File size: 167,718 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 |
{
"paper_id": "I17-1037",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:37:35.301075Z"
},
"title": "Embracing Non-Traditional Linguistic Resources for Low-resource Language Name Tagging",
"authors": [
{
"first": "Boliang",
"middle": [],
"last": "Zhang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Rensselaer Polytechnic Institute {zhangb8",
"location": {
"addrLine": "lud2,panx2",
"postCode": "liny9"
}
},
"email": ""
},
{
"first": "Di",
"middle": [],
"last": "Lu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Rensselaer Polytechnic Institute {zhangb8",
"location": {
"addrLine": "lud2,panx2",
"postCode": "liny9"
}
},
"email": ""
},
{
"first": "Xiaoman",
"middle": [],
"last": "Pan",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Rensselaer Polytechnic Institute {zhangb8",
"location": {
"addrLine": "lud2,panx2",
"postCode": "liny9"
}
},
"email": ""
},
{
"first": "Ying",
"middle": [],
"last": "Lin",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Rensselaer Polytechnic Institute {zhangb8",
"location": {
"addrLine": "lud2,panx2",
"postCode": "liny9"
}
},
"email": ""
},
{
"first": "Halidanmu",
"middle": [],
"last": "Abudukelimu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Tsinghua University",
"location": {}
},
"email": ""
},
{
"first": "Heng",
"middle": [],
"last": "Ji",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Rensselaer Polytechnic Institute {zhangb8",
"location": {
"addrLine": "lud2,panx2",
"postCode": "liny9"
}
},
"email": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Knight",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Southern",
"location": {
"country": "California"
}
},
"email": "knight@isi.edu"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Current supervised name tagging approaches are inadequate for most lowresource languages due to the lack of annotated data and actionable linguistic knowledge. All supervised learning methods (including deep neural networks (DNN)) are sensitive to noise and thus they are not quite portable without massive clean annotations. We found that the F-scores of DNN-based name taggers drop rapidly (20%-30%) when we replace clean manual annotations with noisy annotations in the training data. We propose a new solution to incorporate many non-traditional language universal resources that are readily available but rarely explored in the Natural Language Processing (NLP) community, such as the World Atlas of Linguistic Structure, CIA names, PanLex and survival guides. We acquire and encode various types of non-traditional linguistic resources into a DNN name tagger. Experiments on three low-resource languages show that feeding linguistic knowledge can make DNN significantly more robust to noise, achieving 8%-22% absolute Fscore gains on name tagging without using any human annotation 1 .",
"pdf_parse": {
"paper_id": "I17-1037",
"_pdf_hash": "",
"abstract": [
{
"text": "Current supervised name tagging approaches are inadequate for most lowresource languages due to the lack of annotated data and actionable linguistic knowledge. All supervised learning methods (including deep neural networks (DNN)) are sensitive to noise and thus they are not quite portable without massive clean annotations. We found that the F-scores of DNN-based name taggers drop rapidly (20%-30%) when we replace clean manual annotations with noisy annotations in the training data. We propose a new solution to incorporate many non-traditional language universal resources that are readily available but rarely explored in the Natural Language Processing (NLP) community, such as the World Atlas of Linguistic Structure, CIA names, PanLex and survival guides. We acquire and encode various types of non-traditional linguistic resources into a DNN name tagger. Experiments on three low-resource languages show that feeding linguistic knowledge can make DNN significantly more robust to noise, achieving 8%-22% absolute Fscore gains on name tagging without using any human annotation 1 .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "There is a general agreement that Deep Neural Networks provides a general, powerful underlying model for Information Extraction (IE), confirmed by improved state-of-the-art performance on many tasks such as name tagging (Chiu and Nichols, 2016; Lample et al., 2016) , relation classification (Zeng et al., 2014; Nguyen and Grishman, 2015b; Yang et al., 2016) and event detection (Nguyen and Grishman, 2015b; Chen et al., 2015; Grishman, 2015a, 2016; Feng et al., 2016) . For example, our experiments on several languages show that a DNN-based name tagger generally outperforms (up to 6% F-score gain) a Conditional Random Fields (CRFs) model trained from the same labeled data and feature set. DNN architecture is attractive to couple with character/word embeddings for IE tasks because it is easy to learn and usually effective enough to eliminate the need of explicit linguistic feature design.",
"cite_spans": [
{
"start": 220,
"end": 244,
"text": "(Chiu and Nichols, 2016;",
"ref_id": "BIBREF10"
},
{
"start": 245,
"end": 265,
"text": "Lample et al., 2016)",
"ref_id": "BIBREF25"
},
{
"start": 292,
"end": 311,
"text": "(Zeng et al., 2014;",
"ref_id": "BIBREF62"
},
{
"start": 312,
"end": 339,
"text": "Nguyen and Grishman, 2015b;",
"ref_id": "BIBREF35"
},
{
"start": 340,
"end": 358,
"text": "Yang et al., 2016)",
"ref_id": "BIBREF61"
},
{
"start": 379,
"end": 407,
"text": "(Nguyen and Grishman, 2015b;",
"ref_id": "BIBREF35"
},
{
"start": 408,
"end": 426,
"text": "Chen et al., 2015;",
"ref_id": "BIBREF9"
},
{
"start": 427,
"end": 449,
"text": "Grishman, 2015a, 2016;",
"ref_id": null
},
{
"start": 450,
"end": 468,
"text": "Feng et al., 2016)",
"ref_id": "BIBREF19"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "However, training general models like DNN usually requires a massive amount of clean annotated data, which is often not available for low-resource languages and difficult to obtain during emergent settings (Zhang et al., 2016a) . In order to compensate this data requirement, various automatic annotation generation methods have been proposed, including knowledge base driven distant supervision Mintz et al., 2009; Ren et al., 2015) , cross-lingual projection (Li et al., 2012; Kim et al., 2012; Wang and Manning, 2014; Zhang et al., 2016b) , and leveraging naturally existing noisy annotations such as Wikipedia markups (Nothman et al., 2008; Dakka and Cucerzan, 2008; Ringland et al., 2009; Alotaibi and Lee, 2012; Nothman et al., 2012; Althobaiti et al., 2014; Pan et al., 2017) . Annotations produced from these methods are usually very noisy, while DNN is sensitive to noise just like many other machine learning methods. Our name tagging experiment shows that the F-score of the same DNN model learned from noisy training data is 20-30% lower than that trained from clean data. One major reason is that most of these methods solely rely on implicit embedding features in order to be (almost) language-independent.",
"cite_spans": [
{
"start": 206,
"end": 227,
"text": "(Zhang et al., 2016a)",
"ref_id": "BIBREF63"
},
{
"start": 396,
"end": 415,
"text": "Mintz et al., 2009;",
"ref_id": "BIBREF31"
},
{
"start": 416,
"end": 433,
"text": "Ren et al., 2015)",
"ref_id": "BIBREF48"
},
{
"start": 461,
"end": 478,
"text": "(Li et al., 2012;",
"ref_id": "BIBREF26"
},
{
"start": 479,
"end": 496,
"text": "Kim et al., 2012;",
"ref_id": "BIBREF24"
},
{
"start": 497,
"end": 520,
"text": "Wang and Manning, 2014;",
"ref_id": "BIBREF58"
},
{
"start": 521,
"end": 541,
"text": "Zhang et al., 2016b)",
"ref_id": "BIBREF64"
},
{
"start": 622,
"end": 644,
"text": "(Nothman et al., 2008;",
"ref_id": "BIBREF37"
},
{
"start": 645,
"end": 670,
"text": "Dakka and Cucerzan, 2008;",
"ref_id": "BIBREF12"
},
{
"start": 671,
"end": 693,
"text": "Ringland et al., 2009;",
"ref_id": "BIBREF49"
},
{
"start": 694,
"end": 717,
"text": "Alotaibi and Lee, 2012;",
"ref_id": "BIBREF0"
},
{
"start": 718,
"end": 739,
"text": "Nothman et al., 2012;",
"ref_id": "BIBREF38"
},
{
"start": 740,
"end": 764,
"text": "Althobaiti et al., 2014;",
"ref_id": "BIBREF1"
},
{
"start": 765,
"end": 782,
"text": "Pan et al., 2017)",
"ref_id": "BIBREF44"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Moreover, certain types of linguistic properties are difficult to be captured by embeddings, such as: (1) language-specific structures. For example, the Subject (S), Verb (V) and Object (O) orders in Tagalog are VS, VO, and VSO, which indicates that the word at the beginning of a sentence is usually a verb and thus unlikely to be a name.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "(2) culture-specific knowledge. For example, a Uyghur person's last name is the same as his/her father's first name.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "On an almost parallel research avenue, linguists and domain experts have created a wide variety of multi-lingual resources, such as World Atlas of Linguistic Structure (WALS) (Dryer and Haspelmath, 2013b) , Central Intelligence Agency (CIA) Names, grammar books, and survival guides. Such resources have been largely ignored by the mainstream statistical NLP research, because they were not specifically designed for NLP purpose at the first place and they are often far from complete. Thus they are not immediately actionable -converted into features, rules or patterns for a target NLP application. In this paper we design various methods to convert them into machine readable features for a new DNN architecture. Very little work has used non-traditional resources mentioned in this paper for practical downstream NLP applications. Limited work only used them for resource building (e.g., (Sarma et al., 2012)) or studying word order typology (Ostling, 2015) . To the best of our knowledge, our work is the first to encode them as actionable knowledge for IE.",
"cite_spans": [
{
"start": 175,
"end": 204,
"text": "(Dryer and Haspelmath, 2013b)",
"ref_id": "BIBREF18"
},
{
"start": 946,
"end": 961,
"text": "(Ostling, 2015)",
"ref_id": "BIBREF42"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We aim to answer the following research questions: How to effectively acquire linguistic knowledge from non-traditional resources, and represent them for computational models? How much further gain can be obtained in addition to traditional resources?",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "2 Approach Overview",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "A typical supervised name tagger is presented in (Lample et al., 2016) , consisted of Bi-directional Long Short-Term Memory networks (Bi-LSTM) and CRFs. We can consider name tagging as a sequence labeling problem, to tag each token in a sentence as the Beginning (B), Inside (I) or Outside (O) of a name mention with a certain type. In this paper we classify names into three types: person (PER), organization (ORG) and location (LOC). Predicting the tag for each token needs evidence from both of its previous context and future context Languages # of Documents # of Names # of Sentences Train Test Train Test Hausa 137 100 3,414 1,320 3,156 1,130 Turkish 128 100 2,341 2,173 1,973 2,119 Uzbek 127 100 3,577 3,137 3,588 3,037 Table 1 : Data Statistics.",
