File size: 64,548 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
{
    "paper_id": "2019",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:29:26.170332Z"
    },
    "title": "",
    "authors": [],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "India is one of unique countries in the world that has the legacy of diversity of languages. English influence most of these languages. This causes a large presence of code-mixed text in social media. Enormous presence of this code-mixed text provides an important research area for Natural Language Processing (NLP). This paper proposes a novel Attention based deep learning technique for Sentiment Classification on Code-Mixed Text (ACCMT) of Hindi-English. The proposed architecture uses fusion of character and word features. Non-availability of suitable word embedding to represent these Code-Mixed texts is another important hurdle for this league of NLP tasks. This paper also proposes a novel technique for preparing word embedding of Code-Mixed text. This embedding is prepared with two separately trained word embeddings on romanized Hindi and English respectively. This embedding is further used in the proposed deep learning based architecture for robust classification. The Proposed technique achieves 71.97% accuracy, which exceeds the baseline accuracy.",
    "pdf_parse": {
        "paper_id": "2019",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "India is one of unique countries in the world that has the legacy of diversity of languages. English influence most of these languages. This causes a large presence of code-mixed text in social media. Enormous presence of this code-mixed text provides an important research area for Natural Language Processing (NLP). This paper proposes a novel Attention based deep learning technique for Sentiment Classification on Code-Mixed Text (ACCMT) of Hindi-English. The proposed architecture uses fusion of character and word features. Non-availability of suitable word embedding to represent these Code-Mixed texts is another important hurdle for this league of NLP tasks. This paper also proposes a novel technique for preparing word embedding of Code-Mixed text. This embedding is prepared with two separately trained word embeddings on romanized Hindi and English respectively. This embedding is further used in the proposed deep learning based architecture for robust classification. The Proposed technique achieves 71.97% accuracy, which exceeds the baseline accuracy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Languages used in India belong to several language families. Historical presence of British on Indian soil has led to a very high influence of English language on many of these Indian languages. People belonging in a multi-lingual society of India, gives rise of a large amount of text in various social media (Patra, 2018) . Inclusion of English is very common in these texts. Essentially, an utterance in which a user makes use of grammar, lexicon or other linguistic units of more than one language is said to have undergone code-mixing (Chanda, 2016) . Hindi is the widely spoken language of India and used in various media. The number of native Hindi speakers is about 25% of the total Indian population; however, including dialects of Hindi termed as Hindi languages, the total is around 44% of Indians, mostly accounted from the states falling under the Hindi belt 1 . This community contributes a large amount of text on social media. The form of Hindi language used in Social Media is mixed with English and are available in roman scripts. According to the study (Dey, 2014) most common reason for this kind of code mixing in a single text is 'Ease of Use'. The code-mixed Hindi and English language poses various types of challenges (Barman, 2014) , which makes the text classification task on code-mixed text, an exciting problem in NLP Community. Despite a wide research on classification of code mixed texts, there remains open opportunities with two major aspects; first technique of preparing word embedding on Code-Mixed texts and second utilization of character and word features together to improve the accuracy. This research targets these two open points for exploration.",
                "cite_spans": [
                    {
                        "start": 310,
                        "end": 323,
                        "text": "(Patra, 2018)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 540,
                        "end": 554,
                        "text": "(Chanda, 2016)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 1072,
                        "end": 1083,
                        "text": "(Dey, 2014)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1243,
                        "end": 1257,
                        "text": "(Barman, 2014)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Various research works have tried to tackle these challenges. Recent work of Prabhu (2016) utilizes character level LSTMs to learn sub word level information of social media text. Then this information is used to classify the sentences using an annotated corpus. The work is very interesting and achieves good accuracy. However the work does not intend to capture the information related to word level semantics. This provides a further scope of research to study the impact of word",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Samsung R&D Institute India, Bangalore {siddhartha.m, vinuth, anish.n, mp.shah, nik.kumar} @samsung.com embedding based approach on classification of code-mixed text. Sharma (2015) used an approach of lexicon lookup for text normalization and sentiment analysis on Code-Mixed text. Pravalika (2017) used lexicon lookup approach for domain specific sentiment analysis. These lexicon lookup based approaches lack capability to handle misspelled words and wide variety of these code mixed texts. Recent work (Lal, 2019) have used BiLSTM based dual encoder networks to represent the character based input and additional feature network to achieve good accuracy on code-mixed texts. Recent work (Yenigalla, 2018) has explored the opportunity of using both character and word embedding based feature to handle unknown words for text classification on monolingual English only text corpora. However, this approach is not common for Code-Mixed text, primarily because of the non-availability of word embedding for the Code-Mixed texts.",
