File size: 112,104 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
{
    "paper_id": "2019",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:30:22.911608Z"
    },
    "title": "Introducing Aspects of Creativity in Automatic Poetry Generation",
    "authors": [
        {
            "first": "Brendan",
            "middle": [],
            "last": "Bena",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Drury University",
                "location": {
                    "addrLine": "900 N. Benton Ave. Springfield",
                    "postCode": "65109",
                    "region": "Missouri"
                }
            },
            "email": ""
        },
        {
            "first": "Jugal",
            "middle": [],
            "last": "Kalita",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Poetry Generation involves teaching systems to automatically generate text that resembles poetic work. A deep learning system can learn to generate poetry on its own by training on a corpus of poems and modeling the particular style of language. In this paper, we propose taking an approach that fine-tunes GPT-2, a pre-trained language model, to our downstream task of poetry generation. We extend prior work on poetry generation by introducing creative elements. Specifically, we generate poems that express emotion and elicit the same in readers, and poems that use the language of dreams-called dream poetry. We are able to produce poems that correctly elicit the emotions of sadness and joy 87.5 and 85 percent, respectively, of the time. We produce dreamlike poetry by training on a corpus of texts that describe dreams. Poems from this model are shown to capture elements of dream poetry with scores of no less than 3.2 on the Likert scale. We perform crowdsourced human-evaluation for all our poems. We also make use of the Coh-Metrix tool, outlining metrics we use to gauge the quality of text generated.",
    "pdf_parse": {
        "paper_id": "2019",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Poetry Generation involves teaching systems to automatically generate text that resembles poetic work. A deep learning system can learn to generate poetry on its own by training on a corpus of poems and modeling the particular style of language. In this paper, we propose taking an approach that fine-tunes GPT-2, a pre-trained language model, to our downstream task of poetry generation. We extend prior work on poetry generation by introducing creative elements. Specifically, we generate poems that express emotion and elicit the same in readers, and poems that use the language of dreams-called dream poetry. We are able to produce poems that correctly elicit the emotions of sadness and joy 87.5 and 85 percent, respectively, of the time. We produce dreamlike poetry by training on a corpus of texts that describe dreams. Poems from this model are shown to capture elements of dream poetry with scores of no less than 3.2 on the Likert scale. We perform crowdsourced human-evaluation for all our poems. We also make use of the Coh-Metrix tool, outlining metrics we use to gauge the quality of text generated.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Many natural language processing tasks require the generation of human-like language. Some tasks, such as image and video captioning and automatic weather and sports reporting, convert nontextual data to text. Some others, such as summarization and machine translation, convert one text to another. There are additional tasks that aim to produce text, given a topic or a few keywords such as story generation, joke generation, and poetry generation, among others.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Poetry generation produces creative content, and delivers the content in an aesthetically pleasing manner, usually following a specific structure.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Thus, in addition to generating text as if in a story, the lines produced usually have a certain length, quite frequently there is a rhyming scheme as well as rhythm, and organization into structures such as couplets, quatrains, quintets, and stanzas. Among other tools, creativity comes from unusual usage of words through effects such as alliteration, assonance, and elision; use of metaphors, symbolism, and other linguistic devices; licensing of underlying imagery with expressed feelings, sentiments, and emotions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Work in natural language generation can be traced to pioneering rule-based simulations of chatbots such as the \"psychotherapist\" Eliza (Weizenbaum et al., 1966) and paranoid schizophrenia-suffering PARRY (Colby, 1981) . Surveys such as (Hovy, 1990; Reiter and Dale, 2000; Gatt and Krahmer, 2018; Santhanam and Shaikh, 2019) have described the progress in natural language generation over 50 years. Of late, the use of deep learning has produced enviable progress in natural language generation, especially in topics such as machine translation (Bahdanau et al., 2014; Wu et al., 2016) , image captioning (Mao et al., 2014) and dialogue generation (Li et al., 2016) .",
                "cite_spans": [
                    {
                        "start": 135,
                        "end": 160,
                        "text": "(Weizenbaum et al., 1966)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 204,
                        "end": 217,
                        "text": "(Colby, 1981)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 236,
                        "end": 248,
                        "text": "(Hovy, 1990;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 249,
                        "end": 271,
                        "text": "Reiter and Dale, 2000;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 272,
                        "end": 295,
                        "text": "Gatt and Krahmer, 2018;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 296,
                        "end": 323,
                        "text": "Santhanam and Shaikh, 2019)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 544,
                        "end": 567,
                        "text": "(Bahdanau et al., 2014;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 568,
                        "end": 584,
                        "text": "Wu et al., 2016)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 604,
                        "end": 622,
                        "text": "(Mao et al., 2014)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 647,
                        "end": 664,
                        "text": "(Li et al., 2016)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This paper discusses the automatic generation of natural-sounding poems that are creative. Creativity comes in many hues, and we experiment with a few established ways of creative expression in poetry generation. First, we generate poetry that can potentially evoke a response from the readers or hearers in terms of emotions and feelings they generate. Additionally, we choose the idea of mimicking the language of dreams as another form of creative expression due to its longstanding history in poetry. Dream poetry dates back to medieval times where famous fourteenth century authors, like Chaucer, experimented using dreams as the structure for an image or picture they wished to paint with a poem (Spearing, 1976a) . A dream poem is said to be characterized by the 'I' of the poem and its substance of a dream or a vision included (Lynch, 1998) . To the best of our knowledge, prior work on poetry generation, whether using deep learning or not, has not explored the incorporation of emotion-eliciting phraseology or elements of creativity such as dream poetry.",
                "cite_spans": [
                    {
                        "start": 702,
                        "end": 719,
                        "text": "(Spearing, 1976a)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 836,
                        "end": 849,
                        "text": "(Lynch, 1998)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our research provides the following contributions:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 generating grammatical, coherent, and flowing poetry using the powerful and versatile GPT-2 architecture, \u2022 successfully generating poetry that elicits certain emotions in readers, and \u2022 generating poems that follow time-honored tradition of dream-like language usage and imagery.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This paper is organized as follows. Section 2 presents related work. Section 3 discusses our approach to creative text generation including pre-processing steps, architecture used, and approaches to training. Section 4 discusses our experiments and results. Finally, we present evaluation of our research in Section 5, followed by conclusions and future work in Section 6.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Early methods for poetry generation made use of template-oriented and rule-based techniques. These approaches often required a large amount of feature picking and knowledge of syntactic and semantic rules in a language (Oliveira, 2009 (Oliveira, , 2012 . Other methods treated poetry generation as special cases of machine translation or summarization tasks (Yan et al., 2013; He et al., 2012) . We believe that forcing a model to adhere to specific rules or templates, or summarizing or translating a given text to generate new poetry is unlikely to lead to the artistically expressive quality we seek to generate.",
