File size: 103,611 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 |
{
"paper_id": "I13-1043",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:13:49.305331Z"
},
"title": "Readability Indices for Automatic Evaluation of Text Simplification Systems: A Feasibility Study for Spanish",
"authors": [
{
"first": "Horacio",
"middle": [],
"last": "Saggion",
"suffix": "",
"affiliation": {
"laboratory": "Sanja\u0160tajner Research Group",
"institution": "Computational Linguistics University of Wolverhampton",
"location": {
"country": "UK"
}
},
"email": "horacio.saggion@upf.edu"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "This paper addresses the problem of automatic evaluation of text simplification systems for Spanish. We test whether already-existing readability formulae would be suitable for this task. We adapt three existing readability indices (two measuring lexical complexity and one measuring syntactic complexity) to be computed automatically, which are then applied to a corpus of original news texts and their manual simplifications aimed at people with cognitive disabilities. We show that there is a significant correlation between each of the three readability indices and several linguistically motivated features which might be seen as reading obstacles for various target populations. Furthermore, we show that there is a significant correlation between the two readability indices which measure lexical complexity.",
"pdf_parse": {
"paper_id": "I13-1043",
"_pdf_hash": "",
"abstract": [
{
"text": "This paper addresses the problem of automatic evaluation of text simplification systems for Spanish. We test whether already-existing readability formulae would be suitable for this task. We adapt three existing readability indices (two measuring lexical complexity and one measuring syntactic complexity) to be computed automatically, which are then applied to a corpus of original news texts and their manual simplifications aimed at people with cognitive disabilities. We show that there is a significant correlation between each of the three readability indices and several linguistically motivated features which might be seen as reading obstacles for various target populations. Furthermore, we show that there is a significant correlation between the two readability indices which measure lexical complexity.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "In recent years, there has been growing effort to simplify written material and make it equally accessible to everyone. Various studies indicate that lexically and syntactically complex texts can be very difficult for non-native speakers and people with various reading impairments (e.g. autistic, aphasic, dyslexic or deaf people). Aphasic people, for instance, may encounter problems with less frequent words and some particular sentence constructions (Devlin, 1999) . They also have problems in understanding syntactic constructions which do not follow the canonical subject-verbobject structure (e.g. passive constructions), and especially those sentences which are semantically reversible, e.g. \"The boy was kissed by the girl\" (Carroll et al., 1999) . Additionally, aphasic readers may have additional problems with comprehending newswire texts which have some genre-specific characteristics. These types of texts tend to use long sentences, noun compounds and long sequences of adjectives, e.g. \"Twentyfive-year-old blonde-haired mother-of-two Jane Smith\" (Carroll et al., 1999) . People with intellectual disabilities have problem with both lexically and syntactically complex texts, as well as with processing and loading large amounts of information (Feng, 2009) .",
"cite_spans": [
{
"start": 454,
"end": 468,
"text": "(Devlin, 1999)",
"ref_id": "BIBREF9"
},
{
"start": 733,
"end": 755,
"text": "(Carroll et al., 1999)",
"ref_id": "BIBREF5"
},
{
"start": 1063,
"end": 1085,
"text": "(Carroll et al., 1999)",
"ref_id": "BIBREF5"
},
{
"start": 1260,
"end": 1272,
"text": "(Feng, 2009)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Since the late nineties, several initiatives which proposed guidelines for producing plain, easyto-read and more accessible documents have emerged, e.g. \"The Plain Language Action and Information Network (PLAIN)\" 1 , \"Make it Simple, European Guidelines for the Production of Easy-to-Read Information for people with Learning Disability\" (Freyhoff et al., 1998) , \"Am I making myself clear? Mencap's guidelines for accessible writing\" 2 , and \"Web content accessibility guidelines\" 3 . All these guidelines share similar instructions for accessible writing, some of them more detailed than others. They all advise the writer to use the active voice instead of passive, use the simplest form of a verb (present and not conditional or future), avoid hidden verbs (i.e. verbs converted into a noun), use short, simple words and omit unnecessary words, write short sentences and cover only one main idea per sentence, etc.",
"cite_spans": [
{
"start": 338,
"end": 361,
"text": "(Freyhoff et al., 1998)",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Armed with these guidelines and the aim of making written documents equally accessible to everyone, many attempts have been made to completely or at least partially automate the process of text simplification, which is very expensive and time-consuming when performed manually. So far, text simplification systems have been devel-oped for English (Zhu et al., 2010; Coster and Kauchak, 2011; Woodsend and Lapata, 2011; Wubben et al., 2012) , Spanish (Saggion et al., 2011) , and Portuguese (Alu\u00edsio et al., 2008) , with recent attempts at Basque (Aranzabe et al., 2012) , Swedish (Rybing et al., 2010) , and Dutch (Ruiter et al., 2010) . With the emergence of these systems, the question we are faced with is how to automatically evaluate their performance given that the access to the target users might be difficult.",
"cite_spans": [
{
"start": 347,
"end": 365,
"text": "(Zhu et al., 2010;",
"ref_id": "BIBREF31"
},
{
"start": 366,
"end": 391,
"text": "Coster and Kauchak, 2011;",
"ref_id": "BIBREF7"
},
{
"start": 392,
"end": 418,
"text": "Woodsend and Lapata, 2011;",
"ref_id": "BIBREF29"
},
{
"start": 419,
"end": 439,
"text": "Wubben et al., 2012)",
"ref_id": "BIBREF30"
},
{
"start": 450,
"end": 472,
"text": "(Saggion et al., 2011)",
"ref_id": "BIBREF22"
},
{
"start": 490,
"end": 512,
"text": "(Alu\u00edsio et al., 2008)",
"ref_id": "BIBREF0"
},
{
"start": 546,
"end": 569,
"text": "(Aranzabe et al., 2012)",
"ref_id": "BIBREF2"
},
{
"start": 580,
"end": 601,
"text": "(Rybing et al., 2010)",
"ref_id": "BIBREF21"
},
{
"start": 614,
"end": 635,
"text": "(Ruiter et al., 2010)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "This study is an attempt to address this issue. We focus on text simplification systems for Spanish and investigate whether some of the already existing readability indices could be used for the automatic evaluation of these systems. Using a corpus of original news texts and their manual simplifications which followed specific guidelines for writing for people with cognitive disabilities, we show that two lexical complexity indices -one suggested by Anula (2007) , and other by Spaulding (1956) -are highly correlated in both these text sets. Furthermore, we show that both these indices and the third readability index concerned with syntactic complexity (Anula, 2007) could be used for automatic evaluation of text simplification systems, as each index is correlated with some subset of the linguistically motivated complexity features considered as obstacles for people with different reading impairments.",
"cite_spans": [
{
"start": 454,
"end": 466,
"text": "Anula (2007)",
"ref_id": "BIBREF1"
},
{
"start": 660,
"end": 673,