                "cite_spans": [
                    {
                        "start": 167,
                        "end": 180,
                        "text": "Sharma (2015)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 505,
                        "end": 516,
                        "text": "(Lal, 2019)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 690,
                        "end": 707,
                        "text": "(Yenigalla, 2018)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Robust Deep Learning Based Sentiment Classification of Code-Mixed Text Siddhartha Mukherjee, Vinuthkumar Prasan, Anish Nediyanchath, Manan Shah, Nikhil Kumar",
                "sec_num": null
            },
            {
                "text": "We have considered Hi-En Code-Mixed dataset 2 , shared by Prabhu (2016) as a baseline for this research.",
                "cite_spans": [
                    {
                        "start": 58,
                        "end": 71,
                        "text": "Prabhu (2016)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "3"
            },
            {
                "text": "The dataset was collected from public Facebook pages of famous Indian personalities i.e. Salman Khan and Narendra Modi. The data is present in Roman script. The dataset contains 3879 comments. Each data is annotated with a 3-level of polarity scale i.e. Positive, Neutral and Negative. The dataset contains 15% negative, 50% neutral and 35% positive. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Description",
                "sec_num": "3.1"
            },
            {
                "text": "Transliteration of phonetic languages, like Hindi, into roman script creates several variations of the same word. For example, \"\u092c\u0939\u0941\u0924\" in Hindi which means \"more\" in English can be transliterated as \"bahut\", \"bohoot\" or \"bohut\" etc. The Romanized Code-Mixed text, available on social media imposes additional challenges of contraction of phrases. For example, 'awsm' is shortened form of 'awesome'; 'a6a' is contracted from 'accha' etc. Romanized code-mixed text also contain sentences with non-grammatical constructs like 'Bhai jaan bolu naa.. yar' as well as nonstandard spelling such as 'youuuu', 'jaaaaan' etc.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Challenges",
                "sec_num": "3.2"
            },
            {
                "text": "The phonetic similarity of various words across participant languages in the Code-Mixed text increases the challenge by introducing disambiguation for meaning of a word. For example, \"man\" in English means 'an adult human male' where as in Hindi it means 'mind'. Large availability of clean corpora has given a rise in various kinds of research for Mono-lingual texts like English. On the other hand, the limited availability of clean & standard Code-Mixed corpus restricts wide spectrum of experiments, which depends on word-embedding based input.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Challenges",
                "sec_num": "3.2"
            },
            {
                "text": "The dataset is cleaned of any special characters for this research. Final character set is of 36 characters including 26 English letters and 10 numbers. Final character set is: abcdefghijklmnopqrstuvwxyz0123456789",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Character Set",
                "sec_num": "3.3"
            },
            {
                "text": "The proposed method consists of two major parts. First one is preparing a suitable word-embedding of code-mixed text and later one is a robust deep learning architecture for classification on codemixed text.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Method",
                "sec_num": "4"
            },
            {
                "text": "There are three main aspects for preparing word embedding for Hindi-English Code-Mixed Texts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word-Embedding",
                "sec_num": "4.1"
            },
            {
                "text": "First is preparation of a corpus of Hindi Romanized text. Second one is preparing word embedding by choosing a right algorithm of word embedding.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word-Embedding",
                "sec_num": "4.1"
            },
            {
