File size: 99,622 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
{
    "paper_id": "2019",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:29:16.234423Z"
    },
    "title": "An LSTM-Based Deep Learning Approach for Detecting Self-Deprecating Sarcasm in Textual Data",
    "authors": [
        {
            "first": "Ashraf",
            "middle": [],
            "last": "Kamal",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Jamia Millia Islamia, (A Central University",
                "location": {
                    "settlement": "New Delhi",
                    "country": "India"
                }
            },
            "email": "ashrafkamal.mca@gmail.com"
        },
        {
            "first": "Muhammad",
            "middle": [],
            "last": "Abulaish",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Asian University",
                "location": {
                    "settlement": "New Delhi",
                    "country": "India"
                }
            },
            "email": "abulaish@sau.ac.in"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Self-deprecating sarcasm is a special category of sarcasm, which is nowadays popular and useful for many real-life applications, such as brand endorsement, product campaign, digital marketing, and advertisement. The selfdeprecating style of campaign and marketing strategy is mainly adopted to excel brand endorsement and product sales value. In this paper, we propose an LSTM-based deep learning approach for detecting self-deprecating sarcasm in textual data. To the best of our knowledge, there is no prior work related to self-deprecating sarcasm detection using deep learning techniques. Starting with a filtering step to identify self-referential tweets, the proposed approach adopts a deep learning model using LSTM for detecting self-deprecating sarcasm. The proposed approach is evaluated over three Twitter datasets and performs significantly better in terms of precision, recall, and f-score. 1 https://bit.ly/2WsUkUk (last accessed on 15-Nov-19) 2 https://literarydevices.net/sarcasm/ (last accessed on 15-Nov-19) 3 https://bit.ly/2vwjtid (last accessed on 15-Nov-19",
    "pdf_parse": {
        "paper_id": "2019",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Self-deprecating sarcasm is a special category of sarcasm, which is nowadays popular and useful for many real-life applications, such as brand endorsement, product campaign, digital marketing, and advertisement. The selfdeprecating style of campaign and marketing strategy is mainly adopted to excel brand endorsement and product sales value. In this paper, we propose an LSTM-based deep learning approach for detecting self-deprecating sarcasm in textual data. To the best of our knowledge, there is no prior work related to self-deprecating sarcasm detection using deep learning techniques. Starting with a filtering step to identify self-referential tweets, the proposed approach adopts a deep learning model using LSTM for detecting self-deprecating sarcasm. The proposed approach is evaluated over three Twitter datasets and performs significantly better in terms of precision, recall, and f-score. 1 https://bit.ly/2WsUkUk (last accessed on 15-Nov-19) 2 https://literarydevices.net/sarcasm/ (last accessed on 15-Nov-19) 3 https://bit.ly/2vwjtid (last accessed on 15-Nov-19",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Over a decade, the popularity of the microblogging platform, Twitter, has significantly increased for analyzing its content for varied realworld applications. The information extracted from Twitter can shed light on numerous applications, such as text categorization, sentiment analysis, election campaign and result prediction, opensource intelligence, and event detection. However, the contents available on Twitter in the form of tweets are short and limited to maximum 280 characters. Moreover, tweets are informal and mainly consist of misspelled words, slangs, bashes, acronyms, shortened words, nonliteral unstructured phrases, and emoticons. Due to existence of such volumunious informal texts in the form of tweets text information processing is a challenging task. Moreover, analysis of the tweets has become more challenging due to presence of figurative language, especially sarcasm. The main role of a sarcastic tweet is to reverse the actual polarity and alter the literal semantics. However, the computational detection of sarcasm benefits many applications, especially opinion mining and sentiment analysis systems (Bouazizi and Ohtsuki, 2015) .",
                "cite_spans": [
                    {
                        "start": 1131,
                        "end": 1159,
                        "text": "(Bouazizi and Ohtsuki, 2015)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The online Macmillan dictionary defines sarcasm 1 as \"the activity of saying or writing the opposite of what you mean, or of speaking in a way intended to make someone else feel stupid or show them that you are angry\". Sarcasm is the most seen figurative language category over online social media platforms. The presence of sarcasm in tweets is dramatically rising and computational detection of sarcasm is a challenging and interesting task. It is widely covered by researchers in recent years, but the study on different categories 2 of sarcasm, such as self-deprecating sarcasm, is very limited. Self-deprecating sarcasm 3 is a special category of sarcasm in which users mainly apply sarcasm over themselves using disparage, ridicule, and contemptuous remarks in a sarcastic style using humor. It is defined as a \"sarcasm that plays off of an exaggerated sense of worthlessness and inferiority\". For example, the phrase love going to the office on Sunday in the text \"Really, I always love going to the office on Sunday\" represents a self-deprecating sarcasm.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Nowadays, self-deprecating sarcasm has become a new style of product marketing and campaign strategy. It is mainly used for product endorsement purposes. This new marketing and campaign strategy is mainly used to excel the busi-ness growth, but without losing the brand value (Kamal and Abulaish, 2019) . The main aim of this strategy is to draw the attention of the customer towards the brand. As per the American marketing association 4 , \"self-deprecating advertising means consumers can see a different side to brands, making them more relatable and downto-earth\". Interestingly, after an in-depth analysis of tweets, we found that there are many tweets in which users refer themselves. We consider such tweets as self-referential or self-deprecating. For example, \"Really, I just love it\" is a self-referential tweet. Our analysis further reveals that some of the self-referential tweets are self-deprecating using sarcasm, i.e., in these tweets users undervalue, criticize, insult, and disparage themselves using sarcastic phrases. We consider all such selfreferential tweets as self-deprecating sarcasm.",
                "cite_spans": [
                    {
                        "start": 276,
                        "end": 302,
                        "text": "(Kamal and Abulaish, 2019)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we propose a deep learning approach using Long Short-Term Memory (LSTM) to detect self-deprecating sarcasm in textual data like tweets. Initially, after preprocessing, we first identify self-referential tweets from the dataset based on a set of patterns, and rest of tweets are filtered out. The main motivation behind the filtration of the non-self-referential tweets is to increases the overall efficiency of the selfdeprecating sarcasm detection process. In brief, the main role of the self-referential tweets identification module can be summarized as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Identification of explicit self-referential tweets: After an in-depth analysis across all the datasets, we identify a set of patterns followed by the self-referential tweets. Table  1 presents a set of regular expression based patterns and it is categorized as specific patterns and generic patterns. The specific patterns are based on tags and tokens present in the tweet which indicate self-referential nature of the tweet. On the other hand, generic patterns are based on the presence of first person singular/plural personal pronoun. These patterns are found as strong indicator of self-referential tweets. We consider such self-referential tweets as explicit, otherwise implicit.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 177,
                        "end": 185,