"cite_spans": [
{
"start": 49,
"end": 70,
"text": "(Lample et al., 2016)",
"ref_id": "BIBREF25"
}
],
"ref_spans": [
{
"start": 589,
"end": 748,
"text": "Train Test Train Test Hausa 137 100 3,414 1,320 3,156 1,130 Turkish 128 100 2,341 2,173 1,973 2,119 Uzbek 127 100 3,577 3,137 3,588 3,037 Table 1",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "A Typical Baseline DNN Model",
"sec_num": "2.1"
},
{
"text": "in the entire sentence. Bi-LSTM networks (Graves et al., 2013) meet this need by processing each sequence in both directions with two separate hidden layers, which are then fed into the same output layer. Moreover, there are strong classification dependencies among name tags in a sequence. For example, \"I-LOC\" cannot follow \"B-ORG\". CRFs model, which is particularly good at jointly modeling tagging decisions, can be built on top of the Bi-LSTM networks.",
"cite_spans": [
{
"start": 41,
"end": 62,
"text": "(Graves et al., 2013)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Train Test",
"sec_num": null
},
{
"text": "In low-resource settings where few clean annotations are available, we could try to automatically generate some annotations to train the above model. For instance, we can project automatic annotations from a high-resource language (HL) to a low-resource language (LL) through parallel data. Figure 1 shows an example of projecting English automatic name annotations to Hausa through a parallel sentence pair. We are interested in studying how sensitive DNN is to noise in such automatically generated training data. For our experiments we use English as the HL and use three LLs with different linguistic properties: Turkish, Uzbek and Hausa. We evaluate our approaches using the groundtruth name tagging annotations from the DARPA LORELEI program 2 . For fair comparison with previous LORELEI work (Tsai et al., 2016; Zhang et al., 2016a; Pan et al., 2017) , we use the same 100 test documents. Table 1 shows detailed data statistics.",
"cite_spans": [
{
"start": 799,
"end": 818,
"text": "(Tsai et al., 2016;",
"ref_id": "BIBREF56"
},
{
"start": 819,
"end": 839,
"text": "Zhang et al., 2016a;",
"ref_id": "BIBREF63"
},
{
"start": 840,
"end": 857,
"text": "Pan et al., 2017)",
"ref_id": "BIBREF44"
}
],
"ref_spans": [
{
"start": 291,
"end": 299,
"text": "Figure 1",
"ref_id": "FIGREF0"
},
{
"start": 896,
"end": 903,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Baseline's Sensitiveness to Noise",
"sec_num": "2.2"
},
{
"text": "We use 80% of the name annotated LL documents for training and 20% for development, and parallel sentences to artificially create noisy training data as follows. We use S to denote the sentences in LL and T to denote the sentences in HL. We apply Stanford English name tagger on T and project English names onto S, using the following measurements to determine whether a candidate LL name string n l matches an expected English name n e : (1) If the edit distance * Projection 1 is incorrect and results in a noisy instance in the automatically generated Hausa annotations. The correct name mention is \"kungiyar AU (Africa Union)\" instead of \"AU\". between n e and n l is not greater than two. 2We check the pronunciations of n e and n l based on Soundex (Odell, 1956) , Metaphone (Philips, 1990) and NYSIIS (Taft, 1970) algorithms. We consider two codes match if their edit distance is not greater than two. 3If n e and n l are aligned in the parallel data by running GIZA++ word alignment tool (Och and Ney, 2003) . In this way we obtain an automatically generated noisy training data set T rain noise . We denote T rain clean as the ground truth which is manually created by human annotators on set S. We mix T rain noise and T rain clean in different proportions to obtain a training set T rain mix on various noise levels. We define noise level as 1 \u2212 f score(T rain mix ) where the f-score of T rain mix is computed against T rain clean . For example, when T rain mix is full of manually created clean data, the noise level is 0; when we mix half T rain noise and half T rain clean of the Hausa data, the f-score of T rain mix is 80.1%, and the noise level is 19.9%.",
"cite_spans": [
{
"start": 754,
"end": 767,
"text": "(Odell, 1956)",
"ref_id": "BIBREF40"
},
{
"start": 780,
"end": 795,
"text": "(Philips, 1990)",
"ref_id": "BIBREF45"
},
{
"start": 800,
"end": 819,
"text": "NYSIIS (Taft, 1970)",
"ref_id": null
},
{
"start": 995,
"end": 1014,
"text": "(Och and Ney, 2003)",
"ref_id": "BIBREF39"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Baseline's Sensitiveness to Noise",
"sec_num": "2.2"
},
{
"text": "To learn embeddings, we use 12,624 Hausa documents from the LORELEI program, and use 288,444 Turkish documents and 128,763 Uzbek documents from a June 2015 Wikipedia dump. Figure 2 shows the performance of the baseline tagger trained from T rain mix for three languages. We can clearly see that the performance drops rapidly as the training data includes more noise.",
"cite_spans": [],
"ref_spans": [
{
"start": 172,
"end": 180,
"text": "Figure 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Baseline's Sensitiveness to Noise",
"sec_num": "2.2"
},
{
"text": "We propose to acquire non-traditional linguistic resources and encode them as new actionable features (Section 3). In Figure 3 , we design three integration methods to incorporate explicit linguistic features into Bi-LSTM networks: (1) concatenate the linguistic features and word embeddings at the input level, (2) concatenate the linguistic features and the bidirectional encodings of each token before feeding them into the output layer that computes the tag probability, and (3) use an additional Bi-LSTM to consume the feature embeddings of Figure 2: Performance of baseline DNN Name Taggers Trained from Data with Various Noise Levels (The noise level is created by assigning the proportion of T rain noise in T rain mix as 0%, 25%, 50%, 75% and 100% respectively. ) each token and concatenate both Bi-LSTM encodings of feature embeddings and word embeddings before the output layer. We set the word input dimension to 100, word LSTM hidden layer dimension to 100, character input dimension to 50, character LSTM hidden layer dimension to 25, input dropout rate to 0.5, and use stochastic gradient descent with learning rate 0.01 for optimization.",
"cite_spans": [],
"ref_spans": [
{
"start": 118,
"end": 126,
"text": "Figure 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "A New Improved Model",
"sec_num": "2.3"
},
{
"text": "In this section we will describe the detailed methods to acquire and encode various types of nontraditional resources. We call them as nontraditional because they have been rarely used in previous NLP research. ning of a Turkish word. Thus \"Thomas Marek\" is likely to be a foreign name. Grammar Book. From grammar books we can also extract more language-specific contextual words, prefixes, suffixes and stemming rules. Name related lists contain: case suffix, preposition, postposition, ordinal number, definite article, negation, conjunction, pronoun, quantifier, numeral, time, locative, question particle, demonstrative, degree word, plural prefix/suffix, subordinator, reduplication, possessive, situational and epistemic markers. Table 2 shows some examples of name related suffix features.",
"cite_spans": [],
"ref_spans": [
{
"start": 736,
"end": 743,
"text": "Table 2",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Incorporating Non-traditional Linguistic Knowledge",
"sec_num": "3"
},
{
"text": "Recently linguists have made great efforts at building linguistic knowledge bases for thousands of languages in the world. Two such examples are WALS database (Dryer and Haspelmath, 2013a) and Syntactic Structures of the World's Languages 3 . These databases classify languages according to a large number of topological properties (phonological, lexical and grammatical). For example, WALS consists of 141 maps with accompanying text on diverse properties, gathered from descriptive materials (such as reference grammars). Altogether there are 2,676 languages and more than 58,000 data points; each data point is a (language, feature, feature value) tuple that specifies the value of the feature in a particular language. (e.g., (English, canonical word order, SVO)). In total we extract 188 linguistic properties related to name tagging, belonging to 20 Phonology, 13 Lexicon, 12 Morphology, 29 Nominal, 8 Nominal Syntax, 17 Verbal Categories, 56 Word Order, 3 http://sswl.railsplayground.net/ 26 Simple Clauses, and 7 Complex Sentences categories respectively. Table 3 shows some examples.",
"cite_spans": [
{
"start": 159,
"end": 188,
"text": "(Dryer and Haspelmath, 2013a)",
"ref_id": null
},
{
"start": 961,
"end": 962,
"text": "3",
"ref_id": null
}
],
"ref_spans": [
{
"start": 1064,
"end": 1071,
"text": "Table 3",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Linguistic Structure",
"sec_num": "3.2"
},
{
"text": "CIA Names. We utilize the CIA Name Files 4 , which include biographical sketches, memorandums, telegrams, legislative records, legal documents, statements, and other records. We used the version cleaned up by Lawson et al. 5 that includes documents about names in 41 languages. Besides, person names in certain regions often include some common syllable patterns. Table 4 presents some examples. In languages such as Turkish, Uzbek and Uyghur, a person's last name inherits from his or her father's first name. In Uyghur, there are no additional suffixes. In Uzbek, additional suffixes include \"-ov\", \"-ev\", \"-yev\", \"-eva\" and \"-yeva\". In Turkish, a male's first name often ends with a consonant, and his last name consists of his father's first name and a suffix \"-o\u011flu (son of)\". We exploit this kind of knowledge to improve gazetteer match and name boundary identification.",
"cite_spans": [
{
"start": 223,
"end": 224,
"text": "5",
"ref_id": null
}
],
"ref_spans": [
{
"start": 364,
"end": 371,
"text": "Table 4",
"ref_id": "TABREF6"
}
],
"eq_spans": [],
"section": "Multi-lingual Dictionaries",
"sec_num": "3.3"
},
{
"text": "Unicode CLDR. Unicode Common Locale Data Repository (CLDR) 6 is a data collection for 194 languages, maintained by the Unicode Consortium to support software internationalization and localization. We extract bi-lingual location gazetteers, and exploit patterns and lists of currencies, months, weekdays, day periods and time units to remove them from name candidates because they share some features with names (e.g., capitalization, \"Ocak\" in Turkish means \"January\"). Wiktionary. Wiktionary 7 is a web-based collaborative project to create an English content dictionary of all words in many languages. We collected dictionaries in 1,247 languages.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Multi-lingual Dictionaries",
