File size: 167,718 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
{
    "paper_id": "I17-1037",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:37:35.301075Z"
    },
    "title": "Embracing Non-Traditional Linguistic Resources for Low-resource Language Name Tagging",
    "authors": [
        {
            "first": "Boliang",
            "middle": [],
            "last": "Zhang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Rensselaer Polytechnic Institute {zhangb8",
                "location": {
                    "addrLine": "lud2,panx2",
                    "postCode": "liny9"
                }
            },
            "email": ""
        },
        {
            "first": "Di",
            "middle": [],
            "last": "Lu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Rensselaer Polytechnic Institute {zhangb8",
                "location": {
                    "addrLine": "lud2,panx2",
                    "postCode": "liny9"
                }
            },
            "email": ""
        },
        {
            "first": "Xiaoman",
            "middle": [],
            "last": "Pan",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Rensselaer Polytechnic Institute {zhangb8",
                "location": {
                    "addrLine": "lud2,panx2",
                    "postCode": "liny9"
                }
            },
            "email": ""
        },
        {
            "first": "Ying",
            "middle": [],
            "last": "Lin",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Rensselaer Polytechnic Institute {zhangb8",
                "location": {
                    "addrLine": "lud2,panx2",
                    "postCode": "liny9"
                }
            },
            "email": ""
        },
        {
            "first": "Halidanmu",
            "middle": [],
            "last": "Abudukelimu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tsinghua University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Heng",
            "middle": [],
            "last": "Ji",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Rensselaer Polytechnic Institute {zhangb8",
                "location": {
                    "addrLine": "lud2,panx2",
                    "postCode": "liny9"
                }
            },
            "email": ""
        },
        {
            "first": "Kevin",
            "middle": [],
            "last": "Knight",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Southern",
                "location": {
                    "country": "California"
                }
            },
            "email": "knight@isi.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Current supervised name tagging approaches are inadequate for most lowresource languages due to the lack of annotated data and actionable linguistic knowledge. All supervised learning methods (including deep neural networks (DNN)) are sensitive to noise and thus they are not quite portable without massive clean annotations. We found that the F-scores of DNN-based name taggers drop rapidly (20%-30%) when we replace clean manual annotations with noisy annotations in the training data. We propose a new solution to incorporate many non-traditional language universal resources that are readily available but rarely explored in the Natural Language Processing (NLP) community, such as the World Atlas of Linguistic Structure, CIA names, PanLex and survival guides. We acquire and encode various types of non-traditional linguistic resources into a DNN name tagger. Experiments on three low-resource languages show that feeding linguistic knowledge can make DNN significantly more robust to noise, achieving 8%-22% absolute Fscore gains on name tagging without using any human annotation 1 .",
    "pdf_parse": {
        "paper_id": "I17-1037",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Current supervised name tagging approaches are inadequate for most lowresource languages due to the lack of annotated data and actionable linguistic knowledge. All supervised learning methods (including deep neural networks (DNN)) are sensitive to noise and thus they are not quite portable without massive clean annotations. We found that the F-scores of DNN-based name taggers drop rapidly (20%-30%) when we replace clean manual annotations with noisy annotations in the training data. We propose a new solution to incorporate many non-traditional language universal resources that are readily available but rarely explored in the Natural Language Processing (NLP) community, such as the World Atlas of Linguistic Structure, CIA names, PanLex and survival guides. We acquire and encode various types of non-traditional linguistic resources into a DNN name tagger. Experiments on three low-resource languages show that feeding linguistic knowledge can make DNN significantly more robust to noise, achieving 8%-22% absolute Fscore gains on name tagging without using any human annotation 1 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "There is a general agreement that Deep Neural Networks provides a general, powerful underlying model for Information Extraction (IE), confirmed by improved state-of-the-art performance on many tasks such as name tagging (Chiu and Nichols, 2016; Lample et al., 2016) , relation classification (Zeng et al., 2014; Nguyen and Grishman, 2015b; Yang et al., 2016) and event detection (Nguyen and Grishman, 2015b; Chen et al., 2015; Grishman, 2015a, 2016; Feng et al., 2016) . For example, our experiments on several languages show that a DNN-based name tagger generally outperforms (up to 6% F-score gain) a Conditional Random Fields (CRFs) model trained from the same labeled data and feature set. DNN architecture is attractive to couple with character/word embeddings for IE tasks because it is easy to learn and usually effective enough to eliminate the need of explicit linguistic feature design.",
                "cite_spans": [
                    {
                        "start": 220,
                        "end": 244,
                        "text": "(Chiu and Nichols, 2016;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 245,
                        "end": 265,
                        "text": "Lample et al., 2016)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 292,
                        "end": 311,
                        "text": "(Zeng et al., 2014;",
                        "ref_id": "BIBREF62"
                    },
                    {
                        "start": 312,
                        "end": 339,
                        "text": "Nguyen and Grishman, 2015b;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 340,
                        "end": 358,
                        "text": "Yang et al., 2016)",
                        "ref_id": "BIBREF61"
                    },
                    {
                        "start": 379,
                        "end": 407,
                        "text": "(Nguyen and Grishman, 2015b;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 408,
                        "end": 426,
                        "text": "Chen et al., 2015;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 427,
                        "end": 449,
                        "text": "Grishman, 2015a, 2016;",
                        "ref_id": null
                    },
                    {
                        "start": 450,
                        "end": 468,
                        "text": "Feng et al., 2016)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "However, training general models like DNN usually requires a massive amount of clean annotated data, which is often not available for low-resource languages and difficult to obtain during emergent settings (Zhang et al., 2016a) . In order to compensate this data requirement, various automatic annotation generation methods have been proposed, including knowledge base driven distant supervision Mintz et al., 2009; Ren et al., 2015) , cross-lingual projection (Li et al., 2012; Kim et al., 2012; Wang and Manning, 2014; Zhang et al., 2016b) , and leveraging naturally existing noisy annotations such as Wikipedia markups (Nothman et al., 2008; Dakka and Cucerzan, 2008; Ringland et al., 2009; Alotaibi and Lee, 2012; Nothman et al., 2012; Althobaiti et al., 2014; Pan et al., 2017) . Annotations produced from these methods are usually very noisy, while DNN is sensitive to noise just like many other machine learning methods. Our name tagging experiment shows that the F-score of the same DNN model learned from noisy training data is 20-30% lower than that trained from clean data. One major reason is that most of these methods solely rely on implicit embedding features in order to be (almost) language-independent.",
                "cite_spans": [
                    {
                        "start": 206,
                        "end": 227,
                        "text": "(Zhang et al., 2016a)",
                        "ref_id": "BIBREF63"
                    },
                    {
                        "start": 396,
                        "end": 415,
                        "text": "Mintz et al., 2009;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 416,
                        "end": 433,
                        "text": "Ren et al., 2015)",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 461,
                        "end": 478,
                        "text": "(Li et al., 2012;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 479,
                        "end": 496,
                        "text": "Kim et al., 2012;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 497,
                        "end": 520,
                        "text": "Wang and Manning, 2014;",
                        "ref_id": "BIBREF58"
                    },
                    {
                        "start": 521,
                        "end": 541,
                        "text": "Zhang et al., 2016b)",
                        "ref_id": "BIBREF64"
                    },
                    {
                        "start": 622,
                        "end": 644,
                        "text": "(Nothman et al., 2008;",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 645,
                        "end": 670,
                        "text": "Dakka and Cucerzan, 2008;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 671,
                        "end": 693,
                        "text": "Ringland et al., 2009;",
                        "ref_id": "BIBREF49"
                    },
                    {
                        "start": 694,
                        "end": 717,
                        "text": "Alotaibi and Lee, 2012;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 718,
                        "end": 739,
                        "text": "Nothman et al., 2012;",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 740,
                        "end": 764,
                        "text": "Althobaiti et al., 2014;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 765,
                        "end": 782,
                        "text": "Pan et al., 2017)",
                        "ref_id": "BIBREF44"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Moreover, certain types of linguistic properties are difficult to be captured by embeddings, such as: (1) language-specific structures. For example, the Subject (S), Verb (V) and Object (O) orders in Tagalog are VS, VO, and VSO, which indicates that the word at the beginning of a sentence is usually a verb and thus unlikely to be a name.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(2) culture-specific knowledge. For example, a Uyghur person's last name is the same as his/her father's first name.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "On an almost parallel research avenue, linguists and domain experts have created a wide variety of multi-lingual resources, such as World Atlas of Linguistic Structure (WALS) (Dryer and Haspelmath, 2013b) , Central Intelligence Agency (CIA) Names, grammar books, and survival guides. Such resources have been largely ignored by the mainstream statistical NLP research, because they were not specifically designed for NLP purpose at the first place and they are often far from complete. Thus they are not immediately actionable -converted into features, rules or patterns for a target NLP application. In this paper we design various methods to convert them into machine readable features for a new DNN architecture. Very little work has used non-traditional resources mentioned in this paper for practical downstream NLP applications. Limited work only used them for resource building (e.g., (Sarma et al., 2012)) or studying word order typology (Ostling, 2015) . To the best of our knowledge, our work is the first to encode them as actionable knowledge for IE.",
                "cite_spans": [
                    {
                        "start": 175,
                        "end": 204,
                        "text": "(Dryer and Haspelmath, 2013b)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 946,
                        "end": 961,
                        "text": "(Ostling, 2015)",
                        "ref_id": "BIBREF42"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We aim to answer the following research questions: How to effectively acquire linguistic knowledge from non-traditional resources, and represent them for computational models? How much further gain can be obtained in addition to traditional resources?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "2 Approach Overview",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "A typical supervised name tagger is presented in (Lample et al., 2016) , consisted of Bi-directional Long Short-Term Memory networks (Bi-LSTM) and CRFs. We can consider name tagging as a sequence labeling problem, to tag each token in a sentence as the Beginning (B), Inside (I) or Outside (O) of a name mention with a certain type. In this paper we classify names into three types: person (PER), organization (ORG) and location (LOC). Predicting the tag for each token needs evidence from both of its previous context and future context Languages # of Documents # of Names # of Sentences Train Test Train Test  Hausa  137  100  3,414 1,320 3,156 1,130  Turkish  128  100  2,341 2,173 1,973 2,119  Uzbek  127  100  3,577 3,137 3,588 3,037   Table 1 : Data Statistics.",
