File size: 104,444 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:30:20.262984Z"
},
"title": "Terminology-Aware Sentence Mining for NMT Domain Adaptation: ADAPT's Submission to the Adap-MT 2020 English-to-Hindi AI Translation Shared Task",
"authors": [
{
"first": "Rejwanul",
"middle": [],
"last": "Haque",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Dublin City University Dublin",
"location": {
"country": "Ireland"
}
},
"email": ""
},
{
"first": "Yasmin",
"middle": [],
"last": "Moslem",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Dublin City University Dublin",
"location": {
"country": "Ireland"
}
},
"email": ""
},
{
"first": "Andy",
"middle": [],
"last": "Way",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Dublin City University Dublin",
"location": {
"country": "Ireland"
}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "This paper describes the ADAPT Centre's submission to the Adap-MT 2020 AI Translation Shared Task for English-to-Hindi. The neural machine translation (NMT) systems that we built to translate AI domain texts are state-ofthe-art Transformer models. In order to improve the translation quality of our NMT systems, we made use of both in-domain and outof-domain data for training and employed different fine-tuning techniques for adapting our NMT systems to this task, e.g. mixed finetuning and on-the-fly self-training. For this, we mined parallel sentence pairs and monolingual sentences from large out-of-domain data, and the mining process was facilitated through automatic extraction of terminology from the in-domain data. This paper outlines the experiments we carried out for this task and reports the performance of our NMT systems on the evaluation test set.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "This paper describes the ADAPT Centre's submission to the Adap-MT 2020 AI Translation Shared Task for English-to-Hindi. The neural machine translation (NMT) systems that we built to translate AI domain texts are state-ofthe-art Transformer models. In order to improve the translation quality of our NMT systems, we made use of both in-domain and outof-domain data for training and employed different fine-tuning techniques for adapting our NMT systems to this task, e.g. mixed finetuning and on-the-fly self-training. For this, we mined parallel sentence pairs and monolingual sentences from large out-of-domain data, and the mining process was facilitated through automatic extraction of terminology from the in-domain data. This paper outlines the experiments we carried out for this task and reports the performance of our NMT systems on the evaluation test set.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "ADAPT Centre participated in the Adap-MT 2020 Translation Shared Task 1 of the 17th International Conference on Natural Language Processing (ICON 2020). 2 This task aims at evaluating machine translation (MT) systems on the translation of documents from two domains (AI and Chemistry) involving low-resource Indic languages. The task addresses a number of translation directions, and we participated in the English-to-Hindi translation task and focused on translating the AI texts only. To make the readers familiar with the AI translation task and to understand the challenges of this task, we show a couple of sentences from the blind test set in Table 1. (1) Machine learning (ML) is a branch of AI that allows chatbots to identify patterns in human language and learn from past conversations. (2) Approaches include statistical methods, computational intelligence, and traditional symbolic AI. Our MT systems are Transformer models (Vaswani et al., 2017) which were trained using the Marian-NMT toolkit. 3 In this work, we applied different data augmentation and domain adaptation techniques to train our models, such as using synthetic data from target-side monolingual data through the use of back-translation (Sennrich et al., 2016a; Poncelas et al., 2018) , mixed fine-tuning (Chu et al., 2017 ) and on-the-fly model adaption (Chinea-R\u00edos et al., 2017) . As for the latter two approaches, we mined sentences and sentence pairs from large out-of-domain monolingual and parallel corpora, respectively, based on domain terms appearing in the in-domain data. Note that the terms were extracted automatically from the in-domain data.",
"cite_spans": [
{
"start": 936,
"end": 958,
"text": "(Vaswani et al., 2017)",
"ref_id": "BIBREF33"
},
{
"start": 1008,
"end": 1009,
"text": "3",
"ref_id": null
},
{
"start": 1216,
"end": 1240,
"text": "(Sennrich et al., 2016a;",
"ref_id": "BIBREF28"
},
{
"start": 1241,
"end": 1263,
"text": "Poncelas et al., 2018)",
"ref_id": "BIBREF26"
},
{
"start": 1284,
"end": 1301,
"text": "(Chu et al., 2017",
"ref_id": "BIBREF6"
},
{
"start": 1334,
"end": 1360,
"text": "(Chinea-R\u00edos et al., 2017)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [
{
"start": 649,
"end": 657,
"text": "Table 1.",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "This remainder of the paper is organized as follows. Section 2 presents our approaches. We describe the resources we utilized for training in Section 3. Section 4 presents the results obtained, and Section 5 concludes our work with avenues for future work.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The use of unlabeled monolingual data in addition to limited bitexts for NMT training (Sennrich et al., 2016a; Zhang and Zong, 2016; Burlot and Yvon, 2018; Poncelas et al., 2018; Caswell et al., 2019) is nowadays a common practice in MT development (Barrault et al., 2020) . This has even more impact when applied to the specialised domains and many language pairs, for which obtaining parallel data is a challenge.",
"cite_spans": [
{
"start": 86,
"end": 110,
"text": "(Sennrich et al., 2016a;",
"ref_id": "BIBREF28"
},
{
"start": 111,
"end": 132,
"text": "Zhang and Zong, 2016;",
"ref_id": "BIBREF35"
},
{
"start": 133,
"end": 155,
"text": "Burlot and Yvon, 2018;",
"ref_id": "BIBREF2"
},
{
"start": 156,
"end": 178,
"text": "Poncelas et al., 2018;",
"ref_id": "BIBREF26"
},
{
"start": 179,
"end": 200,
"text": "Caswell et al., 2019)",
"ref_id": "BIBREF3"
},
{
"start": 249,
"end": 272,
"text": "(Barrault et al., 2020)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Training Data Augmentation",
"sec_num": "2.1"
},
{
"text": "In this task, in order to improve our baseline English-to-Hindi Transformer model, we augmented our training data with target-original synthetic data. As in Caswell et al. (2019) , in order to let the NMT model know that the given source is synthetic, we tag the source sentences of the synthetic data with the extra tokens. Iterative generation and training on synthetic data can yield increasingly better NMT systems, especially in lowresource scenarios (Hoang et al., 2018; Chen et al., 2019) . Since our baseline target-to-source (Hindito-English) MT system is already good in quality, it was used to translate the Hindi monolingual data.",
"cite_spans": [
{
"start": 157,
"end": 178,
"text": "Caswell et al. (2019)",
"ref_id": "BIBREF3"
},
{
"start": 456,
"end": 476,
"text": "(Hoang et al., 2018;",
"ref_id": "BIBREF13"
},
{
"start": 477,
"end": 495,