                        "text": "Table  1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Identification of clusters from explicit selfreferential tweets: We identify explicit self-referential tweets clusters based on overlapping contents (i.e., tri-grams) and using Jaccard similarity between the explicit selfreferential tweets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Pattern-mining from clusters: Once the explicit self-referential tweets clusters are identified, we fetch the most frequent substring (i.e, tri-gram) as a referential pattern from each cluster.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Identification of implicit self-referential tweets: If an implicit tweet matches with the referential pattern of any cluster, then it is considered as a self-referential tweet.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Merge with explicit tweets: Finally, all identified implicit self-referential tweets are merged with explicit tweets to generate a list of the self-referential tweets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Once the list of self-referential tweets is generated, it is passed to the model learning and classification module for self-deprecating sarcasm detection. To this end, each self-referential tweet is converted into an input vector, it is fed to pretrained GloVe word embedding, and model learning and classification task is accomplished using LSTM for detecting self-deprecating sarcasm.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This remainder of this paper is organized as follows. Section 2 presents a brief review of the state-of-the-art techniques and approaches for computational sarcasm detection. It also highlights the uniqueness of our proposed approach over the existing state-of-the-art techniques. Section 3 presents the functional details of the proposed approach, including model learning and classification using LSTM. Section 4 presents the experimental and evaluation results. Finally, section 5 concludes the paper and discusses future research directions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Automatic sarcasm detection is considered as a classification task (Zhang et al., 2016) , and the main task is to classify any piece of texts as sarcasm or non-sarcasm. applied semi-supervised approach to detect sarcasm in Amazon product reviews. applied the same approach to detect sarcasm in tweets and product reviews. Gonz\u00e1lez-Ib\u00e1nez et al. (2011) considered lexical and pragmatics features to detect sarcasm on Twitter datasets. Riloff et al. (2013) identified sarcastic contrastbased patterns and considered words with positive sentiment and negative phrases in a tweet containing sarcasm. Liebrecht et al. (2013) discussed the role of hyperrbole in sarcasm detection. Pt\u00e1cek et al. (2014) detected sarcasm in English and Czech tweets. Bharti et al. 2015proposed rule-based algorithms based on some patterns for sarcasm detection. They also highlighted the importance of hyperbole in sarcastic texts. Bamman and Smith (2015) extracted extra-linguistic information based on the context of the instances for sarcasm detection. Rajadesingan et al. (2015) applied three machine learning classifiers -Support Vector Machine (SVM), logistic regression, and decision tree for sarcasm detection, considering the behavioral modeling-based approach. Ghosh et al. (2015) proposed SemEval-2015 (task-11) and considered sarcasm, irony, and metaphor for sentiment analysis in Twitter data. Joshi et al. (2015) discussed the role of incongruity for sarcasm detection. Bouazizi and Ohtsuki (2016) considered a pattern-based approach. Mishra et al. (2016) considered lexicaland contextual-based features. Joshi et al. 2016proposed word-embedding related features using Word2Vec 5 .",
                "cite_spans": [
                    {
                        "start": 67,
                        "end": 87,
                        "text": "(Zhang et al., 2016)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 434,
                        "end": 454,
                        "text": "Riloff et al. (2013)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 596,
                        "end": 619,
                        "text": "Liebrecht et al. (2013)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 675,
                        "end": 695,
                        "text": "Pt\u00e1cek et al. (2014)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 907,
                        "end": 930,
                        "text": "Bamman and Smith (2015)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1031,
                        "end": 1057,
                        "text": "Rajadesingan et al. (2015)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 1246,
                        "end": 1265,
                        "text": "Ghosh et al. (2015)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1382,
                        "end": 1401,
                        "text": "Joshi et al. (2015)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 1524,
                        "end": 1544,
                        "text": "Mishra et al. (2016)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Recently, deep learning models have been used as a popular technique for sarcasm detection problem. Zhang et al. (2016) applied a bi-directional gated recurrent neural network for sarcasm detection. They considered syntactic and semantic information and extracted contextual features. Amir et al. (2016) applied content-and user embedding-based Convolutional Neural Network (CNN) model. Ghosh and Veale (2016) considered CNN, LSTM, and Deep Neural Network (DNN) for sarcasm detection. Poria et al. (2016) considered features, such as sentiment, emotion, and personality and applied SVM and CNN classifiers. Tay et al. (2018) considered attention-based neural model for sarcasm detection. Hazarika et al. (2018) proposed a contextual sarcasm detector using CNN-based textual model in which context and content related information are used for sarcasm detection. Recently, Dubey et al. (2019a) converted sarcastic texts into non-sarcastic interpretation using encoder-decoder, attention, and pointer generator architectures. Dubey et al. 5 https://code.google.com/archive/p/ word2vec/ (last accessed on 15-Nov-19) (2019b) detected sarcasm in numerical portion of tweets using CNN and attention network.",
                "cite_spans": [
                    {
                        "start": 285,
                        "end": 303,
                        "text": "Amir et al. (2016)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 485,
                        "end": 504,
                        "text": "Poria et al. (2016)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 607,
                        "end": 624,
                        "text": "Tay et al. (2018)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 688,
                        "end": 710,
                        "text": "Hazarika et al. (2018)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 871,
                        "end": 891,
                        "text": "Dubey et al. (2019a)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1036,
                        "end": 1037,
                        "text": "5",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Though sarcasm detection is widely covered by the researchers, studies related to the varied categories of sarcasm are still not explored. Recently, Abulaish and Kamal (2018) noticed the use of self-deprecating sarcasm in Twitter, mainly for the purpose of brand endorsement and sales campaign. They considered self-deprecating sarcasm as a special category of sarcasm in which users express sarcasm over themselves. They also proposed a rule-based and machine learning-based approach for detecting self-deprecating sarcasm detection in Twitter. The proposed work in this paper is new LSTM-based deep learning approach for self-deprecating sarcasm detection in textual data.",
                "cite_spans": [
                    {
                        "start": 149,
                        "end": 174,
                        "text": "Abulaish and Kamal (2018)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In this section, we discuss the proposed LSTMbased deep learning approach for self-deprecating sarcasm detection. Figure 1 presents the workflow of the proposed approach. It can be seen from this figure that besides data crawling and data pre-processing, the main functionalities of the proposed approach are self-referential tweets detection, and self-deprecating sarcasm detection using deep learning technique. Further details about all functional modules are presented in the following sub-sections.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 114,
                        "end": 122,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Proposed Approach",
                "sec_num": "3"
            },
            {
                "text": "The data crawling module aims to retrieve English tweets using Twitter's REST API and it is implemented in Python 2.7. We have considered tweet ids provided as a part of two benchmark datasets - Pt\u00e1cek et al. (2014) and SemEval-2015 6 to curate tweets using our data crawling module. In addition, we have also created our own Twitter dataset containing tweets crawled for the period 1st April 2019 to 19th May 2019.",
                "cite_spans": [
                    {
                        "start": 195,
                        "end": 215,
                        "text": "Pt\u00e1cek et al. (2014)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Crawling",
                "sec_num": "3.1"
            },
            {
                "text": "The data pre-processing module aims to apply various pre-processing tasks on the curated tweets to produce fine-grained data for self-deprecating sarcasm detection. The pre-processing consists of data cleaning (removal of dots, retweets, numbers, hashtags, emoticons, @mention, URL's, am- ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Pre-Processing",
                "sec_num": "3.2"
            },
            {
                "text": "Pk i t o t x t C t-1 h t-1 x + ct h t x t \u03c3 f t tanh x x \u03c3 \u03c3 Pe Ce",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Pre-Processing",
                "sec_num": "3.2"
            },
            {
