File size: 118,120 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:33:20.362011Z"
    },
    "title": "Automatic Assessment of Speaking Skills Using Aural and Textual Information",
    "authors": [
        {
            "first": "Sofia",
            "middle": [],
            "last": "Eleftheriou",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "NCSR \"Demokritos\" Athens",
                "location": {
                    "country": "Greece"
                }
            },
            "email": "sofiaeleftheriou13@gmail.com"
        },
        {
            "first": "Panagiotis",
            "middle": [],
            "last": "Koromilas",
            "suffix": "",
            "affiliation": {},
            "email": "pakoromilas@iit.demokritos.gr"
        },
        {
            "first": "Theodoros",
            "middle": [],
            "last": "Giannakopoulos",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this work we propose a multimodal speech analytics framework for automatically assessing the quality of a public speaker's capabilities. For this purpose, we present the Public Speaking Quality (PuSQ) dataset, a new publicly available data collection that contains speeches from various speakers, along with respective annotations of how are these speeches perceived by the audience in terms of two labels namely: \"expressiveness\" and overall \"enjoyment\" (i.e. if the listener enjoys the speech as a whole). Towards this end, several annotators have been asked to provide their input for each speech recording and interannotator agreement is taken into account in the final ground truth generation. In addition, we present a multimodal classifier that takes into account both audio and text information and predicts the overall recordings' label with regards to its speech quality (in terms of the two aforementioned labels). To this end, we adopt a hierarchical approach according to which we first analyze the speech signal in a segment-basis (50ms of audio and sentences of text) to extract emotions from both text and audio and then aggregate these decisions for the whole recording, while adding some highlevel speaking style characteristics to produce the overall representation that is used by the final classifier.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this work we propose a multimodal speech analytics framework for automatically assessing the quality of a public speaker's capabilities. For this purpose, we present the Public Speaking Quality (PuSQ) dataset, a new publicly available data collection that contains speeches from various speakers, along with respective annotations of how are these speeches perceived by the audience in terms of two labels namely: \"expressiveness\" and overall \"enjoyment\" (i.e. if the listener enjoys the speech as a whole). Towards this end, several annotators have been asked to provide their input for each speech recording and interannotator agreement is taken into account in the final ground truth generation. In addition, we present a multimodal classifier that takes into account both audio and text information and predicts the overall recordings' label with regards to its speech quality (in terms of the two aforementioned labels). To this end, we adopt a hierarchical approach according to which we first analyze the speech signal in a segment-basis (50ms of audio and sentences of text) to extract emotions from both text and audio and then aggregate these decisions for the whole recording, while adding some highlevel speaking style characteristics to produce the overall representation that is used by the final classifier.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Public speaking (also called oratory or oration) is the act of giving speech face to face to live audience. However, due to the evolution of public speaking, it is lately viewed as any form of speaking (formally and informally) between an audience and the speaker. Traditionally, public speaking was considered to be a part of the art of persuasion. The act can accomplish particular purposes including information, persuasion, and entertainment. Ad-ditionally, differing methods, structures, and rules can be utilized according to the speaking situation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Currently, technology continues to transform the art of public speaking through newly available techniques such as videoconferencing, multimedia presentations, and other nontraditional forms. Knowing when speech is most effective and how it is done properly are key to understanding the importance of it.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "While most current methods for evaluating speech performance attend to both verbal and nonverbal aspects, almost all existing assessments in practice require human rating (Ward, 2013; Schreiber et al., 2012b; Carlson and Smith-Howell, 1995) . Due to the obvious need to use our speech in our daily lives, its evaluation and its improvement is also very important. This evaluation becomes easier and faster if it is performed by an automated process that mostly uses machine learning methodologies.",
                "cite_spans": [
                    {
                        "start": 171,
                        "end": 183,
                        "text": "(Ward, 2013;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 184,
                        "end": 208,
                        "text": "Schreiber et al., 2012b;",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 209,
                        "end": 240,
                        "text": "Carlson and Smith-Howell, 1995)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Speech is everywhere and the way we speak is just as important as what we say. Therefore, multimodal speech analytics (using text and audio) is an important process that can be applied not only to assess public speakers speech quality, but also in other speech-related fields of application such as the identification of learning disabilities related to speech (dyslexia, autism), the analytics of call center data and the speech-based assessment of psychological and psychiatric conditions. The proposed pipeline for assessing the public speech quality can be adopted in such applications, as soon as respective ground truth have been made available for training the supervised models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The related works in assessing public speakers' skills is very limited and usually focuses in two specific tasks, namely learning analytics and persuasive analysis. In particular, focuses on the design of a multimodal automated assessment framework for public speaking skills an-alytics, which is based on the public speaking competence rubric (PSCR) (Schreiber et al., 2012a) for scoring and uses both audiovisual and textual features. With regards to the persuasiveness prediction application domain, a widely used dataset, named Persuasive Opinion Multimedia (POM) (Park et al., 2014) has been created, which contain multiple communication modalities (audio, text and visual) . A deep learning approach for this task that is evaluated on POM is presented by (Nojavanasghari et al., 2016) , where the authors design a deep multimodal fusion architecture, that has the ability to combine signals from the visual, acoustic, and text modalities effectively.",
                "cite_spans": [
                    {
                        "start": 351,
                        "end": 376,
                        "text": "(Schreiber et al., 2012a)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 568,
                        "end": 587,
                        "text": "(Park et al., 2014)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 654,
                        "end": 678,
                        "text": "(audio, text and visual)",
                        "ref_id": null
                    },
                    {
                        "start": 761,
                        "end": 790,
                        "text": "(Nojavanasghari et al., 2016)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "However, the aforementioned methodologies do not address the task of assessing the public speakers' skills in a generalized manner. This paper proposes an ML framework for classifying long speech recordings in terms of: (a) overall speech \"expressiveness\", as perceived by the audience and (b) perceived \"enjoyment\", i.e., how much the listeners enjoyed each speech recording. Towards this end, we demonstrate a Python open-source library that utilizes segment-level (size of 20ms to 50ms) audio and text classifiers related to emotional and speaking style attributes. The final recording-level decision is extracted by a long-term classifier that is based on feature aggregates of the segment-level decisions. Apart from the open-source library, we present an openly available dataset of real-world recordings, annotated in terms of perceived expressiveness and enjoyment. Extensive experimental results prove that the proposed ML framework can discriminate between positive and negative speech samples, despite the simplicity of the baseline segment-level classifiers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The paper is organized as follows: Section 2 shows the conceptual diagram of the proposed methodology, Section 3 presents the segment-level audio and text classifiers related to emotional attributes, Section 4 introduces the aggregation of class posteriors among with some high-level features that are calculated across the entire recording, Section 5 refers to the newly constructed Public Speaking Quality (PuSQ) dataset, Section 6 is responsible for the reporting of the implemented experiments and Section 7 sets out the final conclusions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The system architecture developed in the context of speech quality assessment is divided into two parts: segment-level analysis and recording-level analysis. In the first, we break the information (audio or text) into temporal segments and use segment-classifiers related to emotional content. In the second, we aggregate the previously produced class posteriors and combine with high-level features that characterize the overall speaking style. This rationale is followed for both textual and audio modalities and the final decisions can either be used independently or combined in the final recording-level classifiers. The conceptual diagram of the proposed system architecture is shown in Figure 1 . The audio recording is split into segments and for each segment audio feature extraction is performed and segment classifiers are applied to produce a series of emotion-specific classification decisions, which are then aggregated for the whole recording's classification in terms of overall speech quality. The goal of this section is to describe this segmentlevel process.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 693,