                "cite_spans": [
                    {
                        "start": 219,
                        "end": 234,
                        "text": "(Oliveira, 2009",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 235,
                        "end": 252,
                        "text": "(Oliveira, , 2012",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 358,
                        "end": 376,
                        "text": "(Yan et al., 2013;",
                        "ref_id": null
                    },
                    {
                        "start": 377,
                        "end": 393,
                        "text": "He et al., 2012)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "More recently, deep learning methods have become prevalent in natural language generation, including poetry generation. Zhang and Lapata (2014) for instance, used Convolutional (CNN) and Recurrent Neural Networks (RNN) to generate Chinese Poetry. RNNs allow for shortterm memory of the language to be maintained by inputting the generated output of a network cell back into itself, essentially building context. Ghazvininejad et al. (2017) used Long Short-Term Memory (LSTM) units, which are advanced gated versions of RNNs, to the task of poetry generation. Wei et al. (2018) attempted to address the style issue by training the networks using particular poets and controlling for style in Chinese poetry. They found that with enough training data, adequate results could be achieved. Problems related to poetic structure were addressed by Hopkins and Kiela (2017) . They generated rhythmic poetry by training the network on only a single type of poetry to ensure produced poems adhered to a single rhythmic structure. It was found in human evaluations that while the poems produced were rated to be of lower quality than human produced poems, they were indistinguishable from human produced poems. Lau et al. (2018) took the LSTM approach one step further with the Deepspeare model by employing an attention mechanism to model interactions among generated words. They also use three neural networks, one for rhythm, one for rhyming and another for word choice in their quest to generate Shakespeare-like sonnets. Vaswani et al. (2017) developed a deep neural architecture called the Transformer that did away with any sort of need for recurrence. The Transformer also employed an elaborate attention mechanism that has been shown to be useful in natural language tasks. Radford et al. (2019) used this architecture in their Generative Pretrained Transformer 2 (GPT-2) model. GPT-2 is capable of many downstream tasks like text generation but to our knowledge, research has not been published using the GPT-2 model specifically for poetry generation.",
                "cite_spans": [
                    {
                        "start": 120,
                        "end": 143,
                        "text": "Zhang and Lapata (2014)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 412,
                        "end": 439,
                        "text": "Ghazvininejad et al. (2017)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 559,
                        "end": 576,
                        "text": "Wei et al. (2018)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 841,
                        "end": 865,
                        "text": "Hopkins and Kiela (2017)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 1200,
                        "end": 1217,
                        "text": "Lau et al. (2018)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 1515,
                        "end": 1536,
                        "text": "Vaswani et al. (2017)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 1772,
                        "end": 1793,
                        "text": "Radford et al. (2019)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "On a slightly different but related note, natural language generation influenced by multi-modal input was attempted by Vechtomova et al. (2018) to generate song lyrics in the style of specific artists by fusing outputs coming from lyrical inputs processed by an RNN and audio clips processed by a CNN. Text generation has also been influenced, in a cross domain manner, through images. The works of Liu et al. (2018) have shown that coupled visual-poetic embeddings can be used to pick out poetic clues in images, which in turn can be used to inspire the generated text. Though influenced natural language generation in and of itself is not a novel idea, we feel our attempt to style text with the intent of eliciting particular emotions provides a creative way to explore this subtask.",
                "cite_spans": [
                    {
                        "start": 119,
                        "end": 143,
                        "text": "Vechtomova et al. (2018)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 399,
                        "end": 416,
                        "text": "Liu et al. (2018)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Our goal is to successfully demonstrate the introduction of creative flair in automatic poetry generation in two exemplar ways: explicit show of emotion and the use of language that is predominantly first person with dream-like imagery. To enable the expression of emotion in generated poems, our work involves a preliminary step of scoring a corpus of downloaded poems for emotion to produce subsets of poems that express one of eight different identified emotions. This step is followed by the actual generation of poems by fine-tuning the pre-trained GPT-2 natural language model. We train eight separate models for eight different emotions, each on a sub-corpus predominantly demonstrating a particular emotion. To generate poems that use dream-like language, we create a text corpus composed of a large number of dream transcriptions created in first person by actual viewers of dreams. In this case, we apply transfer learning by fine-tuning the pre-trained GPT-2 on the dream corpus, followed by training again on poetry. We evaluate the generated poems using automated techniques as well as humans. A high-level overview of the emotion elicitation portion of our project is shown in Figure 1 . To create a corpus of poems based on the emotions they elicit, we make use of the EmoLex dic-tionary (Mohammad and Turney, 2013). EmoLex is a word-level emotion lexicon that associates English words with the eight different emotion categories we wish to explore. Each poem (or book of poems) in our dataset is given a score that is the total of the associated emotion scores in EmoLex for each word. The maximum emotion word score is taken and the poem is labeled under that emotion category. We create eight such datasets, one corresponding to each emotion category supported by EmoLex. This approach allows us to to train multiple models on our split dataset.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1191,
                        "end": 1199,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Approach",
                "sec_num": "3"
            },
            {
                "text": "Currently, the emotions of joy, anticipation, trust, anger, and sadness represent a large portion of our data while the emotions of surprise, disgust, and fear are severely underrepresented. Table 1 shows key differences in models including the number of tokens in the text and the final average loss during training.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Poem Emotion Scoring",
                "sec_num": "3.1"
            },
            {
                "text": "To create a model for poetic language, we propose finetuning OpenAI's GPT-2 architecture. GPT-2 is a Transformer-based model that was trained simply to predict the next word in a 40GB text corpus (Radford et al., 2019) . This 40GB dataset, WebText, was scraped from the internet with certain heuristics that aimed to gather only quality text (i.e. only outbound Reddit links from posts with a karma rating of 3 stars or better). By training on such a large, all-encompassing corpus of text, the architecture has proven to model the English language well and has obtained state-of-theart results on downstream text-based tasks such as machine translation, question answering, and summarization. We leverage GPT-2's pre-trained knowledge of language for our downstream task of peotry generation.",
                "cite_spans": [
                    {
                        "start": 196,
                        "end": 218,
                        "text": "(Radford et al., 2019)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "GPT Architecture",
                "sec_num": "3.2"
            },
            {
                "text": "GPT-2 is the successor of OpenAI's first Transformer-based architecture, GPT (Radford et al., 2018) , with a few changes to the structure. The medium version of GPT-2 we use contains 345M parameters and is a 24 layer, decoder-only Transformer architecture. GPT-2 moves layer normalization to the input of each sub-block, adds another layer normalization after the final selfattention block and increases context size from 512 to 1024 tokens. This architecture allows for long term dependencies to be captured better in language modeling. GPT-2's attention mechanism is referred to as a masked multi self-attention head. This technique allows for a relationship to be modeled for all words in an input sequence. Words that have multiple meanings can then be represented based on the context they appear in. Higher attention scores from surrounding words relate to a larger contribution to the representation of a word. GPT-2 makes use of byte-pair encoding (BPE) like its predecessor GPT but on UTF-8 byte sequences (Sennrich et al., 2015) . GPT-2's encoding is somewhere in between character level and word level. The model also prevents different versions of common words from being duplicated (i.e. fate!, fate?, and fate would not be joined). This technique improves the quality of the final byte segmentation. GPT-2's encoding rids the need for pre-processing or tokenization of data and is able to assign a probability to any Unicode string.",