"sec_num": "3.3"
},
{
"text": "Panlex. Panlex 8 (Baldwin et al., 2010; Kamholz et al., 2014) database contains 1.1 billion pairwise translations among 21 million expressions in about 10,000 language varieties.",
"cite_spans": [
{
"start": 17,
"end": 39,
"text": "(Baldwin et al., 2010;",
"ref_id": "BIBREF4"
},
{
"start": 40,
"end": 61,
"text": "Kamholz et al., 2014)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Multi-lingual Dictionaries",
"sec_num": "3.3"
},
{
"text": "Multilingual WordNet. We leverage three versions of multi-lingual WordNet: (1) Open Multilingual WordNet (Bond and Paik, 2012) which links words in many languages to English Word-Net based on Wiktionary and CLDR; (2) Universal WordNet (de Melo and Weikum, 2019) which au-tomatically extends English WordNet with around 1.5 million meaning links for 800,000 words in over 200 languages, based on WordNets, translation dictionaries and parallel corpora; and (3) Etymological WordNet (de Melo and Weikum, 2010; de Melo, 2014) that provides information about how words in various languages are etymologically related based on Wiktionary.",
"cite_spans": [
{
"start": 105,
"end": 126,
"text": "(Bond and Paik, 2012)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Multi-lingual Dictionaries",
"sec_num": "3.3"
},
{
"text": "Wikipedia we extracted all pairs of titles that are connected by cross-lingual links. And we extracted more phrase translation pairs using parenthesis patterns from the beginning sentences of Wikipedia pages. For example, from the first sentence of the English Wikipedia page about \u00dcr\u00fcmqi: \"\u00dcr\u00fcmqi \u202b)\ufe8b\ufbdc\ufead\ufbdb\ufee3\ufb7d\ufef0(\u202c is the capital of the Xinjiang Uyghur Autonomous Region of the People's Republic of China in Northwest China,\" we can extract an Uyghur-English name translation pair of \u202b\"\ufe8b\ufbdc\ufead\ufbdb\ufee3\ufb7d\ufef0\"\u202c and \"\u00dcr\u00fcmqi\". Moreover, we retrieved related Wikipedia articles, and mined common names in many languages and regions.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase Pairs Mined from Wikipedia. From",
"sec_num": null
},
{
"text": "GeoNames.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase Pairs Mined from Wikipedia. From",
"sec_num": null
},
{
"text": "We exploit the geo-political and location entities in multilingual GeoNames database 9 . It contains over 10 million geographical names and over 9 million unique features of the following properties: id, name, asciiname, alternate names, latitude, longitude, feature class, feature code, country code, administrative code, population, elevation and time zone.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase Pairs Mined from Wikipedia. From",
"sec_num": null
},
{
"text": "JRC Names. Finally we include the JRC Names (Steinberger et al., 20011) , a large list of person and organization names (about 205,000 entries) in over 20 different scripts. Some entries include additional information such as frequency, title and date ranges.",
"cite_spans": [
{
"start": 44,
"end": 71,
"text": "(Steinberger et al., 20011)",
"ref_id": "BIBREF53"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase Pairs Mined from Wikipedia. From",
"sec_num": null
},
{
"text": "Grounding to KB and Typing. For names that we are able to acquire English translations, we further ground (\"wikify\") them to an external knowledge base (KB, DBpedia in our work) if they are linkable. We use two measures (Pan et al., 2015) for linking: (1) Popularity: we prefer popular entities in the KB; (2) Coherence: we link a pair of a foreign name and its English translation simultaneously and favor their candidate entities that are also strongly connected in the KB through a direct cross-lingual page link, a common neighbor, or sharing similar properties. After linking, we assign an entity type to each pair based on their properties in the KB (e.g., an entity with a birthdate and a death-date is likely to be a person). The typing component is a Maximum Entropy model learned from the Abstract Meaning Representation (Banarescu et al., 2013) corpus that includes both entity type and Wikipedia link for each entity mention, using KB properties as features.",
"cite_spans": [
{
"start": 220,
"end": 238,
"text": "(Pan et al., 2015)",
"ref_id": "BIBREF43"
},
{
"start": 831,
"end": 855,
"text": "(Banarescu et al., 2013)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase Pairs Mined from Wikipedia. From",
"sec_num": null
},
{
"text": "Finally we exploit phrase books that include phrase translations between many languages and English.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase Books",
"sec_num": "3.4"
},
{
"text": "Language Survival Kits. FAMiliarization 10 offers language survival kits (LSKs) for 100 languages, each of which has up to 10 kits of different topics. LSK encodes phrases, translations, and romanizations and is available for 55 languages. FA-Miliarization also provides translations of name- PER LOC ORG Hausa 1,174 5,123 199 42 391 21 Turkish 2,819 7,271 262 231 411 181 Uzbek 1,771 5,331 103 178 271 209 Table 5 : Name Related List Statistics (# of entries).",
"cite_spans": [],
"ref_spans": [
{
"start": 293,
"end": 429,
"text": "PER LOC ORG Hausa 1,174 5,123 199 42 391 21 Turkish 2,819 7,271 262 231 411 181 Uzbek 1,771 5,331 103 178 271 209 Table 5",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Phrase Books",
"sec_num": "3.4"
},
{
"text": "related words and phrases. For each language, we first extracted 2, 000 to 3, 000 parallel sentence/phrase pairs. Then we ran GIZA++ over these pairs and combined structure rules from WALS to obtain word translation pairs. We also extracted translations of the following English lists: cardinal number, currency, disease, location affixes, title, nationalities, topical keywords, organization suffixes, temporal words, locations and people, and stop words which are unlikely to be names.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase Books",
"sec_num": "3.4"
},
{
"text": "Elicitation Corpus. An elicitation corpus is a controlled corpus translated by a bilingual consultant in order to produce high quality word aligned sentence pairs. During the elicitation process, the user will translate a subset of these sentences that is dynamically determined to be sufficient for learning the desired grammar rules. We extracted word and phrase translation pairs from the Elicitation corpus developed by CMU (Probst et al., 2001; Alvarez et al., 2005) 11 for the DARPA LORELEI which contains pairs of sentences in a low-resource language and English.",
"cite_spans": [
{
"start": 428,
"end": 449,
"text": "(Probst et al., 2001;",
"ref_id": "BIBREF46"
},
{
"start": 450,
"end": 471,
"text": "Alvarez et al., 2005)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase Books",
"sec_num": "3.4"
},
{
"text": "We merged the linguistic resources collected above into three types of features: (1) name gazetteers;",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Encoding Linguistic Features",
"sec_num": "3.5"
},
{
"text": "(2) list of suffixes and contextual words (e.g., titles) that indicate names; and (3) list of words that indicate non-names (e.g., time expressions). Ultimately we obtained 30 explicit linguistic feature categories. Table 5 shows the statistics of the encoded features.",
"cite_spans": [],
"ref_spans": [
{
"start": 216,
"end": 223,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "Encoding Linguistic Features",
"sec_num": "3.5"
},
{
"text": "For each token w i in a sentence, we check whether w i , its previous token w i\u22121 and its next token w i+1 exist in these lists, and concatenate them into an initial feature vector for w i . For any resources (e.g., lexicons and phrase books) that contain English translations, we also use them to translate each w i , and check whether its translation is capitalized or exists in English name tagging resources (contextual words, gazetteers), whether its contexts match any English patterns as described in (Zhang et al., 2016a) .",
"cite_spans": [
{
"start": 508,
"end": 529,
"text": "(Zhang et al., 2016a)",
"ref_id": "BIBREF63"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Encoding Linguistic Features",
"sec_num": "3.5"
},
{
"text": "Using the data sets mentioned in Section 2.2, we conduct experiments for three languages: Hausa, Turkish and Uzbek. Table 6 compares the results of three feature integration methods described in Section 2.3 and Figure 3. We can see that the third integration method (Integration 3) consistently outperforms the others for all three languages. We compare the following models: a baseline model that uses only character and word embedding features, a model adding traditional linguistic features as described in (Zhang et al., 2016a) , and a model further adding non-traditional linguistic features using the third integration method. Figure 4 presents the results. Clearly models trained with linguistic features substantially outperform the baseline models on all noise levels for all languages. As the noise level increases, the performance of the baseline model drops drastically while the model trained with linguistic features successfully curbs the downward trend and forms a relatively flat curve at last. Adding non-traditional linguistic features provides further gains in almost all settings. Notably for Turkish, adding linguistic features and using 100% automatically generated noisy training data, our approach achieves the same performance as the baseline model using 75% manually created clean data and 25% automatically created noisy data. In other words, explicit linguistic knowledge has significantly saved annotation cost (2,367 sentences). Our results without using any manually labeled training data are much better than state-of-the-art reported in our previous work (Zhang et al., 2016a) which used most traditional resources mentioned in this paper and (Pan et al., 2017) which derived noisy training data from Wikipedia markups. On the same test sets we achieved 5.5% higher F-score for Hausa than (Zhang et al., 2016a) , 27.7% higher F-score for Turkish and 13.6% higher F-score for Uzbek than (Pan et al., 2017) . Table 7 presents the contribution of each linguistic feature category when using 100% automatically created training data. Figure 5 shows some examples of errors corrected by each category. Some remaining challenges pertain to the lack of contextual clues for identifying the boundaries of long organizations, especially when they include nested or conjunction structures (e.g., \"Uluslararas\u0131 ve Stratejik Ara\u015ft\u0131rmalar Merkezi'nde (International and Strategic Research Center) \" in Turkish). The performance of organization tagging is 16%-31% lower than that of persons and locations. We also observe a \"popularity bias\" challenge, especially because we don't have enough resources and tools to perform a deep understanding of the contexts. For example, when a journal name \"New England\" appears in Hausa texts, all of its mentions are mistakenly labeled as location instead of organization, because the dominant type label of \"New England\" is location in all of our resources.",