                        "end": 701,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "System overview",
                "sec_num": "2"
            },
            {
                "text": "For each 3s segment, a short-term window process is followed, i.e. the segment is further split into short-term windows (frames) of 50 ms long with a step of 50 ms (no overlapping). For each short-term window, a series of hand-crafted audio features is extracted, that have been widely used in speech classification tasks. These low-level audio features are: Zero-crossing rate, Energy, Energy entropy, Spectral centroid, Spectral spread, Spectral Entropy, Spectral Flux, Spectral Rolloff, the first 13 MFCCs , the Chroma Vector (12-dimensional) and Chroma Standard Deviation. All these features summing up to 34 in total. We further add the deltas of these features, i.e. the difference between each feature in the current short-term window and the value it had in the immediately preceding shortterm window. So we end up with 34 such derivatives (deltas), so 68 features in total for each frame.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Segmentation and Feature Extraction",
                "sec_num": "3.1.1"
            },
            {
                "text": "Then, for each segment, we extract two feature statistics for each sequence of short-term features described above. The statistics are: the average \u00b5 and the standard deviation \u03c3 2 of the respective short-term feature sequences, among the whole 3s segment. Therefore, each segment is now represented by 134 (68 \u00d7 2) feature statistics. To extract this representation, we used the Pyaudioanalysis (Giannakopoulos, 2015) open source Python library.",
                "cite_spans": [
                    {
                        "start": 396,
                        "end": 418,
                        "text": "(Giannakopoulos, 2015)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Segmentation and Feature Extraction",
                "sec_num": "3.1.1"
            },
            {
                "text": "As described above, each speech segment is represented by 134 audio feature statistics. Then, we have selected to train segment-level classifiers related to the underlying emotions, because emotions are strongly associated to the overall speaking style of a public speaker and therefore to the respective speech quality. Towards this end, we have adopted both categorical and dimensional Speech Emotion Recognition annotations (attributes).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Speech Segment Classifiers",
                "sec_num": "3.1.2"
            },
            {
                "text": "The categorical attributes consist of some basic classes of emotions. According to Ortony and Turner (1990) , basic emotions are often the primitive building blocks of other non-essential emotions, which are considered variations, or mixtures of basic emotions. In Ekman (1992) six basic emotions are suggested, based on the analysis of facial expressions (anger, disgust, fear, joy, sadness and surprise). We choose to use the 4 basic emotions: anger, sadness, neutral and happiness, as provided by the, widely used in the literature (Koromilas and Giannakopoulos, 2021) , processed version of the IEMOCAP dataset.",
                "cite_spans": [
                    {
                        "start": 83,
                        "end": 107,
                        "text": "Ortony and Turner (1990)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 535,
                        "end": 571,
                        "text": "(Koromilas and Giannakopoulos, 2021)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Speech Segment Classifiers",
                "sec_num": "3.1.2"
            },
            {
                "text": "The main disadvantage of the categorical model is that it has a lower resolution than the, associated with continuous values, dimensional model because it uses categories. The true number of individual emotions and their tones encountered in different types of communication are much richer than the limited number of emotion categories in the model. The smaller the number of classes in the categorical model,the greater the simplification of the description of emotions (Grekow, 2018) . That is why dimensional attributes are also widely used in emotion recognition. These representations allocate emotions in dimensional spaces that can mainly capture the similarities and differences between them. Wundt and Judd 1897, proposed the first dimensional model by disassembling the space of emotions along three axes, namely: valence (positive-negative), arousal (calm-excitement) and intensity (intensity-relaxation). In this work, a usual scheme in the literature (Le et al., 2017) has been adopted with the use of a discretized version of the first two axes (valence and arousal) with the following classes: negative, neutral, positive for valence and high, neutral, low for arousal.",
                "cite_spans": [
                    {
                        "start": 472,
                        "end": 486,
                        "text": "(Grekow, 2018)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 965,
                        "end": 982,
                        "text": "(Le et al., 2017)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Speech Segment Classifiers",
                "sec_num": "3.1.2"
            },
            {
                "text": "For the training and the evaluation of the three above-mentioned models (emotions, valence, arousal), we use 5 open-source speech emotion datasets, as well as a proprietary dataset that had been created by the authors. The open source datasets are: Emovo (Costantini et al., 2014) , Emo-DB (Burkhardt et al., 2005) , Savee (Jackson and ul haq, 2011) , Ravdess (Livingstone and Russo, 2018) and IEMOCAP (Busso et al., 2008) . The 6th dataset is named Emotion Speech Movies and contains audio files from movie scenes that are divided into 5 emotional classes.",
                "cite_spans": [
                    {
                        "start": 255,
                        "end": 280,
                        "text": "(Costantini et al., 2014)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 290,
                        "end": 314,
                        "text": "(Burkhardt et al., 2005)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 323,
                        "end": 349,
                        "text": "(Jackson and ul haq, 2011)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 360,
                        "end": 389,
                        "text": "(Livingstone and Russo, 2018)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 402,
                        "end": 422,
                        "text": "(Busso et al., 2008)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Speech Segment Classifiers",
                "sec_num": "3.1.2"
            },
            {
                "text": "Some of the aforementioned datasets contain more classes of emotions, therefore we only used the samples corresponding to the classes of interest. Also \"excitement\" was merged with happiness, since they are quite related expressions. For the valence and arousal tasks, one can observe that the only dataset which contains corresponding labels is IEMOCAP. These labels are continuous values and as we address classification problems, we divide these value ranges into three identical intervals. For valence: the samples with value in the range [1,2.5) are considered to be \"negative\", the samples with value in the range [2.5,4) are considered to be \"neutral\" and the samples with values in the range [4,5.5] are considered to be \"positive\". For arousal: the samples with value in the range [1,2.53) are considered to be \"low\", the samples with value in the range [2.3,3.6) are considered to be \"neutral\" and the samples with values in the range [3.6,5] are considered to be \"high\". For all other data sets that do not contain valence and arousal tags, we distribute the emotion tags in the above 6 valence ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Speech Segment Classifiers",
                "sec_num": "3.1.2"
            },
            {
                "text": "As described above, each audio segment is represented by a 134-dimensional feature vector, while three classification tasks have been defined: emotion, valence and arousal, using 6 different datasets. For these classification tasks, we have first performed a separate evaluation pipeline for each different dataset. The results of this inner-dataset evaluation procedure is shown in Table 1 . The classification algorithm used for this experimentation was the SVM with RBF kernel, which outperformed all traditional classification methods (decision trees, random forests and k-nearest-neighbors).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 383,
                        "end": 390,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Segment Classifiers Training and Evaluation",
                "sec_num": "3.1.3"
            },
            {
                "text": "Apart from these dataset-dependent results we have also conducted experiments using a \"leaveone-dataset-out\" rationale, in order to perform a cross-dataset evaluation. In both evaluations a repeated cross validation approach has been adopted with a 80% -20% train-test data split and 100 iterations. The cross-dataset evaluation results for the best classifier (again SVM with RBF kernel) are shown in Table 2 . All the metrics shown are f1 macro-averaged.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 402,
                        "end": 409,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Segment Classifiers Training and Evaluation",
                "sec_num": "3.1.3"
            },
            {
