File size: 95,617 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
{
    "paper_id": "I17-1027",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:37:49.048510Z"
    },
    "title": "Coordination Boundary Identification with Similarity and Replaceability",
    "authors": [
        {
            "first": "Hiroki",
            "middle": [],
            "last": "Teranishi",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Nara Institute of Science and Technology",
                "location": {}
            },
            "email": "teranishi.hiroki.sw5@is.naist.jp"
        },
        {
            "first": "Hiroyuki",
            "middle": [],
            "last": "Shindo",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Nara Institute of Science and Technology",
                "location": {}
            },
            "email": "shindo@is.naist.jp"
        },
        {
            "first": "Yuji",
            "middle": [],
            "last": "Matsumoto",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Nara Institute of Science and Technology",
                "location": {}
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We propose a neural network model for coordination boundary detection. Our method relies on two common properties-similarity and replaceability in conjuncts-in order to detect both similar and dissimilar pairs of conjuncts. The model improves the identification of clause-level coordination using bidirectional recurrent neural networks incorporating two properties as features. We show that our model outperforms existing stateof-the-art methods for the coordination annotated Penn Treebank and Genia corpus without any syntactic information from parsers.",
    "pdf_parse": {
        "paper_id": "I17-1027",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We propose a neural network model for coordination boundary detection. Our method relies on two common properties-similarity and replaceability in conjuncts-in order to detect both similar and dissimilar pairs of conjuncts. The model improves the identification of clause-level coordination using bidirectional recurrent neural networks incorporating two properties as features. We show that our model outperforms existing stateof-the-art methods for the coordination annotated Penn Treebank and Genia corpus without any syntactic information from parsers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Coordination is a common structure and one of major ambiguities in human languages. Although coordination gives a large amount of syntactic or semantic information of coordinated phrases, disambiguating coordination still remains one of the difficult problems that state-of-the-art parsers cannot cope with.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Given a coordinator word, how can we find conjuncts? Coordinate structures are characterized by two properties: (1) similar structures often appear in conjuncts, and (2) one conjunct can be replaced with another conjunct without losing sentence consistency in syntax or semantics. However, many previous studies of coordination disambiguation rely only on the similarities between conjuncts, despite the fact that similarities are not always helpful (Shimbo and Hara, 2007; Hara et al., 2009; Hanamoto, 2012) . For example, the sentence \"[at least two commercial versions have been put on the U.S. market], and [an estimated 500 have been sold].\" does not have sim-ilar phrases around the coordinating conjunction \"and.\" Thus, existing methods sometimes fail to capture coordination. In addition to the case where there is a lack of similarities, many similaritybased methods use handcrafted features, heuristic rules, or external resources such as thesauri.",
                "cite_spans": [
                    {
                        "start": 450,
                        "end": 473,
                        "text": "(Shimbo and Hara, 2007;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 474,
                        "end": 492,
                        "text": "Hara et al., 2009;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 493,
                        "end": 508,
                        "text": "Hanamoto, 2012)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To overcome these problems, Ficler and Goldberg (2016) proposed a neural network model with the replaceability feature as well as the similarity feature. Their model produces candidate pairs of conjuncts using probabilities assigned by the Berkeley Parser. All candidate pairs are scored on the basis of the similarity, replaceability and parser-derived features, and then the best scored pair is picked. Their approach outperforms existing constituent parsers for the Penn Treebank and similarity-based coordination disambiguation methods such as those by Shimbo and Hara (2007) and Hara et al. (2009) for the Genia treebank. Although Ficler and Goldberg's (2016) method improves performance significantly, it heavily depends on the syntactic parser. They use the outputs from the parser not only for candidates generation and the feature for scoring, but also for computation of the similarities. The problems of propagated errors from the parser and dependencies on external resources still remain in their work.",
                "cite_spans": [
                    {
                        "start": 28,
                        "end": 54,
                        "text": "Ficler and Goldberg (2016)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 557,
                        "end": 579,
                        "text": "Shimbo and Hara (2007)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 584,
                        "end": 602,
                        "text": "Hara et al. (2009)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 636,
                        "end": 664,
                        "text": "Ficler and Goldberg's (2016)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this work, we propose a neural network model for coordination disambiguation that does not require any external syntactic parser. Our model exploits both the similarity and replaceability properties to avoid suffering from an absence of these properties (Section 2). We use bidirectional recurrent neural networks (RNNs) to obtain the contextual information of candidate conjuncts and then compute similarity and replaceability features without syntactic information (Section 3). We show that our model performs well for both types of coordination: NP coordination (whose conjuncts tend to be similar) and S coordination (whose conjuncts make sense individually) and outperforms the methods by Ficler and Goldberg (2016) and Hara et al. (2009) in Section 4.",
                "cite_spans": [
                    {
                        "start": 697,
                        "end": 723,
                        "text": "Ficler and Goldberg (2016)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 728,
                        "end": 746,
                        "text": "Hara et al. (2009)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The contributions of our work include the following:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(i) Our model can capture dissimilar conjuncts as well as similar ones using the similarity and replaceability features.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(ii) Our model performs better than others without any thesauri, feature engineering, or syntactic parsers to extract conjunct features.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "2 Coordinate Structure Analysis",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Coordination is a frequently occurring syntactic structure along with several phrases, known as conjuncts. The task of coordination disambiguation is identifying the boundaries of each conjunct with a single coordinator word as one coordinate structure instance. Given a coordinator word (e.g., \"and,\" \"or,\" or \"but\"), a system must return each conjunct span if the word actually plays the role of a coordinator; otherwise, NONE is output for the absence of coordination. The task sounds simple, yet is difficult because two complex phenomena appear in coordination. In this work, we solve this task by focusing on identifying the beginning and end of an entire coordinate structure. Figure 1 shows our task. We attempt to identify two conjuncts to the left and right sides of a conjunction. We call these conjuncts the preconjunct and post-conjunct, respectively 2 . In addition, we assume that the end of the preconjunct and the beginning of the post-conjunct adjoin a coordinator word; thus it appears that we work on the subtask of coordinate structure span identification. After identifying a coordination span, we recover individual conjuncts within the span.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 684,