"text": "Chen et al., 2019)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Training Data Augmentation",
"sec_num": "2.1"
},
{
"text": "As for adapting our baseline MT model to the AI domain, we implemented mixed fine-tuning of model parameters, where fine-tuning is conducted on the training data that consists of both in-domain and out-of-domain data as described in Chu et al. (2017) . The shared task organisers released parallel training data of the AI domain with a limited number of in-domain examples (only 4,872 sentence pairs). The in-domain data was augmented by oversampling the AI training set several times, and an almost similar sized out-of-domain data set is mined from the parallel (out-of-domain) training corpus on which our baseline NMT system was trained. This strategy worked well for us when we translated business scene dialogue (Jooste et al., 2020) in the WAT 2020 4 (Nakazawa et al., 2020) document-level translation task. However, the adaptation method presented in this paper slightly differs from the conventional mixed finetuning (Chu et al., 2017; Jooste et al., 2020) , and is described below.",
"cite_spans": [
{
"start": 233,
"end": 250,
"text": "Chu et al. (2017)",
"ref_id": "BIBREF6"
},
{
"start": 718,
"end": 739,
"text": "(Jooste et al., 2020)",
"ref_id": null
},
{
"start": 926,
"end": 944,
"text": "(Chu et al., 2017;",
"ref_id": "BIBREF6"
},
{
"start": 945,
"end": 965,
"text": "Jooste et al., 2020)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Mixed Fine-Tuning",
"sec_num": "2.2"
},
{
"text": "Terms are usually indicators of the nature of a domain and play a critical role in domain-specific MT (Haque et al., 2019 . Sentences that contain in-domain terms are likely to be in-domain sentences. However, an ambiguous term could have more than one potential meaning. As an example of lexical ambiguity, 'cold' has several possible meanings in the Unified Medical Language System Metathesaurus (Humphreys et al., 1998) including 'common cold', 'cold sensation' and 'cold temperature' (Stevenson and Guo, 2010) . Moreover, a polysemous term (e.g. 'cold') could have many translation equivalents in a target language. With this in mind, we mined those training examples (i.e. sentence pairs) from the large out-of-domain domain parallel corpus whose source or target sentences contain at least one domain term. As pointed out earlier, an extracted out-of-domain sentence that contain a domain term may not represent the desired domain; however, the training examples that include such sentences may play a crucial role in minimising lexical selection errors as far as terminology translation in NMT is concerned (Haque et al., 2019 .",
"cite_spans": [
{
"start": 102,
"end": 121,
"text": "(Haque et al., 2019",
"ref_id": "BIBREF8"
},
{
"start": 398,
"end": 422,
"text": "(Humphreys et al., 1998)",
"ref_id": "BIBREF15"
},
{
"start": 488,
"end": 513,
"text": "(Stevenson and Guo, 2010)",
"ref_id": "BIBREF30"
},
{
"start": 1114,
"end": 1133,
"text": "(Haque et al., 2019",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Mixed Fine-Tuning",
"sec_num": "2.2"
},
{
"text": "To this end, we exploit the approaches of Rayson and Garside (2000) and Haque et al. (2014 Haque et al. ( , 2018 in order to automatically identify terms in the indomain texts. The idea is to identify those words which are most indicative (or characteristic) of the in-domain corpus compared to a reference corpus. Haque et al. (2014 Haque et al. ( , 2018 used a large corpus which is generic in nature as a reference corpus. We adopted their approach and used a large generic corpus in order to identify terms in the in-domain source (English) and target (Hindi) corpora. In our setup, we also used the source and target sides of the out-of-domain training bitexts on which our baseline NMT system was trained as the reference corpora. The intuition is again the same, i.e. to extract those (terminological) expressions from the in-domain data that do not occur or rarely occur in the training data and are more indicative of the indomain AI corpus. Given the lists of source and target terms, we mine sentences independently from the source and target sides of the out-of-domain bilingual corpus. As pointed out above, we select those sentence pairs from the out-of-domain bilingual corpus whose source or target sides contain at least one domain term. In Nayak et al. (2020b) , we empirically showed that such \"pseudo\" in-domain sentences are more effective than those mined using bilingual cross-entropy difference according to the in-domain language model (Axelrod et al., 2011) for NMT model adaptation.",
"cite_spans": [
{
"start": 42,
"end": 67,
"text": "Rayson and Garside (2000)",
"ref_id": "BIBREF27"
},
{
"start": 72,
"end": 90,
"text": "Haque et al. (2014",
"ref_id": "BIBREF11"
},
{
"start": 91,
"end": 112,
"text": "Haque et al. ( , 2018",
"ref_id": "BIBREF12"
},
{
"start": 315,
"end": 333,
"text": "Haque et al. (2014",
"ref_id": "BIBREF11"
},
{
"start": 334,
"end": 355,
"text": "Haque et al. ( , 2018",
"ref_id": "BIBREF12"
},
{
"start": 1258,
"end": 1278,
"text": "Nayak et al. (2020b)",
"ref_id": "BIBREF23"
},
{
"start": 1461,
"end": 1483,
"text": "(Axelrod et al., 2011)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Mixed Fine-Tuning",
"sec_num": "2.2"
},
{
"text": "As in Kobus et al. (2017) , in order to inform the NMT model about the domain during training and decoding, we add a (domain) tag at the begin-ning of the source sentences of the in-domain data, which allows us to control the output domain of the trained system. The NMT system is finally finetuned on the mixture of the in-domain and mined out-of-domain corpora.",
"cite_spans": [
{
"start": 6,
"end": 25,
"text": "Kobus et al. (2017)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Mixed Fine-Tuning",
"sec_num": "2.2"
},
{
"text": "Chinea-R\u00edos et al. 2017demonstrated that in the case of specialised domains where parallel corpora are scarce, sentences of a large monolingual data that are more related to the test set sentences to be translated could be effective for fine-tuning the original general domain NMT model. They select those instances from a large monolingual corpus whose vector-space representation is similar to the representation of the test set instances. The selected sentences are then automatically translated by an NMT system built on a general domain data. Finally, the NMT system is fine-tuned with the resultant synthetic data. The synthetic training data whose source-side sentences are original could be more effective for domain adaptation, and the learning method that uses such training data is called 'self-training' (Ueffing et al., 2007) . In a similar line of research, it has also been shown that an NMT system built on general domain data can be fine-tuned using just a few sentences (Farajian et al., 2017; Wuebker et al., 2018; Huck et al., 2019) .",
"cite_spans": [
{
"start": 816,
"end": 838,
"text": "(Ueffing et al., 2007)",
"ref_id": "BIBREF32"
},
{
"start": 988,
"end": 1011,
"text": "(Farajian et al., 2017;",
"ref_id": "BIBREF7"
},
{
"start": 1012,
"end": 1033,
"text": "Wuebker et al., 2018;",
"ref_id": "BIBREF34"
},
{
"start": 1034,
"end": 1052,
