File size: 101,295 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
{
    "paper_id": "I13-1027",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:15:52.632531Z"
    },
    "title": "A Noisy Channel Approach to Error Correction in Spoken Referring Expressions",
    "authors": [
        {
            "first": "Su",
            "middle": [
                "Nam"
            ],
            "last": "Kim",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Monash University Clayton",
                "location": {
                    "postCode": "3800",
                    "region": "Victoria",
                    "country": "Australia"
                }
            },
            "email": ""
        },
        {
            "first": "Ingrid",
            "middle": [],
            "last": "Zukerman",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Monash University Clayton",
                "location": {
                    "postCode": "3800",
                    "region": "Victoria",
                    "country": "Australia"
                }
            },
            "email": ""
        },
        {
            "first": "Thomas",
            "middle": [],
            "last": "Kleinbauer",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Monash University Clayton",
                "location": {
                    "postCode": "3800",
                    "region": "Victoria",
                    "country": "Australia"
                }
            },
            "email": ""
        },
        {
            "first": "Farshid",
            "middle": [],
            "last": "Zavareh",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Monash University Clayton",
                "location": {
                    "postCode": "3800",
                    "region": "Victoria",
                    "country": "Australia"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We offer a noisy channel approach for recognizing and correcting erroneous words in referring expressions. Our mechanism handles three types of errors: it removes noisy input, inserts missing prepositions, and replaces misheard words (at present, they are replaced by generic words). Our mechanism was evaluated on a corpus of 295 spoken referring expressions, improving interpretation performance.",
    "pdf_parse": {
        "paper_id": "I13-1027",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We offer a noisy channel approach for recognizing and correcting erroneous words in referring expressions. Our mechanism handles three types of errors: it removes noisy input, inserts missing prepositions, and replaces misheard words (at present, they are replaced by generic words). Our mechanism was evaluated on a corpus of 295 spoken referring expressions, improving interpretation performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "One of the main stumbling blocks for Spoken Dialogue Systems (SDSs) is the lack of reliability of Automatic Speech Recognizers (ASRs) (Pellegrini and Trancoso, 2010). Recent research prototypes of ASRs yield Word Error Rates (WERs) between 15.6% (Pellegrini and Trancoso, 2010) and 18.7% (Sainath et al., 2011) for broadcast news. However, the commercial ASR employed in this research had a WER of 30% and a Sentence Error Rate (SER) (proportion of sentences for which no correct textual transcription was produced) of 65.3% for descriptions of household objects.",
                "cite_spans": [
                    {
                        "start": 246,
                        "end": 277,
                        "text": "(Pellegrini and Trancoso, 2010)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 288,
                        "end": 310,
                        "text": "(Sainath et al., 2011)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In addition to mis-recognized entities or actions, ASR errors often yield ungrammatical sentences that cannot be processed by subsequent interpretation modules of an SDS, e.g., \"the blue plate\" being mis-heard as \"to build played\", and hesitations (e.g., \"ah\"s) being mis-heard as \"and\" or \"on\"all of which happened in our trials.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we offer a general framework for error detection and correction in spoken utterances that is based on the noisy channel model, and present a first-stage implementation of this framework that performs simple corrections of referring expressions. Our model is implemented as a preprocessing step for the Scusi? spoken language interpretation system (Zukerman et al., 2008; Zukerman et al., 2009) . The idea of the noisy channel model is that a message is sent through a channel that introduces errors, and the receiver endeavours to reconstruct the original message by taking into account the characteristics of the noisy channel and of the transmitted information (Ringger and Allen, 1996; Brill and Moore, 2000; Zwarts et al., 2010) . The system described in this paper handles three types of errors: noise (which is removed), missing prepositions (which are inserted), and mis-heard words (which are replaced). Table 1 shows two descriptions that illustrate these errors. The first row for each description displays what was spoken, the second row displays what was heard by the ASR, and the third row shows the semantic labels assigned to each segment in the description by a shallow semantic parser (Section 3.2). Specifically, in the first example, the preposition \"to\" is missing, and the object \"stool\" is mis-heard as \"storm\"; and in the second example \"the plate\" is mis-heard as \"to play\", and the noisy \"it\" has been inserted by the ASR.",
