and Andy Way. 2020. The ADAPT system description for the WMT20 news translation task",
                "authors": [
                    {
                        "first": "Akshai",
                        "middle": [],
                        "last": "Venkatesh Balavadhani Parthasarathy",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ramesh",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Proceedings of the Fifth Conference on Machine Translation (Shared Task Papers (News))",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Venkatesh Balavadhani Parthasarathy, Akshai Ramesh, Rejwanul Haque, and Andy Way. 2020. The ADAPT system description for the WMT20 news translation task. In Proceedings of the Fifth Confer- ence on Machine Translation (Shared Task Papers (News)), Punta Cana, Dominican Republic.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Investigating Backtranslation in Neural Machine Translation",
                "authors": [
                    {
                        "first": "Alberto",
                        "middle": [],
                        "last": "Poncelas",
                        "suffix": ""
                    },
                    {
                        "first": "Dimitar",
                        "middle": [],
                        "last": "Shterionov",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of The 21st Annual Conference of the European Association for Machine Translation (EAMT 2018)",
                "volume": "",
                "issue": "",
                "pages": "249--258",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alberto Poncelas, Dimitar Shterionov, Andy Way, Gideon Maillette de Buy Wenniger, and Peyman Passban. 2018. Investigating Backtranslation in Neural Machine Translation. In Proceedings of The 21st Annual Conference of the European Association for Machine Translation (EAMT 2018), pages 249- 258, Alicante, Spain.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Comparing Corpora using Frequency Profiling",
                "authors": [
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Rayson",
                        "suffix": ""
                    },
                    {
                        "first": "Roger",
                        "middle": [],
                        "last": "Garside",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1--6",
                "other_ids": {
                    "DOI": [
                        "10.3115/1117729.1117730"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Paul Rayson and Roger Garside. 2000. Comparing Corpora using Frequency Profiling. In The Work- shop on Comparing Corpora, pages 1-6, Hong Kong, China. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Improving Neural Machine Translation Models with Monolingual Data",
                "authors": [
                    {
                        "first": "Rico",
                        "middle": [],
                        "last": "Sennrich",
                        "suffix": ""
                    },
                    {
                        "first": "Barry",
                        "middle": [],
                        "last": "Haddow",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Birch",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "86--96",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P16-1009"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016a. Improving Neural Machine Translation Models with Monolingual Data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 86-96, Berlin, Germany. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Neural Machine Translation of Rare Words with Subword Units",
                "authors": [
                    {
                        "first": "Rico",
                        "middle": [],
                        "last": "Sennrich",
                        "suffix": ""
                    },
                    {
                        "first": "Barry",
                        "middle": [],
                        "last": "Haddow",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Birch",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "1715--1725",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P16-1162"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016b. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715- 1725, Berlin, Germany. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Disambiguation of ambiguous biomedical terms using examples generated from the UMLS Metathesaurus",
                "authors": [
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Stevenson",
                        "suffix": ""
                    },
                    {
                        "first": "Yikun",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Journal of Biomedical Informatics",
                "volume": "43",
                "issue": "5",
                "pages": "762--773",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mark Stevenson and Yikun Guo. 2010. Disambigua- tion of ambiguous biomedical terms using examples generated from the UMLS Metathesaurus. Journal of Biomedical Informatics, 43(5):762-773.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Parallel Data, Tools and Interfaces in OPUS",
                "authors": [
                    {
                        "first": "J\u00f6rg",
                        "middle": [],
                        "last": "Tiedemann",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC-2012)",
                "volume": "",
                "issue": "",
                "pages": "2214--2218",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J\u00f6rg Tiedemann. 2012. Parallel Data, Tools and Inter- faces in OPUS. In Proceedings of the Eighth In- ternational Conference on Language Resources and Evaluation (LREC-2012), pages 2214-2218, Istan- bul, Turkey. European Languages Resources Associ- ation (ELRA).",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Transductive learning for statistical machine translation",
                "authors": [
                    {
                        "first": "Nicola",
                        "middle": [],
                        "last": "Ueffing",
                        "suffix": ""
                    },
                    {
                        "first": "Gholamreza",
                        "middle": [],
                        "last": "Haffari",
                        "suffix": ""
                    },
                    {
                        "first": "Anoop",
                        "middle": [],
                        "last": "Sarkar",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "25--32",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nicola Ueffing, Gholamreza Haffari, and Anoop Sarkar. 2007. Transductive learning for statistical machine translation. In Proceedings of the 45th Annual Meet- ing of the Association of Computational Linguistics, pages 25-32, Prague, Czech Republic. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "\u0141ukasz",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "6000--6010",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Pro- cessing Systems, pages 6000-6010.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Compact personalized models for neural machine translation",
                "authors": [
                    {
                        "first": "Joern",
                        "middle": [],
                        "last": "Wuebker",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Simianer",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Denero",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "881--886",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1104"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Joern Wuebker, Patrick Simianer, and John DeNero. 2018. Compact personalized models for neural ma- chine translation. In Proceedings of the 2018 Con- ference on Empirical Methods in Natural Language Processing, pages 881-886, Brussels, Belgium. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Exploiting Source-side Monolingual Data in Neural Machine Translation",
                "authors": [
                    {
                        "first": "Jiajun",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Chengqing",
                        "middle": [],
                        "last": "Zong",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "1535--1545",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D16-1160"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jiajun Zhang and Chengqing Zong. 2016. Exploiting Source-side Monolingual Data in Neural Machine Translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Process- ing, pages 1535-1545, Austin, Texas. Association for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "content": "<table/>",
                "text": "Sentences from the AI blind test set.",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF1": {
                "content": "<table><tr><td colspan=\"4\">presents the corpus statistics. The development set</td></tr><tr><td>In-domain</td><td colspan=\"3\">sentences words (EN) words (HI)</td></tr><tr><td>Train</td><td>4,872</td><td>77,301</td><td>82,815</td></tr><tr><td>Development</td><td>400</td><td>7,031</td><td>7,064</td></tr><tr><td colspan=\"2\">Out-of-domain 1,102,511</td><td>22.4M</td><td>23.4M</td></tr><tr><td colspan=\"2\">Hindi Monolingual</td><td/><td/></tr><tr><td>Setup 1</td><td>1M</td><td/><td>18.8M</td></tr><tr><td>Setup 2</td><td>7.82M</td><td/><td>142.9M</td></tr></table>",
                "text": "",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF2": {
                "content": "<table/>",
                "text": "The Corpus statistics.",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF3": {
                "content": "<table><tr><td/><td>rep-</td></tr><tr><td/><td>BLEU</td></tr><tr><td>Base</td><td>28.97</td></tr><tr><td>Base2 (Base + 1M Syn)</td><td>30.80</td></tr><tr><td>Base3 (Base + 8M Syn)</td><td>29.97</td></tr><tr><td>Base2 + Mixed FT</td><td>42.02</td></tr><tr><td>Base3 + Mixed FT</td><td>43.03</td></tr><tr><td colspan=\"2\">Base2 + Mixed FT + ST 43.00</td></tr><tr><td colspan=\"2\">Base3 + Mixed FT + ST 43.51</td></tr></table>",
                "text": "",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF4": {
                "content": "<table/>",
                "text": "The BLEU scores of the English-to-Hindi NMT systems.",
                "type_str": "table",
                "num": null,
                "html": null
            },
            "TABREF6": {
                "content": "<table/>",
                "text": "The BLEU scores of the MT systems on the blind test set.",
                "type_str": "table",
                "num": null,
                "html": null
            }
        }
    }
}