"text": "Huck et al., 2019)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Mining Sentences for Fine-tuning",
"sec_num": "2.3"
},
{
"text": "We followed Chinea-R\u00edos et al. (2017) in order to mine those sentences from large monolingual datasets that could be beneficial for fine-tuning the original NMT model. As in Jooste et al. (2020); Nayak et al. (2020b); Parthasarathy et al. (2020), we first identified terms in the AI test set to be translated, and given the list of extracted terms, English sentences which were mined from large monolingual data are similar in style to the AI test set sentences. To put it another way, we followed the method described in Section 2.2 in order to extract sentences form large monolingual corpus. The monolingual corpus that we used for this purpose contains 95,918,840 sentences which were sampled from CommonCrawl 5 and Wikipedia Dumps. 6 The English source sentences that have been mined were translated into Hindi using the best MT system (cf. through mixed fine-tuning strategy) to create synthetic data (i.e. source-side original synthetic corpus (SOSC)) to be used for fine-tuning the same NMT model.",
"cite_spans": [
{
"start": 737,
"end": 738,
"text": "6",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Mining Sentences for Fine-tuning",
"sec_num": "2.3"
},
{
"text": "For building our baseline models (forward and backward), we used only the bilingual data provided by the task organisers. As for Hindi monolingual sentences for back-translation, we sampled them from AI4Bharat-IndicNLP Corpus . The out-of-domain parallel data is compiled from a variety of existing sources, e.g. OPUS 7 (Tiedemann, 2012) , and after applying standard cleaning procedures including applying a language identifier 8 we are left with just over 1.1 million parallel sentence pairs. (cf . Table 2 ) of the AI English-to-Hindi translation task consists only of 400 sentence pairs. For experimentation, we considered its first 200 sentence pairs as development set and the remainder as the evaluation test set. We used two different sized monolingual datasets for our back-translation experiments (cf. last rows of Table 2 ). As pointed out earlier, our NMT systems are Transformer models. The tokens of the training, evaluation and validation sets are segmented into sub-word units using Byte-Pair Encoding (BPE) (Sennrich et al., 2016b) , and BPE is applied individually on the source and target languages. From our experiences (Jooste et al., 2020; Nayak et al., 2020b,a; Parthasarathy et al., 2020) in the participation in the recent shared translation tasks (Barrault et al., 2020; Mayhew et al., 2020; Nakazawa et al., 2020) involving lowresource language pairs and domains, we found that the following configuration usually leads to the best results in our low-resource translation settings: (i) the BPE vocabulary size: 6,000, (ii) the sizes of the encoder and decoder layers: 4 and 6, respectively, and (iii) learning-rate: 0.0003. As for the remaining hyperparameters, we followed the recommended best setup from Vaswani et al. (2017) . The early stopping criterion is based on cross-entropy; however, the final NMT system is selected as per the highest BLEU score on the validation set. The beam size for search is set to 6. We make our final NMT model with ensembles of 8 models that are sampled from the training run.",
"cite_spans": [
{
"start": 320,
"end": 337,
"text": "(Tiedemann, 2012)",
"ref_id": "BIBREF31"
},
{
"start": 1024,
"end": 1048,
"text": "(Sennrich et al., 2016b)",
"ref_id": "BIBREF29"
},
{
"start": 1140,
"end": 1161,
"text": "(Jooste et al., 2020;",
"ref_id": null
},
{
"start": 1162,
"end": 1184,
"text": "Nayak et al., 2020b,a;",
"ref_id": null
},
{
"start": 1185,
"end": 1212,
"text": "Parthasarathy et al., 2020)",
"ref_id": null
},
{
"start": 1273,
"end": 1296,
"text": "(Barrault et al., 2020;",
"ref_id": null
},
{
"start": 1297,
"end": 1317,
"text": "Mayhew et al., 2020;",
"ref_id": "BIBREF20"
},
{
"start": 1318,
"end": 1340,
"text": "Nakazawa et al., 2020)",
"ref_id": "BIBREF21"
},
{
"start": 1733,
"end": 1754,
"text": "Vaswani et al. (2017)",
"ref_id": "BIBREF33"
}
],
"ref_spans": [
{
"start": 499,
"end": 508,
"text": ". Table 2",
"ref_id": "TABREF1"
},
{
"start": 825,
"end": 832,
"text": "Table 2",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Data Used and Training Setups",
"sec_num": "3"
},
{
"text": "This section presents the performance of our MT systems in terms of the automatic evaluation metric BLEU (Papineni et al., 2002) . Additionally, we performed statistical significance tests using bootstrap resampling methods (Koehn, 2004) . We obtained the BLEU scores of our MT systems to evaluate them on the test set, and the scores are reported in Table 3 . The first row of resents our baseline English-to-Hindi MT system. The Hindi-to-English MT system which has been used to translate the Hindi monolingual sentences to English is of good quality (i.e. it produces 28.76 BLEU points on the test set). The BLEU scores of the MT systems (Base2 and Base3) trained on training data that consists of both authentic and synthetic parallel data are shown in the next two rows of Table 3 (cf. Section 2.1).",
"cite_spans": [
{
"start": 105,
"end": 128,
"text": "(Papineni et al., 2002)",
"ref_id": "BIBREF24"
},
{
"start": 224,
"end": 237,
"text": "(Koehn, 2004)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [
{
"start": 351,
"end": 358,
"text": "Table 3",
"ref_id": "TABREF3"
},
{
"start": 778,
"end": 785,
"text": "Table 3",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Experiments and Results",
"sec_num": "4"
},
{
"text": "Source-target sentence pairs were mined from out-of-domain training bitexts for mixed finetuning (see Section 2.2). The number of sentence pairs that have been mined is 167,234. We also augmented the in-domain parallel corpus via oversampling in-domain sentences, and by this, the size of the in-domain bitexts becomes 97,440. We finally fine-tuned Base2 and Base3 on the training data that is a mixture of (augmented) in-domain and (mined) out-of-domain data. The BLEU scores of the MT systems (Base2 + Mixed FT and Base3 + Mixed FT) which are the results of the fine-tuning process are presented in the fourth and fifth rows of Table 3 . One of our three submission (Run1) is with Base3 + Mixed FT. We select Base2 + Mixed FT and Base3 + Mixed FT for further adaptation.",
"cite_spans": [],
"ref_spans": [
{
"start": 630,
"end": 637,
"text": "Table 3",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Experiments and Results",
"sec_num": "4"
},
{
"text": "Following the method described in Section 2.3, we mined English sentences (a total of 27,644 sentences) from a large monolingual corpus (cf. Section 2.3) given the list of terms (a total of 356 terms) appearing in the test set. Then, SOSC was created by translating these mined English sentences into Hindi using the respective MT system. Finally, the best MT systems (Base2 + Mixed FT or Base3 + Mixed FT) were fine-tuned on the resultant SOSC. The BLEU scores of the adapted MT systems on the test set are shown in the last rows of Table 3 . When we compare the original MT systems with the adapted MT systems, we see that (i) the adapted version of Base2 + Mixed FT, Base2 + Mixed FT + ST, produces a 0.98 BLEU point (corresponding to 2.33% relative) improvement over Base2 + Mixed FT, and (ii) the same of Base3 + Mixed FT, Base3 + Mixed FT + ST, produces a 0.48 BLEU point (corresponding to 1.1% relative) improvement over Base3 + Mixed FT. The former improvement is statistically significant but the latter is not.",