                "text": "Self-referential tweets identification Figure 1 : Work-flow of the proposed approach persands, double quotes, and extra white spaces) and lower-case conversion. Thereafter, spacy 7 is used to tokenize the tweets and generate POS tags for each token.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 39,
                        "end": 47,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Data Pre-Processing",
                "sec_num": "3.2"
            },
            {
                "text": "After an in-depth analysis of the datasets it is observed that all tweets are not self-referential or self-deprecating in nature. To this end, this module presents a filtration mechanism to generate a corpus of self-referential tweets. The non-self-referential tweets are filtered from further consideration because they rarely contain a self-deprecating sarcasm. Motivated by Zhao et al. (2015) , identification of self-referential tweets is performed using the following sequence of steps.",
                "cite_spans": [
                    {
                        "start": 377,
                        "end": 395,
                        "text": "Zhao et al. (2015)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Self-Referential Tweets Identification",
                "sec_num": "3.3"
            },
            {
                "text": "(i) Identification of Explicit Self-Referential Tweets:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Self-Referential Tweets Identification",
                "sec_num": "3.3"
            },
            {
                "text": "In this step, we identify the self-referential tweets that have explicit pattern in the text and these tweets are considered for further processing to mine implicit patterns (signals) of self-referential behavior in tweets. The explicit self-referential tweets have certain patterns, which can be defined using the regular expressions given in Table 1 . The tweets from the pre-processed corpus are matched using these regular expressions to identify the explicit self-referential tweets. The pattern for explicit nature of self-referential tweets are of two types -specific and generic.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 344,
                        "end": 351,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Self-Referential Tweets Identification",
                "sec_num": "3.3"
            },
            {
                "text": "The specific patterns are based on either sequential order of tokens and tags, or sequential order of tokens. If any of the specific pattern 7 https://spacy.io/ (last accessed on 15-Nov-19) from table 1 founds in the pre-processed tweets, then it is added to the explicit set, otherwise it is checked further from generic patterns. The generic patterns are based on the first person singular/plural personal pronoun, such as 'i', 'we', and their objective and possessive cases, such as 'my', 'me', 'mine', 'myself ', 'are', 'our', 'us', and 'ourselves'. The first person singular/plural personal pronoun and its grammatical variants are strong indicator for a tweet to be referred as selfreferential.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Self-Referential Tweets Identification",
                "sec_num": "3.3"
            },
            {
                "text": "Patterns Category U H (i | my) Specific (we | i) [love] (it | when) Specific when (my | our) Specific (am | are) [still] Specific (i | my | me | mine | myself ) Generic (we | are | us | our | ourselves) Generic",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Self-Referential Tweets Identification",
                "sec_num": "3.3"
            },
            {
                "text": "If any of the token from the pre-processed tweet matches with any generic patterns, then such tweet is considered as explicit self-referential tweet, and added to the explicit set of selfreferential tweets, E s . Otherwise, the tweet is added to the set of implicit tweets, I t . Further, the identified explicit tweets are modeled as a undirected weighted graph and given to a clustering algorithm for further processing, which is defined in the next step.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Self-Referential Tweets Identification",
                "sec_num": "3.3"
            },
            {
                "text": "(ii) Identification of Clusters from Explicit Self-Referential Tweets: This step clusters the tweets in E s to identify the near-duplicate (similar) explicit self-referential tweets. To this end, first E s tweets are modeled as an undirected graph, where each node of the graph represents a tweet and edge represents the similarity between the underlying pair of nodes. The similarity between two tweets (nodes), say t i and t j , is calculated using Jaccard coefficient to observe the overlapping set of tri-grams between the tweets, as defined in equation 1, where T i and T j represents the set of tri-grams for tweets t i and t j , respectively. We choose tri-grams in our experiment because self-deprecating phrases in a tweet generally contain at least three words. We create an edge between a pair of near-duplicate tweets if the Jaccard similarity based on set of tri-grams is greater than a threshold 0.6 as defined in (Zhao et al., 2015) . Thereafter, depth first search algorithm is applied on the constructed graph to extract clusters (connected components), where each cluster represents the set of identical explicit self-referential tweets. The extraction process only extract clusters having atleast three tweets.",
                "cite_spans": [
                    {
                        "start": 928,
                        "end": 947,
                        "text": "(Zhao et al., 2015)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Self-Referential Tweets Identification",
                "sec_num": "3.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "J(t i , t j ) = |T i \u2229 T j | |T i \u222a T j |",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Self-Referential Tweets Identification",
                "sec_num": "3.3"
            },
            {
                "text": "(iii) Pattern-Mining from Clusters: Following the cluster identification process in the previous step, this step mines frequent patterns from the extracted clusters. To this end, the occurrence probability of every pattern of each cluster is computed and patterns having probability greater than 0.8 are regarded as patterns. For example, if a cluster has 5 tweets and a tri-gram \"great way start\" occurs in four out of 5 tweets, then it can be regarded as a frequent pattern (tri-gram). This procedure is repeated for every pattern in each cluster to extract the list of frequent patterns. Thereafter, the duplicate frequent patterns identified from two or more clusters are filtered to generate unique set of frequent patterns P .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Self-Referential Tweets Identification",
                "sec_num": "3.3"
            },
            {
                "text": "(iv) Identification of Implicit Self-Referential Tweets:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Self-Referential Tweets Identification",
                "sec_num": "3.3"
            },
            {
                "text": "The first step of this whole procedure held tweets which have no explicit pattern as self-referential tweets, called implicit tweets. This step will improve the recall of the self-referential tweets identification process. This step matches the identified patterns from previous step in implicit tweets to extract implicit self-referential tweets. To this end, first an implicit tweet is tokenized in to tri-grams and thereafter these set of tri-grams are matched with the set of frequent patterns P using Jaccard similarity. Finally, a tweet that has Jaccard similarity greater than a threshold 0.6 is considered as a implicit self-referential tweets. This procedure is repeated for every tweets of I t to generate a set of implicit self-referential tweets, I s . For example, Finally, in this step, the identified implicit selfreferential tweets are added to the set of explicit self-referential tweets to generate a final set of self-referential tweets i.e. S = E s \u222a I s . In the remaining paper, this curated corpus of selfreferential tweets is used for experimental evaluation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Self-Referential Tweets Identification",
                "sec_num": "3.3"
            },
            {
                "text": "In recent years, deep learning has become an emerging trend in the field of text mining and natural language processing. The semantic modeling of textual data using deep learning approaches has drawn significant attention among the research community. Various neural network-based models including CNN, LSTM, and DNN are used for diverse text modeling applications such as document classification, machine translation, speech recognition, and so on. Detection of self-deprecating sarcasm is one such application that is largely unexplored. To this end, we modeled the selfdeprecating sarcasm detection as a deep-learning problem. On analysis, it is found that the long sequence of words or phrases plays an important role to construct a self-deprecating sarcastic patterns, such as love being ignored, office on sunday, and happy to be late in a tweet. Therefore, to model the long-sequences based self-deprecating sarcastic pattern, LSTM seems a perfect fit. Using model learning through LSTM, a self-referential tweet is classified as a Self-Deprecating Sarcasm (SDS) or Non Self-Deprecating Sarcasm (NSDS).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Learning and Classification",