                "text": "Comparing the results of the above two tables, we can observe that in the cross-dataset evaluation (Table 2) , the results are just slightly better than random guess on average (25%). This implies that the problem that these models are called upon to solve is directly dependent on the specific sub-domain. By \"sub-domain\", we mean the set of context conditions and types of speakers in each dataset. Crossdomain adaptation is one of the most common difficulties in speech emotion recognition. And it is beyond the scope of this paper to handle this issue. The most straightforward way for our scope (which is to create segment classifiers that can be used as feature extractors for the recording-level decisions), is to simply train our segment models on a merged emotional dataset. The results of cross-validation on this merged dataset are presented in Table 3 . The machine learning algorithm used for this type of experiments is SVM with RBF kernel, as well as xgboost (Chen and Guestrin, 2016) . In addition, to manage the imbalance of datasets and to increase the performance, we also used a sampler SMOTE-Tomek (Wang et al., 2019) , a StandardScaler, a VarianceThreshold with threshold set equal to zero and a PCA (Kabari and Nwamae, 2019) . During the training, a gridsearch was applied which uses RepeatedStratifiedKFold cross validation with 5 folds. Hyperparameter tuning is performed in three hyperparameters: the number of components of the pca that are maintained, the hyperparameters \u03b3 and C of the SVM. For comparison reasons, we also evaluated the performance of a Convolutional Neural Network (CNNs) with melgrams used as audio features, which is a common approach in Deep Learning for audio classification. Towards this end, the open-source Python library deep audio features (Theodoros Giannakopoulos, 2020) was used. The CNN has 4 convolutional layers with kernels 5 \u00d7 5, single stride and zero padding, while max pooling of size 2 was used. The output channels (i.e. the third dimension), for the first layer are 32, for the second 64, for the third 128 and for the forth 256. After the convolution layers, we use 3 linear layers, with the first having an output dimension of 1024, the second 256 and the third equal to the number of classes.",
                "cite_spans": [
                    {
                        "start": 974,
                        "end": 999,
                        "text": "(Chen and Guestrin, 2016)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 1119,
                        "end": 1138,
                        "text": "(Wang et al., 2019)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 1222,
                        "end": 1247,
                        "text": "(Kabari and Nwamae, 2019)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 99,
                        "end": 108,
                        "text": "(Table 2)",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 856,
                        "end": 863,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Segment Classifiers Training and Evaluation",
                "sec_num": "3.1.3"
            },
            {
                "text": "The above results show that the best performance is achieved when using the SVM classifier. CNN is outperforming only for the arousal task, which indicates that more data may be needed for this deep approach to outperform. Of course, more sophisticated approaches could be used also capturing temporal dependencies between features (such as LSTMs or Transformers), but this is to be considered for future work. Finally, we have experimented with speaker independent experiments, by evaluating the SVM classifier on a subset of audio segments of unseen speakers (i.e. speakers whose segments were not available in the training data). This speaker-independent evaluation showed results that were on average 3% worst than the ones appearing on Table 3 . This indicates that the speaker independence assumption does not significantly affect the performance for this particular model.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 741,
                        "end": 748,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Segment Classifiers Training and Evaluation",
                "sec_num": "3.1.3"
            },
            {
                "text": "The Speech API provided by Google was used in order to extract textual information from the initial audio signal. The text from the whole recording can be segmented using three different approaches: sentence-level splitting, splitting into windows of predefined number of words or splitting in fixed time windows. In order to train the models described in the next paragraphs, the samples are pre-segmented in sentences.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Segmentation and Feature extraction",
                "sec_num": "3.2.1"
            },
            {
                "text": "In Natural Language Processing (NLP), word embedding is a term used to represent words in text analysis, usually in the form of a real valued vector that encodes the meaning of the words so that they can be represented in a joint representation space where the closest words are expected to have a similar meaning (Mikolov et al., 2013) . To obtain word embeddings, experimentations with two pre-trained natural language models, ie. Fast-Text (Bojanowski et al., 2016 ) (trained on data of English Wikipedia) and BERT (Devlin et al., 2018) (trained on data of BooksCorpus (Zhu et al., 2015) and English Wikipedia ), were conducted. For the BERT architecture, given a text segment/sentence, the embeddings of the last 4 layers were averaged in order to get a more general representation.",
                "cite_spans": [
                    {
                        "start": 314,
                        "end": 336,
                        "text": "(Mikolov et al., 2013)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 443,
                        "end": 467,
                        "text": "(Bojanowski et al., 2016",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 518,
                        "end": 539,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 572,
                        "end": 590,
                        "text": "(Zhu et al., 2015)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Segmentation and Feature extraction",
                "sec_num": "3.2.1"
            },
            {
                "text": "As the IEMOCAP dataset is the only data collection, from the ones presented in section 3.1.2, that contains transcriptions (textual information), this is the one that will be used for the training/evaluation of proposed models (emotions/valence/arousal).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Segmentation and Feature extraction",
                "sec_num": "3.2.1"
            },
            {
                "text": "Experiments with both Fasttext and BERT embeddings were conducted on all three classification tasks. For training, an appropriate parameter tuning of a pipeline cosnisting of SMOTE-Tomek (to handle imbalance), StandardScaler, Vari-anceThreshold, PCA and either SVM with RBF kernel or XGBOOST classifier was held. The evaluation procedure was performed using Repeated-StratifiedKFold validation scheme with 5 folds and 3 repetitions. The macro-averaged f1 score metric is shown in Table 4 , where the +/-sign indicates the standard deviation of the metrics across different test folds. From the listed results it can be clearly seen that (i) the use of BERT embeddings results in better performance probably due to stronger word representation power, and (ii) the SVM classifier is superior to the XGBOOST for all three classification tasks.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 480,
                        "end": 487,
                        "text": "Table 4",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Segment classifiers training and evaluation",
                "sec_num": "3.2.2"
            },
            {
                "text": "The overall goal of segment-level analysis is to be used in order to extract recording-level information. Towards this end, we will combine segmented information with high-level features in order to perform a recording analysis.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Recording-Level Analysis",
                "sec_num": "4"
            },
            {
                "text": "Segment-classifiers result in three labels associated with emotion, valence and arousal respectively. In order to characterize the whole speech signal, an aggregation of the class posteriors across the recording length is performed. For example, the average emotion confidence per label may be: P (emotion = sad) = 0.3, P (emotion = neutral) = 0.4, P (emotion = happy) = 0.1, P (emotion = angry) = 0.2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Aggregation of Class Posteriors",
                "sec_num": "4.1"
            },
            {
                "text": "In order to capture long-term dependencies some high-level features, for both audio and text, need to be calculated across the input signal.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "High Level Features",
                "sec_num": "4.2"
            },
            {
                "text": "For the aural modality, a voice activity detection is firstly performed using features of the pyAudio-Analysis library (Giannakopoulos, 2015) , in order to train in a semi-supervised fashion an SVM classifier so as to detect periods of silence. After identifying the parts of voice and silence in speech, the following high-level features are calculated: average silence duration, silence segment per minute, standard deviation of silence duration, speech ratio and word rate in speech. In order to extract different kinds of silence (ie. inter-word and intraword), the aforementioned features are calculated for 2 different short-term windows: windows of 0.25 step and 0.5 length and windows of 0.25 step and 1 length respectively, resulting in 10 high-level features for each audio file.",
                "cite_spans": [
                    {
                        "start": 119,
                        "end": 141,
                        "text": "(Giannakopoulos, 2015)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "High Level Features",
                "sec_num": "4.2"
            },
            {