"cite_spans": [
{
"start": 510,
"end": 531,
"text": "(Zhang et al., 2016a)",
"ref_id": "BIBREF63"
},
{
"start": 1589,
"end": 1610,
"text": "(Zhang et al., 2016a)",
"ref_id": "BIBREF63"
},
{
"start": 1677,
"end": 1695,
"text": "(Pan et al., 2017)",
"ref_id": "BIBREF44"
},
{
"start": 1823,
"end": 1844,
"text": "(Zhang et al., 2016a)",
"ref_id": "BIBREF63"
},
{
"start": 1920,
"end": 1938,
"text": "(Pan et al., 2017)",
"ref_id": "BIBREF44"
},
{
"start": 2372,
"end": 2417,
"text": "(International and Strategic Research Center)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 116,
"end": 123,
"text": "Table 6",
"ref_id": "TABREF8"
},
{
"start": 211,
"end": 220,
"text": "Figure 3.",
"ref_id": null
},
{
"start": 633,
"end": 641,
"text": "Figure 4",
"ref_id": null
},
{
"start": 1941,
"end": 1948,
"text": "Table 7",
"ref_id": "TABREF10"
},
{
"start": 2064,
"end": 2072,
"text": "Figure 5",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "Experiments",
"sec_num": "4"
},
{
"text": "The major novel contribution of this paper is to systematically explore many non-traditional linguistic resources which have been largely neglected by the mainstream NLP community. Some previous efforts used WALS to study the typological relations across languages (Rama and Prasanth, 2012; O'Horan et al., 2016; Yamauchi and Murawaki, 2016 ) but very little work used it for practical NLP applications. Most DNN methods solely relied on character embeddings and word embeddings as features for name tagging (e.g., Lample et al., 2016; Chiu and Nichols, 2016) ). (Shimaoka et al., 2017) Translation It would be sold personally from Ankara and Mu\u011fla...",
"cite_spans": [
{
"start": 265,
"end": 290,
"text": "(Rama and Prasanth, 2012;",
"ref_id": "BIBREF47"
},
{
"start": 291,
"end": 312,
"text": "O'Horan et al., 2016;",
"ref_id": "BIBREF41"
},
{
"start": 313,
"end": 340,
"text": "Yamauchi and Murawaki, 2016",
"ref_id": "BIBREF60"
},
{
"start": 515,
"end": 535,
"text": "Lample et al., 2016;",
"ref_id": "BIBREF25"
},
{
"start": 536,
"end": 559,
"text": "Chiu and Nichols, 2016)",
"ref_id": "BIBREF10"
},
{
"start": 563,
"end": 586,
"text": "(Shimaoka et al., 2017)",
"ref_id": "BIBREF52"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "5"
},
{
"text": "An samu dukkan gawawwakin wadanda suka mutu sakamakon bala\u02bcin zabtarewar kasa a lardin Yunnan.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dictionaries Hausa",
"sec_num": null
},
{
"text": "Translation It is found all the bodies of those who died in the disastrous landslides in Yunnan Province.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model D identifies the location with location designator \"lardin (province)\" in the dictionary",
"sec_num": null
},
{
"text": "AQShning Xonobod bazasi uchun to'lov masalasi tortishuvga sabab bo'lmoqda.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase books Uzbek",
"sec_num": null
},
{
"text": "Model D",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase books Uzbek",
"sec_num": null
},
{
"text": "Model E the phrase book.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model E correctly classifies the mention as ORG since \"Xonobod bazasi (Khanabad base)\" is in",
"sec_num": null
},
{
"text": "Translation US-Khanabad base to debate the issue of payment.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model E correctly classifies the mention as ORG since \"Xonobod bazasi (Khanabad base)\" is in",
"sec_num": null
},
{
"text": "Model B corrects the boundary of \"CBS harber kanal\u0131\" by using the pattern: [<Namei> \u2026], <Namen-i> <single term> <Namen>, where all names have the same type. plicit linguistic features, and found that gazetteers are not very effective when they have a low coverage of name variants or when they contain many ambiguous entries. We addressed this challenge by integrating gazetteers gathered from a much wider range of sources.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "ORG LOC Missing",
"sec_num": null
},
{
"text": "Some recent studies (Zhang et al., 2016a; Littell et al., 2016a; Tsai et al., 2016; Pan et al., 2017) under the DARPA LORELEI program focused on name tagging for low-resource languages. Most noise tolerant supervised learning algorithms (Bylander, 1994; Dredze et al., 2008; Crammer et al., 2009; Kalapanidas et al., 2003; Scott et al., 2013) have been applied for improving image classification (Mnih and Hinton, 2012; Natarajan et al., 2013; Sukhbaatar et al., 2014; Xiao et al., 2015) . Coupling our idea with these algorithms is also likely to yield further improvement.",
"cite_spans": [
{
"start": 20,
"end": 41,
"text": "(Zhang et al., 2016a;",
"ref_id": "BIBREF63"
},
{
"start": 42,
"end": 64,
"text": "Littell et al., 2016a;",
"ref_id": "BIBREF27"
},
{
"start": 65,
"end": 83,
"text": "Tsai et al., 2016;",
"ref_id": "BIBREF56"
},
{
"start": 84,
"end": 101,
"text": "Pan et al., 2017)",
"ref_id": "BIBREF44"
},
{
"start": 237,
"end": 253,
"text": "(Bylander, 1994;",
"ref_id": "BIBREF7"
},
{
"start": 254,
"end": 274,
"text": "Dredze et al., 2008;",
"ref_id": "BIBREF17"
},
{
"start": 275,
"end": 296,
"text": "Crammer et al., 2009;",
"ref_id": "BIBREF11"
},
{
"start": 297,
"end": 322,
"text": "Kalapanidas et al., 2003;",
"ref_id": "BIBREF22"
},
{
"start": 323,
"end": 342,
"text": "Scott et al., 2013)",
"ref_id": "BIBREF51"
},
{
"start": 396,
"end": 419,
"text": "(Mnih and Hinton, 2012;",
"ref_id": "BIBREF32"
},
{
"start": 420,
"end": 443,
"text": "Natarajan et al., 2013;",
"ref_id": "BIBREF33"
},
{
"start": 444,
"end": 468,
"text": "Sukhbaatar et al., 2014;",
"ref_id": "BIBREF54"
},
{
"start": 469,
"end": 487,
"text": "Xiao et al., 2015)",
"ref_id": "BIBREF59"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "ORG LOC Missing",
"sec_num": null
},
{
"text": "Using name tagging as a case study, we demonstrated the power of acquiring and encoding non-traditional linguistic resources. Experiments showed that they can significantly improve the quality of supervised models like DNNs and make them much more robust to noise in automatically created training data. Recent trend of DNN research in the NLP community boasts getting rid of explicit feature design. Our work argues that data-driven implicit knowledge like word embeddings cannot cover all linguistic phenomena in low-resource settings. We propose to embrace the readily available universal resources for many languages, and proved this process of making them actionable is not costly and does not require a system developer to \"know\" the language. Many more non-traditional linguistic resources remain to explore in the future, including Lexvo (de Melo, 2015), Multilingual Entity Taxonomy (de Melo and Weikum, 2010), EZGlot, URIEL knowledge base (Littell et al., 2016b) , travel phrase books and yellow phone books. We will also investigate whether these linguistic resources can make DNN more robust to other factors such as data size and topical relatedness.",
"cite_spans": [
{
"start": 949,
"end": 972,
"text": "(Littell et al., 2016b)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Future Work",
"sec_num": "6"
},
{
"text": "We make all cleaned resources and converted linguistic features publicly available at http://nlp.cs.rpi.edu/denoise",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://www.darpa.mil/program/low-resource-languagesfor-emergent-incidents",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://www.archives.gov/iwg/declassified-records/rg-263-cia-records 5 https://www.researchgate.net/profile/Edwin_Lawson 6 http://cldr.unicode.org/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://en.wiktionary.org 8 http://panlex.org/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://www.geonames.org/ 10 http://fieldsupport.dliflc.edu/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmt-40/Nice/Elicitation/Elicitation_Corpus-LDC/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "This work was supported by the U.S. DARPA LORELEI Program No. HR0011-15-C-0115. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation here on.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Mapping arabic wikipedia into the named entities taxonomy",
"authors": [
{
"first": "Fahd",
"middle": [],
"last": "Alotaibi",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Lee",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Fahd Alotaibi and Mark Lee. 2012. Mapping arabic wikipedia into the named entities taxonomy. In Pro- ceedings of the International Conference on Compu- tational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Automatic creation of arabic named entity annotated corpus using wikipedia",
"authors": [
{
"first": "Maha",
"middle": [],
"last": "Althobaiti",
"suffix": ""
},
{
"first": "Udo",
"middle": [],
"last": "Kruschwitz",
"suffix": ""
},
{
"first": "Massimo",
"middle": [],
"last": "Poesio",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the Student Research Workshop at the 14th Conference of the European Chapter",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maha Althobaiti, Udo Kruschwitz, and Massimo Poe- sio. 2014. Automatic creation of arabic named entity annotated corpus using wikipedia. In Proceedings of the Student Research Workshop at the 14th Confer- ence of the European Chapter of the Association for Computational Linguistics.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Semi-automated elicitation corpus generation",
"authors": [
{
"first": "Alison",
"middle": [],
"last": "Alvarez",
"suffix": ""
},
{
"first": "Lori",
"middle": [],
"last": "Levin",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Frederking",
"suffix": ""
},
{
"first": "Jeff",
"middle": [],
"last": "Good",
"suffix": ""
},
{
"first": "Erik",
"middle": [],
"last": "Peterson",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of MT Summit X",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alison Alvarez, Lori Levin, Robert Frederking, Jeff Good, and Erik Peterson. 2005. Semi-automated elicitation corpus generation. In Proceedings of MT Summit X .",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Automatic acquisition of named entity tagged corpus from world wide web",
"authors": [
{
"first": "Joohui",
"middle": [],
"last": "An",
"suffix": ""
},
{
"first": "Seungwoo",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Gary Geunbae",
"middle": [],
"last": "Lee",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceedings of the 41st Annual Meeting on Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joohui An, Seungwoo Lee, and Gary Geunbae Lee. 2003. Automatic acquisition of named entity tagged corpus from world wide web. In Proceedings of the 41st Annual Meeting on Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Panlex and lextract: Translating all words of all languages of the world",
"authors": [
{
"first": "Timothy",
"middle": [],
"last": "Baldwin",
"suffix": ""
},
{
"first": "Jonathan",
"middle": [],
"last": "Pool",
"suffix": ""