"text": "(Anula, 2007)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The remainder of the article is structured as follows: Section 2 presents the most important previous work on readability prediction and linguistically motivated complexity features considered as obstacles for people with different reading difficulties; Section 3 describes the corpora, features, and readability indices used in this study; Section 4 presents and discusses the results of analysis of three chosen readability indices, twelve linguistically motivated complexity features, and their mutual correlation; while Section 5 concludes the article by summarising the main contributions and proposing possible directions for future work.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Since the 1950s, over 200 readability formulae have been developed (for the English language), with over 1000 studies of their application (DuBay, 2004) . Initially, they were used to assess the grade level of textbooks. Later, they were adapted to different domains and purposes, e.g. to measure readability of technical manuals (Automated Readability Index (Smith and Senter, 1967) ), or US healthcare documents intended for the general public (the SMOG grading (McLaughlin, 1969) ). Some of these first readability formulae are still widely in use, given their simplicity (they require only the average sentence and word length) and good correlation with the reading tests. One of the most used readability formulae -the Flesch Reading Ease score (Flesch, 1949) -for example, \"correlates .70 with the 1925 McCall-Crabbs reading test and .64 with the 1950 version of the same test\" (DuBay, 2004) . Another set of readability formulae are those which depend on average sentence length and the percentage of words which cannot be found on a list of the \"easiest\" words, e.g. the Dale-Chall readability formulae (Dale and Chall, 1948) . These formulae have been adapted to other languages by changing the coefficient before the factors (e.g. the Flesch-Douma (Douma, 1960) and Leesindex Brouwer (Brouwer, 1963) formulae for Dutch represent the adaptations of the Flesch Reading Ease score, while Spaulding's Spanish readability formula (Spaulding, 1956 ) could be seen as an adaptation of the Dale-Chall formula (Dale and Chall, 1948) ). Oosten et al. 2010showed that readability formulae which are solely based on superficial text characteristics (average sentence and word length) seem to be strongly correlated even across different languages (English, Dutch, and Swedish).",
"cite_spans": [
{
"start": 139,
"end": 152,
"text": "(DuBay, 2004)",
"ref_id": "BIBREF12"
},
{
"start": 359,
"end": 383,
"text": "(Smith and Senter, 1967)",
"ref_id": "BIBREF24"
},
{
"start": 464,
"end": 482,
"text": "(McLaughlin, 1969)",
"ref_id": "BIBREF18"
},
{
"start": 750,
"end": 764,
"text": "(Flesch, 1949)",
"ref_id": "BIBREF15"
},
{
"start": 884,
"end": 897,
"text": "(DuBay, 2004)",
"ref_id": "BIBREF12"
},
{
"start": 1111,
"end": 1133,
"text": "(Dale and Chall, 1948)",
"ref_id": "BIBREF8"
},
{
"start": 1258,
"end": 1271,
"text": "(Douma, 1960)",
"ref_id": "BIBREF10"
},
{
"start": 1294,
"end": 1309,
"text": "(Brouwer, 1963)",
"ref_id": "BIBREF4"
},
{
"start": 1435,
"end": 1451,
"text": "(Spaulding, 1956",
"ref_id": null
},
{
"start": 1511,
"end": 1533,
"text": "(Dale and Chall, 1948)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "With the recent advances of natural language processing (NLP) tools and techniques, new approaches to readability assessment have emerged. Schwarm and Ostendorf (2005) , and Petersen and Ostendorf (2009) , used statistical language modeling and support vector machines to show that more complex features (e.g. average height of the parse tree, average number of noun and verb phrases, etc.) give better readability prediction than the traditional Flesch-Kincaid readability formula. They based their approach on the texts from Weekly Reader 4 , and two smaller corpora: Encyclopedia Britannica and Britannica Elementary (Barzilay and Elhadad, 2003) , and CNN news stories and their abridged vesions 5 . introduced some new cognitively motivated features which should improve automatic readability assessment of texts for people with cognitive dis-abilities. In addition to three previously used corpora (Weekly Reader, Britannica, and CNN news stories) aimed at second language learners or children, used a corpus of local news articles which were simplified by human editors in order to make them more accessible for people with mild intellectual disabilities (MID). The texts were further rated for readability by people with MID. The study showed that their newly introduced cognitively motivated features (e.g. entity mentions, lexical chains, etc.) are better correlated with the user-study comprehension than the Flesch-Kincaid Grade Level index (Kincaid et al., 1975) .",
"cite_spans": [
{
"start": 139,
"end": 167,
"text": "Schwarm and Ostendorf (2005)",
"ref_id": "BIBREF23"
},
{
"start": 174,
"end": 203,
"text": "Petersen and Ostendorf (2009)",
"ref_id": "BIBREF19"
},
{
"start": 620,
"end": 648,
"text": "(Barzilay and Elhadad, 2003)",
"ref_id": "BIBREF3"
},
{
"start": 1452,
"end": 1474,
"text": "(Kincaid et al., 1975)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Stajner et al. 2012stated that many features which could be automatically extracted from a parser's output can indicate the occurrence of the obstacles to reading comprehension faced by people with autism. The authors referred to the syntactic concept of the projection principle (Chomsky, 1986) that \"lexical structure must be represented categorically at every syntactic level\" which implies \"that the number of noun phrases in a sentence is proportional to the number of nouns in that sentence, the number of verbs in a sentence is related to the number of clauses and verb phrases, etc.\" (\u0160tajner et al., 2012) . Therefore, they automatically extracted nine features which account for indicators of structural complexity (nouns, adjectives, determiners, adverbs, verbs, infinitive markers, coordinating conjunctions, subordinating conjunctions, and prepositions), and three which account for indicators of ambiguity in meaning (pronouns, definite descriptions, and word senses). \u0160tajner et al. (2012) showed that many of these features are significantly correlated with the Flesch Reading Ease score (Flesch, 1949) . Given that all of the reading obstacles for people with autism (\u0160tajner et al., 2012) would also be difficult to understand for people with cognitive disabilities (Freyhoff et al., 1998; Feng, 2009) , we believe that these features (Section 3.3) could also be a good measure of complexity reduction achieved in a text simplification system.",
"cite_spans": [
{
"start": 592,
"end": 614,
"text": "(\u0160tajner et al., 2012)",
"ref_id": null
},
{
"start": 983,
"end": 1004,
"text": "\u0160tajner et al. (2012)",
"ref_id": null
},
{
"start": 1104,
"end": 1118,
"text": "(Flesch, 1949)",
"ref_id": "BIBREF15"
},
{
"start": 1184,
"end": 1206,
"text": "(\u0160tajner et al., 2012)",
"ref_id": null
},
{
"start": 1284,
"end": 1307,
"text": "(Freyhoff et al., 1998;",
"ref_id": "BIBREF16"
},
{
"start": 1308,
"end": 1319,
"text": "Feng, 2009)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Motivated by the study of\u0160tajner et al. (2012), we wanted to explore how these features are correlated with the existing readability formulae (this time for Spanish instead of English). These formulae were not initially intended to be used for the evaluation of text simplification systems but rather to measure the grade level necessary to understand a given text. Therefore, we wanted to establish whether those readability indices could be used in an automatic evaluation of text simplification systems. To the best of our knowledge, this is the first study of this type for Spanish. Unlike the study of\u0160tajner et al. 2012which uses the Simple Wikipedia 6 as an example of simplified texts (which do not comply totally with easyto-read guidelines for people with cognitive disabilities, but are rather intended for a much wider audience), our study uses the original news texts and their manual simplifications aimed at people with cognitive disabilities, following specifically tailored easy-to-read guidelines for this target population (Section 3).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "The corpora, readability indices and linguistically motivated complexity features used in this study are presented in the next three subsections.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Methodology",