"cite_spans": [],
"ref_spans": [
{
"start": 534,
"end": 541,
"text": "Table 3",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Experiments and Results",
"sec_num": "4"
},
{
"text": "As above, we created the adapted MT systems for the blind test set which consists of 401 sentences. Our terminology extraction model identified 1,599 AI terms in the blind test set. We mined 98,009 English sentences from the large monolingual data given the list of terms. We followed the approach described above for fine-tuning our best two models (Base2 + Mixed FT and Base3 + Mixed FT) in order to translate the blind test set sentences. The BLEU scores of our MT systems on the blind test set, which the task organisers published, are shown in Table 4 ",
"cite_spans": [],
"ref_spans": [
{
"start": 549,
"end": 556,
"text": "Table 4",
"ref_id": "TABREF6"
}
],
"eq_spans": [],
"section": "Experiments and Results",
"sec_num": "4"
},
{
"text": "In this paper, we described our MT systems that were submitted to the Adap-MT 2020 AI translation shared task. We presented our results obtained at the time of development of our MT systems. In order to adapt our MT systems to translate texts of AI domains, we subsequently applied two existing fine-tuning techniques while using a term extraction model in the translation pipeline for mining sentences similar to the domain and style of those of the AI data. We showed that, in the case of limited in-domain training data, both out-of-domain data which are selected via term-based mining protocol and in-domain data are useful for fine-tuning model parameters, which essentially provides our best results in this translation task. Furthermore, making use of synthetic parallel data in training also greatly increased the performance of our MT systems. As for the shared task's system rankings, our three submissions Run3, Run2 and Run1 secured second, third and fourth positions, respectively.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
},
{
"text": "In future, we aim to apply our strategy to other domains and language pairs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "5"
},
{
"text": "https://ssmt.iiit.ac.in/ machinetranslation.html 2 https://www.iitp.ac.in/\u02dcai-nlp-ml/ icon2020/main_prog.html",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://github.com/marian-nmt/marian",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://lotus.kuee.kyoto-u.ac.jp/WAT/ WAT2020/index.html",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://web-language-models. s3-website-us-east-1.amazonaws.com/ wmt16/deduped/en-new.xz 6 http://data.statmt.org/wmt20/ translation-task/ps-km/wikipedia.en.lid_ filtered.test_filtered.xz",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://opus.lingfil.uu.se/ 8 https://pypi.org/project/pycld2/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "The ADAPT Centre for Digital Content Technology is funded under the Science Foundation Ireland (SFI) Research Centres Programme (Grant No. 13/RC/2106) and is co-funded under the European Regional Development Fund. The publication has emanated from research supported in part by a research grant from SFI under Grant Number 13/RC/2077 and 18/CRT/6224.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Domain Adaptation via Pseudo In-Domain Data Selection",
"authors": [
{
"first": "Amittai",
"middle": [],
"last": "Axelrod",
"suffix": ""
},
{
"first": "Xiaodong",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Jianfeng",
"middle": [],
"last": "Gao",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "355--362",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Amittai Axelrod, Xiaodong He, and Jianfeng Gao. 2011. Domain Adaptation via Pseudo In-Domain Data Selection. In Proceedings of the 2011 Con- ference on Empirical Methods in Natural Language Processing, pages 355-362, Edinburgh, Scotland, UK. Association for Computational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Santanu Pal, Matt Post, and Marcos Zampieri. 2020. Findings of the 2020 Conference on Machine Translation (WMT20). In Proceedings of the Fifth Conference on Machine Translation",
"authors": [
{
"first": "Lo\u00efc",
"middle": [],
"last": "Barrault",
"suffix": ""
},
{
"first": "Magdalena",
"middle": [],
"last": "Biesialska",
"suffix": ""
},
{
"first": "Ond\u0159ej",
"middle": [],
"last": "Bojar",
"suffix": ""
},
{
"first": "Marta",
"middle": [
"R"
],
"last": "Costa-Juss\u00e0",
"suffix": ""
},
{
"first": "Christian",
"middle": [],
"last": "Federmann",
"suffix": ""
},
{
"first": "Yvette",
"middle": [],
"last": "Graham",
"suffix": ""
},
{
"first": "Roman",
"middle": [],
"last": "Grundkiewicz",
"suffix": ""
},
{
"first": "Barry",
"middle": [],
"last": "Haddow",
"suffix": ""
},
{
"first": "Matthias",
"middle": [],
"last": "Huck",
"suffix": ""
},
{
"first": "Eric",
"middle": [],
"last": "Joanis",
"suffix": ""
},
{
"first": "Tom",
"middle": [],
"last": "Kocmi",
"suffix": ""
},
{
"first": "Philipp",
"middle": [],
"last": "Koehn",
"suffix": ""
},
{
"first": "Chi-Kiu",
"middle": [],
"last": "Lo",
"suffix": ""
},
{
"first": "Nikola",
"middle": [],
"last": "Ljube\u0161i\u0107",
"suffix": ""
},
{
"first": "Christof",
"middle": [],
"last": "Monz",
"suffix": ""
},
{
"first": "Makoto",
"middle": [],
"last": "Morishita",
"suffix": ""
},
{
"first": "Masaaki",
"middle": [],
"last": "Nagata",
"suffix": ""
},
{
"first": "Toshiaki",
"middle": [],
"last": "Nakazawa",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "1--54",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lo\u00efc Barrault, Magdalena Biesialska, Ond\u0159ej Bojar, Marta R. Costa-juss\u00e0, Christian Federmann, Yvette Graham, Roman Grundkiewicz, Barry Haddow, Matthias Huck, Eric Joanis, Tom Kocmi, Philipp Koehn, Chi-kiu Lo, Nikola Ljube\u0161i\u0107, Christof Monz, Makoto Morishita, Masaaki Nagata, Toshi- aki Nakazawa, Santanu Pal, Matt Post, and Mar- cos Zampieri. 2020. Findings of the 2020 Confer- ence on Machine Translation (WMT20). In Pro- ceedings of the Fifth Conference on Machine Trans- lation, pages 1-54, Online. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Using Monolingual Data in Neural Machine Translation: a Systematic Study",
"authors": [
{
"first": "Franck",
"middle": [],
"last": "Burlot",
"suffix": ""
},
{
"first": "Fran\u00e7ois",
"middle": [],
"last": "Yvon",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Third Conference on Machine Translation: Research Papers",
"volume": "",
"issue": "",
"pages": "144--155",
"other_ids": {
"DOI": [
"10.18653/v1/W18-6315"
]
},
"num": null,
"urls": [],
"raw_text": "Franck Burlot and Fran\u00e7ois Yvon. 2018. Using Mono- lingual Data in Neural Machine Translation: a Sys- tematic Study. In Proceedings of the Third Con- ference on Machine Translation: Research Papers, pages 144-155, Belgium, Brussels. Association for Computational Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Tagged Back-Translation",