                "cite_spans": [
                    {
                        "start": 77,
                        "end": 99,
                        "text": "(Radford et al., 2018)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1015,
                        "end": 1038,
                        "text": "(Sennrich et al., 2015)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "GPT Architecture",
                "sec_num": "3.2"
            },
            {
                "text": "The task-agnostic nature of GPT-2 allows us to take a fine-tuning approach to our downstream task of poetry generation. Our approach to generating poems that exhibit emotion as well as dream-like imagery involves training the pretrained GPT-2 model. Our training protocol for the two cases are stated briefly below.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training for Creative Poem Generation",
                "sec_num": "3.3"
            },
            {
                "text": "Poetry is a personal form of writing that expresses human feelings, and Mill (1860) famously said \"What is poetry, but thoughts and words in which emotion spontaneously embodies itself?\" Mill (1833) also said \"The object of poetry is confessedly to act upon the emotions\". Expressing emotions, with possible motive of eliciting the same emotions in readers, is a basic characteristic of poems. Our goal in this paper is to use artificial neural networks to generate poems that explicitly evoke certain specific emotions. To generate poems with emotional content, we have split our poetry data into sub-corpora, one sub-corpus for each emotion. We train the already pre-trained GPT-2 on a sub-corpus of poems that demonstrate a certain emotion. Pre-trained GPT-2 has a very strong foundational knowledge of English. We find that training it again on emotionbearing poetry seems to enable it to generate high quality poetry, which is even able to use emotionladen words for the correct form of elicitation. We also find that the poems we generate seem to exhibit proper punctuation as well as lines that have poem-appropriate length and sentences that are grammatically correct. In addition, the poems we generate seem to be quite readable and demonstrate high coherence. Detailed analyses are reported in the next section.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generating Emotion Poems",
                "sec_num": "3.3.1"
            },
            {
                "text": "Dream poems represent a style of poetry that was \"astonishingly\" popular in the 14th through the 16th centuries (Spearing, 1976b; Windeatt, 2003) and are still popular (Russo, 2003) . Such poems tell a story based on a dream or a number of dreams, dreamt by the narrator or by a character that the poet introduces. Spearing (1976b) claimed that dream poems are based on objective experience, but at the same time they are free of constraints of everyday possibilities. Such poems represent the outcome of a poetic process with many different influences, models, and analogues (Windeatt, 2003) , but without going into such details, our goal is to see if an ANN can produce poems which share characteristics with dream po-ems.",
                "cite_spans": [
                    {
                        "start": 112,
                        "end": 129,
                        "text": "(Spearing, 1976b;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 130,
                        "end": 145,
                        "text": "Windeatt, 2003)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 168,
                        "end": 181,
                        "text": "(Russo, 2003)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 315,
                        "end": 331,
                        "text": "Spearing (1976b)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 576,
                        "end": 592,
                        "text": "(Windeatt, 2003)",
                        "ref_id": "BIBREF36"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generating Dream Poems",
                "sec_num": "3.3.2"
            },
            {
                "text": "To generate poems that demonstrate first-person language with dream-like imagery, we take a similar approach. However, in this case, GPT-2 undergoes three separate training cycles. The first cycle is the pre-training that GPT-2 goes through before release to the public by OpenAI. Second, we train the pre-trained model on a corpus of firstperson dream descriptions. Third, we train again on poems. Our hypothesis is that pre-training by OpenAI results in good basic knowledge of English; that training on the dream corpus endows the network with the knowledge of first-person imagery-based language; and that the last training cycle teaches the network language of poems. We demonstrate in the next section that we are not far off from our being successful in our hypothesis.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generating Dream Poems",
                "sec_num": "3.3.2"
            },
            {
                "text": "As stated by Radford et al. (2019) , the core approach of GPT-2 is language modeling. A language model can be thought of as a probability distribution over a sequence of words in the form:",
                "cite_spans": [
                    {
                        "start": 13,
                        "end": 34,
                        "text": "Radford et al. (2019)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Text Generation and Sampling",
                "sec_num": "3.4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p(w 1 , ..., w n ).",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Text Generation and Sampling",
                "sec_num": "3.4"
            },
            {
                "text": "Likewise, natural language tends to have a sequential order so it can be modeled in terms of the conditional probability of a word given the words preceding it (Bengio et al., 2003) :",
                "cite_spans": [
                    {
                        "start": 160,
                        "end": 181,
                        "text": "(Bengio et al., 2003)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Text Generation and Sampling",
                "sec_num": "3.4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p(w n |w 1 , ..., w n\u22121 ).",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Text Generation and Sampling",
                "sec_num": "3.4"
            },
            {
                "text": "We make use of this probabilistic style of language modeling by sampling from the distribution in a semi-random fashion. Just as the GPT-2 paper does for its text generation, we make use of Top K sampling, limiting the possible guesses of words to 40. In addition to Top K, we make use of a temperature constant of 0.75 which controls randomness in the distribution. A temperature closer to 0 correlates to less randomness while a temperature closer to 1 relates to more randomness. Finally, at the end of the generation process, we employ a simple text cleaning algorithm that allows poems to end more naturally and rather than trail off as they do sometimes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Text Generation and Sampling",
                "sec_num": "3.4"
            },
            {
                "text": "In order to classify emotion-eliciting poems or books, we use the NRC Word-Emotion Asso-ciation Lexicon (EmoLex) resource. EmoLex 1 was created by the National Research Council of Canada and includes 14,182 English words that are associated with different emotions and positive or negative sentiment (Mohammad and Turney, 2013). Words in EmoLex have been manually annotated via crowd-sourcing and emotions fall into one or more categories of eight basic emotions: joy, trust, fear, surprise, sadness, anticipation, anger, and disgust (Plutchik, 2014) . We elect to use this simplified version of the Wheel of Emotions due to its parallels with the available EmoLex dataset. This resource provides us with a way to fabricate a ground truth in the types of emotion-infused texts we wish to use for training data. To handle the training and generation portions of the project, we draw data from the Project Gutenberg website 2 . Project Gutenberg is a massive online database containing over 59,000 eBooks. We limit this corpus to a smaller subcorpus using an adaptation of the GutenTag tool (Brooke et al., 2015) . This tool allows us to place constraints on the amount of literature we choose to use in our work. Our final dataset includes approximately three million lines of poetic text from the Gutenberg database and is further divided by poem/book into our eight emotion categories.",
                "cite_spans": [
                    {
                        "start": 534,
                        "end": 550,
                        "text": "(Plutchik, 2014)",
                        "ref_id": null
                    },
                    {