"sec_num": "3"
},
{
"text": "We first compared all features and readability measures on a parallel corpus of original and manually simplified texts (Table 1) in order to investigate whether these complexity measures differ significantly on these two types of texts, thus justifying the idea to use them to measure the degree of the performed simplification. The corpus contains 200 original news articles in Spanish (provided by the Spanish news agency Servimedia 7 ) and their manually simplified versions. Simplification was done by trained human editors, familiar with the particular needs of a person with cognitive disabilities and following a series of easy-to-read guidelines suggested by Anula (2007) , as a part of the Simplext project 8 (Saggion et al., 2011) . The simplification operations applied by human editors could be classified in the following four categories (Drndarevic et al., 2013) :",
"cite_spans": [
{
"start": 667,
"end": 679,
"text": "Anula (2007)",
"ref_id": "BIBREF1"
},
{
"start": 718,
"end": 740,
"text": "(Saggion et al., 2011)",
"ref_id": "BIBREF22"
},
{
"start": 851,
"end": 876,
"text": "(Drndarevic et al., 2013)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [
{
"start": 119,
"end": 128,
"text": "(Table 1)",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "Corpora",
"sec_num": "3.1"
},
{
"text": "1. Syntactic operations: changes applied at the sentence level, such as sentence splitting or quotation inversion.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Corpora",
"sec_num": "3.1"
},
{
"text": "2. Lexical operations: infrequent, long or technical terms are substituted with their simpler synonyms, and certain expressions are paraphrased or otherwise modified.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Corpora",
"sec_num": "3.1"
},
{
"text": "3. Content reduction: a significant portion of original content is eliminated through summarisation and paraphrases, in accordance with the guidelines that indicate that only the most essential piece of information should be preserved.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Corpora",
"sec_num": "3.1"
},
{
"text": "4. Clarification: certain complex terms and concepts, for which no synonym can be found, are explained by means of a definition.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Corpora",
"sec_num": "3.1"
},
{
"text": "In this study, we focused on three readability formulae for Spanish: two concerned with the lexical complexity of the text -LC (Anula, 2007) and SSR (Spaulding, 1956) ; and the third one concerned with the syntactic complexity of the given text -SCI (Anula, 2007) . The Spaulding's Spanish Readability index (SSR) has been used for assessing the reading difficulty of fundamental education materials for Latin American adults of limited reading ability and for the evaluation of text passages of the foreign language tests (Spaulding, 1956) . It predicts the relative difficulty of reading material based on the vocabulary and sentence structure, using the following formula:",
"cite_spans": [
{
"start": 127,
"end": 140,
"text": "(Anula, 2007)",
"ref_id": "BIBREF1"
},
{
"start": 149,
"end": 166,
"text": "(Spaulding, 1956)",
"ref_id": null
},
{
"start": 250,
"end": 263,
"text": "(Anula, 2007)",
"ref_id": "BIBREF1"
},
{
"start": 523,
"end": 540,
"text": "(Spaulding, 1956)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "SSR = 1.609 \u00d7 |w| |s| + 331.8 \u00d7 |rw| |w| + 22.0",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "Here, |w| and |s| denote the number of words and sentences in the text, while |rw| denotes the number of rare words in the text. According to Spaulding (1956) , rare words are those words which cannot be found on the list of 1500 most common Spanish words provided in the same study 9 . Given that the SSR index was used for assessing the reading difficulty of the materials 9 Detailed instructions on what should be considered as a rare word (e.g. special cases of numbers, names of months and days, proper and geographic names, initials, diminutives and augmentatives, etc.) can be found in (Spaulding, 1956 ). Here we do not apply rules (a)-(g) specified in (Spaulding, 1956) .",
"cite_spans": [
{
"start": 142,
"end": 158,
"text": "Spaulding (1956)",
"ref_id": null
},
{
"start": 375,
"end": 376,
"text": "9",
"ref_id": null
},
{
"start": 593,
"end": 609,
"text": "(Spaulding, 1956",
"ref_id": null
},
{
"start": 661,
"end": 678,
"text": "(Spaulding, 1956)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "aimed at adults of limited reading ability, it is reasonable to expect that this formula could be used for estimating the level of simplification performed by text simplification systems aimed at making texts more accessible for this target population.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "The Lexical Complexity index (LC) was suggested by Anula (2007) as a measure of lexical complexity of literary texts aimed at the second language learners. It is calculated using the following formula:",
"cite_spans": [
{
"start": 51,
"end": 63,
"text": "Anula (2007)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "LC = LDI + ILF W 2",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "where LDI and ILFW represent the Lexical Density Index and Index of Low-Frequency Words, respectively:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "LDI = |dcw| |s| , ILF W = |lf w| |cw| \u00d7 100",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "Here, |dcw|, |s|, |lfw|, and |cw| denote the number of distinct content words, sentences, lowfrequency words, and content words (nouns, adjectives, verbs, and adverbs), respectively. Anula (2007) considers as low frequency words those words whose frequency rank in the Referential Corpus of Contemporary Spanish 10 is lower than 1,000. 11 The Sentence Complexity Index (SCI) was proposed by Anula (2007) as a measure of sentence complexity in a literary text aimed at second language learners. It is calculated by the following formula:",
"cite_spans": [
{
"start": 336,
"end": 338,
"text": "11",
"ref_id": null
},
{
"start": 391,
"end": 403,
"text": "Anula (2007)",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "SCI = ASL + ICS 2",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "where ASL denotes the average sentence length, and ICS denotes the index of complex sentences. They are calculated as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "ASL = |w| |s| , ICS = |cs| |s| \u00d7 100",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "10 http://corpus.rae.es/lfrecuencias.html 11 Both lists (from Referential Corpus of Contemporary Spanish and the Spaulding's list of 1500 most common Spanish words) were lemmatised using Connexor's parser in order to retrieve the frequency of the lemma and not a word form (action carried out manually in the two cited works).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "Here, |w|, |s|, and |cs| denote the number of words, sentences and complex sentences in the text, respectively. 12",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Readability Indices",
"sec_num": "3.2"
},
{