                        "end": 692,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Task Description",
                "sec_num": "2.1"
            },
            {
                "text": "Coordination has many unique traits other than its structure. We focus on the key properties between conjuncts that can be helpful to disambiguate a coordination boundary.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conjunct Properties",
                "sec_num": "2.2"
            },
            {
                "text": "(a) Similarity: Conjuncts in a coordination have a similar structure or meaning.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conjunct Properties",
                "sec_num": "2.2"
            },
            {
                "text": "(b) Replaceability: A conjunct can be replaced with another conjunct in the same coordination.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conjunct Properties",
                "sec_num": "2.2"
            },
            {
                "text": "Conjuncts tend to have similar semantic or syntactic constituents. For example, the three conjuncts \"the high level of performance,\" \"the compositional talents of MR. Douglas,\" and \"the obvious sincerity with which Mr. Stolzman chooses his selection\" have part-of-speech (POS) tag sequences starting with \"DT JJ NN(S) IN NN(P) Figure 2 (a) ). Many previous works exploit this characteristic to detect conjuncts (Shimbo and Hara, 2007; Hara et al., 2009) .",
                "cite_spans": [
                    {
                        "start": 411,
                        "end": 434,
                        "text": "(Shimbo and Hara, 2007;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 435,
                        "end": 453,
                        "text": "Hara et al., 2009)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 327,
                        "end": 339,
                        "text": "Figure 2 (a)",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Conjunct Properties",
                "sec_num": "2.2"
            },
            {
                "text": "The replaceability of conjuncts is also often observed. A sentence is still consistent even if one conjunct is replaced with another one. For example, the coordination \"Aside from [the Soviet economic plight] and [talks on cutting (strategic) and (chemical) arms]\" can be transformed into \"Aside from [talks on cutting (chemical) and (strategic) arms] and [the Soviet economic plight]\" by exchanging conjuncts. Using this property, we can expand a coordinate structure as one sentence by one conjunct (Figure 2 (b)). Replaceability has recently been used to capture conjuncts (Ficler and Goldberg, 2016 ).",
                "cite_spans": [
                    {
                        "start": 576,
                        "end": 602,
                        "text": "(Ficler and Goldberg, 2016",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 501,
                        "end": 510,
                        "text": "(Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Conjunct Properties",
                "sec_num": "2.2"
            },
            {
                "text": "The two properties described above are essential clues to identify conjunct spans; however, they are not always available. Coordination sometimes has different types of conjuncts or an ellipsis in conjuncts. For similarity, when conjuncts belong to the S type or are different types of syntactic categories, their semantic and syntactic structures can be apart from each other (e.g., \"[We turned the trading system on]S, and [it did whatever it was programmed to do]S.\" ; \"Bill is [in trouble]PP and [trying to come up with an excuse]VP.\"). For replaceability, when words are omitted in a latter conjunct, we cannot replace one conjunct with another unless we supplement omitted words (e.g., \"[Honeywell's contract totaled $69.7 million], and [IBM's $68.8 million].\"). To cope with the case where there is a lack of similarity or replaceability, our proposed method incorporates both features.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conjunct Properties",
                "sec_num": "2.2"
            },
            {
                "text": "Our proposed model calculates the scores of all possible preconjunct and post-conjunct pairs. Given a sentence x = {x 1 , x 2 , x 3 , . . . , x N } and coordinator word x k , the preconjunct and postconjunct can be written as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Method",
                "sec_num": "3"
            },
            {
                "text": "s 1 = {x i , . . . , x k\u22121 } (1 \u2264 i \u2264 k \u2212 1) and s 2 = {x k+1 , . . . , x j } (k + 1 \u2264 j \u2264 N )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Method",
                "sec_num": "3"
            },
            {
                "text": ", respectively. As we mentioned in Section 2, we fix the end of the preconjunct at k \u2212 1 and the beginning of the post-conjunct at k + 1. Thus, our model learns and predicts a set of spans (i, j), which indicate the two positions of the beginning and end of a coordination. We identify preconjuncts and post-conjuncts by picking the highest scoring pairs as predicted conjunct spans. Figure 3 shows an overview of our neural network architecture. This model consists of four components.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 384,
                        "end": 392,
                        "text": "Figure 3",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Proposed Method",
                "sec_num": "3"
            },
            {
                "text": "Input Layer: Map a sequence of one-hot words and POS tags onto their representations from embeddings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Method",
                "sec_num": "3"
            },
            {
                "text": "RNN Layer: Produce a sequence of sentencelevel representations based on contexts using a bidirectional RNN.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Method",
                "sec_num": "3"
            },
            {
                "text": "Feature Extractor: Generate the conjunct phrase representations and feature vectors of possible pairs of conjuncts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Method",
                "sec_num": "3"
            },
            {
                "text": "Output Layer: Calculate the scores of pairs of conjuncts using MLP.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Method",
                "sec_num": "3"
            },
            {
                "text": "In the following subsections, we describe these components in detail.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proposed Method",
                "sec_num": "3"
            },
            {
                "text": "The first step of our neural network model is to represent a sequence of words and POS tags in distributed vectors, known as embeddings (Bengio et al., 2003) . Our model receives a sequence of one-hot encoded words and POS tags {x word n } N n=1 , {x tag n } N n=1 and then looks them up in the matrices ",
                "cite_spans": [
                    {
                        "start": 136,
                        "end": 157,
                        "text": "(Bengio et al., 2003)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Layer",
                "sec_num": "3.1"
            },
            {
                "text": "E word \u2208 R d word \u00d7|v word | , E tag \u2208 R dtag\u00d7|vtag| , resulting in a sequence of real-valued vectors h word n \u2208 R d , h tag n \u2208 R d ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Layer",
                "sec_num": "3.1"
            },
            {
                "text": "h word t = W word x word t h tag t = W tag x tag t h (0) t = [h word t ; h tag t ] h (0) = h (0) 1 , . . . , h (0) N (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Input Layer",
                "sec_num": "3.1"
            },
            {
                "text": "A sequence of distributed vectors is transformed into hidden state vectors using stacked bidirectional RNNs. Bidirectional RNNs process a time series of inputs from the past to a future direction and from the future to a past direction. We can make use of left-to-right (forward) and rightto-left (backward) contexts using these networks. The output of the -th layer of stacked bidirectional RNNs at a time step t in the forward direction, which is denoted as h f ,t , is computed as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RNN Layer",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "h f ,t = f (h f ,t\u22121 , h \u22121,t )",