                "sec_num": "3.4"
            },
            {
                "text": "A detailed discussion about the model learning and classification is presented in following subsection.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Learning and Classification",
                "sec_num": "3.4"
            },
            {
                "text": "In this layer, a self-referential tweet, containing n words, is given as an input. In this manner, each self-referential tweet is converted to a self-referential input vector where every word is replaced with its index value of the dictionary, i.e., S R 1\u00d7n . Further, each self-referential input vector is padded and converted in the matrix form. The padding is used to make every input of same length. Thereafter, padded input vector is passed to the next layer (i.e., embedding layer).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Layer:",
                "sec_num": null
            },
            {
                "text": "In the padded vector from the input layer, all the words are replaced with their corresponding representation vector or embeddings. In this paper, we have used pre-trained GloVe 200dimensional embeddings trained on a Twitter corpus of 27 billion tokens. As a result of this procedure, the self-referential input tweet matrix is converted to S R L\u00d7D , where L is the maximum tweets length and D represents embedding dimension.Thereafter, the embedding layer output is passed to the LSTM layer.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Embedding Layer:",
                "sec_num": null
            },
            {
                "text": "Hochreiter and Schmidhuber (1997) proposed LSTM architecture, which is a type of RNN. It is easier to train an LSTM model in comparison to an RNN model. Moreover, it also overcomes the vanishing gradient problem while back propagation through time. In LSTM, the long term temporal dependencies can be easily captured between two time steps using the memory cell. Figure 2 presents the architecture of LSTM, where each memory cell consists of input gate i t , forget gate f t , and output gate o t . These digital gates are responsible for memory update mechanism, and it acts as a function for the current input x t and previous hidden state h t\u22121 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 363,
                        "end": 369,
                        "text": "Figure",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "LSTM:",
                "sec_num": null
            },
            {
                "text": "An LSTM model is trained using equations 2, 3, 4, 5, 6, and 7. Equations 2 and 3 present input and forget gates, whereas equations 5, 6, and 7 present output gate, new cell state, and hidden state, respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LSTM:",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "i t = \u03c3(W i [h t\u22121 , x t ] + b i )",
                        "eq_num": "(2)"
                    }
                ],
                "section": "LSTM:",
                "sec_num": null
            },
            {
                "text": "Self-deprecating sarcasm tweets (SDS)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LSTM:",
                "sec_num": null
            },
            {
                "text": "+ tanh h t C t-1 h t-1 x + c t x t \u03c3 ft tanh x x \u03c3 \u03c3 i t o t tanh x",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model learning and classification",
                "sec_num": null
            },
            {
                "text": "h t c t Figure 2 : The architecture of LSTM",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 8,
                        "end": 16,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Model learning and classification",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "f t = \u03c3(W f [h t\u22121 , x t ] + b f )",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Model learning and classification",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "q t = tanh(W q [h t\u22121 , x t ] + b q ) (4) o t = \u03c3(W o [h t\u22121 , x t ] + b 0 ) (5) c t = f t c t\u22121 + i t q t (6) h t = o t tanh(c t )",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Model learning and classification",
                "sec_num": null
            },
            {
                "text": "In equation 4, the non-linear activation function tanh is used to squash the value between -1 and 1, and it plays a role for cell state to forget the memory. On the other hand, non-linear activation function, sigmoid (\u03c3) generates an output in the interval [0, 1] . LSTM works as the gating function for the three gates, which are discussed in the previous paragraph. Since it has a value in interval [0, 1], the information across the gates are either passed completely or not.",
                "cite_spans": [
                    {
                        "start": 257,
                        "end": 260,
                        "text": "[0,",
                        "ref_id": null
                    },
                    {
                        "start": 261,
                        "end": 263,
                        "text": "1]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model learning and classification",
                "sec_num": null
            },
            {
                "text": "The output from the LSTM layer is passed to the fully connected dense layer followed by a sigmoid activation function. We have used binary crossentropy as the loss function, used 40 epochs for training the model, batch-size of 256, verbose is 2, and adam as an optimizer. The dataset is divided into training and testing parts for experimental evaluations wherein 80% of the data is used for training and remaining 20% is used for testing procedure.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "FC and Output Layers:",
                "sec_num": null
            },
            {
                "text": "In this section, we discuss the experimental evaluation of the proposed approach.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments Setup and Results",
                "sec_num": "4"
            },
            {
                "text": "We have implemented the experimental setup for data crawling, data pre-processing, and selfreferential tweets identification tasks in Python 2.7, model training and classification tasks in Python 3.5, and used Keras neural network API for LSTM model. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Settings",
                "sec_num": "4.1"
            },
            {
                "text": "The proposed approach is evaluated over three Twitter datasets including two benchmark datasets by Pt\u00e1cek et al. (2014) and SemEval-2015. The authors released only tweet-ids for these benchmark datasets due to privacy concerns. Therefore, a crawler is developed in Python 2.7 to curate tweets corresponding to provided tweet-ids using Twitter REST API. However, few tweets were deleted or protected and, as a result, we were unable to crawl all the tweets. A brief statistics about these two datasets is given in the first two rows of table 4. Apart from the two benchmark datasets, we curated a Twitter dataset from 1st April to 19th May 2019 using \"#sarcasm\" hashtag. We refer this dataset as Twitter-280 and its statistical summary is given in the third row of table 4. Similarly, we crawled non-sarcastic tweets using two #not, #hate hastags. Table 5 presents the statistics of identified self-referential tweets after the selfreferential tweets identification module. Table 6 presents the final statistics of the balanced and unbalanced datasets generated from table 5. ",
                "cite_spans": [
                    {
                        "start": 99,
                        "end": 119,
                        "text": "Pt\u00e1cek et al. (2014)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 847,
                        "end": 854,
                        "text": "Table 5",
                        "ref_id": "TABREF8"
                    },
                    {
                        "start": 973,
                        "end": 980,
                        "text": "Table 6",
                        "ref_id": "TABREF10"
                    }
                ],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "4.2"
            },
            {
                "text": "This section discusses the standard data mining metrics -precision, recall, and f-score, which are used to evaluate the proposed approach. Formally, these metrics in terms of True Positives (TP), False Positives (FP), and False Negatives (FN) are define in equations 8, 9, and 10, where TP is defined as the number of correctly classified as SDS tweets, FP is defined as number of NSDS tweets misclassified as SDS tweets, and FN is defined as number of SDS tweets misclassified as NSDS tweets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "Precision (\u03c0) = TP FP + TP (8) Recall (\u03c1) = TP FN + TP (9) F-score (F1) = 2 \u00d7 \u03c0 \u00d7 \u03c1 \u03c0 + \u03c1",
                        "eq_num": "(10)"
                    }
                ],
                "section": "Evaluation Metrics",
                "sec_num": "4.3"
            },
            {