"text": "Inspired by the work of\u0160tajner et al. 2012, and easy-to-read guidelines for writing for people with cognitive disabilities (Freyhoff et al., 1998) , this study employs twelve linguistically motivated complexity features (Table 2) . The first nine features (1-9) are indicators of structural complexity and the final three features (10-12) are indicators of ambiguity in meaning. The corpora were parsed with the Connexor's Machinese parser 13 and the features 1-10 (Table 2) were automatically extracted using the parser's output. Features 11 and 12 were extracted using two lexical resources -the Spanish Open Thesaurus (version 2) 14 and the Spanish EuroWord-Net (Vossen, 1998) . The Spanish Open Thesaurus lists 21,831 target words (lemmas) and provides a list of word senses for each word. Each word sense is, in turn, a list of substitute words. There is a total of 44,353 such word senses. The Spanish part of EuroWordNet is far more exhaustive containing 50,526 word meanings and 23,370 synsets. For computation of measures related to word sentences we only considered the lemmas present in the lexical resources used. For each text we com- 12 We consider a complex sentence one that contains multiple finite predicates according to the output of Connexor's Machinese parser.",
"cite_spans": [
{
"start": 123,
"end": 146,
"text": "(Freyhoff et al., 1998)",
"ref_id": "BIBREF16"
},
{
"start": 666,
"end": 680,
"text": "(Vossen, 1998)",
"ref_id": null
},
{
"start": 1149,
"end": 1151,
"text": "12",
"ref_id": null
}
],
"ref_spans": [
{
"start": 220,
"end": 229,
"text": "(Table 2)",
"ref_id": "TABREF1"
},
{
"start": 465,
"end": 475,
"text": "(Table 2)",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Linguistically Motivated Complexity Features",
"sec_num": "3.3"
},
{
"text": "13 www.connexor.eu 14 http://openthes-es.berlios.de/ pute the average number of senses per word (code Sens, Table 2 ) as well as the percentage of ambiguous words in the text (code Amb, Table 2 ) producing two measures for each lexical resource used (SensWN, SensOT, AmbWN, AmbOT, Section 4).",
"cite_spans": [],
"ref_spans": [
{
"start": 108,
"end": 115,
"text": "Table 2",
"ref_id": "TABREF1"
},
{
"start": 186,
"end": 193,
"text": "Table 2",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Linguistically Motivated Complexity Features",
"sec_num": "3.3"
},
{
"text": "In the computation we consider all occurrences of lemmas including repeated lemmas.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Linguistically Motivated Complexity Features",
"sec_num": "3.3"
},
{
"text": "The results of the analysis of readability indices on the corpora and their mutual correlation are presented in Section 4.1, and the results of the analysis of linguistically motivated complexity features are presented in Section 4.2, while their correlation with the readability indices is presented and discussed in Section 4.3.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results and Discussion",
"sec_num": "4"
},
{
"text": "The results of the comparison of readability indices across the corpora are given in Table 3 . Columns 'Original' and 'Simple' contain the mean value of the corresponding readability indices in each of the two corpora, while the column 'Rel.diff.' contain the mean value of the relative differences between the text pairs (original and simplified). Column 'Sign.' presents the level of significance at which the differences between the two corpora are statistically significant. For the indices which follow approximately normal distribution, this column contains the result of the paired t-test. For those which do not follow normal distribution, it contains the result of the alternative non-parametric test -the Wilcoxon signedrank test. All tests of normality and statistical significance were performed in SPSS. The results presented in Table 3 clearly demonstrate that there is a significant difference between the original and manually simplified texts for all three readability indices. The text pairs show an average relative difference of almost 40% for LC and about 30% for SSR and SCI, thus justifying the idea that those readability indices might be used in an automatic evaluation of text simplifica- The correlations between each pair of readability indices (LC-SSR, LC-SCI, and SSR-SCI), calculated using both corpora, are given in Table 4 . All correlations which were reported as statistically significant at a 0.001 level of significance are presented in bold. As expected, the two readability indices concerned with the lexical complexity (LC and SSR) are significantly correlated, while the third one concerned with the syntactic complexity (SCI) is not significantly correlated with any of the other two (LC and SSR). The linear correlation between LC and SSR (measured by the Pearson's coefficient) is, however, much less strong than the one among the four readability indices for English: Flesch Reading Ease, Flesch-Kincaid, Fog and SMOG, reported by\u0160tajner et al. (2012) . ",
"cite_spans": [
{
"start": 1935,
"end": 1997,
"text": "Flesch-Kincaid, Fog and SMOG, reported by\u0160tajner et al. (2012)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 85,
"end": 92,
"text": "Table 3",
"ref_id": "TABREF2"
},
{
"start": 842,
"end": 849,
"text": "Table 3",
"ref_id": "TABREF2"
},
{
"start": 1348,
"end": 1356,
"text": "Table 4",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Analysis of Readability Indices",
"sec_num": "4.1"
},
{
"text": "Occurrences of each feature which is an indicator of structural complexity, and prepositions (Prep)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Analysis of Linguistically Motivated Complexity Features",
"sec_num": "4.2"
},
{
"text": "were calculated as number of occurrences per 100 words. Average number of senses per word and percentage of ambiguous words in text were calculated in two different ways -using the Spanish EuroWordNet (SenseWN and AmbWN) and using the Spanish Open Thesaurus (SenseOT and Am-bOT). The results of the analysis are presented in Table 5 , using the same notation as in the case of readability indices in Table 3 . The results in Table 5 show that the number of occurrences (per 100 words) of nouns does not differ significantly between the two corpora. Simplified texts have significantly lower number of occurrences (per 100 words) of adjectives, prepositions and coordinating conjunctions. This could be interpreted as an indication of omitting unnecessary information (adjectives), removing/resolving syntactic ambiguity and complexity (prepositions) and sentence splitting (coordinating conjunctions) in the process of simplification. The increased percentage of verbs might be a reflection of omitting It is interesting to note that both the average number of senses per word and the percentage of ambiguous words are higher in simplified than in original texts, using both sources (EuroWordNet and Open Thesaurus). One possible explanation (which would have to be explored further) is that the shorter and more commonly used words are more ambiguous than the original words which they substituted in the process of simplification.",
"cite_spans": [],
"ref_spans": [
{
"start": 325,
"end": 332,
"text": "Table 5",
"ref_id": "TABREF4"
},
{
"start": 400,
"end": 407,
"text": "Table 3",
"ref_id": "TABREF2"
},
{
"start": 425,
"end": 432,
"text": "Table 5",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Analysis of Linguistically Motivated Complexity Features",
"sec_num": "4.2"
},
{