                "text": "Third, is to ensure that words from both participant languages which are similar has nearby representation. To address the first aspect, we use Indic transliteration 3 on large Hindi-English corpus 4 where the Hindi text is present in Devanagari 5 script also contains English content. In this way, we achieve the Hindi-English Code-Mixed corpus in Roman Scripts. Figure 1 depicts the process of generating the desired corpus. We hypothesize that the transliterated corpus represents a new language of Romanized Hindi. As discussed earlier there are various challenges of Romanized representation of Code-Mixed text such as presence multiple homo-phonic representations of a single word etc., so we have chosen fastText (Bojanowski, 2017) word representation as best method to train word embedding. This addresses the second aspect of previously discussed task of preparing word embedding. Once the corpus is generated, we have trained word embedding with fastText 6 . This trained embedding is capable of providing the vectorized representation of a Romanized Hindi word. On the other side, an utterance in the Code-Mixed corpus also contains English words as well. For example, the 1 st utterance in the Table 1 contains two phrases, where 1 st phrase contains the Romanized Hindi words and the 2 nd phrase contains English words. This is the third and final aspect, discussed as a part of task of word embedding. Now to represent such an utterance using word embedding, we need the bi-lingual word embedding which include Romanized Hindi and English words as well. To cater to this requirement, we have used the proposed method (Smith, 2017) to represent bi-lingual representation of word from two monolingual representations. SVD is used to learn a linear transformation (a matrix), which aligns monolingual vectors from two languages in a single vector space 7 . In this experiment, we considered two monolingual word embedding(s). First is the trained word embedding of Romanized Hindi. Second one is the pre-trained & published 8 English word-embedding (Mikolov, 2018) , which is trained on Wikipedia corpus.",
                "cite_spans": [
                    {
                        "start": 720,
                        "end": 738,
                        "text": "(Bojanowski, 2017)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1631,
                        "end": 1644,
                        "text": "(Smith, 2017)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 2060,
                        "end": 2075,
                        "text": "(Mikolov, 2018)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 364,
                        "end": 372,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 1206,
                        "end": 1213,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Word-Embedding",
                "sec_num": "4.1"
            },
            {
                "text": "We prepare Attention based deep learning architecture for Classification of Code-Mixed Text (ACCMT) which uses learning from both character and word based representation. The proposed architecture consists of two major parts. The first part learns the sub-word level features from input character sequences. The other parts uses prepared word embedding as input and learn the word level features.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "The first part is similar as the baseline implementation Prabhu (2016) , which is inspired by research work of Kim (2016) . This part is independent of word vocabulary, which helps to resolve important issues in code mixed text like non-standard spelling, phrasal contraction etc.",
                "cite_spans": [
                    {
                        "start": 57,
                        "end": 70,
                        "text": "Prabhu (2016)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 111,
                        "end": 121,
                        "text": "Kim (2016)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "6 https://fasttext.cc/docs/en/python-module.html 7 https://github.com/Babylonpartners/fastText_multilingual 8 https://fasttext.cc/docs/en/pretrained-vectors.html Even though this representation lack word level semantic interpretability, the assumption is that character n-gram serve semantic functions e.g. 'cat+s=cats'. Formally a Sentence S is made of sequence of characters [ 1 , \u2026 , ]where is sentence length. \u2208 \u211d \u00d7 is the representation of sentence where being the dimension of character embedding. We perform the convolution of with filter \u2208 \u211d \u00d7 of length m. This operation provides a feature map \u2208 \u211d \u2212 +1 . Convolution is shown with ' * ' Operator in equation 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "= *",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "Next max-pool operation of p features from f brings sub-word representation y.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "= 0 \u00d7 tanh( \u0303+ \u22121 \u0303) \u210e , \u0303= tanh( [ \u22121 , ] + ) = \u03c3( [ \u22121 , ] + ) = \u03c3( [ \u22121 , ] + ) = ( [ \u22121 , ] + )",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "Here represents the input at current timestamp. Output from LSTM is at time . , , are respectively the output, input and forget gates of LSTM cell. \u0303i s the cell state at time . The second part is designed with intention to capture features for the word level semantic representation to counter the limitation of previous part of the architecture. For this purpose LSTM is used as well, because LSTM has performed very well (Bhasin, 2019; Tang, 2015) in various sentiment analysis and other text processing tasks. Formally a Sentence is made of sequence of words [ 1 , \u2026 , ] where is word length of . \u2208 \u211d \u00d7 is the representation of sentence where d being the dimension of word embedding. Now , word at time is passed to memory cell of LSTM and the output follows similar of equation (2). We have introduced two separate attention layers over the LSTM output of Character based side and Word based side respectively. The intention of applying the attention is to infer the dominating features from character representation as well as word representation respectively. We have used 9 https://pypi.org/project/keras-self-attention/ self attention (Vaswani, 2017) for our implementation 9 . Formally, the attention can be depicted as equation 3.",