},
{
"first": "Susan",
"middle": [],
"last": "Colowick",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 23rd International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Timothy Baldwin, Jonathan Pool, and Susan Colowick. 2010. Panlex and lextract: Translating all words of all languages of the world. In Proceedings of the 23rd International Conference on Computational Linguistics.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Abstract meaning representation for sembanking",
"authors": [
{
"first": "Laura",
"middle": [],
"last": "Banarescu",
"suffix": ""
},
{
"first": "Claire",
"middle": [],
"last": "Bonial",
"suffix": ""
},
{
"first": "Shu",
"middle": [],
"last": "Cai",
"suffix": ""
},
{
"first": "Madalina",
"middle": [],
"last": "Georgescu",
"suffix": ""
},
{
"first": "Kira",
"middle": [],
"last": "Griffitt",
"suffix": ""
},
{
"first": "Ulf",
"middle": [],
"last": "Hermjakob",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Knight",
"suffix": ""
},
{
"first": "Philipp",
"middle": [],
"last": "Koehn",
"suffix": ""
},
{
"first": "Martha",
"middle": [],
"last": "Palmer",
"suffix": ""
},
{
"first": "Nathan",
"middle": [],
"last": "Schneider",
"suffix": ""
}
],
"year": 2013,
"venue": "ACL Workshop on Linguistic Annotation and Interoperability with Discourse",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. 2013. Abstract meaning representation for sembanking. In ACL Workshop on Linguistic An- notation and Interoperability with Discourse.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "A survey of wordnets and their licenses",
"authors": [
{
"first": "Francis",
"middle": [],
"last": "Bond",
"suffix": ""
},
{
"first": "Kyonghee",
"middle": [],
"last": "Paik",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the 6th Global WordNet Conference",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Francis Bond and Kyonghee Paik. 2012. A survey of wordnets and their licenses. In Proceedings of the 6th Global WordNet Conference.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Learning linear threshold functions in the presence of classification noise",
"authors": [
{
"first": "Tom",
"middle": [],
"last": "Bylander",
"suffix": ""
}
],
"year": 1994,
"venue": "Proceedings of the seventh annual conference on Computational learning theory",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tom Bylander. 1994. Learning linear threshold func- tions in the presence of classification noise. In Pro- ceedings of the seventh annual conference on Com- putational learning theory.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Named entity recognition with bilingual constraints",
"authors": [
{
"first": "Wanxiang",
"middle": [],
"last": "Che",
"suffix": ""
},
{
"first": "Mengqiu",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Christopher",
"suffix": ""
},
{
"first": "Ting",
"middle": [],
"last": "Manning",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 2013 Conference of the North American Chapter",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wanxiang Che, Mengqiu Wang, Christopher D Man- ning, and Ting Liu. 2013. Named entity recogni- tion with bilingual constraints. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Event extraction via dynamic multipooling convolutional neural networks",
"authors": [
{
"first": "Yubo",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Liheng",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Daojian",
"middle": [],
"last": "Zeng",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event extraction via dynamic multi- pooling convolutional neural networks. In Proceed- ings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Interna- tional Joint Conference on Natural Language Pro- cessing.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Named entity recognition with bidirectional lstm-cnns",
"authors": [
{
"first": "P",
"middle": [
"C"
],
"last": "Jason",
"suffix": ""
},
{
"first": "Eric",
"middle": [],
"last": "Chiu",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Nichols",
"suffix": ""
}
],
"year": 2016,
"venue": "Transaction of Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jason P.C. Chiu and Eric Nichols. 2016. Named entity recognition with bidirectional lstm-cnns. In Trans- action of Association for Computational Linguistics.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Adaptive regularization of weight vectors",
"authors": [
{
"first": "Koby",
"middle": [],
"last": "Crammer",
"suffix": ""
},
{
"first": "Alex",
"middle": [],
"last": "Kulesza",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Dredze",
"suffix": ""
}
],
"year": 2009,
"venue": "Advances in neural information processing systems",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Koby Crammer, Alex Kulesza, and Mark Dredze. 2009. Adaptive regularization of weight vectors. In Ad- vances in neural information processing systems.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Augmenting wikipedia with named entity tags",
"authors": [
{
"first": "Wisam",
"middle": [],
"last": "Dakka",
"suffix": ""
},
{
"first": "Silviu",
"middle": [],
"last": "Cucerzan",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the International Joint Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wisam Dakka and Silviu Cucerzan. 2008. Augmenting wikipedia with named entity tags. In Proceedings of the International Joint Conference on Natural Lan- guage Processing.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Etymological wordnet: Tracing the history of words",
"authors": [
{
"first": "Melo",
"middle": [],
"last": "Gerard De",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceeddings of the Conference on Language Resources",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gerard de Melo. 2014. Etymological wordnet: Tracing the history of words. In Proceeddings of the Confer- ence on Language Resources.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Lexvo.org: Language-related information for the linguistic linked data cloud",
"authors": [
{
"first": "Melo",
"middle": [],
"last": "Gerard De",
"suffix": ""
}
],
"year": 2015,
"venue": "Semantic Web",
"volume": "6",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gerard de Melo. 2015. Lexvo.org: Language-related information for the linguistic linked data cloud. Se- mantic Web 6:4.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Towards universal multilingual knowledge bases",
"authors": [
{
"first": "Gerard",
"middle": [],
"last": "De",
"suffix": ""
},
{
"first": "Melo",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Gerhard",
"middle": [],
"last": "Weikum",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 5th Global Wordnet Conference",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gerard de Melo and Gerhard Weikum. 2010. Towards universal multilingual knowledge bases. In Pro- ceedings of the 5th Global Wordnet Conference.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Towards a universal wordnet by learning from combined evidence",
"authors": [
{
"first": "Gerard",
"middle": [],
"last": "De",
"suffix": ""
},
{
"first": "Melo",
"middle": [],
"last": "",
"suffix": ""
},
{
"first": "Gerhard",
"middle": [],
"last": "Weikum",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceeddings of The Conference on Information and Knowledge Management",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gerard de Melo and Gerhard Weikum. 2019. Towards a universal wordnet by learning from combined evi- dence. In Proceeddings of The Conference on Infor- mation and Knowledge Management.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Confidence-weighted linear classification",
"authors": [
{
"first": "Mark",
"middle": [],
"last": "Dredze",
"suffix": ""
},
{
"first": "Koby",
"middle": [],
"last": "Crammer",
"suffix": ""
},
{
"first": "Fernando",
"middle": [],
"last": "Pereira",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the 25th international conference on Machine learning",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mark Dredze, Koby Crammer, and Fernando Pereira. 2008. Confidence-weighted linear classification. In Proceedings of the 25th international conference on Machine learning.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "The world atlas of language structures online",
"authors": [
{
"first": "Matthew",
"middle": [
"S"
],
"last": "Dryer",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Haspelmath",
"suffix": ""
}
],
"year": 2013,
"venue": "Leipzig: Max Planck Institute for Evolutionary Anthropology",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Matthew S. Dryer and Martin Haspelmath. 2013b. The world atlas of language structures online. In Leipzig: Max Planck Institute for Evolutionary Anthropology.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "A language-independent neural network for event detection",
"authors": [
{
"first": "Xiaocheng",
"middle": [],
"last": "Feng",
"suffix": ""
},
{
"first": "Heng",
"middle": [],
"last": "Ji",
"suffix": ""
},
{
"first": "Duyu",
"middle": [],
"last": "Tang",
"suffix": ""
},
{
"first": "Bing",
"middle": [],
"last": "Qin",
"suffix": ""
},
{
"first": "Ting",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceeddings of the 54th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiaocheng Feng, Heng Ji, Duyu Tang, Bing Qin, and Ting Liu. 2016. A language-independent neural net- work for event detection. In Proceeddings of the 54th Annual Meeting of the Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Hybrid speech recognition with deep bidirectional lstm",
"authors": [
{
"first": "Alan",
"middle": [],
"last": "Graves",
"suffix": ""
},
{
"first": "Navdeep",
"middle": [],
"last": "Jaitly",
"suffix": ""
},
{
"first": "Abdel-Rahman",
"middle": [],
"last": "Mo",
"suffix": ""
}
],
"year": 2013,
"venue": "Automatic Speech Recognition and Understanding",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Alan Graves, Navdeep Jaitly, and Abdel-rahman Mo- hamed. 2013. Hybrid speech recognition with deep bidirectional lstm. In Automatic Speech Recognition and Understanding, 2013 IEEE Workshop on.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Bidirectional lstm-crf models for sequence tagging",
"authors": [
{
"first": "Zhiheng",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Wei",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "Kai",
"middle": [],
"last": "Yu",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1508.01991"
]
},
"num": null,
"urls": [],
"raw_text": "Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec- tional lstm-crf models for sequence tagging. arXiv preprint arXiv:1508.01991 .",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Machine learning algorithms: A study on noise sensitivity",
"authors": [
{
"first": "Elias",
"middle": [],
"last": "Kalapanidas",
"suffix": ""
},
{
"first": "Nikolaos",
"middle": [],
"last": "Avouris",
"suffix": ""
},
{
"first": "Marian",
"middle": [],