                        "eq_num": "(2)"
                    }
                ],
                "section": "RNN Layer",
                "sec_num": "3.2"
            },
            {
                "text": "where h f ,t\u22121 is the hidden state vector of the same layer at the previous time step t \u2212 1 in the same direction and h \u22121,t is the hidden state vector of the previous bidirectional layer at the same time step t. The hidden vector of the -th layer of stacked bidirectional RNNs at a time step t in the backward direction is also computed in the same way. The stacked bidirectional RNNs that we use in this work output hidden state vectors by concatenating the vectors {h f ,t } T t=1 from the forward direction and {h b ,t } T t=1 from the backward direction at each time step t in every layer.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RNN Layer",
                "sec_num": "3.2"
            },
            {
                "text": "In general, an RNN has a function f (\u2022) expressed as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RNN Layer",
                "sec_num": "3.2"
            },
            {
                "text": "f (x t , h t\u22121 ) = g(W x t + U h t\u22121 )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RNN Layer",
                "sec_num": "3.2"
            },
            {
                "text": "where g(\u2022) is an arbitrary nonlinear function such as the hyperbolic tangent tanh(\u2022) or rectified linear unit (ReLU). We use the long short term memory (LSTM) (Hochreiter and Schmidhuber, 1997) as the function f (\u2022) to prevent backpropagated errors from vanishing or exploding, which arise in RNNs (Pascanu et al., 2013) .",
                "cite_spans": [
                    {
                        "start": 159,
                        "end": 193,
                        "text": "(Hochreiter and Schmidhuber, 1997)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 298,
                        "end": 320,
                        "text": "(Pascanu et al., 2013)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RNN Layer",
                "sec_num": "3.2"
            },
            {
                "text": "This component produces a feature vector based on a representation of a preconjunct and postconjunct and a series of vectors {h t } T t=1 from bidirectional RNNs. We compute the preconjunct representation v pre i and post-conjunct v post j using the function g(\u2022). In this work, we define elementwise averaging as the function g(",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Extractor",
                "sec_num": "3.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2022). g(h l:m ) = average h l , h l+1 , . . . , h m\u22121 , h m (3) Thus, v pre i and v post j are expressed as v pre i = g(h i:k\u22121 ) (1 \u2264 i \u2264 k \u2212 1) v post j = g(h k+1:j ) (k + 1 \u2264 j \u2264 N )",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Feature Extractor",
                "sec_num": "3.3"
            },
            {
                "text": "Then v pre i and v post j are fed into the following two feature extraction functions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Feature Extractor",
                "sec_num": "3.3"
            },
            {
                "text": "In order to capture the similarity between the preconjunct and the post-conjunct, the feature vector is computed as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Similarity feature vector",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "f sim (v pre i , v post j ) = |v pre i \u2212 v post j |; v pre i v post j",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Similarity feature vector",
                "sec_num": null
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Similarity feature vector",
                "sec_num": null
            },
            {
                "text": "|v pre i \u2212 v post j",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Similarity feature vector",
                "sec_num": null
            },
            {
                "text": "| is the absolute value of element-wise subtraction, and v pre i v post j is element-wise multiplication. These subtraction and multiplication operations are intended to model the semantic distance and relatedness (Ji and Eisenstein, 2013; Tai et al., 2015; Hashimoto et al., 2016) .",
                "cite_spans": [
                    {
                        "start": 214,
                        "end": 239,
                        "text": "(Ji and Eisenstein, 2013;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 240,
                        "end": 257,
                        "text": "Tai et al., 2015;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 258,
                        "end": 281,
                        "text": "Hashimoto et al., 2016)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Similarity feature vector",
                "sec_num": null
            },
            {
                "text": "We define a feature vector based on the conjunct replaceability as follows.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replaceability feature vector",
                "sec_num": null
            },
            {
                "text": "f repl (h 1:N , i, j, k) = |h i\u22121 h i \u2212 h i\u22121 h k+1 |; |h j h j+1 \u2212 h k\u22121 h j+1 | (6)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replaceability feature vector",
                "sec_num": null
            },
            {
                "text": "where h i\u22121 is the context vector that is linked to the heads of conjuncts and h j+1 is the context vector that is linked to the tails of conjuncts. The first subtraction |h i\u22121 h i \u2212h i\u22121 h k+1 | is the difference between two context-conjunct connections at the beginning of coordination. The second subtraction |h j h j+1 \u2212 h k\u22121 h j+1 | is the difference between two context-conjunct connections at the end of coordination. These distance measures can be interpreted as difficulty in replacing conjuncts. Note that the function f repl (h 1:N , i, j, k) returns a zero vector when i = 0 or j = N .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replaceability feature vector",
                "sec_num": null
            },
            {
                "text": "This layer computes the scores of pairs of conjuncts based on the similarity feature vectors and the replaceability feature vectors. The network is a multilayered perceptron (MLP) that consists of multiple layers of computational units interconnected in a feed-forward way. The score of a preconjunct (i, k \u2212 1) and post-conjunct (k + 1, j) candidate pair is calculated as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Layer",
                "sec_num": "3.4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "Score(i, j) = MLP f sim (v pre i , v post j ); f repl (h 1:N , i, j, k)",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Output Layer",
                "sec_num": "3.4"
            },
            {
                "text": "To cope with the absence of coordination against a coordinator, we also calculate the score for a candidate of NONE. The score NONE is simply computed as the product of a weight vector and the sentence-level representation of the coordinator from the RNN layer.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Layer",
                "sec_num": "3.4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "Score(NONE) = w \u2022 h k + b",
                        "eq_num": "(8)"
                    }
                ],
                "section": "Output Layer",
                "sec_num": "3.4"
            },
            {
                "text": "Using these scoring functions, we assign scores to all possible pairs of conjuncts. Thus, when the length of a sentence is N and a coordinator appears as the k-th word, we obtain (k \u2212 1) \u00d7 (N \u2212 k) + 1 candidates and choose the pair with the best score as the predicted conjuncts with the softmax function. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Output Layer",
                "sec_num": "3.4"
            },
            {
                "text": "The loss function is the negative log-likelihood of the true pair of conjuncts y (k) :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Learning",