                "cite_spans": [
                    {
                        "start": 362,
                        "end": 385,
                        "text": "(Zukerman et al., 2008;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 386,
                        "end": 408,
                        "text": "Zukerman et al., 2009)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 678,
                        "end": 703,
                        "text": "(Ringger and Allen, 1996;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 704,
                        "end": 726,
                        "text": "Brill and Moore, 2000;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 727,
                        "end": 747,
                        "text": "Zwarts et al., 2010)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 927,
                        "end": 934,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Ideally, we would like to replace mis-heard words with phonetically similar words, e.g., use \"plate\" instead of \"play\". However, at present, as a first step, we replace mis-heard words with generic options, e.g., \"thing\" for an object or landmark. Further, we insert the generic preposition \"at\" for a missing preposition. Thus, we deviate from the noisy channel approach in that we do not quite reconstruct the original message. Instead, we construct a grammatically correct version of this message that enables the generation of reasonable interpretations (rather than no interpretation or non-sensical ones). For example, the mis-heard description \"to play it in the microwave\" in Table 1 is modified to \"the thing in the microwave\". Clearly, this is not what the speaker said, but hopefully, this modified text, which describes an object, rather than an action, enables the identification of the intended object, e.g., a plate, or at least a small set of candidates, in light of the rest of the description.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 684,
                        "end": 691,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our mechanism was evaluated on a corpus of 295 spoken referring expressions, significantly improving the interpretation performance of the original Scusi? system (Section 6.3).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The rest of this paper is organized as follows. In the next section, we discuss related work. In Section 3, we outline the design of our system. Our probabilistic model is described in Section 4, followed by the noisy channel error correction procedure. In Section 6, we discuss our evaluation, and then present concluding remarks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This research combines three main elements: correction of ASR output, noisy channel models and shallow semantic parsing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Research",
                "sec_num": "2"
            },
            {
                "text": "L\u00f3pez-C\u00f3zar and Griol (2010) used lexical approaches to replace, insert or delete words in a textual ASR output, and syntactic approaches to modify tenses of verbs and grammatical numbers to better match grammatical expectations. However, these actions make ad hoc changes. The noisy channel model has been employed for various NLP tasks, such as ASR output correction (Ringger and Allen, 1996) , spelling correction (Brill and Moore, 2000) , and disfluency correction (Johnson and Charniak, 2004; Zwarts et al., 2010) . Our approach differs from the traditional noisy channel approach in that it uses a word-error classifier to model the noisy channel, and semantic information to model the input characteristics.",
                "cite_spans": [
                    {
                        "start": 369,
                        "end": 394,
                        "text": "(Ringger and Allen, 1996)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 417,
                        "end": 440,
                        "text": "(Brill and Moore, 2000)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 469,
                        "end": 497,
                        "text": "(Johnson and Charniak, 2004;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 498,
                        "end": 518,
                        "text": "Zwarts et al., 2010)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Research",
                "sec_num": "2"
            },
            {
                "text": "Shallow semantic parsers for SDSs have been used in (Coppola et al., 2009; Geertzen, 2009) . Coppola et al. (2009) used FrameNet (Baker et al., 1998) to detect and filter the frames for target words, and employed a Support Vector Machine (SVM) classifier to perform semantic labeling. Geertzen (2009) used a shallow parser to detect semantic units only when a dependency parser failed to produce a parse tree. In contrast, our shallow semantic parser is part of a noisy channel model that post-processes the output of an ASR.",