                "text": "As for the textual modality, the following highlevel features are extracted: word rate, unique word rate and 10-bin histogram of word frequencies (frequency must range between 0 to 0.1 in order to filter out non-informative words), resulting in 12 high-level features.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "High Level Features",
                "sec_num": "4.2"
            },
            {
                "text": "Speech Quality Assessment is a task of interest in psychology, public speaking, rhetoric and a variety of other related sciences. However, this problem is quite difficult to track with the use of computational approaches. In order to address this need we introduce the Public Speaking Quality (PuSQ) Dataset, a data collection that contains speech audio and text files annotated from human listeners.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Public Speaking Quality Dataset",
                "sec_num": "5"
            },
            {
                "text": "For the needs of the data collection process, a web application 1 , named RecSurvey was created and the participants could use it through their personal recording set-up (ie. headset or PC microphone). The participants had to firstly fill out their demographic information (age, ethnicity, gender, English fluency etc) and then record themselves either reading some of the 40 predefined English texts (4-5 lines each) of different topics (politics, books, machine learning, etc) or answering some of the 20 general questions such as \"What do you like most about your current job?\". Here it has to be noted that, although our purpose is to evaluate the quality of free speech, a variety of predefined texts were used in order to have a quantitative control of the result.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Acquisition",
                "sec_num": "5.1"
            },
            {
                "text": "The process of data acquisition resulted in a total of 695 recordings/speeches from 42 different individuals, of which 26 were female. In addition, people of different nationalities were considered so as to have a variety of pronunciation and speaking styles.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Acquisition",
                "sec_num": "5.1"
            },
            {
                "text": "The annotation process is mandatory in order to create a labeled dataset. Towards this end another web application 2 was created and used so as to annotate the collected speeches based on three indicators:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation",
                "sec_num": "5.2"
            },
            {
                "text": "\u2022 expressiveness: how active, emotional or passionate the speech is, regardless of its content.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation",
                "sec_num": "5.2"
            },
            {
                "text": "\u2022 ease of following: the evaluation of verbal clarity, fluency and rate of speech, for the specific content described. It is noted that fluency, clarity and rate can be correlated. For example one speaker, despite speaking fast, may deliver an easy-to-follow speech, while the opposite may hold for another speaker.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation",
                "sec_num": "5.2"
            },
            {
                "text": "\u2022 enjoyment: defines the listener's / annotator's personal view of whether the speech was exciting, entertaining or motivating.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation",
                "sec_num": "5.2"
            },
            {
                "text": "The marking/annotation in each of the above classes was done using 5 staggered labels, ie. the annotator had to rate each recording in the range from 1 to 5, with 1 being the worst and 5 the best measure.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation",
                "sec_num": "5.2"
            },
            {
                "text": "In total, 14 annotators made 2687 markings by labeling 689 out of the 695 recordings for each of the 3 tasks. Further details on the number of annotations per user are illustrated in Figure 3 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 183,
                        "end": 191,
                        "text": "Figure 3",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Annotation",
                "sec_num": "5.2"
            },
            {
                "text": "Although the labels are distinct (5 labels / values per task), they have a continuous, scalable form as the smaller label (1) corresponds to the worst performance, while the larger label (5) corresponds to the best one. Therefore, instead of aggregating the annotations of a recording based on majority voting, averaging have been used. More specifically, for each task (expressiveness, ease of following, enjoyment) and for each gender (female, male), 2 classes / labels were exported: one negative and one positive. Here it has to be noted that the gender separation was required since, the annotated quality of speech was biased to favor female speakers and adding the fact that the two genders are easily distinguishable due to different speech sound frequencies, the problem of over-fitting arose.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotations Aggregation",
                "sec_num": "5.3"
            },
            {
                "text": "To aggregate the annotations and produce the binary datasets, the following three filterings have been applied on each sample:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotations Aggregation",
                "sec_num": "5.3"
            },
            {
                "text": "\u2022 samples with less than three annotators are excluded",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotations Aggregation",
                "sec_num": "5.3"
            },
            {
                "text": "\u2022 the mean value of the labels given by different annotators, must either be under a lower or above an upper threshold. Thus, the instance is either labeled as negative/positive or excluded from the dataset (when > lower and < upper).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotations Aggregation",
                "sec_num": "5.3"
            },
            {
                "text": "\u2022 the median absolute deviation of the annotations is required to be less than or equal to a predetermined threshold. Practically, this value indicates the average deviation that results from the deviations of each annotation from the average.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotations Aggregation",
                "sec_num": "5.3"
            },
            {
                "text": "Furthermore, some agreement metrics have been calculated in order to get an idea of how well defined the final labels are. Firstly, the average disagreement of annotators is defined as the average value of the median absolute deviations from all samples. A second metric that indicates the annotators validity, is the average disagreement for each participant. That is, for each sample that the user annotated, the deviation of the label she/he has set from the average value of all the annotations of this sample is calculated and then averaged across all the user's annotations in order to get the average user disagreement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotations Aggregation",
                "sec_num": "5.3"
            },
            {
                "text": "The results of the filtering procedure and the calculated agreement metrics for the expressiveness task are listed in Table 5 . The corresponding tables for the remaining tasks can be found on the dataset's repository 3 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 118,
                        "end": 125,
                        "text": "Table 5",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Annotations Aggregation",
                "sec_num": "5.3"
            },
            {
                "text": "Here, it has to be noted that the average disagreement of the task \"ease of following\" is high enough (ie. 0.57 female -0.58 male) which indicates that this task is ill-defined and thus it will not be accounted for the experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotations Aggregation",
                "sec_num": "5.3"
            },
            {
                "text": "PuSQ is publicly available in https://github. com/sofiaele/PuSQ in the form of extracted audio and text features and ASR text files for the two valid tasks (expressiveness and enjoyment).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Availability",
                "sec_num": "5.4"
            },
            {
                "text": "For each of the two tasks (expressiveness, enjoyment), 8 different types of experiments, in terms of the features used, were conducted. More specifically, the below features, together with early or late fusion among them, were used: 1. Meta Audio (MA): Audio features derived from the segment-level classifiers together with the high-level audio features described in section 4.2, resulting in a 20d feature vector.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "6"
            },
            {
                "text": "Text features derived from segmentlevel classifiers together with the high-level text features described in previous sections, resulting in a 22d feature vector. 3. Low Level Audio (LLA): Low level audio features which are a long-term average of the features that were presented in section 3.1.1 and were used for segment classifiers, resulting in a 136d feature vector.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Text (T):",
                "sec_num": "2."
            },
            {
                "text": "During the conducted experimentation three types of classifiers were tested: (i) SVM with RBF kernel, (ii) Gaussian Naive Bayes, and (iii) Logistic Regression. After the appropriate data pre-processing and parameter tuning techniques, a Leave-One-Speaker-Out (LOSO) validation was used in order to evaluate the performance of the classifiers in a speaker-independent manner. The metric of interest was the Area Under the ROC Curve (ROC-AUC) calculated on the aggregated probabilities of the LOSO validation. This metric was chosen instead of other widely used classification metrics, such as the f1-score, since the data are minimal and thus f1-score is prone to small changes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Text (T):",
                "sec_num": "2."