                "cite_spans": [
                    {
                        "start": 424,
                        "end": 438,
                        "text": "(Bhasin, 2019;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 439,
                        "end": 450,
                        "text": "Tang, 2015)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 563,
                        "end": 574,
                        "text": "[ 1 , \u2026 , ]",
                        "ref_id": null
                    },
                    {
                        "start": 1144,
                        "end": 1159,
                        "text": "(Vaswani, 2017)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "( , , ) = ( \u2044 ) (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "The , & is same and that is the output of the previous layer. The final output after attention of sub-word level representation through character embedding part and learnt features from the word embedding part are concatenated as late fusion to feature represent of the input sentence. The joint feature is passed through another attention layer. This layer is intend to figure out the dominating learnt feature among word and character based learnt features. Following this layer, we add two consecutive fully connected layers with ReLU non-linearity. The final output of the last dense layer is passed through a Softmax layer to predict the sentiment. Formally late fusion of learnt character features & word features is s = ( , ) to represent jointly learnt features of sentence S. Then s is input to dense layers with as ReLU non-linearity. Output 1 is passed through second dense layer to get output a2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 = ( 1 \u00d7 + 1 ) 2 = ( 2 \u00d7 1 + 2 )",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "Further, final layer is formalized as equation 5.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "= 2 \u2211 2 \u2044 (5)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "4.2"
            },
            {
                "text": "This research used Keras on python for all required implementations. The baseline dataset is divided into 3 splits i.e. training, validation and testing. Initially the dataset is randomly divided into 80-20 train-test split. Further train is randomly divided into 90-10 train-validation unlike the baseline implementation which splits 80-20 as trainvalidation. The results are reported over the test split here. We have experimented with various possible values of hyper parameters and the best set of hyper parameters is shown in the Fig 2. As discussed earlier first part of the architecture is meant for character based input. Here a single sentence is considered to be of sequence of 200 characters. Characters beyond 200 are ignored for sentence having more than 200 characters. A sentence with less than 200 characters is zero padded. Point need to mention is that we have considered space also as valid character input. For the second part of the network we have use word embedding of different dimensions for example 100, 200 and 300. However it achieved best accuracy with 300 dimensional word-embedding. While training the fastText Word-Embedding, 'minn' & 'maxn' parameters were set to 2 and 10 respectively. For word based input, a sentence of length 40 words is considered. A sentence with lesser than 40 words is zero embedding padded whereas words beyond 40 are ignored if sentence is having more than 40 words. Also we empirically found that having two stacked LSTM layers similar to Prabhu (2016) ",
                "cite_spans": [
                    {
                        "start": 1500,
                        "end": 1513,
                        "text": "Prabhu (2016)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 535,
                        "end": 541,
                        "text": "Fig 2.",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "5"
            },
            {
                "text": "We have conducted all experiments in the computing environment mentioned in above section. In the same environment, the implementation of Prabhu (2016) attained maximum accuracy of 66.29% across 5 different executions. Whereas the best performance of ACCMT is 71.97% exceeds the baseline performance by 5.68% in the same computing environment. To understand the impact of attention on the classification of code-mixed text, we have also experimented without attention. We have removed three attention layers from the ACCMT and created a deep learning architecture which uses only fusion of character and word features. This architecture showed a maximum of 69.845% accuracy on the same dataset. This implies that attention has improved accuracy with 2.125%. We also compared against Yenigalla (2018) which gave an accuracy of 64.3%. ",
                "cite_spans": [
                    {
                        "start": 138,
                        "end": 151,
                        "text": "Prabhu (2016)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 783,
                        "end": 799,
                        "text": "Yenigalla (2018)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Analysis",
                "sec_num": "6"
            },
            {