                        "start": 1089,
                        "end": 1110,
                        "text": "(Brooke et al., 2015)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets and Resources",
                "sec_num": "4.1"
            },
            {
                "text": "We attempt to create dream poetry by making use of the DreamBank dataset. The Dream-Bank was created by Schneider & Domhoff at UC-Santa Cruz 3 . The dataset contains a collection of over 20,000 dreams from users age 7 to 74. We scraped this dataset from the website assuring that dreams collected were recorded only in English. The DreamBank allows us to attempt trans-Heard I a song of joy, A song of happy sound, Fills all the air I breathe, To him I sing, to him I sing the happy song. All night long on the steep green grass I ride and sing Figure 4 : A hand-picked, automatically generated poem from the joy model",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 545,
                        "end": 553,
                        "text": "Figure 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Datasets and Resources",
                "sec_num": "4.1"
            },
            {
                "text": "The other, who with one accord Wrote my essay, in that he was dear And good, and knew well, how we ought to treat A man of such renown, and such love? He's a good honest man, no doubt Figure 5 : A hand-picked, automatically generated poem from the trust model fer learning by finetuning on the dream dataset first, then further finetuning on our poetry dataset. Initially, we retrained 6 GPT-2 based models. Default training parameters were used each of the 5 different emotion datasets and our dream dataset. All were trained for 12,000 steps (except for our dream model which was trained for 12k steps on dreams and on poetry) with a learning rate of 0.0001. When generating text, we do not input context: we allow the model to write the poem entirely through the sampling of conditional probability from the language it has modeled.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 184,
                        "end": 192,
                        "text": "Figure 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Datasets and Resources",
                "sec_num": "4.1"
            },
            {
                "text": "Figures 4 through 8 give examples of 5 poems that we have hand-picked to illustrate the quality of poems generated. A cursory glance at the poems reveals the high quality of the text in terms of lexical choice, grammatical integrity, and semantic cohesion. We discuss how we quantitatively assess the poems below.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets and Resources",
                "sec_num": "4.1"
            },
            {
                "text": "In the first crowd-sourced analysis of our emotioneliciting poetry we presented four poems from each category (of the five data-represented emotion categories) to ten human reviewers with undergraduate level educational backgrounds. All reviewers are native speakers of English. Poems presented were randomly selected from the top 20 EmoLex scored poems out of a pool of 1,000 generated poems. These reviewers were asked to rate each poem based on the emotions elicited within",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5"
            },
            {
                "text": "We have reached the peak of the highest mountain in the world The mountain of dreams. This is the view Across the valley, One hour's journey back, We crossed it on the way between A band of beautiful young women.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5"
            },
            {
                "text": "There was Figure 6 : A hand-picked, automatically generated poem from the anticipation model A long trail of falling mist Had made its way here, and now Aerily it seemed, as if to drown The discordant thunder clang. It seemed to drown the music of the rain;",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 10,
                        "end": 18,
                        "text": "Figure 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5"
            },
            {
                "text": "In this lost place of sorrow Far off Figure 7 : A hand-picked, automatically generated poem from the sadness model Amidst the chaos throng'd, with angry voices each His rival's mockery; loud their scorn was fill'd; So fierce their rage, and in their eager power Met on the walls of Troy, were fill'd with dismay. Figure 8 : A hand-picked, automatically generated poem from the anger model A thousand stars at once, An hundred thousand stars!",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 37,
                        "end": 45,
                        "text": "Figure 7",
                        "ref_id": null
                    },
                    {
                        "start": 313,
                        "end": 321,
                        "text": "Figure 8",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5"
            },
            {
                "text": "The sun was low, And the stars were bright, My heart would do the same.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5"
            },
            {
                "text": "A thousand stars at once, A hundred thousand stars! The night had begun, And the stars were all the same. When I came back from the dead, I saw the stars Figure 9 : A hand-picked, automatically generated poem from the dream model For she was mine. I was the only one She had, And a thousand other friends, And a hundred more She held me dear. Her eyes were clear, her cheeks were bright, Her heart was like a rose, Her mouth was full of music, Her lips were white As snow, And the music she sang Figure 10 : A hand-picked poem, automatically generated from the dream model Emotion Anger Antic. Joy Sad. Trust % 65 40 85 87.5 32.5 Table 2 : Average percentage of correctly elicited emotion across four poems in each category them after reading. An emotion was deemed correctly elicited if the associated Likert score was 4 or greater from the reviewer. Table 2 illustrates the results from our evaluation. When taking the average percentage of correct emotion-eliciting poems, the models of joy, sadness, and anger produced the most promising results while the trust and anticipation models were less than satisfactory. We believe this is because joy, sadness and anger are basic or fundamental emotions compared to trust and anticipation, which are more complex and difficult to explain. Although there are many opinions among psychologists about what constitute basic emotions, joy, sadness and anger, (especially the last two) seem to occur the most often in proposals that demarcate a set of basic emotions (Ortony and Turner, 1990) . To preserve consistency in our experiments, we evaluate our dream model poetry in a manner similar to our evaluation of the emotion poems. Four poems from the model were presented to the same ten judges and they were asked to assess the poems based on qualities of dream poetry. These poems were cherry picked from a pool of 1,000 generated poems. A dream poem is said to have the following qualities (Windeatt, 2003; Spearing, 1976b; Russo, 2003) among many other qualities. We believe these three are the least ambiguous and easiest to decipher for human evaluation.",
                "cite_spans": [
                    {
                        "start": 1510,
                        "end": 1535,
                        "text": "(Ortony and Turner, 1990)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 1939,
                        "end": 1955,
                        "text": "(Windeatt, 2003;",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 1956,
                        "end": 1972,
                        "text": "Spearing, 1976b;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 1973,
                        "end": 1985,
                        "text": "Russo, 2003)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 154,
                        "end": 162,
                        "text": "Figure 9",
                        "ref_id": null
                    },
                    {
                        "start": 496,
                        "end": 505,
                        "text": "Figure 10",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 630,
                        "end": 637,
                        "text": "Table 2",
                        "ref_id": null
                    },
                    {
                        "start": 852,
                        "end": 859,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5"
            },
            {
                "text": "Poem 1 2 3 4 Qual 1 5 4.9 4.8 4.5 Qual 2 3.5 4.1 3.2 3.3 Qual 3 3.9 4.2 3.7 3.7 Analysis of results show that machine generated poems are able to capture the first person perspective well, achieving between 4.5 and 5 average Likert scores. The poems often appear to retell a story or an event, scoring between 3.7 and 4.2 average Likert scores. The nature of poetry and dream recounts that make up our data is often narrative, so this result stands to reason. However, Quality 2 scores of the poem substance containing a dream or vision are questionable. We suspect the Quality 2 score is lower due to the ambiguity in ascertaining dream text from regular text. Table 3 highlights our results for the dream model.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 662,
                        "end": 669,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5"
            },