                "sec_num": "3.5"
            },
            {
                "text": "J(\u03b8) = \u2212 D d=1 logp \u03b8 (y (d) |x (d) ) + \u03bb 2 \u03b8 2 (10)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Learning",
                "sec_num": "3.5"
            },
            {
                "text": "where D is the number of occurrences of coordinator words in a training dataset, \u03b8 is a set of model parameters, and the hyperparameter \u03bb adjusts the regularization strength. The model parameters are optimized by minimizing the loss using the stochastic gradient descent (SGD).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Learning",
                "sec_num": "3.5"
            },
            {
                "text": "We evaluate our proposed model using the coordination annotated Penn Treebank (Ficler, 2016) and the Genia treebank beta (Kim et al., 2003) . We present the number of occurrences of coordinator words and the number of sentences with coordination in We use the coordination annotated Penn Treebank and divide it into wsj 2-21 as the training set, wsj 22 as the development set, and wsj 23 as the testing set. We use pretrained 200-dimensional word embeddings from the New York Times section in English Gigaword (fifth edition) (Parker et al., 2011) using Word2Vec 4 with its default parameter. For the POS tags, we use 10-way jackknifing using the Stanford POS Tagger (Toutanova et al., 2003) and initialize the 50-dimensional embeddings with the uniform distribution within [\u22121, 1]. We use three-layer bidirectional LSTMs as an RNN layer. The dimensionality of the LSTM hidden vectors in each direction is selected from {400, 600}. Our MLP consists of one hidden layer with ReLU activation, and an output layer. The number of the hidden layer units is selected from {1200, 2400}. The model parameters are optimized by the minibatched SGD with a batch size of 20. The learning rate is automatically tuned by Adam (Kingma and Ba, 2014) . When training, we apply dropout (Srivastava et al., 2014) to the embeddings, input vectors of each LSTM in bidirectional LSTMs (except the first layer), and the hidden layer of the MLP. Dropout ratio is selected from {0.33, 0.50}. We choose the regularization strength \u03bb from {0.0001, 0.0005, 0.001}. We train our model for 50 iterations and choose the model that achieves the best F1 score 5 on the development set and evaluate it with the testing set. We present the final hyperparameters choice in Table 2 .",
                "cite_spans": [
                    {
                        "start": 78,
                        "end": 92,
                        "text": "(Ficler, 2016)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 121,
                        "end": 139,
                        "text": "(Kim et al., 2003)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 526,
                        "end": 547,
                        "text": "(Parker et al., 2011)",
                        "ref_id": null
                    },
                    {
                        "start": 667,
                        "end": 691,
                        "text": "(Toutanova et al., 2003)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 1212,
                        "end": 1233,
                        "text": "(Kingma and Ba, 2014)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1268,
                        "end": 1293,
                        "text": "(Srivastava et al., 2014)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1737,
                        "end": 1744,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "We evaluate our model on the basis of the ability to predict the beginning and end of each co-Parameter Value Dimension of the LSTM hidden vector 600 MLP units in the hidden layer 2400 Dropout ratio (all) 0.50 Regularization term \u03bb 0.0001 Table 2 : The final hyperparameters in the experiment for the Penn Treebank.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 239,
                        "end": 246,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.1.2"
            },
            {
                "text": "ordination (whole) with the precision, recall, and F1 measures. In another setup, we focus on NP coordination 6 . To compare the performance with Ficler and Goldberg (2016) , we also evaluate our model with two conjunct spans that are adjacent to the coordinator (inner), the first and last conjuncts (outer), and all complete conjuncts (exact). Furthermore, in order to investigate the effectiveness of our proposed features, we perform the experiment with a simple baseline model that uses two averaged vectors as features (Eq. 3) and feeds them into the MLP instead of the similarity and replaceability features (Eq. 7).",
                "cite_spans": [
                    {
                        "start": 146,
                        "end": 172,
                        "text": "Ficler and Goldberg (2016)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.1.2"
            },
            {
                "text": "Note that our proposed model learns and predicts the coordinate structure boundaries and not each conjunct; thus, when evaluating the inner, outer, and exact metrics, we simply divide the preconjuncts into subconjuncts using the character \",\" as the divider.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.1.2"
            },
            {
                "text": "We present the results in Table 3 . For all metrics, the recall values are low compared with the precision values. Our model is likely to produce NONE for some coordinators by mistake. The proposed model suffers from a worse outer metric than the inner metric. Intuitively, this is because the preconjunct for the inner prediction is placed next to a coordinator and it is easier to identify its span, while outer conjuncts occur apart from the coordinators. Table 4 summarizes the performance of different uses of features. The similarity and replaceability features work better than the baseline independently. However, the joint model performs the best by exploiting both features. Table 4 : Performance of different sets of features for the PTB development set for the outer metric. \"f sim ,\" \"f repl ,\" and \"Both\" indicate the use of similarity feature vectors, replaceability feature vectors, and both feature vectors, respectively.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 26,
                        "end": 33,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 459,
                        "end": 466,
                        "text": "Table 4",
                        "ref_id": null
                    },
                    {
                        "start": 685,
                        "end": 692,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4.1.3"
            },
            {
                "text": "the previously reported result). For NP coordination, our model achieves competitive results, despite the rough extraction of conjuncts from preconjuncts, even for inner-conjunct prediction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4.1.3"
            },
            {
                "text": "We also evaluate our model with the Genia treebank beta to compare with the previous work of Hara et al. (2009) and Ficler and Goldberg (2016) . The settings of this experiment are based on those presented in Section 4.1.1, except for the following hyperparameters: Word embeddings are initialized by the pretrained 200-dimensional representation that BioASQ (Tsatsaronis et al., 2012) provides. These embeddings are trained from biomedical abstracts by using Word2Vec. We use gold POS as in Hara et al. (2009) , and the dimension of the POS embeddings is 50. For regularization, we set \u03bb = 0.0005 and train our model for 20 iterations.",
                "cite_spans": [
                    {
                        "start": 93,
                        "end": 111,
                        "text": "Hara et al. (2009)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 116,
                        "end": 142,
                        "text": "Ficler and Goldberg (2016)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 359,
                        "end": 385,
                        "text": "(Tsatsaronis et al., 2012)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 492,
                        "end": 510,
                        "text": "Hara et al. (2009)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "4.2.1"
            },
            {