"authors": [
{
"first": "Isaac",
"middle": [],
"last": "Caswell",
"suffix": ""
},
{
"first": "Ciprian",
"middle": [],
"last": "Chelba",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Grangier",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Fourth Conference on Machine Translation",
"volume": "",
"issue": "",
"pages": "53--63",
"other_ids": {
"DOI": [
"10.18653/v1/W19-5206"
]
},
"num": null,
"urls": [],
"raw_text": "Isaac Caswell, Ciprian Chelba, and David Grangier. 2019. Tagged Back-Translation. In Proceedings of the Fourth Conference on Machine Translation (Vol- ume 1: Research Papers), pages 53-63, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Facebook AI's WAT19 Myanmar-English Translation Task Submission",
"authors": [
{
"first": "Peng-Jen",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Jiajun",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "Matthew",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "Vishrav",
"middle": [],
"last": "Chaudhary",
"suffix": ""
},
{
"first": "Ahmed",
"middle": [],
"last": "El-Kishky",
"suffix": ""
},
{
"first": "Guillaume",
"middle": [],
"last": "Wenzek",
"suffix": ""
},
{
"first": "Myle",
"middle": [],
"last": "Ott",
"suffix": ""
},
{
"first": "Marc'aurelio",
"middle": [],
"last": "Ranzato",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 6th Workshop on Asian Translation",
"volume": "",
"issue": "",
"pages": "112--122",
"other_ids": {
"DOI": [
"10.18653/v1/D19-5213"
]
},
"num": null,
"urls": [],
"raw_text": "Peng-Jen Chen, Jiajun Shen, Matthew Le, Vishrav Chaudhary, Ahmed El-Kishky, Guillaume Wenzek, Myle Ott, and Marc'Aurelio Ranzato. 2019. Face- book AI's WAT19 Myanmar-English Translation Task Submission. In Proceedings of the 6th Work- shop on Asian Translation, pages 112-122, Hong Kong, China. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Adapting Neural Machine Translation with Parallel Synthetic Data",
"authors": [
{
"first": "Mara",
"middle": [],
"last": "Chinea-R\u00edos",
"suffix": ""
},
{
"first": "\u00c1lvaro",
"middle": [],
"last": "Peris",
"suffix": ""
},
{
"first": "Francisco",
"middle": [],
"last": "Casacuberta",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the Second Conference on Machine Translation",
"volume": "",
"issue": "",
"pages": "138--147",
"other_ids": {
"DOI": [
"10.18653/v1/W17-4714"
]
},
"num": null,
"urls": [],
"raw_text": "Mara Chinea-R\u00edos,\u00c1lvaro Peris, and Francisco Casacuberta. 2017. Adapting Neural Machine Translation with Parallel Synthetic Data. In Pro- ceedings of the Second Conference on Machine Translation, pages 138-147, Copenhagen, Denmark. Association for Computational Linguistics.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "An Empirical Comparison of Domain Adaptation Methods for Neural Machine Translation",
"authors": [
{
"first": "Chenhui",
"middle": [],
"last": "Chu",
"suffix": ""
},
{
"first": "Raj",
"middle": [],
"last": "Dabre",
"suffix": ""
},
{
"first": "Sadao",
"middle": [],
"last": "Kurohashi",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "2",
"issue": "",
"pages": "385--391",
"other_ids": {
"DOI": [
"10.18653/v1/P17-2061"
]
},
"num": null,
"urls": [],
"raw_text": "Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017. An Empirical Comparison of Domain Adaptation Methods for Neural Machine Translation. In Pro- ceedings of the 55th Annual Meeting of the Associa- tion for Computational Linguistics (Volume 2: Short Papers), pages 385-391, Vancouver, Canada. Asso- ciation for Computational Linguistics.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Multi-Domain Neural Machine Translation through Unsupervised Adaptation",
"authors": [
{
"first": "M",
"middle": [],
"last": "Amin Farajian",
"suffix": ""
},
{
"first": "Marco",
"middle": [],
"last": "Turchi",
"suffix": ""
},
{
"first": "Matteo",
"middle": [],
"last": "Negri",
"suffix": ""
},
{
"first": "Marcello",
"middle": [],
"last": "Federico",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the Second Conference on Machine Translation",
"volume": "",
"issue": "",
"pages": "127--137",
"other_ids": {
"DOI": [
"10.18653/v1/W17-4713"
]
},
"num": null,
"urls": [],
"raw_text": "M. Amin Farajian, Marco Turchi, Matteo Negri, and Marcello Federico. 2017. Multi-Domain Neural Machine Translation through Unsupervised Adapta- tion. In Proceedings of the Second Conference on Machine Translation, pages 127-137, Copenhagen, Denmark. Association for Computational Linguis- tics.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Investigating Terminology Translation in Statistical and Neural Machine Translation: A Case Study on English-to-Hindi and Hindito-English",
"authors": [
{
"first": "Rejwanul",
"middle": [],
"last": "Haque",
"suffix": ""
},
{
"first": "Mohammed",
"middle": [],
"last": "Hasanuzzaman",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Way",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the International Conference on Recent Advances in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "437--446",
"other_ids": {
"DOI": [
"10.26615/978-954-452-056-4_052"
]
},
"num": null,
"urls": [],
"raw_text": "Rejwanul Haque, Mohammed Hasanuzzaman, and Andy Way. 2019. Investigating Terminology Trans- lation in Statistical and Neural Machine Transla- tion: A Case Study on English-to-Hindi and Hindi- to-English. In Proceedings of the International Con- ference on Recent Advances in Natural Language Processing (RANLP 2019), pages 437-446, Varna, Bulgaria. INCOMA Ltd.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Analysing Terminology Translation Errors in Statistical and Neural Machine Translation",
"authors": [
{
"first": "Rejwanul",
"middle": [],
"last": "Haque",
"suffix": ""
},
{
"first": "Mohammed",
"middle": [],
"last": "Hasanuzzaman",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Way",
"suffix": ""
}
],
"year": 2020,
"venue": "Machine Translation",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rejwanul Haque, Mohammed Hasanuzzaman, and Andy Way. 2020a. Analysing Terminology Transla- tion Errors in Statistical and Neural Machine Trans- lation. Machine Translation (in press), 34.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "The ADAPT System Description for the STAPLE 2020 English-to-Portuguese Translation Task",
"authors": [
{
"first": "Rejwanul",
"middle": [],
"last": "Haque",
"suffix": ""
},
{
"first": "Yasmin",
"middle": [],
"last": "Moslem",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Way",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the Fourth Workshop on Neural Generation and Translation",
"volume": "",
"issue": "",
"pages": "144--152",
"other_ids": {
"DOI": [
"10.18653/v1/2020.ngt-1.17"
]
},
"num": null,
"urls": [],
"raw_text": "Rejwanul Haque, Yasmin Moslem, and Andy Way. 2020b. The ADAPT System Description for the STAPLE 2020 English-to-Portuguese Translation Task. In Proceedings of the Fourth Workshop on Neural Generation and Translation, pages 144-152, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Bilingual Termbank Creation via Log-Likelihood Comparison and Phrase-Based Statistical Machine Translation",
"authors": [
{
"first": "Rejwanul",
"middle": [],