"text": "The Spearman's rho coefficient of correlation between readability indices and the twelve linguistically motivated complexity features is given in Table 6 (for original texts) and in Table 7 (for simplified texts). Correlations which are significant at a 0.001 level of significance (2-tailed) are presented in bold, while those which are significant at a 0.05 but not at a 0.001 level of significance are presented in bold with an '*' preceding. Other correlations are not statistically significant. From the results presented in Table 6 and Table 7 it can be noted that each of the readability indices is significantly correlated with several linguistically motivated complexity features. LC is, for example, positively correlated with occurrences of nouns (N) and negatively correlated with occurrences of adjectives (Adj) in both corpora. SSR These results indicate that there is no one readability index which correlates significantly with all of the linguistically motivated complexity features. However, it seems that they complement each other well as each one of them is significantly correlated with a different subset of features. Each of these three readability indices could, therefore, be seen as a measure of a different kind of complexity reduction performed by a text simplification system and thus be used in an automatic evaluation of a text simplification system. That automatic evaluation would, of course, account only for measuring the complexity reduction performed by the system, while a human-oriented evaluation would be needed for assessing the preservation of meaning and grammaticality of the simplified text generated by the system (Drndarevic et al., 2013) .",
"cite_spans": [
{
"start": 1663,
"end": 1688,
"text": "(Drndarevic et al., 2013)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [
{
"start": 146,
"end": 153,
"text": "Table 6",
"ref_id": "TABREF5"
},
{
"start": 182,
"end": 189,
"text": "Table 7",
"ref_id": "TABREF6"
},
{
"start": 530,
"end": 550,
"text": "Table 6 and Table 7",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Correlation between Readability Indices and Complexity Features",
"sec_num": "4.3"
},
{
"text": "The results presented in this study revealed that there are significant differences between the val-ues of the three readability indices (LC, SSR, and SCI) applied to the corpus of original news texts and the same applied to manually simplified versions of those texts (aimed at people with cognitive disabilities). Another set of experiments indicated that the two corpora also significantly differ in all but one of the twelve linguistically motivated complexity features.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Future Work",
"sec_num": "5"
},
{
"text": "The study also revealed that the two readability indices which measure lexical complexity of a given text are highly correlated. It also showed that each of the three readability indices (LC, SSR and SCI) significantly correlates with several linguistically motivated complexity features in both corpora. Each of them could thus be used in an automatic evaluation of a text simplification system, each measuring a different kind of complexity reduction performed. Furthermore, it seems that those three readability indices complement each other very well in terms of their correlation with different complexity features. Therefore, it might be possible to find some combination of all three of them which could be used as a single measure in an automatic evaluation of text simplification systems.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Future Work",
"sec_num": "5"
},
{
"text": "The search for this ideal combination will be one of the directions of our future work. We also plan to repeat all these experiments on a different set of texts, this time aimed at a different target population, in order to see whether these readability indices show the same properties for texts simplified in a different manner, i.e. whether they could be used in automatic evaluation of any text simplification system. Furthermore, we wish to apply these indices on texts which were automatically simplified. We would like to explore how well the conclusions drawn based on differences of readability indices between original and automatically simplified texts correlate with human judgments of the level of simplification performed.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions and Future Work",
"sec_num": "5"
},
{
"text": "http://www.plainlanguage.gov/ 2 http://november5th.net/resources/Mencap/Making-Myself-Clear.pdf 3 http://www.w3.org/TR/WCAG20/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://www.weeklyreader.com/ 5 http://literacynet.org/cnnsf/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://simple.wikipedia.org 7 http://www.servimedia.es 8 http://www.simplext.es/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "This work is partially supported by an Advanced Research Fellowship from Programa Ram\u00f3n y Cajal (RYC-2009-04291) and by the project SKATER: Scenario Knowledge Acquisition -Knowledge-based Concise Summarization (TIN2012-38584-C06-03) , Ministerio de Econom\u00eda y Competitividad, Secretaria de Estado de Investigaci\u00f3n, Desarrollo e Innovaci\u00f3n, Spain.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgements",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "A corpus analysis of simple account texts and the proposal of simplification strategies: first steps towards text simplification systems",
"authors": [
{
"first": "M",
"middle": [],
"last": "Alu\u00edsio",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Specia",
"suffix": ""
},
{
"first": "T",
"middle": [
"A S"
],
"last": "Pardo",
"suffix": ""
},
{
"first": "E",
"middle": [
"G"
],
"last": "Maziero",
"suffix": ""
},
{
"first": "H",
"middle": [
"M"
],
"last": "Caseli",
"suffix": ""
},
{
"first": "R",
"middle": [
"P M"
],
"last": "Fortes",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the 26th annual ACM international conference on Design of communication, SIGDOC '08",
"volume": "",
"issue": "",
"pages": "15--22",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Alu\u00edsio, L. Specia, T. A. S. Pardo, E. G. Maziero, H. M. Caseli, and R. P. M. Fortes. 2008. A cor- pus analysis of simple account texts and the pro- posal of simplification strategies: first steps towards text simplification systems. In Proceedings of the 26th annual ACM international conference on De- sign of communication, SIGDOC '08, pages 15-22, New York, NY, USA. ACM.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Tipos de textos, complejidad ling\u00fc\u00edstica y facilicitaci\u00f3n lectora",
"authors": [
{
"first": "A",
"middle": [],
"last": "Anula",
"suffix": ""
}
],
"year": 2007,
"venue": "Actas del Sexto Congreso de Hispanistas de Asia",
"volume": "",
"issue": "",
"pages": "45--61",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Anula. 2007. Tipos de textos, complejidad ling\u00fc\u00edstica y facilicitaci\u00f3n lectora. In Actas del Sexto Congreso de Hispanistas de Asia, pages 45-61.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "First Approach to Automatic Text Simplification in Basque",
"authors": [
{
"first": "M",
"middle": [
"J"
],
"last": "Aranzabe",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "D\u00edaz De Ilarraza",
"suffix": ""
},
{
"first": "I",
"middle": [],
"last": "Gonz\u00e1lez",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the first Natural Language Processing for Improving Textual Accessibility Workshop (NLP4ITA)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. J. Aranzabe, A. D\u00edaz De Ilarraza, and I. Gonz\u00e1lez. 2012. First Approach to Automatic Text Simplifica- tion in Basque. In Proceedings of the first Natural Language Processing for Improving Textual Acces- sibility Workshop (NLP4ITA).",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Sentence alignment for monolingual comparable corpora",
"authors": [
{
"first": "R",
"middle": [],
"last": "Barzilay",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Elhadad",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceedings of the 2003 conference on Empirical methods in natural language processing, EMNLP '03",
"volume": "",
"issue": "",
"pages": "25--32",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Barzilay and N. Elhadad. 2003. Sentence align- ment for monolingual comparable corpora. In Pro- ceedings of the 2003 conference on Empirical meth- ods in natural language processing, EMNLP '03, pages 25-32, Stroudsburg, PA, USA. Association for Computational Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Onderzoek naar de leesmoeilijkheden van nederlands proza. Pedagogische studi\u00ebn",