                "text": "This section presents the experimental evaluation results over the three datasets discussed in subsection 4.2. All the experimental evaluations are performed using an LSTM model trained on 40 epoch. Table 7 presents the performance evaluation results of our proposed approach using the LSTM model on balanced and unbalanced datasets in terms of three evaluation metrics. On analysis, it can be observed from this table that in terms of all the three evaluation metrics, the proposed approach performs comparatively better on balanced datasets and shows slightly lower performance on unbalanced datasets. Another interesting observation from this table is that, in terms of all the three evaluation metrics, proposed approach performs best on Pt\u00e1cek et al. (2014) dataset. Further, table 7 shows that the proposed approach performs comparatively better on the balanced version of our created dataset. Table 7 : Performance evaluation of our proposed approach using LSTM on balanced and unbalanced datasets presented in table 6",
                "cite_spans": [
                    {
                        "start": 742,
                        "end": 762,
                        "text": "Pt\u00e1cek et al. (2014)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 199,
                        "end": 206,
                        "text": "Table 7",
                        "ref_id": null
                    },
                    {
                        "start": 900,
                        "end": 907,
                        "text": "Table 7",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation Results",
                "sec_num": "4.4"
            },
            {
                "text": "To be the best of authors knowledge there is no prior work on self-deprecating sarcasm detection using deep learning approach. However, a rule and machine learning-based approach was presented by the authors in Abulaish and Kamal (2018) and proposed approach is compared with that one. In Abulaish and Kamal (2018) , authors considered Pt\u00e1cek et al. (2014) dataset to detect selfdeprecating sarcasm in tweets. We implemented Abulaish and Kamal (2018) to evaluated its efficacy over the three datasets. Figures 3 and 4 present the comparative performance evaluation of the proposed approach with Abulaish and Kamal (2018) in terms of precision, recall, and f-score over balanced and unbalanced version of all the three datasets, respectively.",
                "cite_spans": [
                    {
                        "start": 211,
                        "end": 236,
                        "text": "Abulaish and Kamal (2018)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 289,
                        "end": 314,
                        "text": "Abulaish and Kamal (2018)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 336,
                        "end": 356,
                        "text": "Pt\u00e1cek et al. (2014)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 425,
                        "end": 450,
                        "text": "Abulaish and Kamal (2018)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 595,
                        "end": 620,
                        "text": "Abulaish and Kamal (2018)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 502,
                        "end": 517,
                        "text": "Figures 3 and 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Comparative Analysis",
                "sec_num": "4.5"
            },
            {
                "text": "It can be observed from figures 3 and 4 that the proposed LSTM-based deep learning approach outperforms Abulaish and Kamal (2018) in terms of precision, recall, and f-score on both balanced and unbalanced datasets. However, Abulaish and Kamal (2018) reported slightly better performance in terms of precision and f-score results on Pt\u00e1cek et al. (2014) dataset.",
                "cite_spans": [
                    {
                        "start": 104,
                        "end": 129,
                        "text": "Abulaish and Kamal (2018)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 224,
                        "end": 249,
                        "text": "Abulaish and Kamal (2018)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 332,
                        "end": 352,
                        "text": "Pt\u00e1cek et al. (2014)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparative Analysis",
                "sec_num": "4.5"
            },
            {
                "text": "In this paper, we have proposed a new approach using LSTM-based deep learning for detecting self-deprecating sarcasm in textual data. The self-deprecating sarcasm is a special category of sarcasm in which users apply sarcasm on themselves. One of the major applications of this work is to promote self-deprecating marketing strategies. The proposed approach is evaluated over three Twitter datasets, including two benchmark datasets, and the experimental results are promising. It also performs significantly better than one of the state-of-the-art methods, which used rulebased and machine learning techniques for selfdeprecating sarcasm detection. Exploring new patterns and consideration of multimedia contents for self-deprecating sarcasm detection seems one of the promising directions of future research.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "5"
            },
            {
                "text": "https://bit.ly/2EEuQGQ (last accessed on 15-",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://bit.ly/34OnGgB (last accessed on 15-",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This publication is an outcome of the R&D work undertaken project under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Selfdeprecating sarcasm detection: An amalgamation of rule-based and machine learning approach",
                "authors": [
                    {
                        "first": "Muhammad",
                        "middle": [],
                        "last": "Abulaish",
                        "suffix": ""
                    },
                    {
                        "first": "Ashraf",
                        "middle": [],
                        "last": "Kamal",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the International Conference on Web Intelligence",
                "volume": "",
                "issue": "",
                "pages": "574--579",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Muhammad Abulaish and Ashraf Kamal. 2018. Self- deprecating sarcasm detection: An amalgamation of rule-based and machine learning approach. In Pro- ceedings of the International Conference on Web In- telligence (IEEE/WIC/ACM), Santiago, Chile, pages 574-579. IEEE.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Modelling context with user embeddings for sarcasm detection in social media",
                "authors": [
                    {
                        "first": "Silvio",
                        "middle": [],
                        "last": "Amir",
                        "suffix": ""
                    },
                    {
                        "first": "Byron",
                        "middle": [
                            "C"
                        ],
                        "last": "Wallace",
                        "suffix": ""
                    },
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Lyu",
                        "suffix": ""
                    },
                    {
                        "first": "Paula",
                        "middle": [],
                        "last": "Carvalho",
                        "suffix": ""
                    },
                    {
                        "first": "M\u00e1rio",
                        "middle": [
                            "J"
                        ],
                        "last": "Silva",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 20th Special Interest Group on Natural Language Learning Conference on Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "167--177",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Silvio Amir, Byron C. Wallace, Hao Lyu, Paula Carvalho, and M\u00e1rio J. Silva. 2016. Modelling context with user embeddings for sarcasm detec- tion in social media. In Proceedings of the 20th Special Interest Group on Natural Language Learning Conference on Computational Natural Language Learning((SIGNLL-CoNLL), Berlin, Ger- many, pages 167-177. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Contextualized sarcasm detection on twitter",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Bamman",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 9th International Association for the Advancement of Artificial Intelligence Conference on Web and Social Media (ICWSM)",
                "volume": "",
                "issue": "",
                "pages": "574--577",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Bamman and Noah A. Smith. 2015. Contex- tualized sarcasm detection on twitter. In Proceed- ings of the 9th International Association for the Ad- vancement of Artificial Intelligence Conference on Web and Social Media (ICWSM), Oxford, UK, pages 574-577. Citeseer.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A pattern-based approach for sarcasm detection on twitter",
                "authors": [
                    {
                        "first": "Mondher",
                        "middle": [],
                        "last": "Bouazizi",
                        "suffix": ""
                    },
                    {