            },
            {
                "text": "In Table 6 , the final results are summed up. The last two rows include the outcome of the evaluation of free-text only samples, ie. only the answers to questions and not predefined texts. It has to be noted that the Gaussian Naive Bayes was the best performing algorithm for all tasks, except from Male Expressiveness/Meta Audio where Logistic Regression was chosen.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 10,
                        "text": "Table 6",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Text (T):",
                "sec_num": "2."
            },
            {
                "text": "From the presented evaluations, it can be easily seen that in all cases, the best fusion method has either increase or keep equivalent performance compared to the best individual method. The only exception is Female Enjoyment, where there is a slight deterioration of an absolute 3%, which however can be considered negligible.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Text (T):",
                "sec_num": "2."
            },
            {
                "text": "Another important observation is associated with the tasks of Male Expressiveness and Male Enjoyment, where the combination of Meta Audio with Text features (MA + T), seems to result in increased performance compared to MA and T individually. This fact shows that the textual information can significantly help in distinguishing the two classes (negative, positive), mostly when involving free text, where the recording differs among participants and contains different semantical information.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Text (T):",
                "sec_num": "2."
            },
            {
                "text": "In addition, it is observed that in most cases (4 out of 6), the combination of information from all feature spaces results in the best performance. Also, most of the times, late fusion marks better results than early fusion, which indicates that late fusion introduces a normalization factor in that dataset, since the models are not directly exposed to the low level features that may result in over-fitting.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Text (T):",
                "sec_num": "2."
            },
            {
                "text": "The code of the experimentations is open sourced and can be accessed in https://github. com/tyiannak/readys.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Text (T):",
                "sec_num": "2."
            },
            {
                "text": "In this work we presented PuSQ, a public speaking quality dataset, that introduces the tasks of speech expressiveness and enjoyment in public speech data. In order to address these speech quality assessment tasks, we designed a hierarchical classifier that is based on both segment-level emotion analysis and recording-level analysis where the aforementioned information is aggregated along with some high-level speech features. It is noteworthy that the presented pipeline can be used for any multimodal (audio and text) speech analytics process, and that both the dataset and the proposed ML framework are openly provided.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "In a future work, several issues can be addressed, such as the extension of the dataset, the integration of learning methods that take into account the annotation confidence (eg. Sharmanska et al., 2016; Fornaciari et al., 2021) , the use of more robust segmentlevel classifiers (CNNs,LSTMs,Transformers etc) (eg. Fayek et al., 2017; Jiang et al., 2020) as well as the inclusion of domain adaptation techniques (eg. Mao et al., 2016 Ocquaye et al., 2019; Huang et al., 2017) and the application of transfer learning from unsupervised temporal models (eg. Wang and Zheng, 2015; Feng et al., 2019) .",
                "cite_spans": [
                    {
                        "start": 179,
                        "end": 203,
                        "text": "Sharmanska et al., 2016;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 204,
                        "end": 228,
                        "text": "Fornaciari et al., 2021)",
                        "ref_id": null
                    },
                    {
                        "start": 309,
                        "end": 333,
                        "text": "(eg. Fayek et al., 2017;",
                        "ref_id": null
                    },
                    {
                        "start": 334,
                        "end": 353,
                        "text": "Jiang et al., 2020)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 416,
                        "end": 432,
                        "text": "Mao et al., 2016",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 433,
                        "end": 454,
                        "text": "Ocquaye et al., 2019;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 455,
                        "end": 474,
                        "text": "Huang et al., 2017)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 555,
                        "end": 576,
                        "text": "Wang and Zheng, 2015;",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 577,
                        "end": 595,
                        "text": "Feng et al., 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "https://github.com/lobracost/ RecSurvey",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/sofiaele/audio_ annotator",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Enriching word vectors with subword information",
                "authors": [
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "Armand",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1607.04606"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vec- tors with subword information. arXiv preprint arXiv:1607.04606.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A database of german emotional speech",
                "authors": [
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Burkhardt",
                        "suffix": ""
                    },
                    {
                        "first": "Astrid",
                        "middle": [],
                        "last": "Paeschke",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Rolfes",
                        "suffix": ""
                    },
                    {
                        "first": "Walter",
                        "middle": [],
                        "last": "Sendlmeier",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [],
                        "last": "Weiss",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "5",
                "issue": "",
                "pages": "1517--1520",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Felix Burkhardt, Astrid Paeschke, M. Rolfes, Walter Sendlmeier, and Benjamin Weiss. 2005. A database of german emotional speech. volume 5, pages 1517- 1520.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Iemocap: Interactive emotional dyadic motion capture database. Language Resources and Evaluation",
                "authors": [
                    {
                        "first": "Carlos",
                        "middle": [],
                        "last": "Busso",
                        "suffix": ""
                    },
                    {
                        "first": "Murtaza",
                        "middle": [],
                        "last": "Bulut",
                        "suffix": ""
                    },
                    {
                        "first": "Chi-Chun",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Abe",
                        "middle": [],
                        "last": "Kazemzadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Emily",
                        "middle": [
                            "Mower"
                        ],
                        "last": "Provost",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Jeannette",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Sungbok",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Shrikanth",
                        "middle": [],
                        "last": "Narayanan",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "42",
                "issue": "",
                "pages": "335--359",
                "other_ids": {
                    "DOI": [
                        "10.1007/s10579-008-9076-6"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower Provost, Samuel Kim, Jeannette Chang, Sungbok Lee, and Shrikanth Narayanan. 2008. Iemocap: Interactive emotional dyadic motion capture database. Language Re- sources and Evaluation, 42:335-359.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Classroom public speaking assessment: Reliability and validity of selected evaluation instruments",
                "authors": [
                    {
                        "first": "Robert",
                        "middle": [
                            "E"
                        ],
                        "last": "Carlson",
                        "suffix": ""
                    },
                    {
                        "first": "Deborah",
                        "middle": [],
                        "last": "Smith-Howell",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Communication Education",
                "volume": "44",
                "issue": "2",
                "pages": "87--97",
                "other_ids": {
                    "DOI": [
                        "10.1080/03634529509379001"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Robert E. Carlson and Deborah Smith-Howell. 1995. Classroom public speaking assessment: Reliabil- ity and validity of selected evaluation instruments. Communication Education, 44(2):87-97.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Designing an automated assessment of public speaking skills using multimodal cues",
                "authors": [
                    {
                        "first": "Lei",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Gary",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Chee Wee",
                        "suffix": ""
                    },
                    {
                        "first": "Jilliam",
                        "middle": [],
                        "last": "Leong",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Joe",
                        "suffix": ""
                    },
                    {
                        "first": "Chong",
                        "middle": [
                            "Min"
                        ],
                        "last": "Kitchen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Journal of Learning Analytics",
                "volume": "3",
                "issue": "",
                "pages": "261--281",
                "other_ids": {
                    "DOI": [
                        "10.18608/jla.2016.32.13"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lei Chen, Gary Feng, Chee Wee Leong, Jilliam Joe, Christopher Kitchen, and Chong Min Lee. 2016. De- signing an automated assessment of public speaking skills using multimodal cues. Journal of Learning Analytics, 3:261-281.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Xgboost: A scalable tree boosting system",