"authors": [
{
"first": "R",
"middle": [
"H M"
],
"last": "Brouwer",
"suffix": ""
}
],
"year": 1963,
"venue": "",
"volume": "40",
"issue": "",
"pages": "454--464",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. H. M. Brouwer. 1963. Onderzoek naar de leesmoeilijkheden van nederlands proza. Peda- gogische studi\u00ebn, 40:454-464.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Simplifying text for language-impaired readers",
"authors": [
{
"first": "J",
"middle": [],
"last": "Carroll",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Minnen",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Pearce",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Canning",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Tait",
"suffix": ""
}
],
"year": 1999,
"venue": "Proceedings of the 9th Conference of the European Chapter of the ACL (EACL'99)",
"volume": "",
"issue": "",
"pages": "269--270",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Carroll, G. Minnen, D. Pearce, Y. Canning, S. De- vlin, and J. Tait. 1999. Simplifying text for language-impaired readers. In Proceedings of the 9th Conference of the European Chapter of the ACL (EACL'99), pages 269-270.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Knowledge of language: its nature, origin, and use",
"authors": [
{
"first": "N",
"middle": [],
"last": "Chomsky",
"suffix": ""
}
],
"year": 1986,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "N. Chomsky. 1986. Knowledge of language: its na- ture, origin, and use. Greenwood Publishing Group, Santa Barbara, California.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Learning to Simplify Sentences Using Wikipedia",
"authors": [
{
"first": "W",
"middle": [],
"last": "Coster",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Kauchak",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1--9",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "W. Coster and D. Kauchak. 2011. Learning to Sim- plify Sentences Using Wikipedia. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 1-9.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "A formula for predicting readability",
"authors": [
{
"first": "E",
"middle": [],
"last": "Dale",
"suffix": ""
},
{
"first": "J",
"middle": [
"S"
],
"last": "Chall",
"suffix": ""
}
],
"year": 1948,
"venue": "Educational research bulletin",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "E. Dale and J. S. Chall. 1948. A formula for predicting readability. Educational research bulletin, 27.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Simplifying natural language text for aphasic readers",
"authors": [
{
"first": "S",
"middle": [],
"last": "Devlin",
"suffix": ""
}
],
"year": 1999,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Devlin. 1999. Simplifying natural language text for aphasic readers. Ph.D. thesis, University of Sunder- land, UK.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "De leesbaarheid van landbouwbladen: een onderzoek naar en een toepassing van leesbaarheidsformules",
"authors": [
{
"first": "W",
"middle": [
"H"
],
"last": "Douma",
"suffix": ""
}
],
"year": 1960,
"venue": "Bulletin",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "W.H. Douma. 1960. De leesbaarheid van landbouw- bladen: een onderzoek naar en een toepassing van leesbaarheidsformules. Bulletin, 17.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Automatic Text Simplication in Spanish: A Comparative Evaluation of Complementing Components",
"authors": [
{
"first": "B",
"middle": [],
"last": "Drndarevic",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "\u0160tajner",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Bott",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Bautista",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Saggion",
"suffix": ""
}
],
"year": 2013,
"venue": "Proceedings of the 12th International Conference on Intelligent Text Processing and Computational Linguistics",
"volume": "",
"issue": "",
"pages": "488--500",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "B. Drndarevic, S.\u0160tajner, S. Bott, S. Bautista, and H. Saggion. 2013. Automatic Text Simplication in Spanish: A Comparative Evaluation of Com- plementing Components. In Proceedings of the 12th International Conference on Intelligent Text Processing and Computational Linguistics. Lecture Notes in Computer Science. Samos, Greece, 24-30 March, 2013., pages 488-500.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "The Principles of Readability",
"authors": [
{
"first": "W",
"middle": [
"H"
],
"last": "Dubay",
"suffix": ""
}
],
"year": 2004,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "W. H. DuBay. 2004. The Principles of Readability. Impact Information.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Cognitively motivated features for readability assessment",
"authors": [
{
"first": "L",
"middle": [],
"last": "Feng",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Elhadad",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Huenerfauth",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics, EACL '09",
"volume": "",
"issue": "",
"pages": "229--237",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. Feng, N. Elhadad, and M. Huenerfauth. 2009. Cog- nitively motivated features for readability assess- ment. In Proceedings of the 12th Conference of the European Chapter of the Association for Com- putational Linguistics, EACL '09, pages 229-237, Stroudsburg, PA, USA. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Automatic readability assessment for people with intellectual disabilities",
"authors": [
{
"first": "L",
"middle": [],
"last": "Feng",
"suffix": ""
}
],
"year": 2009,
"venue": "SIGACCESS Access. Comput., number 93",
"volume": "",
"issue": "",
"pages": "84--91",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. Feng. 2009. Automatic readability assessment for people with intellectual disabilities. In SIGACCESS Access. Comput., number 93, pages 84-91. ACM, New York, NY, USA, jan.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "The art of readable writing",
"authors": [
{
"first": "R",
"middle": [],
"last": "Flesch",
"suffix": ""
}
],
"year": 1949,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Flesch. 1949. The art of readable writing. Harper, New York.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Make it Simple, European Guidelines for the Production of Easy-toRead Information for People with Learning Disability",
"authors": [
{
"first": "G",
"middle": [],
"last": "Freyhoff",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Hess",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Kerr",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Tronbacke",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Van Der",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Veken",
"suffix": ""
}
],
"year": 1998,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "G. Freyhoff, G. Hess, L. Kerr, B. Tronbacke, and K. Van Der Veken, 1998. Make it Simple, European Guidelines for the Production of Easy-toRead Infor- mation for People with Learning Disability. ILSMH European Association, Brussels.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Derivation of new readability formulas for navy enlisted personnel",
"authors": [
{
"first": "J",
"middle": [
"P"
],
"last": "Kincaid",
"suffix": ""
},
{
"first": "R",
"middle": [
"P"
],
"last": "Fishburne",
"suffix": ""
},
{
"first": "R",
"middle": [
"L"
],
"last": "Rogers",
"suffix": ""
},
{
"first": "B",
"middle": [
"S"
],
"last": "Chissom",
"suffix": ""
}
],
"year": 1975,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. P. Kincaid, R. P. Fishburne, R. L. Rogers, and B. S. Chissom. 1975. Derivation of new readability for- mulas for navy enlisted personnel. Research Branch Report 8-75.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "SMOG grading -a new readability formula",