                "text": "This paper shows the architecture of attention based deep learning architecture (ACCMT) which does fusion of character and word feature to develop a robust classifier for code-mixed text. The proposed ACCMT architecture performs well on the Hi-En code-mixed dataset and outperforms the baseline accuracy. A major contribution of this paper is the technique of training word embedding for code-mixed text. This technique is used for generating word embedding for Hindi-English code mixed corpus, which is required in this research work. This proposed technique is very easy to implement for other code-mixed languages as well and will be helpful for generating word embedding for low resource code-mixed languages majorly Indian languages e.g. Bengali, Tamil and Malayalam etc. This also opens up opportunities of research on other code-mixed languages. This work also shows the impact of attention for the classification of code-mixed text. Lal (2019) showed that introduction of feature network has improved the accuracy significantly. The integration of such feature network in ACCMT is considered for future course of improvement for the on-going research.",
                "cite_spans": [
                    {
                        "start": 941,
                        "end": 951,
                        "text": "Lal (2019)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "https://en.wikipedia.org/wiki/List_of_languages_by_number _of_native_speakers_in_India",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/sanskrit-coders/indic_transliteration 4 https://www.kaggle.com/pk13055/code-mixed-hindienglishdataset 5 https://en.wikipedia.org/wiki/Devanagari",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/mkocabas/focal-loss-keras",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Sentiment Analysis of Code-Mixed Indian Languages: An Overview of SAIL_Code-Mixed Shared Task@ ICON-2017",
                "authors": [
                    {
                        "first": "B",
                        "middle": [
                            "G"
                        ],
                        "last": "Patra",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1803.06745"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Patra, B.G., Das, D. and Das, A., 2018. Sentiment Analysis of Code-Mixed Indian Languages: An Overview of SAIL_Code-Mixed Shared Task@ ICON-2017. arXiv preprint arXiv:1803.06745.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Unraveling the English-Bengali codemixing phenomenon",
                "authors": [
                    {
                        "first": "Arunavha",
                        "middle": [],
                        "last": "Chanda",
                        "suffix": ""
                    },
                    {
                        "first": "Dipankar",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Chandan",
                        "middle": [],
                        "last": "Mazumdar",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Second Workshop on Computational Approaches to Code Switching",
                "volume": "",
                "issue": "",
                "pages": "80--89",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chanda, Arunavha, Dipankar Das, and Chandan Mazumdar. Unraveling the English-Bengali code- mixing phenomenon. In Proceedings of the Second Workshop on Computational Approaches to Code Switching, pp. 80-89. 2016.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A Hindi-English Code-Switching Corpus",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Dey",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Fung",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "2410--2413",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dey, A. and Fung, P., 2014, May. A Hindi-English Code-Switching Corpus. In LREC (pp. 2410-2413)",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Code mixing: A challenge for language identification in the language of social media",
                "authors": [
                    {
                        "first": "U",
                        "middle": [],
                        "last": "Barman",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Wagner",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Foster",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the first workshop on computational approaches to code switching",
                "volume": "",
                "issue": "",
                "pages": "13--23",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Barman, U., Das, A., Wagner, J. and Foster, J., 2014. Code mixing: A challenge for language identification in the language of social media. In Proceedings of the first workshop on computational approaches to code switching (pp. 13-23).",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Towards sub-word level compositions for sentiment analysis of hindi-english code mixed text",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Prabhu",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Shrivastava",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Varma",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1611.00472"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Prabhu, A., Joshi, A., Shrivastava, M. and Varma, V., 2016. Towards sub-word level compositions for sentiment analysis of hindi-english code mixed text. arXiv preprint arXiv:1611.00472.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Addressing unseen word problem in text classification",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Yenigalla",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kar",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Nagar",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Mathur",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "International Conference on Applications of Natural Language to Information Systems",
                "volume": "",
                "issue": "",