                "cite_spans": [
                    {
                        "start": 49,
                        "end": 70,
                        "text": "(Lample et al., 2016)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 589,
                        "end": 748,
                        "text": "Train Test Train Test  Hausa  137  100  3,414 1,320 3,156 1,130  Turkish  128  100  2,341 2,173 1,973 2,119  Uzbek  127  100  3,577 3,137 3,588 3,037   Table 1",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "A Typical Baseline DNN Model",
                "sec_num": "2.1"
            },
            {
                "text": "in the entire sentence. Bi-LSTM networks (Graves et al., 2013) meet this need by processing each sequence in both directions with two separate hidden layers, which are then fed into the same output layer. Moreover, there are strong classification dependencies among name tags in a sequence. For example, \"I-LOC\" cannot follow \"B-ORG\". CRFs model, which is particularly good at jointly modeling tagging decisions, can be built on top of the Bi-LSTM networks.",
                "cite_spans": [
                    {
                        "start": 41,
                        "end": 62,
                        "text": "(Graves et al., 2013)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Train Test",
                "sec_num": null
            },
            {
                "text": "In low-resource settings where few clean annotations are available, we could try to automatically generate some annotations to train the above model. For instance, we can project automatic annotations from a high-resource language (HL) to a low-resource language (LL) through parallel data. Figure 1 shows an example of projecting English automatic name annotations to Hausa through a parallel sentence pair. We are interested in studying how sensitive DNN is to noise in such automatically generated training data. For our experiments we use English as the HL and use three LLs with different linguistic properties: Turkish, Uzbek and Hausa. We evaluate our approaches using the groundtruth name tagging annotations from the DARPA LORELEI program 2 . For fair comparison with previous LORELEI work (Tsai et al., 2016; Zhang et al., 2016a; Pan et al., 2017) , we use the same 100 test documents. Table 1 shows detailed data statistics.",
                "cite_spans": [
                    {
                        "start": 799,
                        "end": 818,
                        "text": "(Tsai et al., 2016;",
                        "ref_id": "BIBREF56"
                    },
                    {
                        "start": 819,
                        "end": 839,
                        "text": "Zhang et al., 2016a;",
                        "ref_id": "BIBREF63"
                    },
                    {
                        "start": 840,
                        "end": 857,
                        "text": "Pan et al., 2017)",
                        "ref_id": "BIBREF44"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 291,
                        "end": 299,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 896,
                        "end": 903,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Baseline's Sensitiveness to Noise",
                "sec_num": "2.2"
            },
            {
                "text": "We use 80% of the name annotated LL documents for training and 20% for development, and parallel sentences to artificially create noisy training data as follows. We use S to denote the sentences in LL and T to denote the sentences in HL. We apply Stanford English name tagger on T and project English names onto S, using the following measurements to determine whether a candidate LL name string n l matches an expected English name n e : (1) If the edit distance * Projection 1 is incorrect and results in a noisy instance in the automatically generated Hausa annotations. The correct name mention is \"kungiyar AU (Africa Union)\" instead of \"AU\". between n e and n l is not greater than two. 2We check the pronunciations of n e and n l based on Soundex (Odell, 1956) , Metaphone (Philips, 1990) and NYSIIS (Taft, 1970) algorithms. We consider two codes match if their edit distance is not greater than two. 3If n e and n l are aligned in the parallel data by running GIZA++ word alignment tool (Och and Ney, 2003) . In this way we obtain an automatically generated noisy training data set T rain noise . We denote T rain clean as the ground truth which is manually created by human annotators on set S. We mix T rain noise and T rain clean in different proportions to obtain a training set T rain mix on various noise levels. We define noise level as 1 \u2212 f score(T rain mix ) where the f-score of T rain mix is computed against T rain clean . For example, when T rain mix is full of manually created clean data, the noise level is 0; when we mix half T rain noise and half T rain clean of the Hausa data, the f-score of T rain mix is 80.1%, and the noise level is 19.9%.",
                "cite_spans": [
                    {
                        "start": 754,
                        "end": 767,
                        "text": "(Odell, 1956)",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 780,
                        "end": 795,
                        "text": "(Philips, 1990)",
                        "ref_id": "BIBREF45"
                    },
                    {
                        "start": 800,
                        "end": 819,
                        "text": "NYSIIS (Taft, 1970)",
                        "ref_id": null
                    },
                    {
                        "start": 995,
                        "end": 1014,
                        "text": "(Och and Ney, 2003)",
                        "ref_id": "BIBREF39"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baseline's Sensitiveness to Noise",
                "sec_num": "2.2"
            },
            {
                "text": "To learn embeddings, we use 12,624 Hausa documents from the LORELEI program, and use 288,444 Turkish documents and 128,763 Uzbek documents from a June 2015 Wikipedia dump. Figure 2 shows the performance of the baseline tagger trained from T rain mix for three languages. We can clearly see that the performance drops rapidly as the training data includes more noise.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 172,
                        "end": 180,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Baseline's Sensitiveness to Noise",
                "sec_num": "2.2"
            },
            {
                "text": "We propose to acquire non-traditional linguistic resources and encode them as new actionable features (Section 3). In Figure 3 , we design three integration methods to incorporate explicit linguistic features into Bi-LSTM networks: (1) concatenate the linguistic features and word embeddings at the input level, (2) concatenate the linguistic features and the bidirectional encodings of each token before feeding them into the output layer that computes the tag probability, and (3) use an additional Bi-LSTM to consume the feature embeddings of Figure 2: Performance of baseline DNN Name Taggers Trained from Data with Various Noise Levels (The noise level is created by assigning the proportion of T rain noise in T rain mix as 0%, 25%, 50%, 75% and 100% respectively. ) each token and concatenate both Bi-LSTM encodings of feature embeddings and word embeddings before the output layer. We set the word input dimension to 100, word LSTM hidden layer dimension to 100, character input dimension to 50, character LSTM hidden layer dimension to 25, input dropout rate to 0.5, and use stochastic gradient descent with learning rate 0.01 for optimization.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 118,
                        "end": 126,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "A New Improved Model",
                "sec_num": "2.3"
            },
            {
                "text": "In this section we will describe the detailed methods to acquire and encode various types of nontraditional resources. We call them as nontraditional because they have been rarely used in previous NLP research. ning of a Turkish word. Thus \"Thomas Marek\" is likely to be a foreign name. Grammar Book. From grammar books we can also extract more language-specific contextual words, prefixes, suffixes and stemming rules. Name related lists contain: case suffix, preposition, postposition, ordinal number, definite article, negation, conjunction, pronoun, quantifier, numeral, time, locative, question particle, demonstrative, degree word, plural prefix/suffix, subordinator, reduplication, possessive, situational and epistemic markers. Table 2 shows some examples of name related suffix features.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 736,
                        "end": 743,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Incorporating Non-traditional Linguistic Knowledge",
                "sec_num": "3"
            },
            {
                "text": "Recently linguists have made great efforts at building linguistic knowledge bases for thousands of languages in the world. Two such examples are WALS database (Dryer and Haspelmath, 2013a) and Syntactic Structures of the World's Languages 3 . These databases classify languages according to a large number of topological properties (phonological, lexical and grammatical). For example, WALS consists of 141 maps with accompanying text on diverse properties, gathered from descriptive materials (such as reference grammars). Altogether there are 2,676 languages and more than 58,000 data points; each data point is a (language, feature, feature value) tuple that specifies the value of the feature in a particular language. (e.g., (English, canonical word order, SVO)). In total we extract 188 linguistic properties related to name tagging, belonging to 20 Phonology, 13 Lexicon, 12 Morphology, 29 Nominal, 8 Nominal Syntax, 17 Verbal Categories, 56 Word Order, 3 http://sswl.railsplayground.net/ 26 Simple Clauses, and 7 Complex Sentences categories respectively. Table 3 shows some examples.",
                "cite_spans": [
                    {
                        "start": 159,
                        "end": 188,
                        "text": "(Dryer and Haspelmath, 2013a)",
                        "ref_id": null
                    },
                    {
                        "start": 961,
                        "end": 962,
                        "text": "3",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1064,
                        "end": 1071,
                        "text": "Table 3",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Linguistic Structure",
                "sec_num": "3.2"
            },
            {
                "text": "CIA Names. We utilize the CIA Name Files 4 , which include biographical sketches, memorandums, telegrams, legislative records, legal documents, statements, and other records. We used the version cleaned up by Lawson et al. 5 that includes documents about names in 41 languages. Besides, person names in certain regions often include some common syllable patterns. Table 4 presents some examples. In languages such as Turkish, Uzbek and Uyghur, a person's last name inherits from his or her father's first name. In Uyghur, there are no additional suffixes. In Uzbek, additional suffixes include \"-ov\", \"-ev\", \"-yev\", \"-eva\" and \"-yeva\". In Turkish, a male's first name often ends with a consonant, and his last name consists of his father's first name and a suffix \"-o\u011flu (son of)\". We exploit this kind of knowledge to improve gazetteer match and name boundary identification.",
                "cite_spans": [
                    {
                        "start": 223,
                        "end": 224,
                        "text": "5",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 364,
                        "end": 371,
                        "text": "Table 4",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Multi-lingual Dictionaries",
                "sec_num": "3.3"
            },
            {
                "text": "Unicode CLDR. Unicode Common Locale Data Repository (CLDR) 6 is a data collection for 194 languages, maintained by the Unicode Consortium to support software internationalization and localization. We extract bi-lingual location gazetteers, and exploit patterns and lists of currencies, months, weekdays, day periods and time units to remove them from name candidates because they share some features with names (e.g., capitalization, \"Ocak\" in Turkish means \"January\"). Wiktionary. Wiktionary 7 is a web-based collaborative project to create an English content dictionary of all words in many languages. We collected dictionaries in 1,247 languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Multi-lingual Dictionaries",
                "sec_num": "3.3"
            },
            {
                "text": "Panlex. Panlex 8 (Baldwin et al., 2010; Kamholz et al., 2014) database contains 1.1 billion pairwise translations among 21 million expressions in about 10,000 language varieties.",
                "cite_spans": [
                    {
                        "start": 17,
                        "end": 39,
                        "text": "(Baldwin et al., 2010;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 40,
                        "end": 61,
                        "text": "Kamholz et al., 2014)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Multi-lingual Dictionaries",
                "sec_num": "3.3"
            },
            {
                "text": "Multilingual WordNet. We leverage three versions of multi-lingual WordNet: (1) Open Multilingual WordNet (Bond and Paik, 2012) which links words in many languages to English Word-Net based on Wiktionary and CLDR; (2) Universal WordNet (de Melo and Weikum, 2019) which au-tomatically extends English WordNet with around 1.5 million meaning links for 800,000 words in over 200 languages, based on WordNets, translation dictionaries and parallel corpora; and (3) Etymological WordNet (de Melo and Weikum, 2010; de Melo, 2014) that provides information about how words in various languages are etymologically related based on Wiktionary.",