"authors": [
{
"first": "G",
"middle": [
"H"
],
"last": "Mclaughlin",
"suffix": ""
}
],
"year": 1969,
"venue": "Journal of Reading",
"volume": "22",
"issue": "",
"pages": "639--646",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "G. H. McLaughlin. 1969. SMOG grading -a new readability formula. Journal of Reading, 22:639- 646.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "A machine learning approach to reading level assessment. Computer speech & language",
"authors": [
{
"first": "S",
"middle": [],
"last": "Petersen",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Ostendorf",
"suffix": ""
}
],
"year": 2009,
"venue": "",
"volume": "23",
"issue": "",
"pages": "89--106",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Petersen and M. Ostendorf. 2009. A machine learn- ing approach to reading level assessment. Computer speech & language, 23(1):89-106.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Human Language Technology and communicative disabilities: Requirements and possibilities for the future",
"authors": [
{
"first": "M",
"middle": [
"B"
],
"last": "Ruiter",
"suffix": ""
},
{
"first": "T",
"middle": [
"C M"
],
"last": "Rietveld",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Cucchiarini",
"suffix": ""
},
{
"first": "E",
"middle": [
"J"
],
"last": "Krahmer",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Strik",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the the seventh international conference on Language Resources and Evaluation (LREC)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. B. Ruiter, T. C. M. Rietveld, C. Cucchiarini, E. J. Krahmer, and H. Strik. 2010. Human Language Technology and communicative disabilities: Re- quirements and possibilities for the future. In Pro- ceedings of the the seventh international conference on Language Resources and Evaluation (LREC).",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Towards a Rule Based System for Automatic Simplification of Texts",
"authors": [
{
"first": "J",
"middle": [],
"last": "Rybing",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Smithr",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Silvervarg",
"suffix": ""
}
],
"year": 2010,
"venue": "The Third Swedish Language Technology Conference",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Rybing, C. Smithr, and A. Silvervarg. 2010. To- wards a Rule Based System for Automatic Simpli- fication of Texts. In The Third Swedish Language Technology Conference.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Text Simplification in Simplext: Making Text More Accessible. Revista de la Sociedad Espa\u00f1ola para el Procesamiento del Lenguaje Natural",
"authors": [
{
"first": "H",
"middle": [],
"last": "Saggion",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Mart\u00ednez",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Etayo",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Anula",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Bourg",
"suffix": ""
}
],
"year": 2011,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "H. Saggion, E. G\u00f3mez Mart\u00ednez, E. Etayo, A. An- ula, and L. Bourg. 2011. Text Simplification in Simplext: Making Text More Accessible. Revista de la Sociedad Espa\u00f1ola para el Procesamiento del Lenguaje Natural.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Reading Level Assessment Using Support Vector Machines and Statistical Language Models",
"authors": [
{
"first": "S",
"middle": [
"E"
],
"last": "Schwarm",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Ostendorf",
"suffix": ""
}
],
"year": 2005,
"venue": "Proceedings of the 43rd annual meeting of the Association of Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "523--530",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. E. Schwarm and M. Ostendorf. 2005. Reading Level Assessment Using Support Vector Machines and Statistical Language Models. In Proceedings of the 43rd annual meeting of the Association of Com- putational Linguistics (ACL), pages 523-530.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Automated Readability Index",
"authors": [
{
"first": "E",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
},
{
"first": "R",
"middle": [
"J"
],
"last": "Senter",
"suffix": ""
}
],
"year": 1967,
"venue": "Aerospace Medical Research Laboratories",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "E. A. Smith and R. J. Senter. 1967. Automated Read- ability Index. Technical report, Aerospace Medical Research Laboratories, Wright-Patterson Air Force Base, Ohio.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Towards an Improved Methodology for Automated Readability Prediction",
"authors": [
{
"first": "P",
"middle": [],
"last": "Van Oosten",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Tanghe",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Hoste",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the seventh international conference on language resources and evaluation (LREC10)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. van Oosten, D. Tanghe, and V. Hoste. 2010. To- wards an Improved Methodology for Automated Readability Prediction. In Proceedings of the sev- enth international conference on language resources and evaluation (LREC10). Valletta, Malta: Euro- pean Language Resources Association (ELRA).",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "EuroWordNet: A Multilingual Database with Lexical Semantic Networks",
"authors": [],
"year": 1998,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. Vossen, editor. 1998. EuroWordNet: A Multilingual Database with Lexical Semantic Networks. Kluwer Academic Publishers.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "What Can Readability Measures Really Tell Us About Text Complexity?",
"authors": [
{
"first": "S",
"middle": [],
"last": "\u0160tajner",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Evans",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Orasan",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Mitkov",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the LREC'12 Workshop: Natural Language Processing for Improving Textual Accessibility (NLP4ITA)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S.\u0160tajner, R. Evans, C. Orasan, and R. Mitkov. 2012. What Can Readability Measures Really Tell Us About Text Complexity? In Proceedings of the LREC'12 Workshop: Natural Language Processing for Improving Textual Accessibility (NLP4ITA), Is- tanbul, Turkey.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Learning to Simplify Sentences with Quasi-Synchronous Grammar and Integer Programming",
"authors": [
{
"first": "K",
"middle": [],
"last": "Woodsend",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Lapata",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K. Woodsend and M. Lapata. 2011. Learning to Sim- plify Sentences with Quasi-Synchronous Grammar and Integer Programming. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP).",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Sentence simplification by monolingual machine translation",
"authors": [
{
"first": "S",
"middle": [],
"last": "Wubben",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Van Den",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Bosch",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Krahmer",
"suffix": ""
}
],
"year": 2012,
"venue": "Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers",
"volume": "1",
"issue": "",
"pages": "1015--1024",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Wubben, A. van den Bosch, and E. Krahmer. 2012. Sentence simplification by monolingual machine translation. In Proceedings of the 50th Annual Meet- ing of the Association for Computational Linguis- tics: Long Papers -Volume 1, ACL '12, pages 1015- 1024, Stroudsburg, PA, USA. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "A Monolingual Tree-based Translation Model for Sentence Simplification",