                "cite_spans": [
                    {
                        "start": 52,
                        "end": 74,
                        "text": "(Coppola et al., 2009;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 75,
                        "end": 90,
                        "text": "Geertzen, 2009)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 93,
                        "end": 114,
                        "text": "Coppola et al. (2009)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 129,
                        "end": 149,
                        "text": "(Baker et al., 1998)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 285,
                        "end": 300,
                        "text": "Geertzen (2009)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Research",
                "sec_num": "2"
            },
            {
                "text": "Our error correction procedure (Section 5) receives as input alternatives produced by an ASR, and generates modified versions of these alternatives. It employs the following modules: (1) a classifier that determines whether a word in a text produced by the ASR is correct; (2) a shallow semantic parser (SSP) that assigns semantic labels to segments in the text; and (3) a noisy channel error correction mechanism that decides which alterations should be made to the ASR output on the basis of the information provided by the other two modules. The resultant texts are given as input to the Scusi? spoken language interpretation system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "System Design",
                "sec_num": "3"
            },
            {
                "text": "In this section, we describe the word error classifier and SSP together with our semantic labels, and report on their performance. We also provide a brief outline of the Scusi? system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "System Design",
                "sec_num": "3"
            },
            {
                "text": "The performance of the classifier and SSP was evaluated in terms of accuracy over the corpus constructed to evaluate the Scusi? system (Kleinbauer et al., 2013) . This corpus comprises 400 spoken descriptions generated by 26 speakers. We performed 13-fold cross-validation, where each fold contains two speakers (Section 6.1).",
                "cite_spans": [
                    {
                        "start": 135,
                        "end": 160,
                        "text": "(Kleinbauer et al., 2013)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "System Design",
                "sec_num": "3"
            },
            {
                "text": "We investigated three classifiers to determine whether a word in the ASR textual output is correct: the Weka implementation of Decision Trees (Quinlan, 1993) and Na\u00efve Bayes classifiers (Domingos and Pazzani, 1997) ",
                "cite_spans": [
                    {
                        "start": 142,
                        "end": 157,
                        "text": "(Quinlan, 1993)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 186,
                        "end": 214,
                        "text": "(Domingos and Pazzani, 1997)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word error classifier",
                "sec_num": "3.1"
            },
            {
                "text": "(cs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word error classifier",
                "sec_num": "3.1"
            },
            {
                "text": "waikato.ac.nz/ml/weka/), and the Mallet implementation of the linear chain Conditional Random Fields (CRF) algorithm (Lafferty et al., 2001 ) (mallet.cs.umass.edu).",
                "cite_spans": [
                    {
                        "start": 117,
                        "end": 139,
                        "text": "(Lafferty et al., 2001",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word error classifier",
                "sec_num": "3.1"
            },
            {
                "text": "The best performance was obtained by the Decision Tree, which yielded an average accuracy of 80.9% over the 13 folds. The most influential features were rr(w, d) and Part-of-Speech (PoS) tag of the current word w in levels 1 and 2 of the Decision Tree respectively, where rr is the repetition ratio of the current word w in the textual ASR outputs for description d:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word error classifier",
                "sec_num": "3.1"
            },
            {
                "text": "rr(w,d) =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word error classifier",
                "sec_num": "3.1"
            },
            {
                "text": "# of ASR outputs for d that contain w # of alternative ASR outputs for d .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word error classifier",
                "sec_num": "3.1"
            },
            {