                "text": "As in Hara et al. (2009) , we measure the recall values of coordinate structure boundary prediction, disregarding individual conjunct spans 7 . Thus, we do not decode conjuncts because our model can be compared directly. Coordination phrases in the Table 6 : Recall with Genia treebank beta. The numbers in the columns \"Ficler16\" and \"Hara09\" are taken from their papers; Ficler16 : (Ficler and Goldberg, 2016) ; Hara09 : (Hara et al., 2009) .",
                "cite_spans": [
                    {
                        "start": 6,
                        "end": 24,
                        "text": "Hara et al. (2009)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 383,
                        "end": 410,
                        "text": "(Ficler and Goldberg, 2016)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 422,
                        "end": 441,
                        "text": "(Hara et al., 2009)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 249,
                        "end": 256,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.2.2"
            },
            {
                "text": "Genia treebank are explicitly annotated with a special label (COOD). Making use of this label, we also measure the performance for each type of coordination, as reported in previous work. We evaluate our model by five-fold cross-validation, as in Hara et al. (2009) .",
                "cite_spans": [
                    {
                        "start": 247,
                        "end": 265,
                        "text": "Hara et al. (2009)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metrics",
                "sec_num": "4.2.2"
            },
            {
                "text": "We present the results in Table 6 . For all coordination, our model outperforms the scores reported by Hara et al. (2009) and Ficler and Goldberg (2016) . In the evaluation of each type, our method greatly improves the performance for VP, SBAR, and especially the S type of coordination compared with the similarity-based method of Hara et al. (2009) . Regarding the S type, our results are considerably better than those of Ficler and Goldberg (2016) .",
                "cite_spans": [
                    {
                        "start": 103,
                        "end": 121,
                        "text": "Hara et al. (2009)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 126,
                        "end": 152,
                        "text": "Ficler and Goldberg (2016)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 332,
                        "end": 350,
                        "text": "Hara et al. (2009)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 425,
                        "end": 451,
                        "text": "Ficler and Goldberg (2016)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 26,
                        "end": 33,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4.2.3"
            },
            {
                "text": "As presented in Table 4 , our proposed replaceability feature significantly contributes to the detection of this type of coordination, where only the similarity feature does not work because of a collapse of similarity between conjuncts. The results for NP coordination, which accounts for nearly 65% of all coordination, are fairly good for the Genia corpus; however, the model proposed by Ficler and Goldberg (2016) exhibits better performance than ours for the PTB for the inner metric.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 16,
                        "end": 23,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4.2.3"
            },
            {
                "text": "Approaches using the similarity property between conjuncts have been developed in previous works.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Works",
                "sec_num": "5"
            },
            {
                "text": "Regarding the task of coordination identification in Japanese, Kurohashi and Nagao (1994) used a chart to compute the similarity between conjuncts and identify conjunct spans with a dynamic programming technique. Shimbo and Hara (2007) proposed a sequence alignment model with dynamic programming to capture locally similar structures in two conjuncts on the basis of the set of features including word surfaces, POS tags, and morphological characteristics. The similarity score in their work is computed by a weighted linear combination (perceptron) of manually designed features assigned to edges and nodes in graphs, while the score in the work of Kurohashi and Nagao (1994) is calculated from a score function that uses some rules based on the observation of coordination. Although the method of Shimbo and Hara (2007) could not handle nested coordinate structures, Hara et al. (2009) extended their work to cope with nested coordination as well as three or more than consecutive conjuncts. Their proposed method defined several production rules to build consistent coordination trees with discriminative functions based on the similarity score. Hanamoto (2012) used dual decomposition to combine an HPSG parser with the model of Hara et al. (2009) . The method of use of the replaceability property has recently been adopted by Ficler and Goldberg (2016) . They incorporated the replaceability property between conjuncts into the feature representations, as well as the similarity property. They made use of these properties to assign scores to candidate pairs of conjuncts. Their method consists of three components: a binary classifier to detect the presence of coordination, the parser extended from the Berkeley Parser (Petrov et al., 2006) to generate candidate pairs, and a discriminative neural network to identify conjuncts. As similarity features, they compute the Euclidean distance between the two representations of con-juncts, which are computed from syntactic trees generated by the parser, and this is more efficient with respect to the time complexity compared with the methods with graphs. The replaceability feature vectors are produced from bidirectional LSTMs by processing two sentences that are produced by leaving out one of two conjuncts. Their model then scores all candidate pairs of conjuncts from feature vectors including similarities, replaceabilities, and additional three values derived from the probabilities assigned by the parser. The best scored pair is selected as the most probable conjuncts. For the Genia corpus, their model outperformed the method of Hara et al. (2009) which only relied on the similarity property. Using neural networks, they overcame the problems of manually elaborated features and of access to external sources such as thesauri. However, their method heavily depends on their extension of the Berkeley Parser. Therefore, the problem of error propagation between components and the parser still remains. Kawahara and Kurohashi (2008) tried to resolve coordination disambiguation without any similarities on the basis of the dependency relations and generative probabilities of phrases including conjuncts. Yoshimoto et al. (2015) extended the graph-based dependency parsing algorithm to handle coordinations.",
                "cite_spans": [
                    {
                        "start": 63,
                        "end": 89,
                        "text": "Kurohashi and Nagao (1994)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 213,
                        "end": 235,
                        "text": "Shimbo and Hara (2007)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 651,
                        "end": 677,
                        "text": "Kurohashi and Nagao (1994)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 800,
                        "end": 822,
                        "text": "Shimbo and Hara (2007)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 870,
                        "end": 888,
                        "text": "Hara et al. (2009)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 1234,
                        "end": 1252,
                        "text": "Hara et al. (2009)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 1333,
                        "end": 1359,
                        "text": "Ficler and Goldberg (2016)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1728,
                        "end": 1749,
                        "text": "(Petrov et al., 2006)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 2597,
                        "end": 2615,
                        "text": "Hara et al. (2009)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 2970,
                        "end": 2999,