                "authors": [
                    {
                        "first": "Tianqi",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Carlos",
                        "middle": [],
                        "last": "Guestrin",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1145/2939672.2939785"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "EMOVO corpus: an Italian emotional speech database",
                "authors": [
                    {
                        "first": "Giovanni",
                        "middle": [],
                        "last": "Costantini",
                        "suffix": ""
                    },
                    {
                        "first": "Iacopo",
                        "middle": [],
                        "last": "Iaderola",
                        "suffix": ""
                    },
                    {
                        "first": "Andrea",
                        "middle": [],
                        "last": "Paoloni",
                        "suffix": ""
                    },
                    {
                        "first": "Massimiliano",
                        "middle": [],
                        "last": "Todisco",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014)",
                "volume": "",
                "issue": "",
                "pages": "3501--3504",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Giovanni Costantini, Iacopo Iaderola, Andrea Paoloni, and Massimiliano Todisco. 2014. EMOVO cor- pus: an Italian emotional speech database. In Pro- ceedings of the Ninth International Conference on Language Resources and Evaluation (LREC-2014), pages 3501-3504, Reykjavik, Iceland. European Languages Resources Association (ELRA).",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language understand- ing.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "An argument for basic emotions",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Ekman",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Cognition & Emotion",
                "volume": "6",
                "issue": "",
                "pages": "169--200",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Ekman. 1992. An argument for basic emotions. Cog- nition & Emotion, 6:169-200.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Evaluating deep learning architectures for speech emotion recognition",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Haytham",
                        "suffix": ""
                    },
                    {
                        "first": "Margaret",
                        "middle": [],
                        "last": "Fayek",
                        "suffix": ""
                    },
                    {
                        "first": "Lawrence",
                        "middle": [],
                        "last": "Lech",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Cavedon",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in Cognitive Engineering Using Neural Networks",
                "volume": "92",
                "issue": "",
                "pages": "60--68",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.neunet.2017.02.013"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Haytham M. Fayek, Margaret Lech, and Lawrence Cavedon. 2017. Evaluating deep learning architec- tures for speech emotion recognition. Neural Net- works, 92:60-68. Advances in Cognitive Engineer- ing Using Neural Networks.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Estimating public speaking anxiety from speech signals using unsupervised transfer learning",
                "authors": [
                    {
                        "first": "Kexin",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Megha",
                        "middle": [],
                        "last": "Yadav",
                        "suffix": ""
                    },
                    {
                        "first": "Md",
                        "middle": [
                            "Nazmus"
                        ],
                        "last": "Sakib",
                        "suffix": ""
                    },
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Behzadan",
                        "suffix": ""
                    },
                    {
                        "first": "Theodora",
                        "middle": [],
                        "last": "Chaspari",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "IEEE Global Conference on Signal and Information Processing (GlobalSIP)",
                "volume": "",
                "issue": "",
                "pages": "1--5",
                "other_ids": {
                    "DOI": [
                        "10.1109/GlobalSIP45357.2019.8969502"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kexin Feng, Megha Yadav, Md Nazmus Sakib, Amir Behzadan, and Theodora Chaspari. 2019. Estimat- ing public speaking anxiety from speech signals us- ing unsupervised transfer learning. In 2019 IEEE Global Conference on Signal and Information Pro- cessing (GlobalSIP), pages 1-5.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Dirk Hovy, and Massimo Poesio. 2021. Beyond black & white: Leveraging annotator disagreement via soft-label multi-task learning",
                "authors": [
                    {
                        "first": "Tommaso",
                        "middle": [],
                        "last": "Fornaciari",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Uma",
                        "suffix": ""
                    },
                    {
                        "first": "Silviu",
                        "middle": [],
                        "last": "Paun",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2021.naacl-main.204"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tommaso Fornaciari, Alexandra Uma, Silviu Paun, Barbara Plank, Dirk Hovy, and Massimo Poesio. 2021. Beyond black & white: Leveraging annota- tor disagreement via soft-label multi-task learning.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "2591--2597",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Human Language Technologies, pages 2591-2597, Online. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "pyaudioanalysis: An open-source python library for audio signal analysis",
                "authors": [
                    {
                        "first": "Theodoros",
                        "middle": [],
                        "last": "Giannakopoulos",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "PLOS ONE",
                "volume": "10",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1371/journal.pone.0144610"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Theodoros Giannakopoulos. 2015. pyaudioanalysis: An open-source python library for audio signal anal- ysis. PLOS ONE, 10:e0144610.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "From Content-based Music Emotion Recognition to Emotion Maps of Musical Pieces",
                "authors": [
                    {
                        "first": "Jacek",
                        "middle": [],
                        "last": "Grekow",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1007/978-3-319-70609-2"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacek Grekow. 2018. From Content-based Music Emo- tion Recognition to Emotion Maps of Musical Pieces. Springer, Cham.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Unsupervised domain adaptation for speech emotion recognition using pcanet. Multimedia Tools and Applications",
                "authors": [
                    {
                        "first": "Zhengwei",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Wentao",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    },
                    {
                        "first": "Qirong",
                        "middle": [],
                        "last": "Mao",
                        "suffix": ""
                    },
                    {
                        "first": "Yongzhao",
                        "middle": [],
                        "last": "Zhan",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1007/s11042-016-3354-x"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zhengwei Huang, Wentao Xue, Qirong Mao, and Yongzhao Zhan. 2017. Unsupervised domain adap- tation for speech emotion recognition using pcanet. Multimedia Tools and Applications, 76.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Surrey audiovisual expressed emotion (savee) database",
                "authors": [
                    {
                        "first": "Philip",
                        "middle": [],
                        "last": "Jackson",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philip Jackson and Sana ul haq. 2011. Surrey audio- visual expressed emotion (savee) database.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Speech emotion recognition based on dcnn bigru self-attention model",
                "authors": [
                    {
                        "first": "Changjiang",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Junliang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Rong",
                        "middle": [],
                        "last": "Mao",
                        "suffix": ""
                    },
                    {
                        "first": "Sifan",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "2020 International Conference on Information Science, Parallel and Distributed Systems (ISPDS)",
                "volume": "",
                "issue": "",
                "pages": "46--51",
                "other_ids": {
                    "DOI": [
                        "10.1109/ISPDS51347.2020.00017"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Changjiang Jiang, Junliang Liu, Rong Mao, and Sifan Sun. 2020. Speech emotion recognition based on dcnn bigru self-attention model. In 2020 Interna- tional Conference on Information Science, Parallel and Distributed Systems (ISPDS), pages 46-51.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Principal component analysis (pca) -an effective tool in machine learning",
                "authors": [
                    {
                        "first": "Ledisi",
                        "middle": [],
                        "last": "Kabari",
                        "suffix": ""
                    },
                    {
                        "first": "Believe",
                        "middle": [],
                        "last": "Nwamae",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ledisi Kabari and Believe Nwamae. 2019. Principal component analysis (pca) -an effective tool in ma- chine learning.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Deep multimodal emotion recognition on human speech: A review",
                "authors": [
                    {
                        "first": "Panagiotis",
                        "middle": [],
                        "last": "Koromilas",
                        "suffix": ""
                    },
                    {
                        "first": "Theodoros",
                        "middle": [],