                "cite_spans": [
                    {
                        "start": 105,
                        "end": 126,
                        "text": "(Bond and Paik, 2012)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Multi-lingual Dictionaries",
                "sec_num": "3.3"
            },
            {
                "text": "Wikipedia we extracted all pairs of titles that are connected by cross-lingual links. And we extracted more phrase translation pairs using parenthesis patterns from the beginning sentences of Wikipedia pages. For example, from the first sentence of the English Wikipedia page about \u00dcr\u00fcmqi: \"\u00dcr\u00fcmqi \u202b)\ufe8b\ufbdc\ufead\ufbdb\ufee3\ufb7d\ufef0(\u202c is the capital of the Xinjiang Uyghur Autonomous Region of the People's Republic of China in Northwest China,\" we can extract an Uyghur-English name translation pair of \u202b\"\ufe8b\ufbdc\ufead\ufbdb\ufee3\ufb7d\ufef0\"\u202c and \"\u00dcr\u00fcmqi\". Moreover, we retrieved related Wikipedia articles, and mined common names in many languages and regions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Pairs Mined from Wikipedia. From",
                "sec_num": null
            },
            {
                "text": "GeoNames.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Pairs Mined from Wikipedia. From",
                "sec_num": null
            },
            {
                "text": "We exploit the geo-political and location entities in multilingual GeoNames database 9 . It contains over 10 million geographical names and over 9 million unique features of the following properties: id, name, asciiname, alternate names, latitude, longitude, feature class, feature code, country code, administrative code, population, elevation and time zone.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Pairs Mined from Wikipedia. From",
                "sec_num": null
            },
            {
                "text": "JRC Names. Finally we include the JRC Names (Steinberger et al., 20011) , a large list of person and organization names (about 205,000 entries) in over 20 different scripts. Some entries include additional information such as frequency, title and date ranges.",
                "cite_spans": [
                    {
                        "start": 44,
                        "end": 71,
                        "text": "(Steinberger et al., 20011)",
                        "ref_id": "BIBREF53"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Pairs Mined from Wikipedia. From",
                "sec_num": null
            },
            {
                "text": "Grounding to KB and Typing. For names that we are able to acquire English translations, we further ground (\"wikify\") them to an external knowledge base (KB, DBpedia in our work) if they are linkable. We use two measures (Pan et al., 2015) for linking: (1) Popularity: we prefer popular entities in the KB; (2) Coherence: we link a pair of a foreign name and its English translation simultaneously and favor their candidate entities that are also strongly connected in the KB through a direct cross-lingual page link, a common neighbor, or sharing similar properties. After linking, we assign an entity type to each pair based on their properties in the KB (e.g., an entity with a birthdate and a death-date is likely to be a person). The typing component is a Maximum Entropy model learned from the Abstract Meaning Representation (Banarescu et al., 2013) corpus that includes both entity type and Wikipedia link for each entity mention, using KB properties as features.",
                "cite_spans": [
                    {
                        "start": 220,
                        "end": 238,
                        "text": "(Pan et al., 2015)",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 831,
                        "end": 855,
                        "text": "(Banarescu et al., 2013)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Pairs Mined from Wikipedia. From",
                "sec_num": null
            },
            {
                "text": "Finally we exploit phrase books that include phrase translations between many languages and English.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Books",
                "sec_num": "3.4"
            },
            {
                "text": "Language Survival Kits. FAMiliarization 10 offers language survival kits (LSKs) for 100 languages, each of which has up to 10 kits of different topics. LSK encodes phrases, translations, and romanizations and is available for 55 languages. FA-Miliarization also provides translations of name- PER LOC ORG  Hausa  1,174 5,123 199  42  391  21  Turkish  2,819 7,271 262 231  411  181  Uzbek  1,771 5,331 103 178  271  209   Table 5 : Name Related List Statistics (# of entries).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 293,
                        "end": 429,
                        "text": "PER LOC ORG  Hausa  1,174 5,123 199  42  391  21  Turkish  2,819 7,271 262 231  411  181  Uzbek  1,771 5,331 103 178  271  209   Table 5",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Phrase Books",
                "sec_num": "3.4"
            },
            {
                "text": "related words and phrases. For each language, we first extracted 2, 000 to 3, 000 parallel sentence/phrase pairs. Then we ran GIZA++ over these pairs and combined structure rules from WALS to obtain word translation pairs. We also extracted translations of the following English lists: cardinal number, currency, disease, location affixes, title, nationalities, topical keywords, organization suffixes, temporal words, locations and people, and stop words which are unlikely to be names.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Books",
                "sec_num": "3.4"
            },
            {
                "text": "Elicitation Corpus. An elicitation corpus is a controlled corpus translated by a bilingual consultant in order to produce high quality word aligned sentence pairs. During the elicitation process, the user will translate a subset of these sentences that is dynamically determined to be sufficient for learning the desired grammar rules. We extracted word and phrase translation pairs from the Elicitation corpus developed by CMU (Probst et al., 2001; Alvarez et al., 2005) 11 for the DARPA LORELEI which contains pairs of sentences in a low-resource language and English.",
                "cite_spans": [
                    {
                        "start": 428,
                        "end": 449,
                        "text": "(Probst et al., 2001;",
                        "ref_id": "BIBREF46"
                    },
                    {
                        "start": 450,
                        "end": 471,
                        "text": "Alvarez et al., 2005)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Books",
                "sec_num": "3.4"
            },
            {
                "text": "We merged the linguistic resources collected above into three types of features: (1) name gazetteers;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoding Linguistic Features",
                "sec_num": "3.5"
            },
            {
                "text": "(2) list of suffixes and contextual words (e.g., titles) that indicate names; and (3) list of words that indicate non-names (e.g., time expressions). Ultimately we obtained 30 explicit linguistic feature categories. Table 5 shows the statistics of the encoded features.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 216,
                        "end": 223,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Encoding Linguistic Features",
                "sec_num": "3.5"
            },
            {
                "text": "For each token w i in a sentence, we check whether w i , its previous token w i\u22121 and its next token w i+1 exist in these lists, and concatenate them into an initial feature vector for w i . For any resources (e.g., lexicons and phrase books) that contain English translations, we also use them to translate each w i , and check whether its translation is capitalized or exists in English name tagging resources (contextual words, gazetteers), whether its contexts match any English patterns as described in (Zhang et al., 2016a) .",
                "cite_spans": [
                    {
                        "start": 508,
                        "end": 529,
                        "text": "(Zhang et al., 2016a)",
                        "ref_id": "BIBREF63"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoding Linguistic Features",
                "sec_num": "3.5"
            },
            {
                "text": "Using the data sets mentioned in Section 2.2, we conduct experiments for three languages: Hausa, Turkish and Uzbek. Table 6 compares the results of three feature integration methods described in Section 2.3 and Figure 3. We can see that the third integration method (Integration 3) consistently outperforms the others for all three languages. We compare the following models: a baseline model that uses only character and word embedding features, a model adding traditional linguistic features as described in (Zhang et al., 2016a) , and a model further adding non-traditional linguistic features using the third integration method. Figure 4 presents the results. Clearly models trained with linguistic features substantially outperform the baseline models on all noise levels for all languages. As the noise level increases, the performance of the baseline model drops drastically while the model trained with linguistic features successfully curbs the downward trend and forms a relatively flat curve at last. Adding non-traditional linguistic features provides further gains in almost all settings. Notably for Turkish, adding linguistic features and using 100% automatically generated noisy training data, our approach achieves the same performance as the baseline model using 75% manually created clean data and 25% automatically created noisy data. In other words, explicit linguistic knowledge has significantly saved annotation cost (2,367 sentences). Our results without using any manually labeled training data are much better than state-of-the-art reported in our previous work (Zhang et al., 2016a) which used most traditional resources mentioned in this paper and (Pan et al., 2017) which derived noisy training data from Wikipedia markups. On the same test sets we achieved 5.5% higher F-score for Hausa than (Zhang et al., 2016a) , 27.7% higher F-score for Turkish and 13.6% higher F-score for Uzbek than (Pan et al., 2017) . Table 7 presents the contribution of each linguistic feature category when using 100% automatically created training data. Figure 5 shows some examples of errors corrected by each category. Some remaining challenges pertain to the lack of contextual clues for identifying the boundaries of long organizations, especially when they include nested or conjunction structures (e.g., \"Uluslararas\u0131 ve Stratejik Ara\u015ft\u0131rmalar Merkezi'nde (International and Strategic Research Center) \" in Turkish). The performance of organization tagging is 16%-31% lower than that of persons and locations. We also observe a \"popularity bias\" challenge, especially because we don't have enough resources and tools to perform a deep understanding of the contexts. For example, when a journal name \"New England\" appears in Hausa texts, all of its mentions are mistakenly labeled as location instead of organization, because the dominant type label of \"New England\" is location in all of our resources.",
                "cite_spans": [
                    {
                        "start": 510,
                        "end": 531,
                        "text": "(Zhang et al., 2016a)",
                        "ref_id": "BIBREF63"
                    },
                    {
                        "start": 1589,
                        "end": 1610,
                        "text": "(Zhang et al., 2016a)",
                        "ref_id": "BIBREF63"
                    },
                    {
                        "start": 1677,
                        "end": 1695,
                        "text": "(Pan et al., 2017)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 1823,
                        "end": 1844,
                        "text": "(Zhang et al., 2016a)",
                        "ref_id": "BIBREF63"
                    },
                    {
                        "start": 1920,
                        "end": 1938,
                        "text": "(Pan et al., 2017)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 2372,
                        "end": 2417,
                        "text": "(International and Strategic Research Center)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 116,
                        "end": 123,
                        "text": "Table 6",
                        "ref_id": "TABREF8"
                    },
                    {
                        "start": 211,
                        "end": 220,
                        "text": "Figure 3.",
                        "ref_id": null
                    },
                    {
                        "start": 633,
                        "end": 641,
                        "text": "Figure 4",
                        "ref_id": null
                    },
                    {
                        "start": 1941,
                        "end": 1948,
                        "text": "Table 7",
                        "ref_id": "TABREF10"
                    },
                    {
                        "start": 2064,
                        "end": 2072,