"last": "Haque",
"suffix": ""
},
{
"first": "Sergio",
"middle": [],
"last": "Penkale",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Way",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 4th International Workshop on Computational Terminology (Computerm)",
"volume": "",
"issue": "",
"pages": "42--51",
"other_ids": {
"DOI": [
"10.3115/v1/W14-4806"
]
},
"num": null,
"urls": [],
"raw_text": "Rejwanul Haque, Sergio Penkale, and Andy Way. 2014. Bilingual Termbank Creation via Log-Likelihood Comparison and Phrase-Based Statistical Machine Translation. In Proceedings of the 4th International Workshop on Computational Terminology (Comput- erm), pages 42-51, Dublin, Ireland. Association for Computational Linguistics and Dublin City Univer- sity.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "TermFinder: log-likelihood comparison and phrase-based statistical machine translation models for bilingual terminology extraction. Language Resources and Evaluation",
"authors": [
{
"first": "Rejwanul",
"middle": [],
"last": "Haque",
"suffix": ""
},
{
"first": "Sergio",
"middle": [],
"last": "Penkale",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Way",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "52",
"issue": "",
"pages": "365--400",
"other_ids": {
"DOI": [
"10.1007/s10579-018-9412-4"
]
},
"num": null,
"urls": [],
"raw_text": "Rejwanul Haque, Sergio Penkale, and Andy Way. 2018. TermFinder: log-likelihood comparison and phrase-based statistical machine translation models for bilingual terminology extraction. Language Re- sources and Evaluation, 52(2):365-400.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Iterative Back-Translation for Neural Machine Translation",
"authors": [
{
"first": "Duy",
"middle": [],
"last": "Vu Cong",
"suffix": ""
},
{
"first": "Philipp",
"middle": [],
"last": "Hoang",
"suffix": ""
},
{
"first": "Gholamreza",
"middle": [],
"last": "Koehn",
"suffix": ""
},
{
"first": "Trevor",
"middle": [],
"last": "Haffari",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Cohn",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2nd Workshop on Neural Machine Translation and Generation",
"volume": "",
"issue": "",
"pages": "18--24",
"other_ids": {
"DOI": [
"10.18653/v1/W18-2703"
]
},
"num": null,
"urls": [],
"raw_text": "Vu Cong Duy Hoang, Philipp Koehn, Gholamreza Haffari, and Trevor Cohn. 2018. Iterative Back- Translation for Neural Machine Translation. In Pro- ceedings of the 2nd Workshop on Neural Machine Translation and Generation, pages 18-24, Mel- bourne, Australia. Association for Computational Linguistics.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Better OOV Translation with Bilingual Terminology Mining",
"authors": [
{
"first": "Matthias",
"middle": [],
"last": "Huck",
"suffix": ""
},
{
"first": "Viktor",
"middle": [],
"last": "Hangya",
"suffix": ""
},
{
"first": "Alexander",
"middle": [],
"last": "Fraser",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "5809--5815",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1581"
]
},
"num": null,
"urls": [],
"raw_text": "Matthias Huck, Viktor Hangya, and Alexander Fraser. 2019. Better OOV Translation with Bilingual Termi- nology Mining. In Proceedings of the 57th Annual Meeting of the Association for Computational Lin- guistics, pages 5809-5815, Florence, Italy. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "The Unified Medical Language System: An Informatics Research Collaboration",
"authors": [
{
"first": "Betsy",
"middle": [
"L"
],
"last": "Humphreys",
"suffix": ""
},
{
"first": "A",
"middle": [
"B"
],
"last": "Donald",
"suffix": ""
},
{
"first": "Harold",
"middle": [
"M"
],
"last": "Lindberg",
"suffix": ""
},
{
"first": "G. Octo",
"middle": [],
"last": "Schoolman",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Barnett",
"suffix": ""
}
],
"year": 1998,
"venue": "Journal of the American Medical Informatics Association",
"volume": "5",
"issue": "1",
"pages": "1--11",
"other_ids": {
"DOI": [
"10.1136/jamia.1998.0050001"
]
},
"num": null,
"urls": [],
"raw_text": "Betsy L. Humphreys, Donald A. B. Lindberg, Harold M. Schoolman, and G. Octo Barnett. 1998. The Unified Medical Language System: An Infor- matics Research Collaboration. Journal of the Amer- ican Medical Informatics Association, 5(1):1-11.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "2020. The ADAPT Centre's Neural MT Systems for the WAT 2020 Document-Level Translation Task",
"authors": [
{
"first": "Wandri",
"middle": [],
"last": "Jooste",
"suffix": ""
},
{
"first": "Rejwanul",
"middle": [],
"last": "Haque",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Way",
"suffix": ""
}
],
"year": null,
"venue": "Proceedings of the the 7th Workshop on Asian Translation (WAT 2020), AACL-IJCNLP 2020, page",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wandri Jooste, Rejwanul Haque, and Andy Way. 2020. The ADAPT Centre's Neural MT Systems for the WAT 2020 Document-Level Translation Task. In Proceedings of the the 7th Workshop on Asian Trans- lation (WAT 2020), AACL-IJCNLP 2020, page (in press), Suzhou, China.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Domain Control for Neural Machine Translation",
"authors": [
{
"first": "Catherine",
"middle": [],
"last": "Kobus",
"suffix": ""
},
{
"first": "Josep",
"middle": [],
"last": "Crego",
"suffix": ""
},
{
"first": "Jean",
"middle": [],
"last": "Senellart",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the International Conference Recent Advances in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "372--378",
"other_ids": {
"DOI": [
"10.26615/978-954-452-049-6_049"
]
},
"num": null,
"urls": [],
"raw_text": "Catherine Kobus, Josep Crego, and Jean Senellart. 2017. Domain Control for Neural Machine Trans- lation. In Proceedings of the International Confer- ence Recent Advances in Natural Language Process- ing, RANLP 2017, pages 372-378, Varna, Bulgaria. INCOMA Ltd.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Statistical Significance Tests for Machine Translation Evaluation",
"authors": [
{
"first": "Philipp",
"middle": [],
"last": "Koehn",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "388--395",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Philipp Koehn. 2004. Statistical Significance Tests for Machine Translation Evaluation. In Proceed- ings of the 2004 Conference on Empirical Meth- ods in Natural Language Processing, pages 388- 395, Barcelona, Spain. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Embeddings for Indic Languages",
"authors": [
{
"first": "Anoop",
"middle": [],
"last": "Kunchukuttan",
"suffix": ""
},
{
"first": "Divyanshu",
"middle": [],
"last": "Kakwani",
"suffix": ""
},
{
"first": "Satish",
"middle": [],
"last": "Golla",
"suffix": ""
},
{
"first": "Avik",
"middle": [],
"last": "Bhattacharyya",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Mitesh",
"suffix": ""
},
{
"first": "Pratyush",
"middle": [],
"last": "Khapra",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kumar",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:2005.00085"
]
},
"num": null,
"urls": [],