                "pages": "339--351",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yenigalla, P., Kar, S., Singh, C., Nagar, A., & Mathur, G. (2018, June). Addressing unseen word problem in text classification. In International Conference on Applications of Natural Language to Information Systems (pp. 339-351). Springer, Cham.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "De-Mixing Sentiment from Code-Mixed Text",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [
                            "K"
                        ],
                        "last": "Lal",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Dhar",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Shrivastava",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Conference of the Association for Computational Linguistics: Student Research Workshop",
                "volume": "",
                "issue": "",
                "pages": "371--377",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lal, Y.K., Kumar, V., Dhar, M., Shrivastava, M. and Koehn, P., 2019, July. De-Mixing Sentiment from Code-Mixed Text. In Proceedings of the 57th Conference of the Association for Computational Linguistics: Student Research Workshop (pp. 371- 377).",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Unified Parallel Intent and Slot Prediction with Cross Fusion and Slot Masking",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Bhasin",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Natarajan",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Mathur",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "H"
                        ],
                        "last": "Jeon",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "S"
                        ],
                        "last": "Kim",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "International Conference on Applications of Natural Language to Information Systems",
                "volume": "",
                "issue": "",
                "pages": "277--285",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bhasin, A., Natarajan, B., Mathur, G., Jeon, J.H. and Kim, J.S., 2019, June. Unified Parallel Intent and Slot Prediction with Cross Fusion and Slot Masking. In International Conference on Applications of Natural Language to Information Systems (pp. 277-285). Springer, Cham.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Text normalization of code mix and sentiment analysis",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Sharma",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "Y K L"
                        ],
                        "last": "Srinivas",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "C"
                        ],
                        "last": "Balabantaray",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI)",
                "volume": "",
                "issue": "",
                "pages": "1468--1473",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sharma, S., Srinivas, P. Y. K. L., & Balabantaray, R. C. (2015, August). Text normalization of code mix and sentiment analysis. In 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1468-1473). IEEE.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Domain-specific sentiment analysis approaches for code-mixed social network data",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Pravalika",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Oza",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [
                            "P"
                        ],
                        "last": "Meghana",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "S"
                        ],
                        "last": "Kamath",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT)",
                "volume": "",
                "issue": "",
                "pages": "1--6",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pravalika, A., Oza, V., Meghana, N.P. and Kamath, S.S., 2017, July. Domain-specific sentiment analysis approaches for code-mixed social network data. In 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT) (pp. 1-6). IEEE.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Enriching word vectors with subword information",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "5",
                "issue": "",
                "pages": "135--146",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword information. Transactions of the Association for Computational Linguistics, 5, 135-146.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Character-aware neural language models",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Jernite",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Sontag",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "M"
                        ],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Thirtieth AAAI Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kim, Y., Jernite, Y., Sontag, D., & Rush, A. M. (2016, March). Character-aware neural language models In Thirtieth AAAI Conference on Artificial Intelligence.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Document modeling with gated recurrent neural network for sentiment classification",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Tang",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 conference on empirical methods in natural language processing",
                "volume": "",
                "issue": "",
                "pages": "1422--1432",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tang, D., Qin, B., & Liu, T. (2015, September). Document modeling with gated recurrent neural network for sentiment classification. In Proceedings of the 2015 conference on empirical methods in natural language processing (pp. 1422-1432).",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Offline bilingual word vectors, orthogonal transformations and the inverted softmax",