                        "last": "Giannakopoulos",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Applied Sciences",
                "volume": "11",
                "issue": "17",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Panagiotis Koromilas and Theodoros Giannakopou- los. 2021. Deep multimodal emotion recognition on human speech: A review. Applied Sciences, 11(17):7962.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Discretized continuous speech emotion recognition with multi-task deep recurrent neural network",
                "authors": [
                    {
                        "first": "Duc",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "Zakaria",
                        "middle": [],
                        "last": "Aldeneh",
                        "suffix": ""
                    },
                    {
                        "first": "Emily",
                        "middle": [
                            "Mower"
                        ],
                        "last": "Provost",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "In Interspeech",
                "volume": "",
                "issue": "",
                "pages": "1108--1112",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Duc Le, Zakaria Aldeneh, and Emily Mower Provost. 2017. Discretized continuous speech emotion recog- nition with multi-task deep recurrent neural network. In Interspeech, pages 1108-1112.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "The ryerson audio-visual database of emotional speech and song (ravdess): A dynamic, multimodal set of facial and vocal expressions in north american english",
                "authors": [
                    {
                        "first": "S",
                        "middle": [
                            "R"
                        ],
                        "last": "Livingstone",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Russo",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "PLoS ONE",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. R. Livingstone and F. Russo. 2018. The ryerson audio-visual database of emotional speech and song (ravdess): A dynamic, multimodal set of facial and vocal expressions in north american english. PLoS ONE, 13.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Learning emotiondiscriminative and domain-invariant features for domain adaptation in speech emotion recognition",
                "authors": [
                    {
                        "first": "Qirong",
                        "middle": [],
                        "last": "Mao",
                        "suffix": ""
                    },
                    {
                        "first": "Guopeng",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Wentao",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    },
                    {
                        "first": "Jianping",
                        "middle": [],
                        "last": "Gou",
                        "suffix": ""
                    },
                    {
                        "first": "Yongzhao",
                        "middle": [],
                        "last": "Zhan",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Speech Communication",
                "volume": "93",
                "issue": "",
                "pages": "1--10",
                "other_ids": {
                    "DOI": [
                        "10.1016/j.specom.2017.06.006"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Qirong Mao, Guopeng Xu, Wentao Xue, Jianping Gou, and Yongzhao Zhan. 2017. Learning emotion- discriminative and domain-invariant features for domain adaptation in speech emotion recognition. Speech Communication, 93:1-10.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Domain adaptation for speech emotion recognition by sharing priors between related source and target classes",
                "authors": [
                    {
                        "first": "Qirong",
                        "middle": [],
                        "last": "Mao",
                        "suffix": ""
                    },
                    {
                        "first": "Wentao",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    },
                    {
                        "first": "Qiru",
                        "middle": [],
                        "last": "Rao",
                        "suffix": ""
                    },
                    {
                        "first": "Feifei",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Yongzhao",
                        "middle": [],
                        "last": "Zhan",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
                "volume": "",
                "issue": "",
                "pages": "2608--2612",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICASSP.2016.7472149"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Qirong Mao, Wentao Xue, Qiru Rao, Feifei Zhang, and Yongzhao Zhan. 2016. Domain adaptation for speech emotion recognition by sharing priors between related source and target classes. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2608-2612.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Linguistic regularities in continuous space word representations",
                "authors": [
                    {
                        "first": "Tom\u00e1\u0161",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "Yih",
                        "middle": [],
                        "last": "Wen-Tau",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [],
                        "last": "Zweig",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 2013 conference of the north american chapter of the association for computational linguistics: Human language technologies",
                "volume": "",
                "issue": "",
                "pages": "746--751",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tom\u00e1\u0161 Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 conference of the north american chapter of the as- sociation for computational linguistics: Human lan- guage technologies, pages 746-751.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Deep multimodal fusion for persuasiveness prediction",
                "authors": [
                    {
                        "first": "Behnaz",
                        "middle": [],
                        "last": "Nojavanasghari",
                        "suffix": ""
                    },
                    {
                        "first": "Deepak",
                        "middle": [],
                        "last": "Gopinath",
                        "suffix": ""
                    },
                    {
                        "first": "Jayanth",
                        "middle": [],
                        "last": "Koushik",
                        "suffix": ""
                    },
                    {
                        "first": "Tadas",
                        "middle": [],
                        "last": "Baltru\u0161aitis",
                        "suffix": ""
                    },
                    {
                        "first": "Louis-Philippe",
                        "middle": [],
                        "last": "Morency",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 18th ACM International Conference on Multimodal Interaction",
                "volume": "",
                "issue": "",
                "pages": "284--288",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Behnaz Nojavanasghari, Deepak Gopinath, Jayanth Koushik, Tadas Baltru\u0161aitis, and Louis-Philippe Morency. 2016. Deep multimodal fusion for per- suasiveness prediction. In Proceedings of the 18th ACM International Conference on Multimodal Inter- action, pages 284-288.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Dual exclusive attentive transfer for unsupervised deep convolutional domain adaptation in speech emotion recognition",
                "authors": [
                    {
                        "first": "Elias",
                        "middle": [],
                        "last": "Nii Noi Ocquaye",
                        "suffix": ""
                    },
                    {
                        "first": "Qirong",
                        "middle": [],
                        "last": "Mao",
                        "suffix": ""
                    },
                    {
                        "first": "Heping",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "Guopeng",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Yanfei",
                        "middle": [],
                        "last": "Xue",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "IEEE Access",
                "volume": "7",
                "issue": "",
                "pages": "93847--93857",
                "other_ids": {
                    "DOI": [
                        "10.1109/ACCESS.2019.2924597"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Elias Nii Noi Ocquaye, Qirong Mao, Heping Song, Guopeng Xu, and Yanfei Xue. 2019. Dual exclu- sive attentive transfer for unsupervised deep convo- lutional domain adaptation in speech emotion recog- nition. IEEE Access, 7:93847-93857.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "What's basic about basic emotions? Psychological review",
                "authors": [
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Ortony",
                        "suffix": ""
                    },
                    {
                        "first": "Terence",
                        "middle": [],
                        "last": "Turner",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "",
                "volume": "97",
                "issue": "",
                "pages": "315--346",
                "other_ids": {
                    "DOI": [
                        "10.1037/0033-295X.97.3.315"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Andrew Ortony and Terence Turner. 1990. What's ba- sic about basic emotions? Psychological review, 97:315-31.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Computational analysis of persuasiveness in social multimedia: A novel dataset and multimodal prediction approach",
                "authors": [
                    {
                        "first": "Sunghyun",
                        "middle": [],
                        "last": "Park",
                        "suffix": ""
                    },
                    {
                        "first": "Han",
                        "middle": [
                            "Suk"
                        ],
                        "last": "Shim",
                        "suffix": ""
                    },
                    {
                        "first": "Moitreya",
                        "middle": [],
                        "last": "Chatterjee",
                        "suffix": ""
                    },
                    {
                        "first": "Kenji",
                        "middle": [],
                        "last": "Sagae",
                        "suffix": ""
                    },
                    {
                        "first": "Louis-Philippe",
                        "middle": [],