"raw_text": "Anoop Kunchukuttan, Divyanshu Kakwani, Satish Golla, Avik Bhattacharyya, Mitesh M Khapra, Pratyush Kumar, et al. 2020. AI4Bharat-IndicNLP Corpus: Monolingual Corpora and Word Em- beddings for Indic Languages. arXiv preprint arXiv:2005.00085.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Simultaneous Translation and Paraphrase for Language Education",
"authors": [
{
"first": "Stephen",
"middle": [],
"last": "Mayhew",
"suffix": ""
},
{
"first": "Klinton",
"middle": [],
"last": "Bicknell",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Brust",
"suffix": ""
},
{
"first": "Bill",
"middle": [],
"last": "Mcdowell",
"suffix": ""
},
{
"first": "Will",
"middle": [],
"last": "Monroe",
"suffix": ""
},
{
"first": "Burr",
"middle": [],
"last": "Settles",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the Fourth Workshop on Neural Generation and Translation",
"volume": "",
"issue": "",
"pages": "232--243",
"other_ids": {
"DOI": [
"10.18653/v1/2020.ngt-1.28"
]
},
"num": null,
"urls": [],
"raw_text": "Stephen Mayhew, Klinton Bicknell, Chris Brust, Bill McDowell, Will Monroe, and Burr Settles. 2020. Simultaneous Translation and Paraphrase for Lan- guage Education. In Proceedings of the Fourth Workshop on Neural Generation and Translation, pages 232-243, Online. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Overview of the 7th Workshop on Asian Translation",
"authors": [
{
"first": "Toshiaki",
"middle": [],
"last": "Nakazawa",
"suffix": ""
},
{
"first": "Hideki",
"middle": [],
"last": "Nakayama",
"suffix": ""
},
{
"first": "Chenchen",
"middle": [],
"last": "Ding",
"suffix": ""
},
{
"first": "Raj",
"middle": [],
"last": "Dabre",
"suffix": ""
},
{
"first": "Hideya",
"middle": [],
"last": "Mino",
"suffix": ""
},
{
"first": "Isao",
"middle": [],
"last": "Goto",
"suffix": ""
},
{
"first": "Win",
"middle": [
"Pa"
],
"last": "Pa",
"suffix": ""
},
{
"first": "Anoop",
"middle": [],
"last": "Kunchukuttan",
"suffix": ""
},
{
"first": "Shantipriya",
"middle": [],
"last": "Parida",
"suffix": ""
},
{
"first": "Ond\u0159ej",
"middle": [],
"last": "Bojar",
"suffix": ""
},
{
"first": "Sadao",
"middle": [],
"last": "Kurohashi",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 7th Workshop on Asian Translation",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Toshiaki Nakazawa, Hideki Nakayama, Chenchen Ding, Raj Dabre, Hideya Mino, Isao Goto, Win Pa Pa, Anoop Kunchukuttan, Shantipriya Parida, Ond\u0159ej Bojar, and Sadao Kurohashi. 2020. Overview of the 7th Workshop on Asian Transla- tion. In Proceedings of the 7th Workshop on Asian Translation, Suzhou, China. Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "The ADAPT Centre's Participation in WAT 2020 English-to-Odia Translation Task",
"authors": [
{
"first": "Prashanth",
"middle": [],
"last": "Nayak",
"suffix": ""
},
{
"first": "Rejwanul",
"middle": [],
"last": "Haque",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Way",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the the 7th Workshop on Asian Translation (WAT 2020), AACL-IJCNLP 2020, page",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Prashanth Nayak, Rejwanul Haque, and Andy Way. 2020a. The ADAPT Centre's Participation in WAT 2020 English-to-Odia Translation Task. In Proceed- ings of the the 7th Workshop on Asian Translation (WAT 2020), AACL-IJCNLP 2020, page (in press), Suzhou, China.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "The ADAPT's submissions to the WMT20 biomedical translation task",
"authors": [
{
"first": "Prashanth",
"middle": [],
"last": "Nayak",
"suffix": ""
},
{
"first": "Rejwanul",
"middle": [],
"last": "Haque",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Way",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the Fifth Conference on Machine Translation (Shared Task Papers (Biomedical)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Prashanth Nayak, Rejwanul Haque, and Andy Way. 2020b. The ADAPT's submissions to the WMT20 biomedical translation task. In Proceedings of the Fifth Conference on Machine Translation (Shared Task Papers (Biomedical), Punta Cana, Dominican Republic.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "BLEU: a Method for Automatic Evaluation of Machine Translation",
"authors": [
{
"first": "Kishore",
"middle": [],
"last": "Papineni",
"suffix": ""
},
{
"first": "Salim",
"middle": [],
"last": "Roukos",
"suffix": ""
},
{
"first": "Todd",
"middle": [],
"last": "Ward",
"suffix": ""
},
{
"first": "Wei-Jing",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "311--318",
"other_ids": {
"DOI": [
"10.3115/1073083.1073135"
]
},
"num": null,
"urls": [],
"raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. BLEU: a Method for Automatic Evaluation of Machine Translation. In Proceed- ings of the 40th Annual Meeting of the Associa- tion for Computational Linguistics, pages 311-318, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Rejwanul Haque, and Andy Way. 2020. The ADAPT system description for the WMT20 news translation task",
"authors": [
{
"first": "Akshai",
"middle": [],
"last": "Venkatesh Balavadhani Parthasarathy",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Ramesh",
"suffix": ""
}
],
"year": null,
"venue": "Proceedings of the Fifth Conference on Machine Translation (Shared Task Papers (News))",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Venkatesh Balavadhani Parthasarathy, Akshai Ramesh, Rejwanul Haque, and Andy Way. 2020. The ADAPT system description for the WMT20 news translation task. In Proceedings of the Fifth Confer- ence on Machine Translation (Shared Task Papers (News)), Punta Cana, Dominican Republic.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Investigating Backtranslation in Neural Machine Translation",
"authors": [
{
"first": "Alberto",
"middle": [],
"last": "Poncelas",
"suffix": ""
},
{
"first": "Dimitar",
"middle": [],
"last": "Shterionov",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Way",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of The 21st Annual Conference of the European Association for Machine Translation (EAMT 2018)",
"volume": "",
"issue": "",
"pages": "249--258",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alberto Poncelas, Dimitar Shterionov, Andy Way, Gideon Maillette de Buy Wenniger, and Peyman Passban. 2018. Investigating Backtranslation in Neural Machine Translation. In Proceedings of The 21st Annual Conference of the European Association for Machine Translation (EAMT 2018), pages 249- 258, Alicante, Spain.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Comparing Corpora using Frequency Profiling",
"authors": [
{
"first": "Paul",
"middle": [],
"last": "Rayson",
"suffix": ""
},
{
"first": "Roger",
"middle": [],
"last": "Garside",
"suffix": ""
}
],
"year": 2000,
"venue": "Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1--6",
"other_ids": {
"DOI": [
"10.3115/1117729.1117730"
]
},
"num": null,
"urls": [],
"raw_text": "Paul Rayson and Roger Garside. 2000. Comparing Corpora using Frequency Profiling. In The Work- shop on Comparing Corpora, pages 1-6, Hong Kong, China. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Improving Neural Machine Translation Models with Monolingual Data",
"authors": [
{
"first": "Rico",
"middle": [],
"last": "Sennrich",
"suffix": ""
},
{
"first": "Barry",
"middle": [],
"last": "Haddow",
"suffix": ""
},
{
"first": "Alexandra",