                        "text": "Kawahara and Kurohashi (2008)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 3172,
                        "end": 3195,
                        "text": "Yoshimoto et al. (2015)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Works",
                "sec_num": "5"
            },
            {
                "text": "We propose a neural network model to disambiguate coordinate structure boundaries. Our method relies on two properties: (i) conjuncts tend to have a similar structure in syntax or semantics and (ii) conjuncts can be replaced with each other, maintaining sentence consistency. On the basis of these observations, we compute two feature vectors from a sequence of vectors produced by bidirectional RNNs. Our model can capture the connections between conjuncts and other parts of sentences and sentence-level coordination. As a result, our model outperforms existing methods and achieves state-of-the-art performance. The biggest contribution of our work is resolving dependency on information from syntactic parsers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "6"
            },
            {
                "text": "We plan to improve our model to handle three or more conjuncts in future work. In addition, since our method treats nested coordinate structures individually, we expect to create constraints to build non-overlapping coordination spans.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "6"
            },
            {
                "text": "We write coordinator words with their position in a sentence in the form of wordposition to distinguish them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "If two or more conjuncts appear before a conjunction, we regard them as one conjunct.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We consider \"and,\" \"or,\" \"but,\" \"nor,\" and \"and/or\" in the PTB and \"and,\" \"or,\" and \"but\" in the Genia as coordinator words followingFicler and Goldberg (2016) andHara et al. (2009).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://code.google.com/archive/p/word2vec/ 5 This F1 score is measured for the whole criterion, which is mentioned later.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "We consider that NP and NX are NP coordination as inFicler and Goldberg (2016).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In the Genia corpus, all coordinator words are associated with conjuncts; thus, there is no absence of coordination, as described inTable 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was partly supported by JST CREST Grant Number JPMJCR1513, Japan. We are grateful to our colleagues in the NAIST Computational Linguistics Laboratory and the anonymous reviewers for their helpful insights and comments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A neural probabilistic language model",
                "authors": [
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    },
                    {
                        "first": "R\u00e9jean",
                        "middle": [],
                        "last": "Ducharme",
                        "suffix": ""
                    },
                    {
                        "first": "Pascal",
                        "middle": [],
                        "last": "Vincent",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Jauvin",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Journal of machine learning research",
                "volume": "3",
                "issue": "",
                "pages": "1137--1155",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoshua Bengio, R\u00e9jean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic lan- guage model. Journal of machine learning research, 3(Feb):1137-1155.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Coordination Annotation Extension in the Penn Tree Bank",
                "authors": [
                    {
                        "first": "Jessica",
                        "middle": [],
                        "last": "Ficler",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016)",
                "volume": "",
                "issue": "",
                "pages": "834--842",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jessica Ficler. 2016. Coordination Annotation Exten- sion in the Penn Tree Bank. Proceedings of the 54th Annual Meeting of the Association for Compu- tational Linguistics (ACL 2016), pages 834-842.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A neural network for coordination boundary prediction",
                "authors": [
                    {
                        "first": "Jessica",
                        "middle": [],
                        "last": "Ficler",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1610.03946"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jessica Ficler and Yoav Goldberg. 2016. A neural net- work for coordination boundary prediction. arXiv preprint arXiv:1610.03946.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Coordination Structure Analysis using Dual Decomposition",
                "authors": [
                    {
                        "first": "Atsushi",
                        "middle": [],
                        "last": "Hanamoto",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "430--438",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Atsushi Hanamoto. 2012. Coordination Structure Analysis using Dual Decomposition. pages 430- 438.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Coordinate Structure Analysis with Global Structural Constraints and Alignment-Based Local Features",
                "authors": [
                    {
                        "first": "Kazuo",
                        "middle": [],
                        "last": "Hara",
                        "suffix": ""
                    },
                    {
                        "first": "Masashi",
                        "middle": [],
                        "last": "Shimbo",
                        "suffix": ""
                    },
                    {
                        "first": "Hideharu",
                        "middle": [],
                        "last": "Okuma",
                        "suffix": ""
                    },
                    {
                        "first": "Yuji",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "1",
                "issue": "",
                "pages": "967--975",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kazuo Hara, Masashi Shimbo, Hideharu Okuma, and Yuji Matsumoto. 2009. Coordinate Structure Analysis with Global Structural Constraints and Alignment-Based Local Features. 1(August):967- 975.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "A joint many-task model: Growing a neural network for multiple nlp tasks",
                "authors": [
                    {
                        "first": "Kazuma",
                        "middle": [],
                        "last": "Hashimoto",
                        "suffix": ""
                    },
                    {
                        "first": "Caiming",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshimasa",
                        "middle": [],
                        "last": "Tsuruoka",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1611.01587"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu- ruoka, and Richard Socher. 2016. A joint many-task model: Growing a neural network for multiple nlp tasks. arXiv preprint arXiv:1611.01587.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Long short-term memory",
                "authors": [
                    {
                        "first": "Sepp",
                        "middle": [],
                        "last": "Hochreiter",
                        "suffix": ""
                    },
                    {
                        "first": "J\u00fcrgen",
                        "middle": [],
                        "last": "Schmidhuber",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Neural computation",
                "volume": "9",
                "issue": "8",
                "pages": "1735--1780",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sepp Hochreiter and J\u00fcrgen Schmidhuber. 1997. Long short-term memory. Neural computation, 9(8):1735-1780.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Discriminative improvements to distributional sentence similarity",
                "authors": [
                    {
                        "first": "Yangfeng",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    },