            {
                "text": "Currently, there exists no widely available standard for evaluating poetry generation. Scores like BLEU, ROUGE, METEOR, etc. are more suited for Machine Translation (MT) tasks (Zhang et al., 2019) . For example, they compare how similar sentence P is to translated-sentenceP. Instead, we outline some metrics from the Coh-Metrix web tool that helps us further quantitatively evaluate the quality of text generated. With the goal of eliciting emotions, we claim that subjective analysis of generated poetry is superior to any available objective metrics.",
                "cite_spans": [
                    {
                        "start": 176,
                        "end": 196,
                        "text": "(Zhang et al., 2019)",
                        "ref_id": "BIBREF39"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "5"
            },
            {
                "text": "To provide a quantitative calculation of the caliber of text our models produce, we outline in this section relevant metrics from the University of Memphis Coh-Metrix tool (Graesser et al., 2004) . Coh-Metrix is a text evaluation software kit and from it, we have chosen 8 forms of assessment. The first two, Flesch-Kincaid Grade Level (FKGL) and Flesch Reading Ease (FRE), are two standard measures that deal with text readability and ease (Klare, 1974) . The FKGL scores a text from grade level 0 to 18, while the FRE score is a 0-100 index with 100 being an easily readable text. We aim to produce text that is readable by all, so a low FKGL score and high FRE score would be ideal. The next metrics we employ evaluate at the word level. The word imageability (IMGc) and word concreteness (CNCc) scores measure content words on their ability to create an image in the reader's mind and their ability to appeal to a reader's senses, respectively (Coltheart, 1981) . We aim for our art to create a connection between the reader and poem, so we believe imageability and concreteness of content words are two good measures with this in mind. We also make use of three text easibility principal component scores: narrativity (PCNARp), referential cohesion (PCREFp), and syntactic simplicity (PC-SYNp) (Graesser et al., 2004) . The text easibility PC scores are percentile scales, and thus we aim for higher numbers for these scores. Finally, we make use of the Lexical Diversity Type:Token Ratio score (LDTTRa) for all words. LDTTRa measures the ratio of type (unique) words to all tokens in the text. Because our text is relatively short, we aim for a middle ground in the LDTTRa ratio, meaning there is uniqueness in the word choice of the text, but cohesion is still upheld.",
                "cite_spans": [
                    {
                        "start": 172,
                        "end": 195,
                        "text": "(Graesser et al., 2004)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 441,
                        "end": 454,
                        "text": "(Klare, 1974)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 948,
                        "end": 965,
                        "text": "(Coltheart, 1981)",
                        "ref_id": null
                    },
                    {
                        "start": 1299,
                        "end": 1322,
                        "text": "(Graesser et al., 2004)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Coh-Metrix",
                "sec_num": "5.1"
            },
            {
                "text": "Inspection of our Coh-Metrix results show that randomly selected poems from all models fall at or below the 2nd-grade reading level (in FKGL scores) and are greater than 93 on the FRE scale. This suggests generated poems are easily readable by the majority of viewers. Looking at the IMGc and CNCc scores, we see that our poems, except for the dream model concreteness, fall in the 400s. Words with higher imageability and concreteness fall around the low 600s while words that are lower fall around the upper 200s on this scale. These scores reveal that our models are generating text that is concrete in word choice and that paint a picture. Our dream model scoring lower in the concreteness is reasonable as the word choice of dreams tends to be more abstract. Lastly, percentile scores of PCSYNp and PCNARp show that the majority of models are producing poems that are both syntactically simplistic and narrative. Most PCREFp scores are on the lower end of the scale. We suspect the reason these scores are lower is because the poems are not necessarily related and were all input at once. Table 4 highlights these scores for each poetry model.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1094,
                        "end": 1101,
                        "text": "Table 4",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Coh-Metrix",
                "sec_num": "5.1"
            },
            {
                "text": "In this paper we influenced automatic natural language generation to create poetry through the use of classified emotion poems and dream text. To do so, we first leveraged a word-level emotion lexicon to construct a meaning for emotion-eliciting text and used that text to train separate language models. Next, we gathered data of dream records and employed transfer learning in attempts to generate dream-like poetry. The work reported in this paper seeks to create art in the form of auto-generated poetry while opening the door to more projects involving emotion-eliciting text-based tasks and influenced creative neural generation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion & Future Work",
                "sec_num": "6"
            },
            {
                "text": "We would like to thank the reviewers for their feedback on this project. Comments and suggestions from reviewers -both those that the were incorporated into this article and those on which we will report in future work -provide invaluable insight as to improving our results. Importantly, our continuing research involves gathering a more comprehensive human-evaluation with a larger number of reviewers and poems to be judged. We also wish to gather data for the underrepresented emotion categories, leading, ideally, to a more robust language model for each emotion. Our work thus far provides a baseline for introducing emotions into generated text via a word-level lexicon, but we wish to employ other tools -segment-level lexicons, for example -in an attempt to better capture the contextual dependencies of emotion. Additionally, the word-level baseline we have produced focuses on generating single-emotion text. We are interested in examining poems of multiple emotions and different levels of intensity to expand on this study. Finally, we wish to seek out additional forms of replicating creativity that artists incorporate in their work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion & Future Work",
                "sec_num": "6"
            },
            {
                "text": "https://saifmohammad.com/WebPages/ NRC-Emotion-Lexicon.htm 2 https://www.gutenberg.org/ 3 https://www.dreambank.net/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Neural machine translation by jointly learning to align and translate",
                "authors": [
                    {
                        "first": "Dzmitry",
                        "middle": [],
                        "last": "Bahdanau",
                        "suffix": ""
                    },
                    {
                        "first": "Kyunghyun",
                        "middle": [],
                        "last": "Cho",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1409.0473"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben- gio. 2014. Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A neural probabilistic language model",
                "authors": [
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    },
                    {
                        "first": "R\u00e9jean",
                        "middle": [],
                        "last": "Ducharme",
                        "suffix": ""
                    },
                    {
                        "first": "Pascal",
                        "middle": [],
                        "last": "Vincent",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Jauvin",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Journal of machine learning research",
                "volume": "3",
                "issue": "",
                "pages": "1137--1155",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoshua Bengio, R\u00e9jean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic lan- guage model. Journal of machine learning research, 3(Feb):1137-1155.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Gutentag: an nlp-driven tool for digital humanities research in the project gutenberg corpus",
                "authors": [
                    {
                        "first": "Julian",
                        "middle": [],
                        "last": "Brooke",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Hammond",
                        "suffix": ""
                    },
                    {
                        "first": "Graeme",
                        "middle": [],
                        "last": "Hirst",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the Fourth Workshop on Computational Linguistics for Literature",
                "volume": "",
                "issue": "",