"middle": [],
"last": "Birch",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "86--96",
"other_ids": {
"DOI": [
"10.18653/v1/P16-1009"
]
},
"num": null,
"urls": [],
"raw_text": "Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016a. Improving Neural Machine Translation Models with Monolingual Data. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa- pers), pages 86-96, Berlin, Germany. Association for Computational Linguistics.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Neural Machine Translation of Rare Words with Subword Units",
"authors": [
{
"first": "Rico",
"middle": [],
"last": "Sennrich",
"suffix": ""
},
{
"first": "Barry",
"middle": [],
"last": "Haddow",
"suffix": ""
},
{
"first": "Alexandra",
"middle": [],
"last": "Birch",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "1",
"issue": "",
"pages": "1715--1725",
"other_ids": {
"DOI": [
"10.18653/v1/P16-1162"
]
},
"num": null,
"urls": [],
"raw_text": "Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016b. Neural Machine Translation of Rare Words with Subword Units. In Proceedings of the 54th An- nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715- 1725, Berlin, Germany. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Disambiguation of ambiguous biomedical terms using examples generated from the UMLS Metathesaurus",
"authors": [
{
"first": "Mark",
"middle": [],
"last": "Stevenson",
"suffix": ""
},
{
"first": "Yikun",
"middle": [],
"last": "Guo",
"suffix": ""
}
],
"year": 2010,
"venue": "Journal of Biomedical Informatics",
"volume": "43",
"issue": "5",
"pages": "762--773",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mark Stevenson and Yikun Guo. 2010. Disambigua- tion of ambiguous biomedical terms using examples generated from the UMLS Metathesaurus. Journal of Biomedical Informatics, 43(5):762-773.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Parallel Data, Tools and Interfaces in OPUS",
"authors": [
{
"first": "J\u00f6rg",
"middle": [],
"last": "Tiedemann",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC-2012)",
"volume": "",
"issue": "",
"pages": "2214--2218",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J\u00f6rg Tiedemann. 2012. Parallel Data, Tools and Inter- faces in OPUS. In Proceedings of the Eighth In- ternational Conference on Language Resources and Evaluation (LREC-2012), pages 2214-2218, Istan- bul, Turkey. European Languages Resources Associ- ation (ELRA).",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Transductive learning for statistical machine translation",
"authors": [
{
"first": "Nicola",
"middle": [],
"last": "Ueffing",
"suffix": ""
},
{
"first": "Gholamreza",
"middle": [],
"last": "Haffari",
"suffix": ""
},
{
"first": "Anoop",
"middle": [],
"last": "Sarkar",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics",
"volume": "",
"issue": "",
"pages": "25--32",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nicola Ueffing, Gholamreza Haffari, and Anoop Sarkar. 2007. Transductive learning for statistical machine translation. In Proceedings of the 45th Annual Meet- ing of the Association of Computational Linguistics, pages 25-32, Prague, Czech Republic. Association for Computational Linguistics.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Attention is all you need",
"authors": [
{
"first": "Ashish",
"middle": [],
"last": "Vaswani",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Shazeer",
"suffix": ""
},
{
"first": "Niki",
"middle": [],
"last": "Parmar",
"suffix": ""
},
{
"first": "Jakob",
"middle": [],
"last": "Uszkoreit",
"suffix": ""
},
{
"first": "Llion",
"middle": [],
"last": "Jones",
"suffix": ""
},
{
"first": "Aidan",
"middle": [
"N"
],
"last": "Gomez",
"suffix": ""
},
{
"first": "\u0141ukasz",
"middle": [],
"last": "Kaiser",
"suffix": ""
},
{
"first": "Illia",
"middle": [],
"last": "Polosukhin",
"suffix": ""
}
],
"year": 2017,
"venue": "Advances in Neural Information Processing Systems",
"volume": "",
"issue": "",
"pages": "6000--6010",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Pro- cessing Systems, pages 6000-6010.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Compact personalized models for neural machine translation",
"authors": [
{
"first": "Joern",
"middle": [],
"last": "Wuebker",
"suffix": ""
},
{
"first": "Patrick",
"middle": [],
"last": "Simianer",
"suffix": ""
},
{
"first": "John",
"middle": [],
"last": "Denero",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "881--886",
"other_ids": {
"DOI": [
"10.18653/v1/D18-1104"
]
},
"num": null,
"urls": [],
"raw_text": "Joern Wuebker, Patrick Simianer, and John DeNero. 2018. Compact personalized models for neural ma- chine translation. In Proceedings of the 2018 Con- ference on Empirical Methods in Natural Language Processing, pages 881-886, Brussels, Belgium. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Exploiting Source-side Monolingual Data in Neural Machine Translation",
"authors": [
{
"first": "Jiajun",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Chengqing",
"middle": [],
"last": "Zong",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "1535--1545",
"other_ids": {
"DOI": [
"10.18653/v1/D16-1160"
]
},
"num": null,
"urls": [],
"raw_text": "Jiajun Zhang and Chengqing Zong. 2016. Exploiting Source-side Monolingual Data in Neural Machine Translation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Process- ing, pages 1535-1545, Austin, Texas. Association for Computational Linguistics.",
"links": null
}
},
"ref_entries": {
"TABREF0": {
"content": "<table/>",
"text": "Sentences from the AI blind test set.",
"type_str": "table",
"num": null,
"html": null
},
"TABREF1": {
"content": "<table><tr><td colspan=\"4\">presents the corpus statistics. The development set</td></tr><tr><td>In-domain</td><td colspan=\"3\">sentences words (EN) words (HI)</td></tr><tr><td>Train</td><td>4,872</td><td>77,301</td><td>82,815</td></tr><tr><td>Development</td><td>400</td><td>7,031</td><td>7,064</td></tr><tr><td colspan=\"2\">Out-of-domain 1,102,511</td><td>22.4M</td><td>23.4M</td></tr><tr><td colspan=\"2\">Hindi Monolingual</td><td/><td/></tr><tr><td>Setup 1</td><td>1M</td><td/><td>18.8M</td></tr><tr><td>Setup 2</td><td>7.82M</td><td/><td>142.9M</td></tr></table>",
"text": "",
"type_str": "table",
"num": null,
"html": null
},
"TABREF2": {
"content": "<table/>",
"text": "The Corpus statistics.",
"type_str": "table",
"num": null,
"html": null
},
"TABREF3": {
"content": "<table><tr><td/><td>rep-</td></tr><tr><td/><td>BLEU</td></tr><tr><td>Base</td><td>28.97</td></tr><tr><td>Base2 (Base + 1M Syn)</td><td>30.80</td></tr><tr><td>Base3 (Base + 8M Syn)</td><td>29.97</td></tr><tr><td>Base2 + Mixed FT</td><td>42.02</td></tr><tr><td>Base3 + Mixed FT</td><td>43.03</td></tr><tr><td colspan=\"2\">Base2 + Mixed FT + ST 43.00</td></tr><tr><td colspan=\"2\">Base3 + Mixed FT + ST 43.51</td></tr></table>",
"text": "",
"type_str": "table",
"num": null,
"html": null
},
"TABREF4": {
"content": "<table/>",
"text": "The BLEU scores of the English-to-Hindi NMT systems.",
"type_str": "table",
"num": null,
"html": null
},
"TABREF6": {
"content": "<table/>",
"text": "The BLEU scores of the MT systems on the blind test set.",
"type_str": "table",
"num": null,
"html": null
}
}
}
} |