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Eisenstein",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "EMNLP",
                "volume": "",
                "issue": "",
                "pages": "891--896",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yangfeng Ji and Jacob Eisenstein. 2013. Discrimina- tive improvements to distributional sentence similar- ity. In EMNLP, pages 891-896.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Coordination disambiguation without any similarities",
                "authors": [
                    {
                        "first": "Daisuke",
                        "middle": [],
                        "last": "Kawahara",
                        "suffix": ""
                    },
                    {
                        "first": "Sadao",
                        "middle": [],
                        "last": "Kurohashi",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the 22nd International Conference on Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "425--432",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daisuke Kawahara and Sadao Kurohashi. 2008. Co- ordination disambiguation without any similarities. In Proceedings of the 22nd International Conference on Computational Linguistics-Volume 1, pages 425- 432. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Genia corpusa semantically annotated corpus for bio-textmining",
                "authors": [
                    {
                        "first": "J-D",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "Tomoko",
                        "middle": [],
                        "last": "Ohta",
                        "suffix": ""
                    },
                    {
                        "first": "Yuka",
                        "middle": [],
                        "last": "Tateisi",
                        "suffix": ""
                    },
                    {
                        "first": "Junichi",
                        "middle": [],
                        "last": "Tsujii",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Bioinformatics",
                "volume": "19",
                "issue": "1",
                "pages": "180--182",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J-D Kim, Tomoko Ohta, Yuka Tateisi, and Junichi Tsu- jii. 2003. Genia corpusa semantically annotated cor- pus for bio-textmining. Bioinformatics, 19(suppl 1):i180-i182.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Adam: A method for stochastic optimization",
                "authors": [
                    {
                        "first": "Diederik",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1412.6980"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "A syntactic analysis method of long japanese sentences based on the detection of conjunctive structures",
                "authors": [
                    {
                        "first": "Sadao",
                        "middle": [],
                        "last": "Kurohashi",
                        "suffix": ""
                    },
                    {
                        "first": "Makoto",
                        "middle": [],
                        "last": "Nagao",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Computational Linguistics",
                "volume": "20",
                "issue": "4",
                "pages": "507--534",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sadao Kurohashi and Makoto Nagao. 1994. A syntac- tic analysis method of long japanese sentences based on the detection of conjunctive structures. Compu- tational Linguistics, 20(4):507-534.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "On the difficulty of training recurrent neural networks",
                "authors": [
                    {
                        "first": "Razvan",
                        "middle": [],
                        "last": "Pascanu",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "1310--1318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difficulty of training recurrent neural networks. In International Conference on Machine Learning, pages 1310-1318.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Learning accurate, compact, and interpretable tree annotation",
                "authors": [
                    {
                        "first": "Slav",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    },
                    {
                        "first": "Leon",
                        "middle": [],
                        "last": "Barrett",
                        "suffix": ""
                    },
                    {
                        "first": "Romain",
                        "middle": [],
                        "last": "Thibaux",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "433--440",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. 2006. Learning accurate, compact, and inter- pretable tree annotation. In Proceedings of the 21st International Conference on Computational Lin- guistics and the 44th annual meeting of the Associa- tion for Computational Linguistics, pages 433-440. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A Discriminative Learning Model for Coordinate Conjunctions",
                "authors": [
                    {
                        "first": "Masashi",
                        "middle": [],
                        "last": "Shimbo",
                        "suffix": ""
                    },
                    {
                        "first": "Kazuo",
                        "middle": [],
                        "last": "Hara",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "610--619",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Masashi Shimbo and Kazuo Hara. 2007. A Discrimi- native Learning Model for Coordinate Conjunctions. (June):610-619.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Dropout: a simple way to prevent neural networks from overfitting",
                "authors": [
                    {
                        "first": "Nitish",
                        "middle": [],
                        "last": "Srivastava",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [
                            "E"
                        ],
                        "last": "Hinton",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Krizhevsky",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Journal of Machine Learning Research",
                "volume": "15",
                "issue": "1",
                "pages": "1929--1958",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Re- search, 15(1):1929-1958.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Improved semantic representations from tree-structured long short-term memory networks",
                "authors": [
                    {
                        "first": "Kai Sheng",
                        "middle": [],
                        "last": "Tai",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher D",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1503.00075"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kai Sheng Tai, Richard Socher, and Christopher D Manning. 2015. Improved semantic representations from tree-structured long short-term memory net- works. arXiv preprint arXiv:1503.00075.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Feature-rich part-ofspeech tagging with a cyclic dependency network",
                "authors": [
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "Yoram",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Singer",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 2003 Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology",
                "volume": "1",
                "issue": "",
                "pages": "173--180",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kristina Toutanova, Dan Klein, Christopher D Man- ning, and Yoram Singer. 2003. Feature-rich part-of- speech tagging with a cyclic dependency network. In Proceedings of the 2003 Conference of the North American Chapter of the Association for Computa- tional Linguistics on Human Language Technology- Volume 1, pages 173-180. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Bioasq: A challenge on large-scale biomedical semantic indexing and question answering",
                "authors": [
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Tsatsaronis",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Schroeder",
                        "suffix": ""
                    },
                    {
                        "first": "Georgios",
                        "middle": [],