                        "text": "Figure 5",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "The major novel contribution of this paper is to systematically explore many non-traditional linguistic resources which have been largely neglected by the mainstream NLP community. Some previous efforts used WALS to study the typological relations across languages (Rama and Prasanth, 2012; O'Horan et al., 2016; Yamauchi and Murawaki, 2016 ) but very little work used it for practical NLP applications. Most DNN methods solely relied on character embeddings and word embeddings as features for name tagging (e.g., Lample et al., 2016; Chiu and Nichols, 2016) ). (Shimaoka et al., 2017) Translation It would be sold personally from Ankara and Mu\u011fla...",
                "cite_spans": [
                    {
                        "start": 265,
                        "end": 290,
                        "text": "(Rama and Prasanth, 2012;",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 291,
                        "end": 312,
                        "text": "O'Horan et al., 2016;",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 313,
                        "end": 340,
                        "text": "Yamauchi and Murawaki, 2016",
                        "ref_id": "BIBREF60"
                    },
                    {
                        "start": 515,
                        "end": 535,
                        "text": "Lample et al., 2016;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 536,
                        "end": 559,
                        "text": "Chiu and Nichols, 2016)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 563,
                        "end": 586,
                        "text": "(Shimaoka et al., 2017)",
                        "ref_id": "BIBREF52"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "An samu dukkan gawawwakin wadanda suka mutu sakamakon bala\u02bcin zabtarewar kasa a lardin Yunnan.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dictionaries Hausa",
                "sec_num": null
            },
            {
                "text": "Translation It is found all the bodies of those who died in the disastrous landslides in Yunnan Province.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model D identifies the location with location designator \"lardin (province)\" in the dictionary",
                "sec_num": null
            },
            {
                "text": "AQShning Xonobod bazasi uchun to'lov masalasi tortishuvga sabab bo'lmoqda.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase books Uzbek",
                "sec_num": null
            },
            {
                "text": "Model D",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase books Uzbek",
                "sec_num": null
            },
            {
                "text": "Model E the phrase book.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model E correctly classifies the mention as ORG since \"Xonobod bazasi (Khanabad base)\" is in",
                "sec_num": null
            },
            {
                "text": "Translation US-Khanabad base to debate the issue of payment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model E correctly classifies the mention as ORG since \"Xonobod bazasi (Khanabad base)\" is in",
                "sec_num": null
            },
            {
                "text": "Model B corrects the boundary of \"CBS harber kanal\u0131\" by using the pattern: [<Namei> \u2026], <Namen-i> <single term> <Namen>, where all names have the same type. plicit linguistic features, and found that gazetteers are not very effective when they have a low coverage of name variants or when they contain many ambiguous entries. We addressed this challenge by integrating gazetteers gathered from a much wider range of sources.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ORG LOC Missing",
                "sec_num": null
            },
            {
                "text": "Some recent studies (Zhang et al., 2016a; Littell et al., 2016a; Tsai et al., 2016; Pan et al., 2017) under the DARPA LORELEI program focused on name tagging for low-resource languages. Most noise tolerant supervised learning algorithms (Bylander, 1994; Dredze et al., 2008; Crammer et al., 2009; Kalapanidas et al., 2003; Scott et al., 2013) have been applied for improving image classification (Mnih and Hinton, 2012; Natarajan et al., 2013; Sukhbaatar et al., 2014; Xiao et al., 2015) . Coupling our idea with these algorithms is also likely to yield further improvement.",
                "cite_spans": [
                    {
                        "start": 20,
                        "end": 41,
                        "text": "(Zhang et al., 2016a;",
                        "ref_id": "BIBREF63"
                    },
                    {
                        "start": 42,
                        "end": 64,
                        "text": "Littell et al., 2016a;",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 65,
                        "end": 83,
                        "text": "Tsai et al., 2016;",
                        "ref_id": "BIBREF56"
                    },
                    {
                        "start": 84,
                        "end": 101,
                        "text": "Pan et al., 2017)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 237,
                        "end": 253,
                        "text": "(Bylander, 1994;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 254,
                        "end": 274,
                        "text": "Dredze et al., 2008;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 275,
                        "end": 296,
                        "text": "Crammer et al., 2009;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 297,
                        "end": 322,
                        "text": "Kalapanidas et al., 2003;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 323,
                        "end": 342,
                        "text": "Scott et al., 2013)",
                        "ref_id": "BIBREF51"
                    },
                    {
                        "start": 396,
                        "end": 419,
                        "text": "(Mnih and Hinton, 2012;",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 420,
                        "end": 443,
                        "text": "Natarajan et al., 2013;",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 444,
                        "end": 468,
                        "text": "Sukhbaatar et al., 2014;",
                        "ref_id": "BIBREF54"
                    },
                    {
                        "start": 469,
                        "end": 487,
                        "text": "Xiao et al., 2015)",
                        "ref_id": "BIBREF59"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ORG LOC Missing",
                "sec_num": null
            },
            {
                "text": "Using name tagging as a case study, we demonstrated the power of acquiring and encoding non-traditional linguistic resources. Experiments showed that they can significantly improve the quality of supervised models like DNNs and make them much more robust to noise in automatically created training data. Recent trend of DNN research in the NLP community boasts getting rid of explicit feature design. Our work argues that data-driven implicit knowledge like word embeddings cannot cover all linguistic phenomena in low-resource settings. We propose to embrace the readily available universal resources for many languages, and proved this process of making them actionable is not costly and does not require a system developer to \"know\" the language. Many more non-traditional linguistic resources remain to explore in the future, including Lexvo (de Melo, 2015), Multilingual Entity Taxonomy (de Melo and Weikum, 2010), EZGlot, URIEL knowledge base (Littell et al., 2016b) , travel phrase books and yellow phone books. We will also investigate whether these linguistic resources can make DNN more robust to other factors such as data size and topical relatedness.",
                "cite_spans": [
                    {
                        "start": 949,
                        "end": 972,
                        "text": "(Littell et al., 2016b)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Future Work",
                "sec_num": "6"
            },
            {
                "text": "We make all cleaned resources and converted linguistic features publicly available at http://nlp.cs.rpi.edu/denoise",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.darpa.mil/program/low-resource-languagesfor-emergent-incidents",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://www.archives.gov/iwg/declassified-records/rg-263-cia-records 5 https://www.researchgate.net/profile/Edwin_Lawson 6 http://cldr.unicode.org/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://en.wiktionary.org 8 http://panlex.org/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.geonames.org/ 10 http://fieldsupport.dliflc.edu/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-40/Nice/Elicitation/Elicitation_Corpus-LDC/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was supported by the U.S. DARPA LORELEI Program No. HR0011-15-C-0115. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Mapping arabic wikipedia into the named entities taxonomy",
                "authors": [
                    {
                        "first": "Fahd",
                        "middle": [],
                        "last": "Alotaibi",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fahd Alotaibi and Mark Lee. 2012. Mapping arabic wikipedia into the named entities taxonomy. In Pro- ceedings of the International Conference on Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Automatic creation of arabic named entity annotated corpus using wikipedia",
                "authors": [
                    {
                        "first": "Maha",
                        "middle": [],
                        "last": "Althobaiti",
                        "suffix": ""
                    },
                    {
                        "first": "Udo",
                        "middle": [],
                        "last": "Kruschwitz",
                        "suffix": ""
                    },
                    {
                        "first": "Massimo",
                        "middle": [],
                        "last": "Poesio",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Student Research Workshop at the 14th Conference of the European Chapter",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maha Althobaiti, Udo Kruschwitz, and Massimo Poe- sio. 2014. Automatic creation of arabic named entity annotated corpus using wikipedia. In Proceedings of the Student Research Workshop at the 14th Confer- ence of the European Chapter of the Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Semi-automated elicitation corpus generation",
                "authors": [
                    {
                        "first": "Alison",
                        "middle": [],
                        "last": "Alvarez",
                        "suffix": ""
                    },
                    {
                        "first": "Lori",
                        "middle": [],
                        "last": "Levin",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Frederking",
                        "suffix": ""
                    },
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Good",
                        "suffix": ""
                    },
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "Peterson",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of MT Summit X",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alison Alvarez, Lori Levin, Robert Frederking, Jeff Good, and Erik Peterson. 2005. Semi-automated elicitation corpus generation. In Proceedings of MT Summit X .",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Automatic acquisition of named entity tagged corpus from world wide web",
                "authors": [
                    {
                        "first": "Joohui",
                        "middle": [],
                        "last": "An",
                        "suffix": ""
                    },
                    {
                        "first": "Seungwoo",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Gary Geunbae",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 41st Annual Meeting on Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joohui An, Seungwoo Lee, and Gary Geunbae Lee. 2003. Automatic acquisition of named entity tagged corpus from world wide web. In Proceedings of the 41st Annual Meeting on Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Panlex and lextract: Translating all words of all languages of the world",
                "authors": [
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Baldwin",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Pool",
                        "suffix": ""
                    },
                    {
                        "first": "Susan",
                        "middle": [],
                        "last": "Colowick",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 23rd International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Timothy Baldwin, Jonathan Pool, and Susan Colowick. 2010. Panlex and lextract: Translating all words of all languages of the world. In Proceedings of the 23rd International Conference on Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Abstract meaning representation for sembanking",
                "authors": [
                    {
                        "first": "Laura",
                        "middle": [],
                        "last": "Banarescu",
                        "suffix": ""
                    },
                    {
                        "first": "Claire",
                        "middle": [],
                        "last": "Bonial",
                        "suffix": ""
                    },
                    {
                        "first": "Shu",
                        "middle": [],
                        "last": "Cai",
                        "suffix": ""
                    },
                    {
                        "first": "Madalina",
                        "middle": [],
                        "last": "Georgescu",
                        "suffix": ""