                "text": "We found the following semantic labels useful for referring expressions:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Semantic Parser (SSP)",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Object -a lexical item designating an object, optionally preceded by a determiner and one or more gerunds, adjectives or nouns, e.g., \"the blue ceramic drinking mug\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Semantic Parser (SSP)",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Preposition -a preposition or prepositional expression, e.g., \"on\" or \"further away from\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Semantic Parser (SSP)",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Landmark -same pattern as Object, but a description may contain more than one landmark, e.g., \"the mug on the table in the corner\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Semantic Parser (SSP)",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Noise -sighs or hesitations that are often misheard by the ASR as \"and\", \"on\" or \"in\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Semantic Parser (SSP)",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Specifier -a further specification that normally precedes a Landmark, e.g., \"the center of\", \"front of\" or \"the left of\". The preposition \"of\" at the end of a Specifier that precedes a Landmark is always required.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Semantic Parser (SSP)",
                "sec_num": "3.2"
            },
            {
                "text": "\u2022 Additional -words that are often superfluous, e.g., \"the mug that is on the table\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Semantic Parser (SSP)",
                "sec_num": "3.2"
            },
            {
                "text": "We employed the Mallet implementation of the linear chain Conditional Random Fields (CRF) algorithm (Lafferty et al., 2001) to learn sequences of semantic labels (mallet.cs.umass.edu).",
                "cite_spans": [
                    {
                        "start": 100,
                        "end": 123,
                        "text": "(Lafferty et al., 2001)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Semantic Parser (SSP)",
                "sec_num": "3.2"
            },
            {
                "text": "Accuracy over texts and segments was respectively measured as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Semantic Parser (SSP)",
                "sec_num": "3.2"
            },
            {
                "text": "# of texts with perfectly matched label sequences total # of texts # of segments with perfectly matched labels total # of segments .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Semantic Parser (SSP)",
                "sec_num": "3.2"
            },
            {
                "text": "The CRF was trained separately for textual transcriptions of spoken descriptions and for ASR outputs. Two annotators labeled the 400 transcribed texts, and 800 samples from the ASR output: 400 from the best output and 400 from the worst. The first annotator segmented and labeled the descriptions, and the second annotator verified the annotations; disagreements were resolved by consensus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Semantic Parser (SSP)",
                "sec_num": "3.2"
            },
            {
                "text": "We considered the features found useful in the CoNLL2001 shared task (http://www.cnts.ua. ac.be/conll2000/chunking/). The features that yielded the best performance were current word, current PoS and previous word, achieving an accuracy of 92% over the 400 textual transcriptions, and 76.13% over the 800 ASR outputs. Accuracy over segments was higher, at 96.26% for texts, and 87.28% for ASR outputs. However, SSP's performance for the identification of Noise was rather poor, with an average accuracy of 54.75%.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Shallow Semantic Parser (SSP)",
                "sec_num": "3.2"
            },
            {
                "text": "Scusi? is a system that implements an anytime, probabilistic mechanism for the interpretation of spoken utterances, focusing on a household context. It has four processing stages, where each stage produces multiple outputs for a given input, early processing stages may be probabilistically revisited, and only the most promising options at each stage are explored further.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Scusi?",
                "sec_num": "3.3"
            },
            {
                "text": "The system takes as input a speech signal, and uses an ASR (Microsoft Speech SDK 6.1) to produce candidate texts. Each text is assigned a probability given the speech wave. The second stage applies Charniak's probabilistic parser (http://bllip.cs.brown.edu/ resources.shtml#software) to syntactically analyze the texts in order of their probability, yielding at most 50 different parse trees per text. The third stage applies mapping rules to the parse trees to generate concept graphs (Sowa, 1984) that represent the semantics of the utterance. The final stage instantiates the concept graphs within the current context. For example, given a parse tree for \"the blue mug on the table\", the third stage returns the uninstantiated concept graph mug(COLOR: blue) -on -table. The final stage then returns candidate instantiated concept graphs, e.g., mug1-location_on-table2, mug2-location_on-table1. The probability of each instantiated concept graph depends on (1) how well the objects and relations in this graph match the corresponding objects and relations in the uninstantiated concept graph (e.g., whether mug1 is a mug, and whether it is blue); and (2) how well the relations in this graph match the relations in the context (e.g., whether mug1 is indeed on table2).",