                "pages": "42--47",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Julian Brooke, Adam Hammond, and Graeme Hirst. 2015. Gutentag: an nlp-driven tool for digital hu- manities research in the project gutenberg corpus. In Proceedings of the Fourth Workshop on Compu- tational Linguistics for Literature, pages 42-47.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Modeling a paranoid mind",
                "authors": [
                    {
                        "first": "Kenneth",
                        "middle": [],
                        "last": "Mark",
                        "suffix": ""
                    },
                    {
                        "first": "Colby",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 1981,
                "venue": "Behavioral and Brain Sciences",
                "volume": "4",
                "issue": "4",
                "pages": "515--534",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kenneth Mark Colby. 1981. Modeling a paranoid mind. Behavioral and Brain Sciences, 4(4):515- 534.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "The mrc psycholinguistic database",
                "authors": [],
                "year": 1981,
                "venue": "The Quarterly Journal of Experimental Psychology Section A",
                "volume": "33",
                "issue": "4",
                "pages": "497--505",
                "other_ids": {
                    "DOI": [
                        "10.1080/14640748108400805"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Max Coltheart. 1981. The mrc psycholinguistic database. The Quarterly Journal of Experimental Psychology Section A, 33(4):497-505.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Survey of the state of the art in natural language generation: Core tasks, applications and evaluation",
                "authors": [
                    {
                        "first": "Albert",
                        "middle": [],
                        "last": "Gatt",
                        "suffix": ""
                    },
                    {
                        "first": "Emiel",
                        "middle": [],
                        "last": "Krahmer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Journal of Artificial Intelligence Research",
                "volume": "61",
                "issue": "",
                "pages": "65--170",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Albert Gatt and Emiel Krahmer. 2018. Survey of the state of the art in natural language generation: Core tasks, applications and evaluation. Journal of Artifi- cial Intelligence Research, 61:65-170.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Hafez: an interactive poetry generation system",
                "authors": [
                    {
                        "first": "Marjan",
                        "middle": [],
                        "last": "Ghazvininejad",
                        "suffix": ""
                    },
                    {
                        "first": "Xing",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    },
                    {
                        "first": "Jay",
                        "middle": [],
                        "last": "Priyadarshi",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of ACL 2017, System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "43--48",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and Kevin Knight. 2017. Hafez: an interactive poetry generation system. In Proceedings of ACL 2017, System Demonstrations, pages 43-48, Vancouver, Canada. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Coh-metrix: Analysis of text on cohesion and language",
                "authors": [
                    {
                        "first": "Arthur",
                        "middle": [
                            "C"
                        ],
                        "last": "Graesser",
                        "suffix": ""
                    },
                    {
                        "first": "Danielle",
                        "middle": [
                            "S"
                        ],
                        "last": "Mcnamara",
                        "suffix": ""
                    },
                    {
                        "first": "Max",
                        "middle": [
                            "M"
                        ],
                        "last": "Louwerse",
                        "suffix": ""
                    },
                    {
                        "first": "Zhiqiang",
                        "middle": [],
                        "last": "Cai",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Behavior Research Methods, Instruments, & Computers",
                "volume": "36",
                "issue": "",
                "pages": "193--202",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Arthur C. Graesser, Danielle S. McNamara, Max M. Louwerse, and Zhiqiang Cai. 2004. Coh-metrix: Analysis of text on cohesion and language. Behav- ior Research Methods, Instruments, & Computers, 36:193-202.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Generating chinese classical poems with statistical machine translation models",
                "authors": [
                    {
                        "first": "Jing",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Long",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Twenty-Sixth AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jing He, Ming Zhou, and Long Jiang. 2012. Generat- ing chinese classical poems with statistical machine translation models. In Twenty-Sixth AAAI Confer- ence on Artificial Intelligence.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Automatically generating rhythmic verse with neural networks",
                "authors": [
                    {
                        "first": "Jack",
                        "middle": [],
                        "last": "Hopkins",
                        "suffix": ""
                    },
                    {
                        "first": "Douwe",
                        "middle": [],
                        "last": "Kiela",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 55th Annual Meeting of the ACL",
                "volume": "1",
                "issue": "",
                "pages": "168--178",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jack Hopkins and Douwe Kiela. 2017. Automatically generating rhythmic verse with neural networks. In Proceedings of the 55th Annual Meeting of the ACL (Volume 1: Long Papers), pages 168-178.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Pragmatics and natural language generation",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Eduard",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Artificial Intelligence",
                "volume": "43",
                "issue": "2",
                "pages": "153--197",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eduard H Hovy. 1990. Pragmatics and natural lan- guage generation. Artificial Intelligence, 43(2):153- 197.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Assessing readability. Reading research quarterly",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "George R Klare",
                        "suffix": ""
                    }
                ],
                "year": 1974,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "62--102",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "George R Klare. 1974. Assessing readability. Reading research quarterly, pages 62-102.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Deep-speare: A joint neural model of poetic language, meter and rhyme",
                "authors": [
                    {
                        "first": "Trevor",
                        "middle": [],
                        "last": "Jey Han Lau",
                        "suffix": ""
                    },
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Cohn",
                        "suffix": ""
                    },
                    {
                        "first": "Julian",
                        "middle": [],
                        "last": "Baldwin",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Brooke",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hammond",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jey Han Lau, Trevor Cohn, Timothy Baldwin, Julian Brooke, and Adam Hammond. 2018. Deep-speare: A joint neural model of poetic language, meter and rhyme. CoRR, abs/1807.03491.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Deep reinforcement learning for dialogue generation",
                "authors": [
                    {
                        "first": "Jiwei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Will",
                        "middle": [],
                        "last": "Monroe",
                        "suffix": ""
                    },
                    {
                        "first": "Alan",
                        "middle": [],
                        "last": "Ritter",
                        "suffix": ""
                    },
                    {
                        "first": "Michel",
                        "middle": [],
                        "last": "Galley",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1606.01541"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Jurafsky. 2016. Deep rein- forcement learning for dialogue generation. arXiv preprint arXiv:1606.01541.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Beyond narrative description: Generating poetry from images by multi-adversarial training",