                    },
                    {
                        "first": "Kira",
                        "middle": [],
                        "last": "Griffitt",
                        "suffix": ""
                    },
                    {
                        "first": "Ulf",
                        "middle": [],
                        "last": "Hermjakob",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Martha",
                        "middle": [],
                        "last": "Palmer",
                        "suffix": ""
                    },
                    {
                        "first": "Nathan",
                        "middle": [],
                        "last": "Schneider",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "ACL Workshop on Linguistic Annotation and Interoperability with Discourse",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. 2013. Abstract meaning representation for sembanking. In ACL Workshop on Linguistic An- notation and Interoperability with Discourse.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A survey of wordnets and their licenses",
                "authors": [
                    {
                        "first": "Francis",
                        "middle": [],
                        "last": "Bond",
                        "suffix": ""
                    },
                    {
                        "first": "Kyonghee",
                        "middle": [],
                        "last": "Paik",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 6th Global WordNet Conference",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Francis Bond and Kyonghee Paik. 2012. A survey of wordnets and their licenses. In Proceedings of the 6th Global WordNet Conference.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Learning linear threshold functions in the presence of classification noise",
                "authors": [
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Bylander",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Proceedings of the seventh annual conference on Computational learning theory",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tom Bylander. 1994. Learning linear threshold func- tions in the presence of classification noise. In Pro- ceedings of the seventh annual conference on Com- putational learning theory.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Named entity recognition with bilingual constraints",
                "authors": [
                    {
                        "first": "Wanxiang",
                        "middle": [],
                        "last": "Che",
                        "suffix": ""
                    },
                    {
                        "first": "Mengqiu",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "Ting",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 2013 Conference of the North American Chapter",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wanxiang Che, Mengqiu Wang, Christopher D Man- ning, and Ting Liu. 2013. Named entity recogni- tion with bilingual constraints. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Event extraction via dynamic multipooling convolutional neural networks",
                "authors": [
                    {
                        "first": "Yubo",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Liheng",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Daojian",
                        "middle": [],
                        "last": "Zeng",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event extraction via dynamic multi- pooling convolutional neural networks. In Proceed- ings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna- tional Joint Conference on Natural Language Pro- cessing.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Named entity recognition with bidirectional lstm-cnns",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "C"
                        ],
                        "last": "Jason",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Chiu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Nichols",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Transaction of Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jason P.C. Chiu and Eric Nichols. 2016. Named entity recognition with bidirectional lstm-cnns. In Trans- action of Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Adaptive regularization of weight vectors",
                "authors": [
                    {
                        "first": "Koby",
                        "middle": [],
                        "last": "Crammer",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Kulesza",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Dredze",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Koby Crammer, Alex Kulesza, and Mark Dredze. 2009. Adaptive regularization of weight vectors. In Ad- vances in neural information processing systems.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Augmenting wikipedia with named entity tags",
                "authors": [
                    {
                        "first": "Wisam",
                        "middle": [],
                        "last": "Dakka",
                        "suffix": ""
                    },
                    {
                        "first": "Silviu",
                        "middle": [],
                        "last": "Cucerzan",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wisam Dakka and Silviu Cucerzan. 2008. Augmenting wikipedia with named entity tags. In Proceedings of the International Joint Conference on Natural Lan- guage Processing.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Etymological wordnet: Tracing the history of words",
                "authors": [
                    {
                        "first": "Melo",
                        "middle": [],
                        "last": "Gerard De",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceeddings of the Conference on Language Resources",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gerard de Melo. 2014. Etymological wordnet: Tracing the history of words. In Proceeddings of the Confer- ence on Language Resources.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Lexvo.org: Language-related information for the linguistic linked data cloud",
                "authors": [
                    {
                        "first": "Melo",
                        "middle": [],
                        "last": "Gerard De",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Semantic Web",
                "volume": "6",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gerard de Melo. 2015. Lexvo.org: Language-related information for the linguistic linked data cloud. Se- mantic Web 6:4.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Towards universal multilingual knowledge bases",
                "authors": [
                    {
                        "first": "Gerard",
                        "middle": [],
                        "last": "De",
                        "suffix": ""
                    },
                    {
                        "first": "Melo",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Gerhard",
                        "middle": [],
                        "last": "Weikum",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 5th Global Wordnet Conference",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gerard de Melo and Gerhard Weikum. 2010. Towards universal multilingual knowledge bases. In Pro- ceedings of the 5th Global Wordnet Conference.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Towards a universal wordnet by learning from combined evidence",
                "authors": [
                    {
                        "first": "Gerard",
                        "middle": [],
                        "last": "De",
                        "suffix": ""
                    },
                    {
                        "first": "Melo",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Gerhard",
                        "middle": [],
                        "last": "Weikum",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceeddings of The Conference on Information and Knowledge Management",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gerard de Melo and Gerhard Weikum. 2019. Towards a universal wordnet by learning from combined evi- dence. In Proceeddings of The Conference on Infor- mation and Knowledge Management.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Confidence-weighted linear classification",
                "authors": [
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Dredze",
                        "suffix": ""
                    },
                    {
                        "first": "Koby",
                        "middle": [],
                        "last": "Crammer",
                        "suffix": ""
                    },
                    {
                        "first": "Fernando",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the 25th international conference on Machine learning",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mark Dredze, Koby Crammer, and Fernando Pereira. 2008. Confidence-weighted linear classification. In Proceedings of the 25th international conference on Machine learning.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "The world atlas of language structures online",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [
                            "S"
                        ],
                        "last": "Dryer",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Haspelmath",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Leipzig: Max Planck Institute for Evolutionary Anthropology",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew S. Dryer and Martin Haspelmath. 2013b. The world atlas of language structures online. In Leipzig: Max Planck Institute for Evolutionary Anthropology.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "A language-independent neural network for event detection",
                "authors": [
                    {
                        "first": "Xiaocheng",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Heng",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    },
                    {
                        "first": "Duyu",
                        "middle": [],
                        "last": "Tang",
                        "suffix": ""
                    },
                    {
                        "first": "Bing",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Ting",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceeddings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaocheng Feng, Heng Ji, Duyu Tang, Bing Qin, and Ting Liu. 2016. A language-independent neural net- work for event detection. In Proceeddings of the 54th Annual Meeting of the Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Hybrid speech recognition with deep bidirectional lstm",
                "authors": [
                    {
                        "first": "Alan",
                        "middle": [],
                        "last": "Graves",
                        "suffix": ""
                    },
                    {
                        "first": "Navdeep",
                        "middle": [],
                        "last": "Jaitly",
                        "suffix": ""
                    },
                    {
                        "first": "Abdel-Rahman",
                        "middle": [],
                        "last": "Mo",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Automatic Speech Recognition and Understanding",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alan Graves, Navdeep Jaitly, and Abdel-rahman Mo- hamed. 2013. Hybrid speech recognition with deep bidirectional lstm. In Automatic Speech Recognition and Understanding, 2013 IEEE Workshop on.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Bidirectional lstm-crf models for sequence tagging",
                "authors": [
                    {
                        "first": "Zhiheng",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Kai",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1508.01991"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec- tional lstm-crf models for sequence tagging. arXiv preprint arXiv:1508.01991 .",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Machine learning algorithms: A study on noise sensitivity",
                "authors": [
                    {
                        "first": "Elias",
                        "middle": [],
                        "last": "Kalapanidas",
                        "suffix": ""
                    },
                    {
                        "first": "Nikolaos",
                        "middle": [],
                        "last": "Avouris",
                        "suffix": ""
                    },
                    {
                        "first": "Marian",
                        "middle": [],
                        "last": "Craciun",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Neagu",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceeddings of 1st Balcan Conference in Informatics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Elias Kalapanidas, Nikolaos Avouris, Marian Craciun, and Daniel Neagu. 2003. Machine learning algo- rithms: A study on noise sensitivity. In Proceed- dings of 1st Balcan Conference in Informatics.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Panlex: Building a resource for panlingual lexical translation",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Kamholz",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Pool",
                        "suffix": ""
                    },
                    {
                        "first": "Susan",
                        "middle": [],
                        "last": "Colowick",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Ninth International Conference on Language Resources and Evaluation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Kamholz, Jonathan Pool, and Susan Colowick. 2014. Panlex: Building a resource for panlingual lexical translation. In Proceedings of the Ninth In- ternational Conference on Language Resources and Evaluation.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Multilingual named entity recognition using parallel data and metadata from wikipedia",