                "cite_spans": [
                    {
                        "start": 486,
                        "end": 498,
                        "text": "(Sowa, 1984)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Scusi?",
                "sec_num": "3.3"
            },
            {
                "text": "We use a distance measure inspired by the Minimum Message Length (MML) principle (Wallace, 2005) to estimate the goodness of a message and its semantic model. This principle is normally used for model selection, based on the following formulation:",
                "cite_spans": [
                    {
                        "start": 81,
                        "end": 96,
                        "text": "(Wallace, 2005)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Pr(data&model) = Pr(data|model) \u00d7 Pr(model) ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "which strikes a balance between model complexity and data fit, i.e., the highest-probability model that best explains the data is the best model overall. That is, the best model is not necessarily the model that fits the data best, as such a model may over-fit the data; the model itself must also have a high prior probability. In our case, the data is a text, either heard by the ASR or modified, and the model is a sequence of semantic labels. At present, our model is restricted to semantic labels for segments in referring expressions, but in the future we will use this formalism to compare models representing different dialogue acts, e.g., commands.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Our use of the MML principle differs from its normal usage in that we employ it to compare a text and its semantic model with a modified version of this text and its own semantic model (rather than comparing two models that try to account for the same text). Modifications attract a penalty that depends on the probability that they are required (the higher the probability, the lower the penalty). This penalty is applied to prevent arbitrary modifications where a system hears what it expects.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Below we describe the estimation of the probability of a text and its semantic model. The next section describes the combination of the noisy channel model with the word-error classifier, SSP, and the modifications made to texts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "The joint probability of a Text and its Semantic Model is estimated as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Pr(Text&SemModel) = Pr(Text|SemModel) \u00d7 Pr(SemModel) , where \u2022 Pr(SemModel) = Pr(SSP) \u00d7 N +2 i=0 Pr(L i |L 0 , . . . , L i\u22121 ) ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "where Pr(SSP) reflects SSP's confidence in the sequence of semantic labels it produced for Text, N is the number of segments in the sequence, L i is the label for segment i, L \u22121 and L 0 are the special labels Beginning, and L N +1 and L N +2 are the special labels End. To make this calculation tractable, we employ trigrams, i.e., Pr(",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "L i |L 0 , . . . , L i\u22121 ) \u223c = Pr(L i |L i\u22122 , L i\u22121 ). \u2022 Pr(Text|SemModel) = N i=1 Pr(text i |L i ) ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "where text i is the sequence of words in segment i, and Pr(text i |L i ) is estimated as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Pr(text i |L i ) = M i j=1 Pr(HWord ji |L i ) ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "where M i is the number of words in text i , and HWord ji is the jth heard word in text i .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Owing to the relatively small size of our corpus, Pr(HWord ji |L i ) is roughly estimated as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Pr(HWord ji |L i ) = T ji k=1 Pr(HWord ji |XpctPoS kji )Pr(XpctPoS kji |L i ),",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "where XpctPoS kji is a PoS expected at position j in segment i , and T ji is the number of PoS expected at position j in segment i . Pr(HWord ji |XpctPoS kji ) is obtained from a corpus, and Pr(XpctPoS kji |L i ) is estimated from our textual transcriptions of spoken descriptions, except for the PoS associated with Noise, which are estimated from our spoken corpus (there is no Noise in texts). We obtain a rough estimate of Pr(XpctPoS kji |L i ) by considering three positions in a segment: first, middle (intermediate positions) and last. For instance, the possible PoS for the first position of an Object or Landmark are determiner, adjective, gerund, verb(past) or noun.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "To illustrate this calculation, consider the second description in Table 1 , which is heard as \"to play it in the microwave\". The probability of the Semantic Model for this description is",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 67,