                "authors": [
                    {
                        "first": "Bei",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Jianlong",
                        "middle": [],
                        "last": "Fu",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Makoto",
                        "suffix": ""
                    },
                    {
                        "first": "Masatoshi",
                        "middle": [],
                        "last": "Kato",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Yoshikawa",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 26th ACM International Conference on Multimedia, MM '18",
                "volume": "",
                "issue": "",
                "pages": "783--791",
                "other_ids": {
                    "DOI": [
                        "10.1145/3240508.3240587"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Bei Liu, Jianlong Fu, Makoto P. Kato, and Masatoshi Yoshikawa. 2018. Beyond narrative description: Generating poetry from images by multi-adversarial training. In Proceedings of the 26th ACM Interna- tional Conference on Multimedia, MM '18, pages 783-791, New York, NY, USA. ACM.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Medieval Dream-Poetry",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Kathryn",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lynch",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kathryn L. Lynch. 1998. Medieval Dream-Poetry. Cambridge University Press.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Deep captioning with multimodal recurrent neural networks (m-rnn)",
                "authors": [
                    {
                        "first": "Junhua",
                        "middle": [],
                        "last": "Mao",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Yi",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Jiang",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Zhiheng",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Alan",
                        "middle": [],
                        "last": "Yuille",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1412.6632"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng Huang, and Alan Yuille. 2014. Deep captioning with multimodal recurrent neural networks (m-rnn). arXiv preprint arXiv:1412.6632.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "What is poetry? Monthly Repository",
                "authors": [
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Stuart Mill",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "7",
                "issue": "",
                "pages": "60--70",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "John Stuart Mill. 1833. What is poetry? Monthly Repository, 7(73):60-70.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "1860. Thoughts on poetry and its varieties. The Crayon",
                "authors": [
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Stuart Mill",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "7",
                "issue": "",
                "pages": "123--128",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "John Stuart Mill. 1860. Thoughts on poetry and its va- rieties. The Crayon, 7(5):123-128.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Crowdsourcing a word-emotion association lexicon",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Turney",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "29",
                "issue": "",
                "pages": "436--465",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif M. Mohammad and Peter D. Turney. 2013. Crowdsourcing a word-emotion association lexicon. 29(3):436-465.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Automatic generation of poetry: an overview",
                "authors": [
                    {
                        "first": "Hugo",
                        "middle": [],
                        "last": "Oliveira",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hugo Oliveira. 2009. Automatic generation of poetry: an overview. Universidade de Coimbra.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Poetryme: a versatile platform for poetry generation",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hugo Gon\u00e7alo Oliveira",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Concept Invention, and General Intelligence",
                "volume": "1",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hugo Gon\u00e7alo Oliveira. 2012. Poetryme: a versatile platform for poetry generation. Computational Cre- ativity, Concept Invention, and General Intelligence, 1:21.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "What's basic about basic emotions? Psychological review",
                "authors": [
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Ortony",
                        "suffix": ""
                    },
                    {
                        "first": "Terence",
                        "middle": [
                            "J"
                        ],
                        "last": "Turner",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "",
                "volume": "97",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andrew Ortony and Terence J Turner. 1990. What's basic about basic emotions? Psychological review, 97(3):315.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Improving language understanding by generative pre-training",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Karthik",
                        "middle": [],
                        "last": "Narasimhan",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Salimans",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai- assets/researchcovers/languageunsupervised/language understanding paper. pdf.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Language models are unsupervised multitask learners",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "OpenAI Blog",
                "volume": "",
                "issue": "8",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI Blog, 1(8).",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Building natural language generation systems",
                "authors": [
                    {
                        "first": "Ehud",
                        "middle": [],
                        "last": "Reiter",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Dale",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ehud Reiter and Robert Dale. 2000. Building natural language generation systems. Cambridge university press.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Dream poetry as dream work",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Richard",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Russo",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Dreaming",
                "volume": "13",
                "issue": "1",
                "pages": "13--27",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard A Russo. 2003. Dream poetry as dream work. Dreaming, 13(1):13-27.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "A survey of natural language generation techniques with a focus on dialogue systems-past, present and future directions",
                "authors": [
                    {
                        "first": "Sashank",
                        "middle": [],
                        "last": "Santhanam",
                        "suffix": ""
                    },
                    {
                        "first": "Samira",
                        "middle": [],
                        "last": "Shaikh",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1906.00500"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sashank Santhanam and Samira Shaikh. 2019. A sur- vey of natural language generation techniques with a focus on dialogue systems-past, present and future directions. arXiv preprint arXiv:1906.00500.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Neural machine translation of rare words with subword units",
                "authors": [
                    {
                        "first": "Rico",
                        "middle": [],
                        "last": "Sennrich",
                        "suffix": ""
                    },
                    {
                        "first": "Barry",
                        "middle": [],
                        "last": "Haddow",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Birch",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1508.07909"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Rico Sennrich, Barry Haddow, and Alexandra Birch. 2015. Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "The High Medieval Dream",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "C"
                        ],
                        "last": "Spearing",
                        "suffix": ""
                    }
                ],
                "year": 1976,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. C. Spearing. 1976a. The High Medieval Dream. Stanford University Press.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Medieval dreampoetry",
                "authors": [
                    {
                        "first": "Anthony Colin",
                        "middle": [],
                        "last": "Spearing",
                        "suffix": ""
                    }
                ],
                "year": 1976,