"last": "Craciun",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Neagu",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceeddings of 1st Balcan Conference in Informatics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Elias Kalapanidas, Nikolaos Avouris, Marian Craciun, and Daniel Neagu. 2003. Machine learning algo- rithms: A study on noise sensitivity. In Proceed- dings of 1st Balcan Conference in Informatics.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Panlex: Building a resource for panlingual lexical translation",
"authors": [
{
"first": "David",
"middle": [],
"last": "Kamholz",
"suffix": ""
},
{
"first": "Jonathan",
"middle": [],
"last": "Pool",
"suffix": ""
},
{
"first": "Susan",
"middle": [],
"last": "Colowick",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the Ninth International Conference on Language Resources and Evaluation",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "David Kamholz, Jonathan Pool, and Susan Colowick. 2014. Panlex: Building a resource for panlingual lexical translation. In Proceedings of the Ninth In- ternational Conference on Language Resources and Evaluation.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Multilingual named entity recognition using parallel data and metadata from wikipedia",
"authors": [
{
"first": "Sungchul",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
},
{
"first": "Hwanjo",
"middle": [],
"last": "Yu",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sungchul Kim, Kristina Toutanova, and Hwanjo Yu. 2012. Multilingual named entity recognition using parallel data and metadata from wikipedia. In Pro- ceedings of the 50th Annual Meeting of the Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Neural architectures for named entity recognition",
"authors": [
{
"first": "Guillaume",
"middle": [],
"last": "Lample",
"suffix": ""
},
{
"first": "Miguel",
"middle": [],
"last": "Ballesteros",
"suffix": ""
},
{
"first": "Kazuya",
"middle": [],
"last": "Kawakami",
"suffix": ""
},
{
"first": "Sandeep",
"middle": [],
"last": "Subramanian",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceeddings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics -Human Language Technologies",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Guillaume Lample, Miguel Ballesteros, Kazuya Kawakami, Sandeep Subramanian, and Chris Dyer. 2016. Neural architectures for named entity recog- nition. In Proceeddings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics -Human Language Technologies.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Joint bilingual name tagging for parallel corpora",
"authors": [
{
"first": "Qi",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Haibo",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Heng",
"middle": [],
"last": "Ji",
"suffix": ""
},
{
"first": "Wen",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Jing",
"middle": [],
"last": "Zheng",
"suffix": ""
},
{
"first": "Fei",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of The Conference on Information and Knowledge Management",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Qi Li, Haibo Li, Heng Ji, Wen Wang, Jing Zheng, and Fei Huang. 2012. Joint bilingual name tagging for parallel corpora. In Proceedings of The Conference on Information and Knowledge Management.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Named entity recognition for linguistic rapid response in low-resource languages: Sorani kurdish and tajik",
"authors": [
{
"first": "Patrick",
"middle": [],
"last": "Littell",
"suffix": ""
},
{
"first": "Kartik",
"middle": [],
"last": "Goyal",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Mortensen",
"suffix": ""
},
{
"first": "Alexa",
"middle": [],
"last": "Little",
"suffix": ""
},
{
"first": "Chris",
"middle": [],
"last": "Dyer",
"suffix": ""
},
{
"first": "Lori",
"middle": [],
"last": "Levin",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Patrick Littell, Kartik Goyal, David Mortensen, Alexa Little, Chris Dyer, and Lori Levin. 2016a. Named entity recognition for linguistic rapid response in low-resource languages: Sorani kurdish and tajik. In Proceedings of the Conference on Computational Linguistics.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Uriel typological database",
"authors": [],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Patrick Littell, David Mortensen, and Lori Levin (eds.). 2016b. Uriel typological database. Pittsburgh: Carnegie Mellon University (Available online at http://www.cs.cmu.edu/ dmortens/uriel.html) .",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "A dependency-based neural network for relation classification",
"authors": [
{
"first": "Yang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Furu",
"middle": [],
"last": "Wei",
"suffix": ""
},
{
"first": "Sujian",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Ji",
"middle": [],
"last": "Heng",
"suffix": ""
},
{
"first": "Ming",
"middle": [],
"last": "Zhou",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceeddings of the 53rd Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yang Liu, Furu Wei, Sujian Li, Heng Ji, and Ming Zhou. 2015. A dependency-based neural network for relation classification. In Proceeddings of the 53rd Annual Meeting of the Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "The stanford corenlp natural language processing toolkit",
"authors": [
{
"first": "Christopher",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
},
{
"first": "Mihai",
"middle": [],
"last": "Surdeanu",
"suffix": ""
},
{
"first": "John",
"middle": [],
"last": "Bauer",
"suffix": ""
},
{
"first": "Jenny",
"middle": [],
"last": "Finkel",
"suffix": ""
},
{
"first": "Steven",
"middle": [
"J"
],
"last": "Bethard",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Mc-Closky",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, and David Mc- Closky. 2014. The stanford corenlp natural language processing toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational Lin- guistics.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Distant supervision for relation extraction without labeled data",
"authors": [
{
"first": "Mike",
"middle": [],
"last": "Mintz",
"suffix": ""
},
{
"first": "Steven",
"middle": [],
"last": "Bills",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceeddings of the conference of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf- sky. 2009. Distant supervision for relation extraction without labeled data. In Proceeddings of the confer- ence of the Association for Computational Linguis- tics.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Learning to label aerial images from noisy data",
"authors": [
{
"first": "Volodymyr",
"middle": [],
"last": "Mnih",
"suffix": ""
},
{
"first": "Geoffrey",
"middle": [
"E"
],
"last": "Hinton",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the 29th International Conference on Machine Learning",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Volodymyr Mnih and Geoffrey E Hinton. 2012. Learn- ing to label aerial images from noisy data. In Pro- ceedings of the 29th International Conference on Machine Learning.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Learning with noisy labels",
"authors": [
{
"first": "Nagarajan",
"middle": [],
"last": "Natarajan",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Inderjit",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Dhillon",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Pradeep",
"suffix": ""
},
{
"first": "Ambuj",
"middle": [],
"last": "Ravikumar",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Tewari",
"suffix": ""
}
],
"year": 2013,
"venue": "Advances in neural information processing systems",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari. 2013. Learning with noisy labels. In Advances in neural information pro- cessing systems.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Event detection and domain adaptation with convolutional neural networks",
"authors": [
{
"first": "Huu",
"middle": [],
"last": "Thien",
"suffix": ""
},
{
"first": "Ralph",
"middle": [],
"last": "Nguyen",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Grishman",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thien Huu Nguyen and Ralph Grishman. 2015a. Event detection and domain adaptation with convolutional neural networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin- guistics and the 7th International Joint Conference on Natural Language Processing.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Relation extraction: Perspective from convolutional neural networks",
"authors": [
{
"first": "Huu",
"middle": [],
"last": "Thien",
"suffix": ""
},
{
"first": "Ralph",
"middle": [],
"last": "Nguyen",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Grishman",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of NAACL Workshop on Vector Space Modeling for NLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thien Huu Nguyen and Ralph Grishman. 2015b. Rela- tion extraction: Perspective from convolutional neu- ral networks. In Proceedings of NAACL Workshop on Vector Space Modeling for NLP.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "Joint event extraction via recurrent neural networks",
"authors": [
{
"first": "Huu",
"middle": [],
"last": "Thien",
"suffix": ""
},
{
"first": "Ralph",
"middle": [],
"last": "Nguyen",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Grishman",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Thien Huu Nguyen and Ralph Grishman. 2016. Joint event extraction via recurrent neural networks. In Proceedings of the 53rd Annual Meeting of the As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Transforming wikipedia into named entity training data",
"authors": [
{
"first": "Joel",
"middle": [],
"last": "Nothman",
"suffix": ""
},
{
"first": "James",
"middle": [
"R"
],
"last": "Curran",
"suffix": ""
},
{
"first": "Tara",
"middle": [],
"last": "Murphy",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the Australasian Language Technology Association Workshop",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joel Nothman, James R. Curran, and Tara Murphy. 2008. Transforming wikipedia into named entity training data. In Proceedings of the Australasian Language Technology Association Workshop 2008.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "Learning multilingual named entity recognition from Wikipedia",
"authors": [
{
"first": "Joel",
"middle": [],
"last": "Nothman",
"suffix": ""
},
{
"first": "Nicky",
"middle": [],
"last": "Ringland",
"suffix": ""
},
{
"first": "Will",
"middle": [],
"last": "Radford",
"suffix": ""
},
{
"first": "Tara",
"middle": [],
"last": "Murphy",
"suffix": ""
},
{
"first": "James",
"middle": [
"R"
],
"last": "Curran",
"suffix": ""
}
],
"year": 2012,
"venue": "Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Joel Nothman, Nicky Ringland, Will Radford, Tara Murphy, and James R. Curran. 2012. Learning mul- tilingual named entity recognition from Wikipedia. Artificial Intelligence .",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "A systematic comparison of various statistical alignment models",
"authors": [
{
"first": "Josef",
"middle": [],
"last": "Franz",
"suffix": ""
},