                        "end": 74,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Pr(SemModel) = Pr(O|B, B) Pr(N |O, B) Pr(P |N, O) Pr(L|P, N ) Pr(E|L, P ) Pr(E|E, L) .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "All the probabilities involving Noise are set to an arbitrarily low , which yields",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Pr(O|B, B) Pr(E|L, P ) Pr(E|E, L) 3 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "The probability of the Text given the Semantic Model is Pr(Text|SemModel) = Pr(\"to play\"|O) Pr(\"it\"|N )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Pr(\"in\"|P ) Pr(\"the microwave\"|L) , which is quite high for \"it\"|N, \"in\"|P and \"the microwave\"|L, but is reduced due to the mismatch between the PoS of \"to play\" (TO VB) and the PoS expected by an Object, which are: DT/JJ/VBG/VBD/NN for the first position, and NN for the last position (Section 5.1.3).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Our system modifies this heard description by replacing \"to play\" with \"the thing\" and removing the noisy \"it\", which yields \"the thing in the microwave\" (Section 5). The probability of the Semantic Model for this modified sentence is",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Pr(SemModel ) = Pr(O|B, B) Pr(P |O, B) Pr(L|P, O) Pr(E|L, P ) Pr(E|E, L) ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "which is higher than that of the original Semantic Model, as is the probability of the new Text given the new Semantic Model:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Pr(Text |SemModel ) = Pr(\"the thing\"|O) Pr(\"in\"|P ) Pr(\"the microwave\"|L) .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "However, this gain is offset by the penalties incurred by the modifications. The estimation of these penalties is described in the next section.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Probability Estimation",
                "sec_num": "4"
            },
            {
                "text": "Given a textual output produced by an ASR, we apply Algorithm 1 to remove noise, insert prepo-sitions and replace wrong words. The probability of the resultant text and its semantic model is recalculated after each change as described in Section 4, and is moderated by the probability of the penalty for the change. Since a modification may yield a text where SSP identifies Noise, the Noise removal step is repeated after every change.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noisy Channel Error Correction",
                "sec_num": "5"
            },
            {
                "text": "After each modification, the probability of the original text and semantic model is compared with the probability of the new text, its semantic model and any incurred penalties. The winning text and semantic model (without penalties) are then taken as the originals for the next modification. Upon completion of this process, all the incurred penalties are re-incorporated into the final probability of a modified text, in order to enable a fair comparison with other texts that were not altered.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noisy Channel Error Correction",
                "sec_num": "5"
            },
            {
                "text": "The application of this process to all the texts produced by an ASR for a particular utterance may yield identical texts (e.g., when words with unexpected PoS are converted to \"thing\"). These texts are merged, and their probabilities are recalculated. The resultant texts are ranked in descending order of probability and ascending order of the number of replaced words (i.e., texts with fewer replacements are ranked ahead of texts with more replacements, irrespective of their probability). The final probabilities are adjusted to reflect the ranking of a text.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Noisy Channel Error Correction",
                "sec_num": "5"
            },
            {
                "text": "The modifications performed by our system attract a penalty that depends on the probability that the relevant portion of a heard utterance is wrong. The higher this probability, the lower the penalty, which is implemented as a multiplier of Pr(Text&SemModel).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Estimating penalties from modifications",
                "sec_num": "5.1"
            },
            {
                "text": "The penalty for removing a heard word j in segment i that is labeled as Noise by SSP is estimated on the basis of its probability of being Wrong (obtained from the word-error classifier, Section 3.1), as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Pr(remove HWord ji ) =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "(1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Pr(IsW(HWord ji ))Pr(Class) if label = W (1\u2212Pr(IsC(HWord ji )))Pr(Class) if label = C where Pr(Class) is the accuracy of the classifier (on training data), Pr(IsW(HWord ji )) is the probability assigned by the classifier to heard word j in segment i being Wrong, and Pr(IsC(HWord ji )) Algorithm 1 Noisy channel ASR error correction Require: Text 1: SemModel\u2190 Run SSP on Text 2: Calculate Pr(Text&SemModel) (Section 4) { REMOVE NOISE } 3: while there is Noise do 4:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Text' \u2190 Remove