                "authors": [
                    {
                        "first": "Sungchul",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    },
                    {
                        "first": "Hwanjo",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sungchul Kim, Kristina Toutanova, and Hwanjo Yu. 2012. Multilingual named entity recognition using parallel data and metadata from wikipedia. In Pro- ceedings of the 50th Annual Meeting of the Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Neural architectures for named entity recognition",
                "authors": [
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Lample",
                        "suffix": ""
                    },
                    {
                        "first": "Miguel",
                        "middle": [],
                        "last": "Ballesteros",
                        "suffix": ""
                    },
                    {
                        "first": "Kazuya",
                        "middle": [],
                        "last": "Kawakami",
                        "suffix": ""
                    },
                    {
                        "first": "Sandeep",
                        "middle": [],
                        "last": "Subramanian",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceeddings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics -Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guillaume Lample, Miguel Ballesteros, Kazuya Kawakami, Sandeep Subramanian, and Chris Dyer. 2016. Neural architectures for named entity recog- nition. In Proceeddings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics -Human Language Technologies.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Joint bilingual name tagging for parallel corpora",
                "authors": [
                    {
                        "first": "Qi",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Haibo",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Heng",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    },
                    {
                        "first": "Wen",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Jing",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    },
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of The Conference on Information and Knowledge Management",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Qi Li, Haibo Li, Heng Ji, Wen Wang, Jing Zheng, and Fei Huang. 2012. Joint bilingual name tagging for parallel corpora. In Proceedings of The Conference on Information and Knowledge Management.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Named entity recognition for linguistic rapid response in low-resource languages: Sorani kurdish and tajik",
                "authors": [
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Littell",
                        "suffix": ""
                    },
                    {
                        "first": "Kartik",
                        "middle": [],
                        "last": "Goyal",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Mortensen",
                        "suffix": ""
                    },
                    {
                        "first": "Alexa",
                        "middle": [],
                        "last": "Little",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Dyer",
                        "suffix": ""
                    },
                    {
                        "first": "Lori",
                        "middle": [],
                        "last": "Levin",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Patrick Littell, Kartik Goyal, David Mortensen, Alexa Little, Chris Dyer, and Lori Levin. 2016a. Named entity recognition for linguistic rapid response in low-resource languages: Sorani kurdish and tajik. In Proceedings of the Conference on Computational Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Uriel typological database",
                "authors": [],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Patrick Littell, David Mortensen, and Lori Levin (eds.). 2016b. Uriel typological database. Pittsburgh: Carnegie Mellon University (Available online at http://www.cs.cmu.edu/ dmortens/uriel.html) .",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "A dependency-based neural network for relation classification",
                "authors": [
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Furu",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "Sujian",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Ji",
                        "middle": [],
                        "last": "Heng",
                        "suffix": ""
                    },
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceeddings of the 53rd Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yang Liu, Furu Wei, Sujian Li, Heng Ji, and Ming Zhou. 2015. A dependency-based neural network for relation classification. In Proceeddings of the 53rd Annual Meeting of the Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "The stanford corenlp natural language processing toolkit",
                "authors": [
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "Mihai",
                        "middle": [],
                        "last": "Surdeanu",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Bauer",
                        "suffix": ""
                    },
                    {
                        "first": "Jenny",
                        "middle": [],
                        "last": "Finkel",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [
                            "J"
                        ],
                        "last": "Bethard",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Mc-Closky",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David Mc- Closky. 2014. The stanford corenlp natural language processing toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Distant supervision for relation extraction without labeled data",
                "authors": [
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Mintz",
                        "suffix": ""
                    },
                    {
                        "first": "Steven",
                        "middle": [],
                        "last": "Bills",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceeddings of the conference of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf- sky. 2009. Distant supervision for relation extraction without labeled data. In Proceeddings of the confer- ence of the Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Learning to label aerial images from noisy data",
                "authors": [
                    {
                        "first": "Volodymyr",
                        "middle": [],
                        "last": "Mnih",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [
                            "E"
                        ],
                        "last": "Hinton",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 29th International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Volodymyr Mnih and Geoffrey E Hinton. 2012. Learn- ing to label aerial images from noisy data. In Pro- ceedings of the 29th International Conference on Machine Learning.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Learning with noisy labels",
                "authors": [
                    {
                        "first": "Nagarajan",
                        "middle": [],
                        "last": "Natarajan",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Inderjit",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dhillon",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Pradeep",
                        "suffix": ""
                    },
                    {
                        "first": "Ambuj",
                        "middle": [],
                        "last": "Ravikumar",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Tewari",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Advances in neural information processing systems",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. 2013. Learning with noisy labels. In Advances in neural information pro- cessing systems.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Event detection and domain adaptation with convolutional neural networks",
                "authors": [
                    {
                        "first": "Huu",
                        "middle": [],
                        "last": "Thien",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thien Huu Nguyen and Ralph Grishman. 2015a. Event detection and domain adaptation with convolutional neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin- guistics and the 7th International Joint Conference on Natural Language Processing.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Relation extraction: Perspective from convolutional neural networks",
                "authors": [
                    {
                        "first": "Huu",
                        "middle": [],
                        "last": "Thien",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of NAACL Workshop on Vector Space Modeling for NLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thien Huu Nguyen and Ralph Grishman. 2015b. Rela- tion extraction: Perspective from convolutional neu- ral networks. In Proceedings of NAACL Workshop on Vector Space Modeling for NLP.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Joint event extraction via recurrent neural networks",
                "authors": [
                    {
                        "first": "Huu",
                        "middle": [],
                        "last": "Thien",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thien Huu Nguyen and Ralph Grishman. 2016. Joint event extraction via recurrent neural networks. In Proceedings of the 53rd Annual Meeting of the As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Transforming wikipedia into named entity training data",
                "authors": [
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Nothman",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [
                            "R"
                        ],
                        "last": "Curran",
                        "suffix": ""
                    },
                    {
                        "first": "Tara",
                        "middle": [],
                        "last": "Murphy",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the Australasian Language Technology Association Workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joel Nothman, James R. Curran, and Tara Murphy. 2008. Transforming wikipedia into named entity training data. In Proceedings of the Australasian Language Technology Association Workshop 2008.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Learning multilingual named entity recognition from Wikipedia",
                "authors": [
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Nothman",
                        "suffix": ""
                    },
                    {
                        "first": "Nicky",
                        "middle": [],
                        "last": "Ringland",
                        "suffix": ""
                    },
                    {
                        "first": "Will",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Tara",
                        "middle": [],
                        "last": "Murphy",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [
                            "R"
                        ],
                        "last": "Curran",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, and James R. Curran. 2012. Learning mul- tilingual named entity recognition from Wikipedia. Artificial Intelligence .",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "A systematic comparison of various statistical alignment models",
                "authors": [
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Franz",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical alignment models. Computational Linguistics .",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "The Profit in Records Management",
                "authors": [
                    {
                        "first": "Margaret",
                        "middle": [
                            "King"
                        ],
                        "last": "Odell",
                        "suffix": ""
                    }
                ],
                "year": 1956,
                "venue": "Systems",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Margaret King Odell. 1956. The Profit in Records Man- agement. Systems (New York).",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Survey on the use of typological information in natural language processing",
                "authors": [
                    {
                        "first": "O'",
                        "middle": [],
                        "last": "Helen",
                        "suffix": ""
                    },
                    {
                        "first": "Yevgeni",
                        "middle": [],
                        "last": "Horan",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Berzak",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Vuli\u0107",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Helen O'Horan, Yevgeni Berzak, Ivan Vuli\u0107, Roi Re- ichart, and Anna Korhonen. 2016. Survey on the use of typological information in natural language pro- cessing. In Proceedings of the International Confer- ence on Computational Linguistics.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Word order typology through multilingual word alignment",
                "authors": [
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Ostling",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert Ostling. 2015. Word order typology through multilingual word alignment. In Proceedings of the 53rd Annual Meeting of the Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Unsupervised entity linking with abstract meaning representation",