{
"first": "Hermann",
"middle": [],
"last": "Och",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2003,
"venue": "Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Franz Josef Och and Hermann Ney. 2003. A systematic comparison of various statistical alignment models. Computational Linguistics .",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "The Profit in Records Management",
"authors": [
{
"first": "Margaret",
"middle": [
"King"
],
"last": "Odell",
"suffix": ""
}
],
"year": 1956,
"venue": "Systems",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Margaret King Odell. 1956. The Profit in Records Man- agement. Systems (New York).",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "Survey on the use of typological information in natural language processing",
"authors": [
{
"first": "O'",
"middle": [],
"last": "Helen",
"suffix": ""
},
{
"first": "Yevgeni",
"middle": [],
"last": "Horan",
"suffix": ""
},
{
"first": "Ivan",
"middle": [],
"last": "Berzak",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Vuli\u0107",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Helen O'Horan, Yevgeni Berzak, Ivan Vuli\u0107, Roi Re- ichart, and Anna Korhonen. 2016. Survey on the use of typological information in natural language pro- cessing. In Proceedings of the International Confer- ence on Computational Linguistics.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "Word order typology through multilingual word alignment",
"authors": [
{
"first": "Robert",
"middle": [],
"last": "Ostling",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Robert Ostling. 2015. Word order typology through multilingual word alignment. In Proceedings of the 53rd Annual Meeting of the Association for Compu- tational Linguistics.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "Unsupervised entity linking with abstract meaning representation",
"authors": [
{
"first": "Xiaoman",
"middle": [],
"last": "Pan",
"suffix": ""
},
{
"first": "Taylor",
"middle": [],
"last": "Cassidy",
"suffix": ""
},
{
"first": "Ulf",
"middle": [],
"last": "Hermjakob",
"suffix": ""
},
{
"first": "Ji",
"middle": [],
"last": "Heng",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Knight",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics -Human Language Technologies",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiaoman Pan, Taylor Cassidy, Ulf Hermjakob, Heng Ji, and Kevin Knight. 2015. Unsupervised entity link- ing with abstract meaning representation. In Pro- ceedings of the 2015 Conference of the North Amer- ican Chapter of the Association for Computational Linguistics -Human Language Technologies.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "Crosslingual name tagging and linking for 282 languages",
"authors": [
{
"first": "Xiaoman",
"middle": [],
"last": "Pan",
"suffix": ""
},
{
"first": "Boliang",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Jonathan",
"middle": [],
"last": "May",
"suffix": ""
},
{
"first": "Joel",
"middle": [],
"last": "Nothman",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Knight",
"suffix": ""
},
{
"first": "Heng",
"middle": [],
"last": "Ji",
"suffix": ""
}
],
"year": 2017,
"venue": "Proc. the 55th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight, and Heng Ji. 2017. Cross- lingual name tagging and linking for 282 languages. In Proc. the 55th Annual Meeting of the Association for Computational Linguistics.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "Hanging on the metaphone",
"authors": [
{
"first": "Lawrence",
"middle": [],
"last": "Philips",
"suffix": ""
}
],
"year": 1990,
"venue": "Computer Language",
"volume": "7",
"issue": "12",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lawrence Philips. 1990. Hanging on the metaphone. Computer Language 7(12).",
"links": null
},
"BIBREF46": {
"ref_id": "b46",
"title": "Design and implementation of controlled elicitation for machine translation of low-density languages",
"authors": [
{
"first": "Katharina",
"middle": [],
"last": "Probst",
"suffix": ""
},
{
"first": "Ralf",
"middle": [
"D"
],
"last": "Brown",
"suffix": ""
},
{
"first": "Jaime",
"middle": [
"G"
],
"last": "Carbonell",
"suffix": ""
},
{
"first": "Alon",
"middle": [],
"last": "Lavie",
"suffix": ""
},
{
"first": "Lori",
"middle": [],
"last": "Levin",
"suffix": ""
}
],
"year": 2001,
"venue": "Proceedings of Workshop MT2010 at Machine Translation Summit VIII",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Katharina Probst, Ralf D. Brown, Jaime G. Carbonell, Alon Lavie, and Lori Levin. 2001. Design and im- plementation of controlled elicitation for machine translation of low-density languages. In Proceed- ings of Workshop MT2010 at Machine Translation Summit VIII.",
"links": null
},
"BIBREF47": {
"ref_id": "b47",
"title": "How good are typological distances for determining genealogical relationships among languages?",
"authors": [
{
"first": "Taraka",
"middle": [],
"last": "Rama",
"suffix": ""
},
{
"first": "Kolachina",
"middle": [],
"last": "Prasanth",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Taraka Rama and Kolachina Prasanth. 2012. How good are typological distances for determining genealogi- cal relationships among languages? In Proceedings of the International Conference on Computational Linguistics.",
"links": null
},
"BIBREF48": {
"ref_id": "b48",
"title": "Clustype: Effective entity recognition and typing by relation phrase-based clustering",
"authors": [
{
"first": "Xiang",
"middle": [],
"last": "Ren",
"suffix": ""
},
{
"first": "Ahmed",
"middle": [],
"last": "El-Kishky",
"suffix": ""
},
{
"first": "Chi",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Fangbo",
"middle": [],
"last": "Tao",
"suffix": ""
},
{
"first": "Clare",
"middle": [
"R"
],
"last": "Voss",
"suffix": ""
},
{
"first": "Heng",
"middle": [],
"last": "Ji",
"suffix": ""
},
{
"first": "Jiawei",
"middle": [],
"last": "Han",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceeddings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Xiang Ren, Ahmed El-Kishky, Chi Wang, Fangbo Tao, Clare R. Voss, Heng Ji, and Jiawei Han. 2015. Clustype: Effective entity recognition and typing by relation phrase-based clustering. In Proceeddings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining.",
"links": null
},
"BIBREF49": {
"ref_id": "b49",
"title": "Classifying articles in english and german wikipedia",
"authors": [
{
"first": "Nicky",
"middle": [],
"last": "Ringland",
"suffix": ""
},
{
"first": "Joel",
"middle": [],
"last": "Nothman",
"suffix": ""
},
{
"first": "Tara",
"middle": [],
"last": "Murphy",
"suffix": ""
},
{
"first": "James R",
"middle": [],
"last": "Curran",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of Australasian Language Technology Association Workshop",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nicky Ringland, Joel Nothman, Tara Murphy, and James R Curran. 2009. Classifying articles in en- glish and german wikipedia. In Proceedings of Aus- tralasian Language Technology Association Work- shop 2009.",
"links": null
},
"BIBREF50": {
"ref_id": "b50",
"title": "Building multilingual lexical resources using wordnets: Structure, design and implementation",
"authors": [
{
"first": "Shikhar",
"middle": [],
"last": "Kr",
"suffix": ""
},
{
"first": "Dibyajyoti",
"middle": [],
"last": "Sarma",
"suffix": ""
},
{
"first": "Biswajit",
"middle": [],
"last": "Sarmah",
"suffix": ""
},
{
"first": "Mayashree",
"middle": [],
"last": "Brahma",
"suffix": ""
},
{
"first": "Himadri",
"middle": [],
"last": "Mahanta",
"suffix": ""
},
{
"first": "Utpal",
"middle": [],
"last": "Bharali",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Saikia",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the 3rd Workshop on Cognitive Aspects of the Lexicon",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shikhar Kr. Sarma, Dibyajyoti Sarmah, Biswajit Brahma, Mayashree Mahanta, Himadri Bharali, and Utpal Saikia. 2012. Building multilingual lexical re- sources using wordnets: Structure, design and im- plementation. In Proceedings of the 3rd Workshop on Cognitive Aspects of the Lexicon.",
"links": null
},
"BIBREF51": {
"ref_id": "b51",
"title": "Classification with asymmetric label noise: Consistency and maximal denoising",
"authors": [
{
"first": "Clayton",
"middle": [],
"last": "Scott",
"suffix": ""
},
{
"first": "Gilles",
"middle": [],
"last": "Blanchard",
"suffix": ""
},
{
"first": "Gregory",
"middle": [],
"last": "Handy",
"suffix": ""
}
],
"year": 2013,
"venue": "the Conference On Learning Theory",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Clayton Scott, Gilles Blanchard, and Gregory Handy. 2013. Classification with asymmetric label noise: Consistency and maximal denoising. In the Confer- ence On Learning Theory.",
"links": null
},
"BIBREF52": {
"ref_id": "b52",
"title": "Neural architectures for fine-grained entity type classfication",
"authors": [
{
"first": "Sonse",
"middle": [],
"last": "Shimaoka",
"suffix": ""
},
{
"first": "Pontus",
"middle": [],
"last": "Stenetorp",
"suffix": ""
},
{
"first": "Kentaro",
"middle": [],
"last": "Inui",
"suffix": ""
},
{
"first": "Sebastian",
"middle": [],
"last": "Riedel",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the European Chapter",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and Sebastian Riedel. 2017. Neural architectures for fine-grained entity type classfication. In Proceed- ings of the European Chapter of the Association for Computational Linguistics.",
"links": null
},
"BIBREF53": {
"ref_id": "b53",
"title": "Jrc-names: A freely available, highly multilingual named entity resource",
"authors": [
{
"first": "Ralf",
"middle": [],
"last": "Steinberger",
"suffix": ""
},
{
"first": "Bruno",
"middle": [],
"last": "Pouliquen",
"suffix": ""
},
{
"first": "Mijail",
"middle": [],
"last": "Kabadjov",
"suffix": ""
},
{
"first": "Erik",
"middle": [],
"last": "Van Der Goot",
"suffix": ""
}
],
"year": 2001,
"venue": "Proceeddings of the 8th International Conference on Recent Advances in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ralf Steinberger, Bruno Pouliquen, Mijail Kabadjov, and Erik van der Goot. 20011. Jrc-names: A freely available, highly multilingual named entity resource. In Proceeddings of the 8th International Conference on Recent Advances in Natural Language Process- ing.",
"links": null
},
"BIBREF54": {
"ref_id": "b54",
"title": "Training convolutional networks with noisy labels",
"authors": [
{
"first": "Sainbayar",
"middle": [],
"last": "Sukhbaatar",
"suffix": ""
},
{
"first": "Joan",
"middle": [],
"last": "Bruna",
"suffix": ""
},
{
"first": "Manohar",
"middle": [],
"last": "Paluri",
"suffix": ""
},
{
"first": "Lubomir",
"middle": [],
"last": "Bourdev",
"suffix": ""
},
{
"first": "Rob",
"middle": [],
"last": "Fergus",
"suffix": ""
}
],
"year": 2014,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1406.2080"
]
},
"num": null,
"urls": [],
"raw_text": "Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir Bourdev, and Rob Fergus. 2014. Train- ing convolutional networks with noisy labels. arXiv preprint arXiv:1406.2080 .",
"links": null
},