"authors": [
{
"first": "Z",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Berndard",
"suffix": ""
},
{
"first": "I",
"middle": [],
"last": "Gurevych",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of the 23rd International Conference on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1353--1361",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Z. Zhu, D. Berndard, and I. Gurevych. 2010. A Mono- lingual Tree-based Translation Model for Sentence Simplification. In Proceedings of the 23rd Inter- national Conference on Computational Linguistics (Coling 2010), pages 1353-1361.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"type_str": "figure",
"text": "Readability indices across the corpora tion systems as a measure of the degree of simplification. The distribution of the three readability indices (LC, SSR, and SCI) is presented inFigure 1, whichshows that the distribution of all three indices is shifted left in the case of the simplified texts, thus indicating lower level of complexity.",
"num": null,
"uris": null
},
"TABREF0": {
"num": null,
"content": "<table><tr><td/><td/><td>: Corpora</td><td/></tr><tr><td>Corpus</td><td colspan=\"3\">Texts Sentences Words</td></tr><tr><td>Original</td><td>200</td><td>1150</td><td>37121</td></tr><tr><td colspan=\"2\">Simplified 200</td><td>1804</td><td>24332</td></tr></table>",
"html": null,
"type_str": "table",
"text": ""
},
"TABREF1": {
"num": null,
"content": "<table><tr><td/><td>: Linguistically motivated features</td></tr><tr><td colspan=\"2\"># Code Feature</td></tr><tr><td>1 N</td><td>Noun</td></tr><tr><td colspan=\"2\">2 Det Determiner</td></tr><tr><td colspan=\"2\">3 Adj Adjective</td></tr><tr><td>4 V</td><td>Verb</td></tr><tr><td colspan=\"2\">5 Inf Infinitive</td></tr><tr><td colspan=\"2\">6 Adv Adverb</td></tr><tr><td colspan=\"2\">7 Prep Preposition</td></tr><tr><td colspan=\"2\">8 CC Coordinating conjunction</td></tr><tr><td colspan=\"2\">9 CS Subordinating conjunction</td></tr><tr><td colspan=\"2\">10 Pron Pronoun</td></tr><tr><td colspan=\"2\">11 Sens Number of senses per word</td></tr><tr><td colspan=\"2\">12 Amb Percentage of ambiguous words</td></tr></table>",
"html": null,
"type_str": "table",
"text": ""
},
"TABREF2": {
"num": null,
"content": "<table><tr><td/><td>: Readability indices</td></tr><tr><td colspan=\"2\">Index Original Simple Rel.diff. Sign.</td></tr><tr><td>LC</td><td>21.05 12.76 -39.06% 0.001</td></tr><tr><td>SSR</td><td>184.20 123.82 -32.60% 0.001</td></tr><tr><td>SCI</td><td>41.36 29.99 -27.43% 0.001</td></tr></table>",
"html": null,
"type_str": "table",
"text": ""
},
"TABREF3": {
"num": null,
"content": "<table><tr><td>Corpus</td><td>Indices</td><td colspan=\"2\">Pearson Spearman</td></tr><tr><td/><td>LC-SSR</td><td>0.445</td><td>0.440</td></tr><tr><td>Original</td><td>LC-SCI</td><td>-0.075</td><td>-0.085</td></tr><tr><td/><td>SSR-SCI</td><td>0.045</td><td>0.043</td></tr><tr><td/><td>LC-SSR</td><td>0.353</td><td>0.378</td></tr><tr><td>Simplified</td><td>LC-SCI</td><td>0.093</td><td>-0.116</td></tr><tr><td/><td colspan=\"2\">SSR-SCI -0.159</td><td>-0.136</td></tr></table>",
"html": null,
"type_str": "table",
"text": "Correlation among readability indices"
},
"TABREF4": {
"num": null,
"content": "<table><tr><td/><td colspan=\"2\">: Complexity Features</td></tr><tr><td>Feature</td><td colspan=\"3\">Original Simple Rel.diff. Sign.</td></tr><tr><td>N</td><td colspan=\"2\">33.12 33.32 +1.13%</td><td>no</td></tr><tr><td>Det</td><td colspan=\"3\">14.82 17.13 +17.65% 0.001</td></tr><tr><td>Adj</td><td>7.24</td><td colspan=\"2\">4.89 -31.10% 0.001</td></tr><tr><td>V</td><td colspan=\"3\">10.39 14.56 +45.70% 0.001</td></tr><tr><td>Inf</td><td>1.65</td><td colspan=\"2\">2.22 +38.14% 0.001</td></tr><tr><td>Adv</td><td>2.27</td><td colspan=\"2\">3.35 +83.45% 0.001</td></tr><tr><td>Prep</td><td colspan=\"3\">19.75 17.12 -12.42% 0.001</td></tr><tr><td>CC</td><td>2.97</td><td colspan=\"2\">1.63 -41.79% 0.001</td></tr><tr><td>CS</td><td>1.82</td><td colspan=\"2\">2.55 +53.96% 0.001</td></tr><tr><td>Pron</td><td colspan=\"3\">19.75 17.12 +11.82% 0.001</td></tr><tr><td>SenseWN</td><td>3.78</td><td colspan=\"2\">4.01 +6.99% 0.001</td></tr><tr><td>AmbWN</td><td colspan=\"3\">66.02 72.19 +9.62% 0.001</td></tr><tr><td>SenseOT</td><td>3.52</td><td colspan=\"2\">3.65 +4.47% 0.001</td></tr><tr><td>AmbOT</td><td colspan=\"3\">78.89 82.71 +5.13% 0.001</td></tr></table>",
"html": null,
"type_str": "table",
"text": ""
},
"TABREF5": {
"num": null,
"content": "<table><tr><td>Feature</td><td>LC</td><td>SSR</td><td>SCI</td></tr><tr><td>V</td><td colspan=\"3\">*-0.178 -0.192 0.423</td></tr><tr><td>Inf</td><td colspan=\"3\">*-0.154 *-0.151 0.303</td></tr><tr><td>Adj</td><td>*-0.159</td><td colspan=\"2\">0.137 -0.100</td></tr><tr><td>Adv</td><td colspan=\"3\">-0.024 -0.047 0.123</td></tr><tr><td>Det</td><td colspan=\"3\">-0.022 -0.243 -0.076</td></tr><tr><td>N</td><td>*0.177</td><td colspan=\"2\">0.193 -0.433</td></tr><tr><td>Prep</td><td>0.088</td><td colspan=\"2\">0.049 -0.122</td></tr><tr><td>CC</td><td>0.065</td><td colspan=\"2\">0.116 -0.086</td></tr><tr><td>CS</td><td colspan=\"3\">-0.092 *-0.150 0.459</td></tr><tr><td>Pron</td><td colspan=\"3\">0.072 -0.248 0.097</td></tr><tr><td colspan=\"4\">SensWN -0.285 -0.231 0.236</td></tr><tr><td colspan=\"4\">AmbWN -0.243 -0.080 *0.154</td></tr><tr><td>SensOT</td><td colspan=\"3\">-0.077 -0.093 0.088</td></tr><tr><td>AmbOT</td><td colspan=\"3\">-0.208 -0.083 0.099</td></tr><tr><td colspan=\"4\">the unnecessary words (e.g. adjectives, coordinat-</td></tr><tr><td colspan=\"4\">ing conjunctions, prepositions) and leaving only</td></tr><tr><td colspan=\"3\">the main ideas expressed by verbs.</td><td/></tr></table>",
"html": null,
"type_str": "table",
"text": "Spearman's correlation between readability indices and complexity features(Original)"
},
"TABREF6": {
"num": null,
"content": "<table><tr><td>Feature</td><td>LC</td><td>SSR</td><td>SCI</td></tr><tr><td>V</td><td colspan=\"2\">0.000 -0.059</td><td>0.672</td></tr><tr><td>Inf</td><td colspan=\"2\">-0.025 -0.074</td><td>0.573</td></tr><tr><td>Adj</td><td>-0.241</td><td colspan=\"2\">0.086 *-0.145</td></tr><tr><td>Adv</td><td colspan=\"2\">-0.113 -0.118</td><td>0.246</td></tr><tr><td>Det</td><td colspan=\"2\">-0.086 -0.438</td><td>0.034</td></tr><tr><td>N</td><td>*0.161</td><td colspan=\"2\">0.375 -0.606</td></tr><tr><td>Prep</td><td>*0.156</td><td colspan=\"2\">0.088 *-0.153</td></tr><tr><td>CC</td><td>0.027</td><td colspan=\"2\">0.108 *-0.150</td></tr><tr><td>CS</td><td colspan=\"3\">-0.030 *-0.159 * 0.595</td></tr><tr><td>Pron</td><td colspan=\"3\">0.002 -0.074 -0.186</td></tr><tr><td colspan=\"3\">SensWN -0.064 -0.070</td><td>0.225</td></tr><tr><td colspan=\"3\">AmbWN -0.110 -0.075</td><td>0.115</td></tr><tr><td>SensOT</td><td>0.053</td><td>0.025</td><td>0.113</td></tr><tr><td>AmbOT</td><td>0.110</td><td>0.113</td><td>0.045</td></tr><tr><td colspan=\"4\">is positively correlated with occurrences of nouns</td></tr><tr><td colspan=\"4\">(N) and negatively correlated with occurrences of</td></tr><tr><td colspan=\"4\">determiners (Det) and subordinating conjunctions</td></tr><tr><td colspan=\"4\">(CS). SCI is, on the other hand, negatively corre-</td></tr><tr><td colspan=\"4\">lated with the number of occurrences of nouns (N),</td></tr><tr><td colspan=\"4\">and positively correlated with number of occur-</td></tr><tr><td colspan=\"4\">rences of verbs (V), infinitive forms (Inf), subordi-</td></tr><tr><td colspan=\"4\">nating conjunctions (CS), and average number of</td></tr><tr><td colspan=\"4\">senses per word according to Spanish EuroWord-</td></tr><tr><td>Net (SensWN).</td><td/><td/><td/></tr></table>",
"html": null,
"type_str": "table",
"text": "Spearman's correlation between readability indices and complexity features (Simplified)"
}
}
}
} |