                        "last": "Paliouras",
                        "suffix": ""
                    },
                    {
                        "first": "Yannis",
                        "middle": [],
                        "last": "Almirantis",
                        "suffix": ""
                    },
                    {
                        "first": "Ion",
                        "middle": [],
                        "last": "Androutsopoulos",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Gaussier",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Gallinari",
                        "suffix": ""
                    },
                    {
                        "first": "Thierry",
                        "middle": [],
                        "last": "Artieres",
                        "suffix": ""
                    },
                    {
                        "first": "Matthias",
                        "middle": [],
                        "last": "Michael R Alvers",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zschunke",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "AAAI fall symposium: Information retrieval and knowledge discovery in biomedical text",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "George Tsatsaronis, Michael Schroeder, Georgios Paliouras, Yannis Almirantis, Ion Androutsopoulos, Eric Gaussier, Patrick Gallinari, Thierry Artieres, Michael R Alvers, Matthias Zschunke, et al. 2012. Bioasq: A challenge on large-scale biomedical se- mantic indexing and question answering. In AAAI fall symposium: Information retrieval and knowl- edge discovery in biomedical text.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Coordination-aware dependency parsing",
                "authors": [
                    {
                        "first": "Akifumi",
                        "middle": [],
                        "last": "Yoshimoto",
                        "suffix": ""
                    },
                    {
                        "first": "Kazuo",
                        "middle": [],
                        "last": "Hara",
                        "suffix": ""
                    },
                    {
                        "first": "Masashi",
                        "middle": [],
                        "last": "Shimbo",
                        "suffix": ""
                    },
                    {
                        "first": "Yuji",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Akifumi Yoshimoto, Kazuo Hara, Masashi Shimbo, and Yuji Matsumoto. 2015. Coordination-aware de- pendency parsing (preliminary report). IWPT 2015, page 66.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "num": null,
                "text": "The coordination identification task and our subtask.",
                "type_str": "figure"
            },
            "FIGREF1": {
                "uris": null,
                "num": null,
                "text": "from [the Soviet economic plight], one other . . . 2. Aside from [talks on cutting (strategic) arms], one other . . . 3. Aside from [talks on cutting (chemical) arms], one other . . . (b) Replaceability Characteristic of conjuncts . . . \" in common. At a phrase level, they all are categorized as NP and have identical tree structures (",
                "type_str": "figure"
            },
            "FIGREF2": {
                "uris": null,
                "num": null,
                "text": "respectively. These realvalued vectors are concatenated as the input of the",
                "type_str": "figure"
            },
            "FIGREF3": {
                "uris": null,
                "num": null,
                "text": "Overview of the architecture for coordination analysis.",
                "type_str": "figure"
            },
            "FIGREF4": {
                "uris": null,
                "num": null,
                "text": "next layer.",
                "type_str": "figure"
            },
            "FIGREF5": {
                "uris": null,
                "num": null,
                "text": "s = [Score(NONE); Score(1, k + 1); . . . ; Score(1, N); . . . ; Score(k \u2212 1, N )] p \u03b8 (y|x) = softmax(s)",
                "type_str": "figure"
            },
            "TABREF1": {
                "content": "<table><tr><td>3 .</td></tr></table>",
                "html": null,
                "text": "",
                "num": null,
                "type_str": "table"
            },
            "TABREF2": {
                "content": "<table><tr><td>: The number of coordinators in the</td></tr><tr><td>datasets. (#count) indicates the number of actual</td></tr><tr><td>presences of coordination.</td></tr><tr><td>4.1 Evaluation Using the Penn Treebank</td></tr><tr><td>4.1.1 Experimental Setup</td></tr></table>",
                "html": null,
                "text": "",
                "num": null,
                "type_str": "table"
            },
            "TABREF3": {
                "content": "<table><tr><td>presents a comparison with existing</td></tr><tr><td>methods. For all coordination, our proposed</td></tr><tr><td>method outperforms the state-of-the-art models</td></tr><tr><td>with a test set F1 score of 72.81 (0.11 better than</td></tr></table>",
                "html": null,
                "text": "72.87 74.36 77.90 75.05 76.45 outer 72.48 69.57 70.99 76.24 73.45 74.82 inner 74.07 71.10 72.56 77.43 74.59 75.99 exact 72.11 69.22 70.63 75.77 72.99 74.35",
                "num": null,
                "type_str": "table"
            },
            "TABREF4": {
                "content": "<table><tr><td/><td/><td>All</td><td/><td/><td>NP</td></tr><tr><td/><td>P</td><td>R</td><td>F</td><td>P</td><td>R</td><td>F</td></tr><tr><td colspan=\"7\">Baseline 70.83 68.75 69.77 74.27 72.87 73.57</td></tr><tr><td>fsim</td><td colspan=\"6\">71.79 69.92 70.84 74.76 73.22 73.98</td></tr><tr><td>f repl</td><td colspan=\"6\">74.29 71.58 72.91 76.12 73.68 74.88</td></tr><tr><td>Both</td><td colspan=\"6\">75.92 72.87 74.36 77.90 75.05 76.45</td></tr></table>",
                "html": null,
                "text": "Performance difference by the metrics for the PTB development set.",
                "num": null,
                "type_str": "table"
            },
            "TABREF5": {
                "content": "<table><tr><td/><td/><td>Dev</td><td/><td/><td>Test</td></tr><tr><td/><td>P</td><td>R</td><td>F</td><td>P</td><td>R</td><td>F</td></tr><tr><td/><td/><td/><td colspan=\"2\">All Coordination</td><td/></tr><tr><td>Berkeley</td><td colspan=\"4\">70.14 NP Coordination</td><td/></tr><tr><td>Berkeley</td><td colspan=\"6\">67.53 70.93 69.18 69.51 72.61 71.02</td></tr><tr><td>Zpar</td><td colspan=\"6\">69.14 72.31 70.68 69.81 72.92 71.33</td></tr><tr><td>Ficler16</td><td colspan=\"6\">75.17 74.82 74.99 76.91 75.31 76.1</td></tr><tr><td>Ours</td><td colspan=\"6\">77.43 74.59 75.99 75.87 74.76 75.31</td></tr></table>",
                "html": null,
                "text": "70.72 70.42 68.52 69.33 68.92 Zpar 72.21 72.72 72.46 68.24 69.42 68.82 Ficler16 72.34 72.25 72.29 72.81 72.61 72.7 Ours 74.07 71.10 72.56 73.46 72.16 72.81",
                "num": null,
                "type_str": "table"
            },
            "TABREF6": {
                "content": "<table><tr><td colspan=\"5\">: Performance of inner-conjunct prediction</td></tr><tr><td colspan=\"5\">on all coordination and on NP coordination for the</td></tr><tr><td colspan=\"5\">PTB. The results for the three methods other than</td></tr><tr><td colspan=\"5\">our method are reported in Ficler16 : (Ficler and</td></tr><tr><td colspan=\"2\">Goldberg, 2016).</td><td/><td/><td/></tr><tr><td>COOD</td><td>#</td><td>Ours</td><td>Ficler16</td><td>Hara09</td></tr><tr><td>Overall</td><td>3598</td><td>65.98</td><td>64.14</td><td>61.5</td></tr><tr><td>NP</td><td>2317</td><td>66.59</td><td>65.08</td><td>64.2</td></tr><tr><td>VP</td><td>465</td><td>63.87</td><td>71.82</td><td>54.2</td></tr><tr><td>ADJP</td><td>321</td><td>78.50</td><td>74.76</td><td>80.4</td></tr><tr><td>S</td><td>188</td><td>52.65</td><td>17.02</td><td>22.9</td></tr><tr><td>PP</td><td>167</td><td>53.89</td><td>56.28</td><td>59.9</td></tr><tr><td>UCP</td><td>60</td><td>50.00</td><td>51.66</td><td>36.7</td></tr><tr><td>SBAR</td><td>56</td><td>78.57</td><td>91.07</td><td>51.8</td></tr><tr><td>ADVP</td><td>21</td><td>85.71</td><td>80.95</td><td>85.7</td></tr><tr><td>Others</td><td>3</td><td>33.33</td><td>33.33</td><td>66.7</td></tr></table>",
                "html": null,
                "text": "",
                "num": null,
                "type_str": "table"
            }
        }
    }
}