"BIBREF55": {
"ref_id": "b55",
"title": "Name Search Techniques. New York State Identification and Intelligence System",
"authors": [
{
"first": "L",
"middle": [],
"last": "Robert",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Taft",
"suffix": ""
}
],
"year": 1970,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Robert L Taft. 1970. Name Search Techniques. New York State Identification and Intelligence System, Albany, New York, US.",
"links": null
},
"BIBREF56": {
"ref_id": "b56",
"title": "Cross-lingual named entity recognition via wikification",
"authors": [
{
"first": "Chen-Tse",
"middle": [],
"last": "Tsai",
"suffix": ""
},
{
"first": "Stephen",
"middle": [],
"last": "Mayhew",
"suffix": ""
},
{
"first": "Dan",
"middle": [],
"last": "Roth",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the Conference on Natural Language Learning",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chen-Tse Tsai, Stephen Mayhew, and Dan Roth. 2016. Cross-lingual named entity recognition via wikifica- tion. In Proceedings of the Conference on Natural Language Learning.",
"links": null
},
"BIBREF57": {
"ref_id": "b57",
"title": "Joint word alignment and bilingual named entity recognition using dual decomposition",
"authors": [
{
"first": "Mengqiu",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Wanxiang",
"middle": [],
"last": "Che",
"suffix": ""
},
{
"first": "Christopher D",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mengqiu Wang, Wanxiang Che, and Christopher D Manning. 2013. Joint word alignment and bilingual named entity recognition using dual decomposition. In Proceedings of the Association for Computational Linguistics.",
"links": null
},
"BIBREF58": {
"ref_id": "b58",
"title": "Cross-lingual projected expectation regularization for weakly supervised learning",
"authors": [
{
"first": "Mengqiu",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "Transactions of the Association of Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mengqiu Wang and Christopher Manning. 2014. Cross-lingual projected expectation regularization for weakly supervised learning. In Transactions of the Association of Computational Linguistics.",
"links": null
},
"BIBREF59": {
"ref_id": "b59",
"title": "Learning from massive noisy labeled data for image classification",
"authors": [
{
"first": "Tong",
"middle": [],
"last": "Xiao",
"suffix": ""
},
{
"first": "Tian",
"middle": [],
"last": "Xia",
"suffix": ""
},
{
"first": "Yi",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Chang",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Xiaogang",
"middle": [],
"last": "Wang",
"suffix": ""
}
],
"year": 2015,
"venue": "Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xi- aogang Wang. 2015. Learning from massive noisy labeled data for image classification. In Proceed- ings of the IEEE Conference on Computer Vision and Pattern Recognition.",
"links": null
},
"BIBREF60": {
"ref_id": "b60",
"title": "Contrasting vertical and horizontal transmission of typological features",
"authors": [
{
"first": "Kenji",
"middle": [],
"last": "Yamauchi",
"suffix": ""
},
{
"first": "Yugo",
"middle": [],
"last": "Murawaki",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kenji Yamauchi and Yugo Murawaki. 2016. Contrast- ing vertical and horizontal transmission of typolog- ical features. In Proceedings of the International Conference on Computational Linguistics.",
"links": null
},
"BIBREF61": {
"ref_id": "b61",
"title": "A position encoding convolutional neural network based on dependency tree for relation classification",
"authors": [
{
"first": "Yunlun",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Yunhai",
"middle": [],
"last": "Tong",
"suffix": ""
},
{
"first": "Shulei",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Zhi-Hong",
"middle": [],
"last": "Deng",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the Empirical Methods on Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yunlun Yang, Yunhai Tong, Shulei Ma, and Zhi-Hong Deng. 2016. A position encoding convolutional neural network based on dependency tree for rela- tion classification. In Proceedings of the Empirical Methods on Natural Language Processing.",
"links": null
},
"BIBREF62": {
"ref_id": "b62",
"title": "Relation classification via convolutional deep neural network",
"authors": [
{
"first": "Daojian",
"middle": [],
"last": "Zeng",
"suffix": ""
},
{
"first": "Kang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Siwei",
"middle": [],
"last": "Lai",
"suffix": ""
},
{
"first": "Guangyou",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Zhao",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceeddings of the 25th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, and Jun Zhao. 2014. Relation classification via con- volutional deep neural network. In Proceeddings of the 25th International Conference on Computational Linguistics.",
"links": null
},
"BIBREF63": {
"ref_id": "b63",
"title": "Name tagging for low-resource incident languages based on expectation-driven learning",
"authors": [
{
"first": "Boliang",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Xiaoman",
"middle": [],
"last": "Pan",
"suffix": ""
},
{
"first": "Tianlu",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Ashish",
"middle": [],
"last": "Vaswani",
"suffix": ""
},
{
"first": "Heng",
"middle": [],
"last": "Ji",
"suffix": ""
},
{
"first": "Kevin",
"middle": [],
"last": "Knight",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Marcu",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceeddings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics -Human Language Technologies",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Boliang Zhang, Xiaoman Pan, Tianlu Wang, Ashish Vaswani, Heng Ji, Kevin Knight, and Daniel Marcu. 2016a. Name tagging for low-resource incident lan- guages based on expectation-driven learning. In Proceeddings of the 2016 Conference of the North American Chapter of the Association for Computa- tional Linguistics -Human Language Technologies.",
"links": null
},
"BIBREF64": {
"ref_id": "b64",
"title": "Bitext name tagging for annotation projection",
"authors": [
{
"first": "Dongxu",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Boliang",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Xiaoman",
"middle": [],
"last": "Pan",
"suffix": ""
},
{
"first": "Heng",
"middle": [],
"last": "Ji",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 26th International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dongxu Zhang, Boliang Zhang, Xiaoman Pan, and Heng Ji. 2016b. Bitext name tagging for annotation projection. In Proceedings of the 26th International Conference on Computational Linguistics.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"text": "Noisy Training Data Generation by Projecting English Automatic Name Annotations to Hausa.",
"num": null,
"uris": null,
"type_str": "figure"
},
"FIGREF1": {
"text": "ov, -ev -ova, -eva; -ovich, -ich, -enko, -ko,chuk, -yuk, -ak, -chenko, -skiy, -ski, -vych,",
"num": null,
"uris": null,
"type_str": "figure"
},
"FIGREF3": {
"text": "Examples of Corrections Made by Each Category of Linguistic Knowledge.",
"num": null,
"uris": null,
"type_str": "figure"
},
"TABREF0": {
"html": null,
"num": null,
"content": "<table><tr><td>4</td><td>1</td><td>3</td><td>2</td></tr></table>",
"text": "Da take jawabi albarkacin bikin kaddamarwa, shugabar kungiyar [AU]ORG , [, ta bayyana jin dadinta kan wannan tallafi dake fitowa daga yankunan [While speaking on the launch, the [AU]ORG president, [her joy over the assistance coming from different parts of [Africa]LOC for the fight against Ebola virus in [",
"type_str": "table"
},
"TABREF2": {
"html": null,
"num": null,
"content": "<table><tr><td/><td/><td>B/I/O</td><td/></tr><tr><td/><td/><td>CRF networks</td><td/></tr><tr><td>Hidden Layer</td><td/><td/><td/></tr><tr><td/><td/><td/><td/><td>Left</td><td>Right</td></tr><tr><td>LSTMs</td><td/><td/><td/><td>LSTMs</td><td>LSTMs</td></tr><tr><td>Hidden Layer</td><td/><td/><td>1</td><td>2</td><td>3</td></tr><tr><td>Left</td><td/><td>Right</td><td/><td>Linguistic Feature</td></tr><tr><td>LSTMs</td><td/><td>LSTMs</td><td/><td>Embedding</td></tr><tr><td>Input Word Embedding</td><td/><td/><td colspan=\"2\">Linguistic Features -English and Low-resource Language Patterns</td></tr><tr><td>Left LSTMs</td><td>Right LSTMs</td><td>Word Embedding</td><td colspan=\"2\">-Low-resource Language to English Lexicons -Gazetteers</td></tr><tr><td>Character</td><td/><td/><td colspan=\"2\">-Low-resource Language Grammar Rules</td></tr><tr><td>Embedding</td><td/><td/><td/></tr><tr><td>Figure 3:</td><td/><td/><td/></tr></table>",
"text": "An English Wikipedia page about a language usually provides us general descriptions of the language. In particular, the list of usable characters, gender indicators, capitalization information, transliteration and number spelling rules are most useful for name tagging. The list of usable characters for regular words in a particular language can help us detect foreign borrow words, which are likely to be names. For example, \"th\" usually does not appear at the begin-Three Integration Methods to Incorporate Explicit Linguistic Features into DNN.",
"type_str": "table"
},
"TABREF4": {
"html": null,
"num": null,
"content": "<table><tr><td colspan=\"2\">Languages Categories</td><td>Description</td><td>Name Related Characteristics</td></tr><tr><td>Tagalog</td><td>Subject, Verb,</td><td>VS, VO, VSO</td><td>the word at the beginning of a</td></tr><tr><td/><td>Object Order</td><td/><td>sentence is unlikely to be a name</td></tr><tr><td>Turkish</td><td>Negation</td><td colspan=\"2\">Suffix -me at the root of a verb indicates negations not a name</td></tr><tr><td>Bengali</td><td>Animacy</td><td>-ta is a case that indicates inanimacy</td><td/></tr><tr><td>Thai</td><td>Nested Name</td><td>Delimiter between modifier and head, [ORG</td><td>Name boundary</td></tr><tr><td/><td>Structure</td><td>\u0e01\u0e23\u0e30\u0e17\u0e23\u0e27\u0e07\u0e15\u0e48 \u0e32\u0e07\u0e1b\u0e23\u0e30\u0e40\u0e17\u0e28] \u0e02\u0e2d\u0e07[LOC \u0e2d\u0e34 \u0e19\u0e42\u0e14\u0e19\u0e35 \u0e40\u0e0b\u0e35 \u0e22] ([ORG</td><td/></tr><tr><td/><td/><td>Foreign Ministry ] of [LOC Indonesia])</td><td/></tr><tr><td>Tamil</td><td>Conjunction</td><td>Name1-yum Name2-yum (Name1 and Name2)</td><td>Name type consistency</td></tr><tr><td/><td>Structure</td><td/><td/></tr></table>",
"text": "Name-related Knowledge Summarized from Grammar Books.",
"type_str": "table"
},
"TABREF5": {
"html": null,
"num": null,
"content": "<table/>",
"text": "",
"type_str": "table"
},
"TABREF6": {
"html": null,
"num": null,
"content": "<table/>",
"text": "",
"type_str": "table"
},
"TABREF8": {
"html": null,
"num": null,
"content": "<table/>",
"text": "Feature Integration Methods Comparison.",
"type_str": "table"
},
"TABREF10": {
"html": null,
"num": null,
"content": "<table><tr><td>: Contributions of Various Categories of</td></tr><tr><td>Linguistic Knowledge (F-score (%)).</td></tr></table>",
"text": "",
"type_str": "table"
}
}
}
} |