                        "first": "Tomoaki",
                        "middle": [],
                        "last": "Ohtsuki",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "IEEE Access",
                "volume": "4",
                "issue": "",
                "pages": "5477--5488",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mondher Bouazizi and Tomoaki Ohtsuki. 2016. A pattern-based approach for sarcasm detection on twitter. IEEE Access, 4:5477-5488.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Semi-supervised recognition of sarcastic sentences in twitter and amazon",
                "authors": [
                    {
                        "first": "Dmitry",
                        "middle": [],
                        "last": "Davidov",
                        "suffix": ""
                    },
                    {
                        "first": "Oren",
                        "middle": [],
                        "last": "Tsur",
                        "suffix": ""
                    },
                    {
                        "first": "Ari",
                        "middle": [],
                        "last": "Rappoport",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 14th Conference on Computational Natural Language Learning (CoNLL)",
                "volume": "",
                "issue": "",
                "pages": "107--116",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010. Semi-supervised recognition of sarcastic sentences in twitter and amazon. In Proceedings of the 14th Conference on Computational Natural Language Learning (CoNLL), Uppsala, Sweden, pages 107- 116. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Deep models for converting sarcastic utterances into their non sarcastic interpretation",
                "authors": [
                    {
                        "first": "Abhijeet",
                        "middle": [],
                        "last": "Dubey",
                        "suffix": ""
                    },
                    {
                        "first": "Aditya",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Pushpak",
                        "middle": [],
                        "last": "Bhattacharyya",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the ACM India Joint International Conference on Data Science and Management of Data (CoDS-COMAD)",
                "volume": "",
                "issue": "",
                "pages": "289--292",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Abhijeet Dubey, Aditya Joshi, and Pushpak Bhat- tacharyya. 2019a. Deep models for converting sar- castic utterances into their non sarcastic interpreta- tion. In Proceedings of the ACM India Joint In- ternational Conference on Data Science and Man- agement of Data (CoDS-COMAD), Kolkata India, pages 289-292. ACM.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "when numbers matter!\": Detecting sarcasm in numerical portions of text",
                "authors": [
                    {
                        "first": "Abhijeet",
                        "middle": [],
                        "last": "Dubey",
                        "suffix": ""
                    },
                    {
                        "first": "Lakshya",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "Arpan",
                        "middle": [],
                        "last": "Somani",
                        "suffix": ""
                    },
                    {
                        "first": "Aditya",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Pushpak",
                        "middle": [],
                        "last": "Bhattacharyya",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 10th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Medi Analysis (NAACL)",
                "volume": "",
                "issue": "",
                "pages": "72--80",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Abhijeet Dubey, Lakshya Kumar, Arpan Somani, Aditya Joshi, and Pushpak Bhattacharyya. 2019b. \"when numbers matter!\": Detecting sarcasm in nu- merical portions of text. In Proceedings of the 10th Workshop on Computational Approaches to Subjec- tivity, Sentiment and Social Medi Analysis (NAACL), Minneapolis, USA, pages 72-80. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Semeval-2015 task 11: Sentiment analysis of figurative language in twitter",
                "authors": [
                    {
                        "first": "Aniruddha",
                        "middle": [],
                        "last": "Ghosh",
                        "suffix": ""
                    },
                    {
                        "first": "Guofu",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Tony",
                        "middle": [],
                        "last": "Veale",
                        "suffix": ""
                    },
                    {
                        "first": "Paolo",
                        "middle": [],
                        "last": "Rosso",
                        "suffix": ""
                    },
                    {
                        "first": "Ekaterina",
                        "middle": [],
                        "last": "Shutova",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Barnden",
                        "suffix": ""
                    },
                    {
                        "first": "Antonio",
                        "middle": [],
                        "last": "Reyes",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval)",
                "volume": "",
                "issue": "",
                "pages": "470--478",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aniruddha Ghosh, Guofu Li, Tony Veale, Paolo Rosso, Ekaterina Shutova, John Barnden, and Antonio Reyes. 2015. Semeval-2015 task 11: Sentiment analysis of figurative language in twitter. In Pro- ceedings of the 9th International Workshop on Se- mantic Evaluation (SemEval), Denver, Colorado, pages 470-478. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Fracking sarcasm using neural network",
                "authors": [
                    {
                        "first": "Aniruddha",
                        "middle": [],
                        "last": "Ghosh",
                        "suffix": ""
                    },
                    {
                        "first": "Tony",
                        "middle": [],
                        "last": "Veale",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 15th North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)",
                "volume": "",
                "issue": "",
                "pages": "161--169",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aniruddha Ghosh and Tony Veale. 2016. Fracking sarcasm using neural network. In Proceedings of the 15th North American Chapter of the Associa- tion for Computational Linguistics: Human Lan- guage Technologies (NAACL-HLT), San Diego, Cal- ifornia, USA, pages 161-169. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Identifying sarcasm in twitter: A closer look",
                "authors": [
                    {
                        "first": "Roberto",
                        "middle": [],
                        "last": "Gonz\u00e1lez-Ib\u00e1nez",
                        "suffix": ""
                    },
                    {
                        "first": "Smaranda",
                        "middle": [],
                        "last": "Muresan",
                        "suffix": ""
                    },
                    {
                        "first": "Nina",
                        "middle": [],
                        "last": "Wacholder",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "581--586",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Roberto Gonz\u00e1lez-Ib\u00e1nez, Smaranda Muresan, and Nina Wacholder. 2011. Identifying sarcasm in twit- ter: A closer look. In Proceedings of the 49th An- nual Meeting of the Association for Computational Linguistics (ACL), Portland, Oregon, pages 581- 586. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Cascade: Contextual sarcasm detection in online discussion forums",
                "authors": [
                    {
                        "first": "Devamanyu",
                        "middle": [],
                        "last": "Hazarika",
                        "suffix": ""
                    },
                    {
                        "first": "Soujanya",
                        "middle": [],
                        "last": "Poria",
                        "suffix": ""
                    },
                    {
                        "first": "Sruthi",
                        "middle": [],
                        "last": "Gorantla",
                        "suffix": ""
                    },
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "Cambria",
                        "suffix": ""
                    },
                    {
                        "first": "Roger",
                        "middle": [],
                        "last": "Zimmermann",
                        "suffix": ""
                    },
                    {
                        "first": "Rada",
                        "middle": [],
                        "last": "Mihalcea",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 27th International Conference on Computational Linguistics (COLING)",
                "volume": "",
                "issue": "",