                "venue": "CUP Archive",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anthony Colin Spearing. 1976b. Medieval dream- poetry. CUP Archive.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "Niki",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Llion",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "Aidan",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "Illia",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "30",
                "issue": "",
                "pages": "5998--6008",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, \u0141 ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar- nett, editors, Advances in Neural Information Pro- cessing Systems 30, pages 5998-6008. Curran As- sociates, Inc.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Generating lyrics with variational autoencoder and multi-modal artist embeddings",
                "authors": [
                    {
                        "first": "Olga",
                        "middle": [],
                        "last": "Vechtomova",
                        "suffix": ""
                    },
                    {
                        "first": "Hareesh",
                        "middle": [],
                        "last": "Bahuleyan",
                        "suffix": ""
                    },
                    {
                        "first": "Amirpasha",
                        "middle": [],
                        "last": "Ghabussi",
                        "suffix": ""
                    },
                    {
                        "first": "Vineet",
                        "middle": [],
                        "last": "John",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Olga Vechtomova, Hareesh Bahuleyan, Amirpasha Ghabussi, and Vineet John. 2018. Generating lyrics with variational autoencoder and multi-modal artist embeddings. CoRR, abs/1812.08318.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Poet-based poetry generation: Controlling personal style with recurrent neural networks",
                "authors": [
                    {
                        "first": "Jia",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "Qiang",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Yici",
                        "middle": [],
                        "last": "Cai",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "2018 International Conference on Computing, Networking and Communications (ICNC)",
                "volume": "",
                "issue": "",
                "pages": "156--160",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jia Wei, Qiang Zhou, and Yici Cai. 2018. Poet-based poetry generation: Controlling personal style with recurrent neural networks. In 2018 International Conference on Computing, Networking and Com- munications (ICNC), pages 156-160. IEEE.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Eliza-a computer program for the study of natural language communication between man and machine",
                "authors": [
                    {
                        "first": "Joseph",
                        "middle": [],
                        "last": "Weizenbaum",
                        "suffix": ""
                    }
                ],
                "year": 1966,
                "venue": "Communications of the ACM",
                "volume": "9",
                "issue": "1",
                "pages": "36--45",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joseph Weizenbaum et al. 1966. Eliza-a computer program for the study of natural language communi- cation between man and machine. Communications of the ACM, 9(1):36-45.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Literary structures in chaucer. The Cambridge Companion to Chaucer",
                "authors": [
                    {
                        "first": "Barry",
                        "middle": [],
                        "last": "Windeatt",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "214--232",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Barry Windeatt. 2003. Literary structures in chaucer. The Cambridge Companion to Chaucer, pages 214- 232.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Google's neural machine translation system",
                "authors": [
                    {
                        "first": "Yonghui",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Schuster",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifeng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Quoc",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "Wolfgang",
                        "middle": [],
                        "last": "Norouzi",
                        "suffix": ""
                    },
                    {
                        "first": "Maxim",
                        "middle": [],
                        "last": "Macherey",
                        "suffix": ""
                    },
                    {
                        "first": "Yuan",
                        "middle": [],
                        "last": "Krikun",
                        "suffix": ""
                    },
                    {
                        "first": "Qin",
                        "middle": [],
                        "last": "Cao",
                        "suffix": ""
                    },
                    {
                        "first": "Klaus",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Macherey",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Bridging the gap between human and machine translation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1609.08144"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google's neural machine translation system: Bridging the gap between hu- man and machine translation. arXiv preprint arXiv:1609.08144.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "2013. I, poet: automatic chinese poetry composition through a generative summarization framework under constrained optimization",
                "authors": [
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    },
                    {
                        "first": "Han",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    },
                    {
                        "first": "Shou-De",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Xueqiang",
                        "middle": [],
                        "last": "Lv",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoming",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Twenty-Third International Joint Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rui Yan, Han Jiang, Mirella Lapata, Shou-De Lin, Xueqiang Lv, and Xiaoming Li. 2013. I, poet: au- tomatic chinese poetry composition through a gen- erative summarization framework under constrained optimization. In Twenty-Third International Joint Conference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Bertscore: Evaluating text generation with BERT. CoRR",
                "authors": [
                    {
                        "first": "Tianyi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Varsha",
                        "middle": [],
                        "last": "Kishore",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Kilian",
                        "middle": [
                            "Q"
                        ],
                        "last": "Weinberger",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Artzi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. 2019. Bertscore: Evaluating text generation with BERT. CoRR, abs/1904.09675.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Chinese poetry generation with recurrent neural networks",
                "authors": [
                    {
                        "first": "Xingxing",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "670--680",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xingxing Zhang and Mirella Lapata. 2014. Chinese poetry generation with recurrent neural networks. In Proceedings of the 2014 Conference on Em- pirical Methods in Natural Language Processing (EMNLP), pages 670-680.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "A high-level overview of our project implementation for emotion eliciting poetry",
                "uris": null,
                "num": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "text": "GPT Architecture. Adapted from(Radford et al., 2018(Radford et al., , 2019",
                "uris": null,
                "num": null
            },
            "FIGREF2": {
                "type_str": "figure",
                "text": "American pyschologist Robert Plutchik's Wheel of Emotions",
                "uris": null,
                "num": null
            },
            "TABREF1": {
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": "Comparison of 5 emotion models trained.",
                "num": null
            },
            "TABREF2": {
                "type_str": "table",
                "content": "<table><tr><td>\u2022 Quality 1: The poem is generally a first-</td></tr><tr><td>person expression</td></tr><tr><td>\u2022 Quality 2: The poem's main substance is</td></tr><tr><td>dream or vision like</td></tr><tr><td>\u2022 Quality 3: The poem recounts or foretells an</td></tr><tr><td>experience or event</td></tr></table>",
                "html": null,
                "text": "Average Likert score of users for each poem",
                "num": null
            },
            "TABREF4": {
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": "Average Coh-Metrix evaluations across 25 randomly selected poems from each model.",
                "num": null
            }
        }
    }
}