                "authors": [
                    {
                        "first": "Xiaoman",
                        "middle": [],
                        "last": "Pan",
                        "suffix": ""
                    },
                    {
                        "first": "Taylor",
                        "middle": [],
                        "last": "Cassidy",
                        "suffix": ""
                    },
                    {
                        "first": "Ulf",
                        "middle": [],
                        "last": "Hermjakob",
                        "suffix": ""
                    },
                    {
                        "first": "Ji",
                        "middle": [],
                        "last": "Heng",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics -Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaoman Pan, Taylor Cassidy, Ulf Hermjakob, Heng Ji, and Kevin Knight. 2015. Unsupervised entity link- ing with abstract meaning representation. In Pro- ceedings of the 2015 Conference of the North Amer- ican Chapter of the Association for Computational Linguistics -Human Language Technologies.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Crosslingual name tagging and linking for 282 languages",
                "authors": [
                    {
                        "first": "Xiaoman",
                        "middle": [],
                        "last": "Pan",
                        "suffix": ""
                    },
                    {
                        "first": "Boliang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "May",
                        "suffix": ""
                    },
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Nothman",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    },
                    {
                        "first": "Heng",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proc. the 55th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji. 2017. Cross- lingual name tagging and linking for 282 languages. In Proc. the 55th Annual Meeting of the Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "Hanging on the metaphone",
                "authors": [
                    {
                        "first": "Lawrence",
                        "middle": [],
                        "last": "Philips",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Computer Language",
                "volume": "7",
                "issue": "12",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lawrence Philips. 1990. Hanging on the metaphone. Computer Language 7(12).",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "Design and implementation of controlled elicitation for machine translation of low-density languages",
                "authors": [
                    {
                        "first": "Katharina",
                        "middle": [],
                        "last": "Probst",
                        "suffix": ""
                    },
                    {
                        "first": "Ralf",
                        "middle": [
                            "D"
                        ],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "Jaime",
                        "middle": [
                            "G"
                        ],
                        "last": "Carbonell",
                        "suffix": ""
                    },
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Lavie",
                        "suffix": ""
                    },
                    {
                        "first": "Lori",
                        "middle": [],
                        "last": "Levin",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of Workshop MT2010 at Machine Translation Summit VIII",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Katharina Probst, Ralf D. Brown, Jaime G. Carbonell, Alon Lavie, and Lori Levin. 2001. Design and im- plementation of controlled elicitation for machine translation of low-density languages. In Proceed- ings of Workshop MT2010 at Machine Translation Summit VIII.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "How good are typological distances for determining genealogical relationships among languages?",
                "authors": [
                    {
                        "first": "Taraka",
                        "middle": [],
                        "last": "Rama",
                        "suffix": ""
                    },
                    {
                        "first": "Kolachina",
                        "middle": [],
                        "last": "Prasanth",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Taraka Rama and Kolachina Prasanth. 2012. How good are typological distances for determining genealogi- cal relationships among languages? In Proceedings of the International Conference on Computational Linguistics.",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "Clustype: Effective entity recognition and typing by relation phrase-based clustering",
                "authors": [
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    },
                    {
                        "first": "Ahmed",
                        "middle": [],
                        "last": "El-Kishky",
                        "suffix": ""
                    },
                    {
                        "first": "Chi",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Fangbo",
                        "middle": [],
                        "last": "Tao",
                        "suffix": ""
                    },
                    {
                        "first": "Clare",
                        "middle": [
                            "R"
                        ],
                        "last": "Voss",
                        "suffix": ""
                    },
                    {
                        "first": "Heng",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    },
                    {
                        "first": "Jiawei",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceeddings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiang Ren, Ahmed El-Kishky, Chi Wang, Fangbo Tao, Clare R. Voss, Heng Ji, and Jiawei Han. 2015. Clustype: Effective entity recognition and typing by relation phrase-based clustering. In Proceeddings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining.",
                "links": null
            },
            "BIBREF49": {
                "ref_id": "b49",
                "title": "Classifying articles in english and german wikipedia",
                "authors": [
                    {
                        "first": "Nicky",
                        "middle": [],
                        "last": "Ringland",
                        "suffix": ""
                    },
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Nothman",
                        "suffix": ""
                    },
                    {
                        "first": "Tara",
                        "middle": [],
                        "last": "Murphy",
                        "suffix": ""
                    },
                    {
                        "first": "James R",
                        "middle": [],
                        "last": "Curran",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of Australasian Language Technology Association Workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nicky Ringland, Joel Nothman, Tara Murphy, and James R Curran. 2009. Classifying articles in en- glish and german wikipedia. In Proceedings of Aus- tralasian Language Technology Association Work- shop 2009.",
                "links": null
            },
            "BIBREF50": {
                "ref_id": "b50",
                "title": "Building multilingual lexical resources using wordnets: Structure, design and implementation",
                "authors": [
                    {
                        "first": "Shikhar",
                        "middle": [],
                        "last": "Kr",
                        "suffix": ""
                    },
                    {
                        "first": "Dibyajyoti",
                        "middle": [],
                        "last": "Sarma",
                        "suffix": ""
                    },
                    {
                        "first": "Biswajit",
                        "middle": [],
                        "last": "Sarmah",
                        "suffix": ""
                    },
                    {
                        "first": "Mayashree",
                        "middle": [],
                        "last": "Brahma",
                        "suffix": ""
                    },
                    {
                        "first": "Himadri",
                        "middle": [],
                        "last": "Mahanta",
                        "suffix": ""
                    },
                    {
                        "first": "Utpal",
                        "middle": [],
                        "last": "Bharali",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Saikia",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 3rd Workshop on Cognitive Aspects of the Lexicon",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shikhar Kr. Sarma, Dibyajyoti Sarmah, Biswajit Brahma, Mayashree Mahanta, Himadri Bharali, and Utpal Saikia. 2012. Building multilingual lexical re- sources using wordnets: Structure, design and im- plementation. In Proceedings of the 3rd Workshop on Cognitive Aspects of the Lexicon.",
                "links": null
            },
            "BIBREF51": {
                "ref_id": "b51",
                "title": "Classification with asymmetric label noise: Consistency and maximal denoising",
                "authors": [
                    {
                        "first": "Clayton",
                        "middle": [],
                        "last": "Scott",
                        "suffix": ""
                    },
                    {
                        "first": "Gilles",
                        "middle": [],
                        "last": "Blanchard",
                        "suffix": ""
                    },
                    {
                        "first": "Gregory",
                        "middle": [],
                        "last": "Handy",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "the Conference On Learning Theory",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Clayton Scott, Gilles Blanchard, and Gregory Handy. 2013. Classification with asymmetric label noise: Consistency and maximal denoising. In the Confer- ence On Learning Theory.",
                "links": null
            },
            "BIBREF52": {
                "ref_id": "b52",
                "title": "Neural architectures for fine-grained entity type classfication",
                "authors": [
                    {
                        "first": "Sonse",
                        "middle": [],
                        "last": "Shimaoka",
                        "suffix": ""
                    },
                    {
                        "first": "Pontus",
                        "middle": [],
                        "last": "Stenetorp",
                        "suffix": ""
                    },
                    {
                        "first": "Kentaro",
                        "middle": [],
                        "last": "Inui",
                        "suffix": ""
                    },
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Riedel",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the European Chapter",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and Sebastian Riedel. 2017. Neural architectures for fine-grained entity type classfication. In Proceed- ings of the European Chapter of the Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF53": {
                "ref_id": "b53",
                "title": "Jrc-names: A freely available, highly multilingual named entity resource",
                "authors": [
                    {
                        "first": "Ralf",
                        "middle": [],
                        "last": "Steinberger",
                        "suffix": ""
                    },
                    {
                        "first": "Bruno",
                        "middle": [],
                        "last": "Pouliquen",
                        "suffix": ""
                    },
                    {
                        "first": "Mijail",
                        "middle": [],
                        "last": "Kabadjov",
                        "suffix": ""
                    },
                    {
                        "first": "Erik",
                        "middle": [],
                        "last": "Van Der Goot",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceeddings of the 8th International Conference on Recent Advances in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ralf Steinberger, Bruno Pouliquen, Mijail Kabadjov, and Erik van der Goot. 20011. Jrc-names: A freely available, highly multilingual named entity resource. In Proceeddings of the 8th International Conference on Recent Advances in Natural Language Process- ing.",
                "links": null
            },
            "BIBREF54": {
                "ref_id": "b54",
                "title": "Training convolutional networks with noisy labels",
                "authors": [
                    {
                        "first": "Sainbayar",
                        "middle": [],
                        "last": "Sukhbaatar",
                        "suffix": ""
                    },
                    {
                        "first": "Joan",
                        "middle": [],
                        "last": "Bruna",
                        "suffix": ""
                    },
                    {
                        "first": "Manohar",
                        "middle": [],
                        "last": "Paluri",
                        "suffix": ""
                    },
                    {
                        "first": "Lubomir",