                "authors": [
                    {
                        "first": "S",
                        "middle": [
                            "L"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "H"
                        ],
                        "last": "Turban",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Hamblin",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [
                            "Y"
                        ],
                        "last": "Hammerla",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1702.03859"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Smith, S.L., Turban, D.H., Hamblin, S. and Hammerla, N.Y., 2017. Offline bilingual word vectors, orthogonal transformations and the inverted softmax. arXiv preprint arXiv:1702.03859.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Advances in Pre-Training Distributed Word Representations",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Puhrsch",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Eleventh International Conference on Language Resources and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C. and Joulin, A., 2018, May. Advances in Pre- Training Distributed Word Representations. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018).",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Attention is all you need",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Shazeer",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Parmar",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "N"
                        ],
                        "last": "Gomez",
                        "suffix": ""
                    },
                    {
                        "first": "\u0141",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Polosukhin",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "5998--6008",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, \u0141. and Polosukhin, I., 2017. Attention is all you need. In Advances in neural information processing systems (pp. 5998- 6008).",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Focal loss for dense object detection",
                "authors": [
                    {
                        "first": "T",
                        "middle": [
                            "Y"
                        ],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Girshick",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Doll\u00e1r",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the IEEE international conference on computer vision",
                "volume": "",
                "issue": "",
                "pages": "2980--2988",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lin, T.Y., Goyal, P., Girshick, R., He, K. and Doll\u00e1r, P., 2017. Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision (pp. 2980-2988).",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Focal Loss based Residual Convolutional Neural Network for Speech Emotion Recognition",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Tripathi",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ramesh",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Yenigalla",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1906.05682"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tripathi, S., Kumar, A., Ramesh, A., Singh, C. and Yenigalla, P., 2019. Focal Loss based Residual Convolutional Neural Network for Speech Emotion Recognition. arXiv preprint arXiv:1906.05682.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Corpus Preparation for Hi-En Code-mixed Text in Roman Script.",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "text": "Attention based deep learning architecture for Classification of Code-Mixed Text (ACCMT)",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "TABREF0": {
                "content": "<table><tr><td>Example</td><td colspan=\"2\">Approx. meaning</td><td>Polarity</td></tr><tr><td/><td>in English</td><td/><td/></tr><tr><td>Sir yeh tho sirf aap hi kar sakte hai. Great sir</td><td colspan=\"2\">Sir only you can do it. Great Sir</td><td>Positive</td></tr><tr><td>Kuch nahi karoge tum india ke liye</td><td>You anything for India won't</td><td>do</td><td>Negative</td></tr><tr><td>Humari sabhayata humari pehchaan ...</td><td colspan=\"2\">Our civilization is our identity</td><td>Neutral</td></tr><tr><td colspan=\"4\">Table 1: Example from Hi-En Code-Mixed dataset.</td></tr><tr><td colspan=\"4\">2 https://github.com/DrImpossible/Sub-word-LSTM</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "",
                "num": null
            },
            "TABREF2": {
                "content": "<table><tr><td>Experiments</td><td>Results Accuracy</td><td>F1</td></tr><tr><td>Yenigalla (2018)</td><td>64.3%</td><td>62.2</td></tr><tr><td>ACCMT (adamax + Focal Loss)</td><td>70.10%</td><td>68.1</td></tr><tr><td>ACCMT</td><td/><td/></tr><tr><td>(RMS prop + categorical</td><td>69.75%</td><td>67.5</td></tr><tr><td>cross entropy)</td><td/><td/></tr><tr><td>ACCMT (adamax + categorical cross entropy)</td><td>71.97%</td><td>70.93</td></tr><tr><td>ACCMT (RMS Prop + Focal Loss)</td><td>70.32%</td><td>68.71</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "showed the accuracy and F1 score of all experiments.",
                "num": null
            },
            "TABREF3": {
                "content": "<table/>",
                "html": null,
                "type_str": "table",
                "text": "Results of ACCMT on Hi-En Code Mixed dataset with different loss-function and initializers.",
                "num": null
            }
        }
    }
}