                "pages": "1837--1848",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Devamanyu Hazarika, Soujanya Poria, Sruthi Gorantla, Erik Cambria, Roger Zimmermann, and Rada Mi- halcea. 2018. Cascade: Contextual sarcasm detec- tion in online discussion forums. In Proceedings of the 27th International Conference on Computa- tional Linguistics (COLING), Santa Fe, New Mex- ico, USA, pages 1837-1848. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Long short-term memory",
                "authors": [
                    {
                        "first": "Sepp",
                        "middle": [],
                        "last": "Hochreiter",
                        "suffix": ""
                    },
                    {
                        "first": "J\u00fcrgen",
                        "middle": [],
                        "last": "Schmidhuber",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Neural Computation",
                "volume": "9",
                "issue": "8",
                "pages": "1735--1780",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long short-term memory. Neural Computation, 9(8):1735-1780.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Harnessing context incongruity for sarcasm detection",
                "authors": [
                    {
                        "first": "Aditya",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Vinita",
                        "middle": [],
                        "last": "Sharma",
                        "suffix": ""
                    },
                    {
                        "first": "Pushpak",
                        "middle": [],
                        "last": "Bhattacharyya",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd nnual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP)",
                "volume": "",
                "issue": "",
                "pages": "757--762",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aditya Joshi, Vinita Sharma, and Pushpak Bhat- tacharyya. 2015. Harnessing context incongruity for sarcasm detection. In Proceedings of the 53rd nnual Meeting of the Association for Computational Lin- guistics and the 7th International Joint Conference on Natural Language Processing (ACL-IJCNLP), Beijing, China, page 757-762. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Are word embedding-based features useful for sarcasm detection?",
                "authors": [
                    {
                        "first": "Aditya",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "Vaibhav",
                        "middle": [],
                        "last": "Tripathi",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Patel",
                        "suffix": ""
                    },
                    {
                        "first": "Pushpak",
                        "middle": [],
                        "last": "Bhattacharyya",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Carman",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "1006--1011",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak Bhattacharyya, and Mark Carman. 2016. Are word embedding-based features useful for sarcasm detec- tion? In Proceedings of the Conference on Em- pirical Methods in Natural Language Processing (EMNLP), Austin, Texas, pages 1006-1011. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Selfdeprecating humor detection: A machine learning approach",
                "authors": [
                    {
                        "first": "Ashraf",
                        "middle": [],
                        "last": "Kamal",
                        "suffix": ""
                    },
                    {
                        "first": "Muhammad",
                        "middle": [],
                        "last": "Abulaish",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 16th International Conference of the Pacific Association for Computational Linguistics (PACLING)",
                "volume": "",
                "issue": "",
                "pages": "1--13",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashraf Kamal and Muhammad Abulaish. 2019. Self- deprecating humor detection: A machine learning approach. In Proceedings of the 16th International Conference of the Pacific Association for Compu- tational Linguistics (PACLING), Hanoi, Vietnam, pages 1-13. Springer.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "The perfect solution for detecting sarcasm in tweets #not",
                "authors": [
                    {
                        "first": "Christine",
                        "middle": [],
                        "last": "Liebrecht",
                        "suffix": ""
                    },
                    {
                        "first": "Florian",
                        "middle": [],
                        "last": "Kunneman",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "D"
                        ],
                        "last": "Bosch",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA)",
                "volume": "",
                "issue": "",
                "pages": "29--37",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christine Liebrecht, Florian Kunneman, and Antal V. D. Bosch. 2013. The perfect solution for de- tecting sarcasm in tweets #not. In Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA), Atlanta, Georgia, pages 29-37. ACL.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Predicting readers' sarcasm understandability by modeling gaze behavior",
                "authors": [
                    {
                        "first": "Abhijit",
                        "middle": [],
                        "last": "Mishra",
                        "suffix": ""
                    },
                    {
                        "first": "Diptesh",
                        "middle": [],
                        "last": "Kanojia",
                        "suffix": ""
                    },
                    {
                        "first": "Pushpak",
                        "middle": [],
                        "last": "Bhattacharyya",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 13th Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Abhijit Mishra, Diptesh Kanojia, and Pushpak Bhat- tacharyya. 2016. Predicting readers' sarcasm under- standability by modeling gaze behavior. In Proceed- ings of the 13th Association for the Advancement of Artificial Intelligence Conference on Artificial Intel- ligence, Phoenix, Arizona, USA. AAAI.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "A deeper look into sarcastic tweets using deep convolutional neural networks",
                "authors": [
                    {
                        "first": "Soujanya",
                        "middle": [],
                        "last": "Poria",
                        "suffix": ""
                    },
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "Cambria",
                        "suffix": ""
                    },
                    {
                        "first": "Devamanyu",
                        "middle": [],
                        "last": "Hazarika",
                        "suffix": ""
                    },
                    {
                        "first": "Prateek",
                        "middle": [],
                        "last": "Vij",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 25th International Conference on Computational Linguistics (COLING) Osaka",
                "volume": "",
                "issue": "",
                "pages": "1601--1612",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Soujanya Poria, Erik Cambria, Devamanyu Hazarika, and Prateek Vij. 2016. A deeper look into sarcas- tic tweets using deep convolutional neural networks. In Proceedings of the 25th International Confer- ence on Computational Linguistics (COLING) Os- aka, Japan, pages 1601-1612.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Sarcasm detection on czech and english twitter",
                "authors": [
                    {
                        "first": "Tom\u00e1s",
                        "middle": [],
                        "last": "Pt\u00e1cek",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Habernal",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Hong",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 25th International Conference on Computational Linguistics (COLING)",
                "volume": "",
                "issue": "",
                "pages": "213--223",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tom\u00e1s Pt\u00e1cek, Ivan Habernal, and Jun Hong. 2014. Sarcasm detection on czech and english twitter. In Proceedings of the 25th International Conference on Computational Linguistics (COLING), Dublin, Ire- land, pages 213-223.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Sarcasm detection on twitter: A behavioral modeling approach",
                "authors": [
                    {
                        "first": "Ashwin",
                        "middle": [],
                        "last": "Rajadesingan",
                        "suffix": ""
                    },
                    {
                        "first": "Reza",
                        "middle": [],
                        "last": "Zafarani",
                        "suffix": ""
                    },
                    {
                        "first": "Huan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 8th Association for Computing Machinery International Conference on Web Search and Data Mining (WSDM)",