                        "middle": [],
                        "last": "Bourdev",
                        "suffix": ""
                    },
                    {
                        "first": "Rob",
                        "middle": [],
                        "last": "Fergus",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1406.2080"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir Bourdev, and Rob Fergus. 2014. Train- ing convolutional networks with noisy labels. arXiv preprint arXiv:1406.2080 .",
                "links": null
            },
            "BIBREF55": {
                "ref_id": "b55",
                "title": "Name Search Techniques. New York State Identification and Intelligence System",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Robert",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Taft",
                        "suffix": ""
                    }
                ],
                "year": 1970,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert L Taft. 1970. Name Search Techniques. New York State Identification and Intelligence System, Albany, New York, US.",
                "links": null
            },
            "BIBREF56": {
                "ref_id": "b56",
                "title": "Cross-lingual named entity recognition via wikification",
                "authors": [
                    {
                        "first": "Chen-Tse",
                        "middle": [],
                        "last": "Tsai",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Mayhew",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Conference on Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chen-Tse Tsai, Stephen Mayhew, and Dan Roth. 2016. Cross-lingual named entity recognition via wikifica- tion. In Proceedings of the Conference on Natural Language Learning.",
                "links": null
            },
            "BIBREF57": {
                "ref_id": "b57",
                "title": "Joint word alignment and bilingual named entity recognition using dual decomposition",
                "authors": [
                    {
                        "first": "Mengqiu",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Wanxiang",
                        "middle": [],
                        "last": "Che",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher D",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mengqiu Wang, Wanxiang Che, and Christopher D Manning. 2013. Joint word alignment and bilingual named entity recognition using dual decomposition. In Proceedings of the Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF58": {
                "ref_id": "b58",
                "title": "Cross-lingual projected expectation regularization for weakly supervised learning",
                "authors": [
                    {
                        "first": "Mengqiu",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Transactions of the Association of Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mengqiu Wang and Christopher Manning. 2014. Cross-lingual projected expectation regularization for weakly supervised learning. In Transactions of the Association of Computational Linguistics.",
                "links": null
            },
            "BIBREF59": {
                "ref_id": "b59",
                "title": "Learning from massive noisy labeled data for image classification",
                "authors": [
                    {
                        "first": "Tong",
                        "middle": [],
                        "last": "Xiao",
                        "suffix": ""
                    },
                    {
                        "first": "Tian",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Yi",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Chang",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaogang",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xi- aogang Wang. 2015. Learning from massive noisy labeled data for image classification. In Proceed- ings of the IEEE Conference on Computer Vision and Pattern Recognition.",
                "links": null
            },
            "BIBREF60": {
                "ref_id": "b60",
                "title": "Contrasting vertical and horizontal transmission of typological features",
                "authors": [
                    {
                        "first": "Kenji",
                        "middle": [],
                        "last": "Yamauchi",
                        "suffix": ""
                    },
                    {
                        "first": "Yugo",
                        "middle": [],
                        "last": "Murawaki",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kenji Yamauchi and Yugo Murawaki. 2016. Contrast- ing vertical and horizontal transmission of typolog- ical features. In Proceedings of the International Conference on Computational Linguistics.",
                "links": null
            },
            "BIBREF61": {
                "ref_id": "b61",
                "title": "A position encoding convolutional neural network based on dependency tree for relation classification",
                "authors": [
                    {
                        "first": "Yunlun",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Yunhai",
                        "middle": [],
                        "last": "Tong",
                        "suffix": ""
                    },
                    {
                        "first": "Shulei",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Zhi-Hong",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the Empirical Methods on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yunlun Yang, Yunhai Tong, Shulei Ma, and Zhi-Hong Deng. 2016. A position encoding convolutional neural network based on dependency tree for rela- tion classification. In Proceedings of the Empirical Methods on Natural Language Processing.",
                "links": null
            },
            "BIBREF62": {
                "ref_id": "b62",
                "title": "Relation classification via convolutional deep neural network",
                "authors": [
                    {
                        "first": "Daojian",
                        "middle": [],
                        "last": "Zeng",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Siwei",
                        "middle": [],
                        "last": "Lai",
                        "suffix": ""
                    },
                    {
                        "first": "Guangyou",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceeddings of the 25th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. 2014. Relation classification via con- volutional deep neural network. In Proceeddings of the 25th International Conference on Computational Linguistics.",
                "links": null
            },
            "BIBREF63": {
                "ref_id": "b63",
                "title": "Name tagging for low-resource incident languages based on expectation-driven learning",
                "authors": [
                    {
                        "first": "Boliang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoman",
                        "middle": [],
                        "last": "Pan",
                        "suffix": ""
                    },
                    {
                        "first": "Tianlu",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Ashish",
                        "middle": [],
                        "last": "Vaswani",
                        "suffix": ""
                    },
                    {
                        "first": "Heng",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Marcu",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceeddings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics -Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Boliang Zhang, Xiaoman Pan, Tianlu Wang, Ashish Vaswani, Heng Ji, Kevin Knight, and Daniel Marcu. 2016a. Name tagging for low-resource incident lan- guages based on expectation-driven learning. In Proceeddings of the 2016 Conference of the North American Chapter of the Association for Computa- tional Linguistics -Human Language Technologies.",
                "links": null
            },
            "BIBREF64": {
                "ref_id": "b64",
                "title": "Bitext name tagging for annotation projection",
                "authors": [
                    {
                        "first": "Dongxu",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Boliang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaoman",
                        "middle": [],
                        "last": "Pan",
                        "suffix": ""
                    },
                    {
                        "first": "Heng",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 26th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dongxu Zhang, Boliang Zhang, Xiaoman Pan, and Heng Ji. 2016b. Bitext name tagging for annotation projection. In Proceedings of the 26th International Conference on Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Noisy Training Data Generation by Projecting English Automatic Name Annotations to Hausa.",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "text": "ov, -ev -ova, -eva; -ovich, -ich, -enko, -ko,chuk, -yuk, -ak, -chenko, -skiy, -ski, -vych,",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "FIGREF3": {
                "text": "Examples of Corrections Made by Each Category of Linguistic Knowledge.",
                "num": null,
                "uris": null,
                "type_str": "figure"
            },
            "TABREF0": {
                "html": null,
                "num": null,
                "content": "<table><tr><td>4</td><td>1</td><td>3</td><td>2</td></tr></table>",
                "text": "Da take jawabi albarkacin bikin kaddamarwa, shugabar kungiyar [AU]ORG , [, ta bayyana jin dadinta kan wannan tallafi dake fitowa daga yankunan [While speaking on the launch, the [AU]ORG president, [her joy over the assistance coming from different parts of [Africa]LOC for the fight against Ebola virus in [",
                "type_str": "table"
            },
            "TABREF2": {
                "html": null,
                "num": null,
                "content": "<table><tr><td/><td/><td>B/I/O</td><td/></tr><tr><td/><td/><td>CRF networks</td><td/></tr><tr><td>Hidden Layer</td><td/><td/><td/></tr><tr><td/><td/><td/><td/><td>Left</td><td>Right</td></tr><tr><td>LSTMs</td><td/><td/><td/><td>LSTMs</td><td>LSTMs</td></tr><tr><td>Hidden Layer</td><td/><td/><td>1</td><td>2</td><td>3</td></tr><tr><td>Left</td><td/><td>Right</td><td/><td>Linguistic Feature</td></tr><tr><td>LSTMs</td><td/><td>LSTMs</td><td/><td>Embedding</td></tr><tr><td>Input Word Embedding</td><td/><td/><td colspan=\"2\">Linguistic Features -English and Low-resource Language Patterns</td></tr><tr><td>Left LSTMs</td><td>Right LSTMs</td><td>Word Embedding</td><td colspan=\"2\">-Low-resource Language to English Lexicons -Gazetteers</td></tr><tr><td>Character</td><td/><td/><td colspan=\"2\">-Low-resource Language Grammar Rules</td></tr><tr><td>Embedding</td><td/><td/><td/></tr><tr><td>Figure 3:</td><td/><td/><td/></tr></table>",
                "text": "An English Wikipedia page about a language usually provides us general descriptions of the language. In particular, the list of usable characters, gender indicators, capitalization information, transliteration and number spelling rules are most useful for name tagging. The list of usable characters for regular words in a particular language can help us detect foreign borrow words, which are likely to be names. For example, \"th\" usually does not appear at the begin-Three Integration Methods to Incorporate Explicit Linguistic Features into DNN.",
                "type_str": "table"
            },
            "TABREF4": {
                "html": null,
                "num": null,
                "content": "<table><tr><td colspan=\"2\">Languages Categories</td><td>Description</td><td>Name Related Characteristics</td></tr><tr><td>Tagalog</td><td>Subject, Verb,</td><td>VS, VO, VSO</td><td>the word at the beginning of a</td></tr><tr><td/><td>Object Order</td><td/><td>sentence is unlikely to be a name</td></tr><tr><td>Turkish</td><td>Negation</td><td colspan=\"2\">Suffix -me at the root of a verb indicates negations not a name</td></tr><tr><td>Bengali</td><td>Animacy</td><td>-ta is a case that indicates inanimacy</td><td/></tr><tr><td>Thai</td><td>Nested Name</td><td>Delimiter between modifier and head, [ORG</td><td>Name boundary</td></tr><tr><td/><td>Structure</td><td>\u0e01\u0e23\u0e30\u0e17\u0e23\u0e27\u0e07\u0e15\u0e48 \u0e32\u0e07\u0e1b\u0e23\u0e30\u0e40\u0e17\u0e28] \u0e02\u0e2d\u0e07[LOC \u0e2d\u0e34 \u0e19\u0e42\u0e14\u0e19\u0e35 \u0e40\u0e0b\u0e35 \u0e22] ([ORG</td><td/></tr><tr><td/><td/><td>Foreign Ministry ] of [LOC Indonesia])</td><td/></tr><tr><td>Tamil</td><td>Conjunction</td><td>Name1-yum Name2-yum (Name1 and Name2)</td><td>Name type consistency</td></tr><tr><td/><td>Structure</td><td/><td/></tr></table>",
                "text": "Name-related Knowledge Summarized from Grammar Books.",
                "type_str": "table"
            },
            "TABREF5": {
                "html": null,
                "num": null,
                "content": "<table/>",
                "text": "",
                "type_str": "table"
            },
            "TABREF6": {
                "html": null,
                "num": null,
                "content": "<table/>",
                "text": "",
                "type_str": "table"
            },
            "TABREF8": {
                "html": null,
                "num": null,
                "content": "<table/>",
                "text": "Feature Integration Methods Comparison.",
                "type_str": "table"
            },
            "TABREF10": {
                "html": null,
                "num": null,
                "content": "<table><tr><td>: Contributions of Various Categories of</td></tr><tr><td>Linguistic Knowledge (F-score (%)).</td></tr></table>",
                "text": "",
                "type_str": "table"
            }
        }
    }
}