                        "last": "Morency",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 16th International Conference on Multimodal Interaction",
                "volume": "",
                "issue": "",
                "pages": "50--57",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sunghyun Park, Han Suk Shim, Moitreya Chatterjee, Kenji Sagae, and Louis-Philippe Morency. 2014. Computational analysis of persuasiveness in social multimedia: A novel dataset and multimodal predic- tion approach. In Proceedings of the 16th Interna- tional Conference on Multimodal Interaction, pages 50-57.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "The development and test of the public speaking competence rubric",
                "authors": [
                    {
                        "first": "Lisa",
                        "middle": [],
                        "last": "Schreiber",
                        "suffix": ""
                    },
                    {
                        "first": "Gregory",
                        "middle": [],
                        "last": "Paul",
                        "suffix": ""
                    },
                    {
                        "first": "Lisa",
                        "middle": [],
                        "last": "Shibley",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1080/03634523.2012.670709"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lisa Schreiber, Gregory Paul, and Lisa Shibley. 2012a. The development and test of the public speaking competence rubric. Communication Education, 61.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "The development and test of the public speaking competence rubric",
                "authors": [
                    {
                        "first": "Lisa",
                        "middle": [
                            "M"
                        ],
                        "last": "Schreiber",
                        "suffix": ""
                    },
                    {
                        "first": "Gregory",
                        "middle": [
                            "D"
                        ],
                        "last": "Paul",
                        "suffix": ""
                    },
                    {
                        "first": "Lisa",
                        "middle": [
                            "R"
                        ],
                        "last": "Shibley",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Communication Education",
                "volume": "61",
                "issue": "3",
                "pages": "205--233",
                "other_ids": {
                    "DOI": [
                        "10.1080/03634523.2012.670709"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Lisa M. Schreiber, Gregory D. Paul, and Lisa R. Shib- ley. 2012b. The development and test of the public speaking competence rubric. Communication Edu- cation, 61(3):205-233.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Ambiguity helps: Classification with disagreements in crowdsourced annotations",
                "authors": [
                    {
                        "first": "Viktoriia",
                        "middle": [],
                        "last": "Sharmanska",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Hernandez-Lobato",
                        "suffix": ""
                    },
                    {
                        "first": "Jose",
                        "middle": [
                            "Miguel"
                        ],
                        "last": "Hernandez-Lobato",
                        "suffix": ""
                    },
                    {
                        "first": "Novi",
                        "middle": [],
                        "last": "Quadrianto",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Viktoriia Sharmanska, Daniel Hernandez-Lobato, Jose Miguel Hernandez-Lobato, and Novi Quadrianto. 2016. Ambiguity helps: Classification with dis- agreements in crowdsourced annotations. In Pro- ceedings of the IEEE Conference on Computer Vi- sion and Pattern Recognition (CVPR).",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Pytorch implementation of deep audio embedding calculation Resources",
                "authors": [
                    {
                        "first": "Theodoros",
                        "middle": [],
                        "last": "Giannakopoulos",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Theodoros Giannakopoulos. 2020. Pytorch imple- mentation of deep audio embedding calculation Re- sources.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Transfer learning for speech and language processing",
                "authors": [
                    {
                        "first": "Dong",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas Fang",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (AP-SIPA)",
                "volume": "",
                "issue": "",
                "pages": "1225--1237",
                "other_ids": {
                    "DOI": [
                        "10.1109/APSIPA.2015.7415532"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Dong Wang and Thomas Fang Zheng. 2015. Trans- fer learning for speech and language processing. In 2015 Asia-Pacific Signal and Information Process- ing Association Annual Summit and Conference (AP- SIPA), pages 1225-1237.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Smotetomek-based resampling for personality recognition",
                "authors": [
                    {
                        "first": "Zhe",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Chunhua",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Kangfeng",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    },
                    {
                        "first": "Xinxin",
                        "middle": [],
                        "last": "Niu",
                        "suffix": ""
                    },
                    {
                        "first": "Xiujuan",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "IEEE Access",
                "volume": "",
                "issue": "",
                "pages": "1--1",
                "other_ids": {
                    "DOI": [
                        "10.1109/ACCESS.2019.2940061"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zhe Wang, Chunhua Wu, Kangfeng Zheng, Xinxin Niu, and Xiujuan Wang. 2019. Smotetomek-based resampling for personality recognition (july 2019). IEEE Access, PP:1-1.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "The assessment of public speaking: A pan-european view",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "E"
                        ],
                        "last": "Ward",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "12th International Conference on Information Technology Based Higher Education and Training (ITHET)",
                "volume": "",
                "issue": "",
                "pages": "1--5",
                "other_ids": {
                    "DOI": [
                        "10.1109/ITHET.2013.6671050"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "A. E. Ward. 2013. The assessment of public speak- ing: A pan-european view. In 2013 12th Interna- tional Conference on Information Technology Based Higher Education and Training (ITHET), pages 1-5.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Outlines of psychology",
                "authors": [
                    {
                        "first": "Max",
                        "middle": [],
                        "last": "Wilhelm",
                        "suffix": ""
                    },
                    {
                        "first": "Charles",
                        "middle": [],
                        "last": "Wundt",
                        "suffix": ""
                    },
                    {
                        "first": "Judd",
                        "middle": [],
                        "last": "Hubbard",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wilhelm Max Wundt and Charles Hubbard Judd. 1897. Outlines of psychology. Leipzig, W. Engelmann, New York, G.E. Stechert.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Aligning books and movies: Towards story-like visual explanations by watching movies and reading books",
                "authors": [
                    {
                        "first": "Yukun",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Kiros",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Zemel",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "Raquel",
                        "middle": [],
                        "last": "Urtasun",
                        "suffix": ""
                    },
                    {
                        "first": "Antonio",
                        "middle": [],
                        "last": "Torralba",
                        "suffix": ""
                    },
                    {
                        "first": "Sanja",
                        "middle": [],
                        "last": "Fidler",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICCV.2015.11"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Figure 1: System Architecture"
            },
            "FIGREF1": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Distribution of Emotions in Circumplex Space"
            },
            "FIGREF3": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Annotations per User"
            },
            "TABREF1": {
                "content": "<table/>",
                "type_str": "table",
                "text": "Inner-dataset Evaluation of Audio Models and arousal classes based on the circumplex model shown inFigure 2.",
                "html": null,
                "num": null
            },
            "TABREF3": {
                "content": "<table><tr><td colspan=\"3\">Merged Dataset Classification Task Xgboost CNN SVM</td></tr><tr><td>Emotion</td><td>60.4</td><td>60.5 64.4 (+/-0.9)</td></tr><tr><td>Valence</td><td>51.7</td><td>52.6 55.2 (+/-1.2)</td></tr><tr><td>Arousal</td><td>64.2</td><td>69.3 66.8 (+/-1.1)</td></tr></table>",
                "type_str": "table",
                "text": "Cross-dataset Evaluation of Audio Models",
                "html": null,
                "num": null
            },
            "TABREF4": {
                "content": "<table/>",
                "type_str": "table",
                "text": "Merged-dataset Evaluation of Audio Models",
                "html": null,
                "num": null
            },
            "TABREF5": {
                "content": "<table/>",
                "type_str": "table",
                "text": "IEMOCAP Evaluation of Text Models",
                "html": null,
                "num": null
            },
            "TABREF7": {
                "content": "<table/>",
                "type_str": "table",
                "text": "Definition of Expressiveness Dataset",
                "html": null,
                "num": null
            },
            "TABREF9": {
                "content": "<table/>",
                "type_str": "table",
                "text": "Evaluation of recording-level classification (AUC metric)",
                "html": null,
                "num": null
            }
        }
    }
}