                "volume": "",
                "issue": "",
                "pages": "97--106",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ashwin Rajadesingan, Reza Zafarani, and Huan Liu. 2015. Sarcasm detection on twitter: A behav- ioral modeling approach. In Proceedings of the 8th Association for Computing Machinery Interna- tional Conference on Web Search and Data Mining (WSDM), Shanghai, China, pages 97-106. ACM.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Sarcasm as contrast between a positive sentiment and negative situation",
                "authors": [
                    {
                        "first": "Ellen",
                        "middle": [],
                        "last": "Riloff",
                        "suffix": ""
                    },
                    {
                        "first": "Ashequl",
                        "middle": [],
                        "last": "Qadir",
                        "suffix": ""
                    },
                    {
                        "first": "Prafulla",
                        "middle": [],
                        "last": "Surve",
                        "suffix": ""
                    },
                    {
                        "first": "Lalindra",
                        "middle": [
                            "D"
                        ],
                        "last": "Silva",
                        "suffix": ""
                    },
                    {
                        "first": "Nathan",
                        "middle": [],
                        "last": "Gilbert",
                        "suffix": ""
                    },
                    {
                        "first": "Ruihong",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "704--714",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin- dra D. Silva, Nathan Gilbert, and Ruihong Huang. 2013. Sarcasm as contrast between a positive sen- timent and negative situation. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), Seattle, Washing- ton, USA, pages 704-714. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Reasoning with sarcasm by reading inbetween",
                "authors": [
                    {
                        "first": "Yi",
                        "middle": [],
                        "last": "Tay",
                        "suffix": ""
                    },
                    {
                        "first": "Anh",
                        "middle": [
                            "Tuan"
                        ],
                        "last": "Luu",
                        "suffix": ""
                    },
                    {
                        "first": "Siu",
                        "middle": [
                            "Cheung"
                        ],
                        "last": "Hui",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "1010--1020",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yi Tay, Anh Tuan Luu, Siu Cheung Hui, and Jian Su. 2018. Reasoning with sarcasm by reading in- between. In Proceedings of the 56th Annual Meet- ing of the Association for Computational Linguistics (ACL), Melbourne, Australia, pages 1010-1020. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Icwsm-a great catchy name: Semi-supervised recognition of sarcastic sentences in online product reviews",
                "authors": [
                    {
                        "first": "Oren",
                        "middle": [],
                        "last": "Tsur",
                        "suffix": ""
                    },
                    {
                        "first": "Dmitry",
                        "middle": [],
                        "last": "Davidov",
                        "suffix": ""
                    },
                    {
                        "first": "Ari",
                        "middle": [],
                        "last": "Rappoport",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 4th International Association for the Advancement of Artificial Intelligence Conference on Weblogs and Social Media (ICWSM)",
                "volume": "",
                "issue": "",
                "pages": "162--169",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010. Icwsm-a great catchy name: Semi-supervised recog- nition of sarcastic sentences in online product re- views. In Proceedings of the 4th International Asso- ciation for the Advancement of Artificial Intelligence Conference on Weblogs and Social Media (ICWSM), Washington, DC, USA, pages 162-169. AAAI.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Tweet sarcasm detection using deep neural network",
                "authors": [
                    {
                        "first": "Meishan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yue",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Guohong",
                        "middle": [],
                        "last": "Fu",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 26th International Conference on Computational Linguistics (COLING)",
                "volume": "",
                "issue": "",
                "pages": "2449--2460",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Meishan Zhang, Yue Zhang, and Guohong Fu. 2016. Tweet sarcasm detection using deep neural network. In Proceedings of the 26th International Confer- ence on Computational Linguistics (COLING), Os- aka, Japan, pages 2449-2460.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Enquiring minds: Early detection of rumors in social media from enquiry posts",
                "authors": [
                    {
                        "first": "Zhe",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Resnick",
                        "suffix": ""
                    },
                    {
                        "first": "Qiaozhu",
                        "middle": [],
                        "last": "Mei",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 24th International Conference on World Wide Web (WWW)",
                "volume": "",
                "issue": "",
                "pages": "1395--1405",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhe Zhao, Paul Resnick, and Qiaozhu Mei. 2015. En- quiring minds: Early detection of rumors in social media from enquiry posts. In Proceedings of the 24th International Conference on World Wide Web (WWW), Florence, Italy, pages 1395-1405.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF1": {
                "num": null,
                "content": "<table/>",
                "text": "Regular expressions to identify explicit selfreferential tweets",
                "html": null,
                "type_str": "table"
            },
            "TABREF3": {
                "num": null,
                "content": "<table/>",
                "text": "Implicit self-referential tweets identified from I",
                "html": null,
                "type_str": "table"
            },
            "TABREF4": {
                "num": null,
                "content": "<table><tr><td colspan=\"2\">presents the hyper-</td></tr><tr><td colspan=\"2\">parameters values of LSTM model used in the pro-</td></tr><tr><td>posed approach.</td><td/></tr><tr><td>Hyper-parameters</td><td>Value</td></tr><tr><td>Embedding dimension</td><td>200</td></tr><tr><td>Padding sequences</td><td>20</td></tr><tr><td>Spatial dropout (after embedding layer)</td><td>0.4</td></tr><tr><td>Number of neurons</td><td>256</td></tr><tr><td>Dropout (after LSTM layer)</td><td>0.4</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table"
            },
            "TABREF5": {
                "num": null,
                "content": "<table><tr><td>: Hyper-parameters values for LSTM model</td></tr><tr><td>used in our proposed approach</td></tr></table>",
                "text": "",
                "html": null,
                "type_str": "table"
            },
            "TABREF7": {
                "num": null,
                "content": "<table><tr><td>Datasets</td><td colspan=\"2\">#Sarcasm #Non-sarcasm</td><td>Total (#tweets)</td></tr><tr><td>Pt\u00e1cek et al. (2014)</td><td>29580</td><td>37767</td><td>67347</td></tr><tr><td>SemEval-2015</td><td>761</td><td>1609</td><td>2370</td></tr><tr><td>Twitter-280</td><td>6971</td><td>7017</td><td>13988</td></tr><tr><td>Total (#tweets)</td><td>37312</td><td>46393</td><td>83705</td></tr></table>",
                "text": "Statistics of the crawled datasets",
                "html": null,
                "type_str": "table"
            },
            "TABREF8": {
                "num": null,
                "content": "<table/>",
                "text": "Statistics of identified self-referential tweets by the self-referential tweets identification module",
                "html": null,
                "type_str": "table"
            },
            "TABREF10": {
                "num": null,
                "content": "<table><tr><td>Datasets</td><td>Evaluation results \u03c0 \u03c1 F1</td></tr><tr><td>Pt\u00e1cek et al. (2014)</td><td>Balanced Unbalanced 0.92 0.89 0.90 0.93 0.94 0.93</td></tr><tr><td>SemEval-2015</td><td>Balanced Unbalanced 0.93 0.75 0.83 0.86 0.84 0.85</td></tr><tr><td>Twitter-280</td><td>Balanced Unbalanced 0.89 0.86 0.88 0.90 0.92 0.93</td></tr></table>",
                "text": "Statistics of the balanced and unbalanced datasets generated from table 5",
                "html": null,
                "type_str": "table"
            }
        }
    }
}