Noise from Text 5:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "SemModel' \u2190 Run SSP on Text' 6:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Calculate Pr(Text &SemModel ) 7:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Text&SemModel\u2190 arg max{Pr(Text&SemModel) , 8:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Pr(Text &SemModel )Pr(Removal)} 9: end while { INSERT PREPOSITIONS } 10: while a preposition is missing do 11:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Text' \u2190 Insert missing preposition into Text 12:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "SemModel' \u2190 Run SSP on Text' 13:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Text' \u2190 Remove Noise from Text' (Steps 3-9) 14:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Calculate Pr(Text &SemModel ) 15:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Text&SemModel\u2190 arg max{Pr(Text&SemModel) , 16:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Pr(Text &SemModel )Pr(Insertion)} 17: end while { REPLACE WRONG WORDS } 18: for i=1 to N do 19:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Text' \u2190 Replace wrong words in segmenti 20:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "SemModel' \u2190 Run SSP on Text' 21:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Text' \u2190 Remove Noise from Text' (Steps 3-9) 22:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Calculate Pr(Text &SemModel ) 23:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Text&SemModel\u2190 arg max{Pr(Text&SemModel) , 24:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Pr(Text &SemModel )Pr(Replacement)} 25: end for 26: Pr(Text&SemModel) \u2190 Pr(Text&SemModel) 27:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "Pr(Removal)Pr(Insertion)Pr(Replacement)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "is the probability of this word being Correct (the last two probabilities add up to 1). The rationale for this formula is that if SSP deems a heard word to be Noise, and the classifier labels it Wrong with high probability, then its removal should cause only a small reduction in Pr(Text&SemModel). Conversely, if a heard word deemed to be Noise by SSP is labeled Correct by the classifier with high probability, then its removal should cause a large reduction in Pr(Text&SemModel). In both cases, the probabilities assigned to the labels by the classifier are moderated by the classifier's accuracy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "To illustrate this process, let's return to the example \"to play it in the microwave\", where \"it\" is labeled Noise by SSP, and Wrong by the classifier with probability Pr(IsW(\"it\")). A new text Text' is obtained as a result of the removal of \"it\", and the penalty Pr(IsW(\"it\")) Pr(Class) is multiplied by the new Pr(Text &SemModel ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Removing noise",
                "sec_num": "5.1.1"
            },
            {
                "text": "If a preposition is not found in a position where one is expected, e.g., between an Object and Landmark or between an Object and a Specifier, we insert a generic preposition \"at\". The penalty for the insertion of a preposition depends on the probability that the ASR failed to hear an uttered preposition, which is estimated as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inserting a preposition",
                "sec_num": "5.1.2"
            },
            {
                "text": "Pr(insert P i ) = Pr(P i appears in Text and doesn't appear in the ASR output for Text) , where P i is a preposition in position i in Text.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inserting a preposition",
                "sec_num": "5.1.2"
            },
            {
                "text": "To determine the frequency of this event, we employ an edit distance algorithm that aligns the texts produced by the ASR with their corresponding textual transcriptions. This was done for 800 alternatives produced by the ASR (400 best and 400 worst), yielding a probability of 0.02 of the ASR dropping a preposition. The corresponding penalty for inserting a preposition (0.02) is hopefully offset by the increase in Pr(SemModel ) as a result of this insertion. For instance, the probability of the Semantic Model for the heard description (without a preposition) in the first example in Table 1 is Although the new expression has an extra factor, the probabilities of the new factors are higher than those of their original counterparts.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 588,
                        "end": 595,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Inserting a preposition",
                "sec_num": "5.1.2"
            },
            {
                "text": "The decision to replace a word is based on the match between expected PoS and the PoS of a heard word. If they match, no replacement is performed. Otherwise, replacements are performed by applying the following rules, which are based on the PoS expected by the different types of segments at each position (first, middle, last).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "\u2022 Objects and Landmarks -The expected PoS for Objects and Landmarks are: DT/JJ/VBG/VBD/NN for the first word, JJ/VBG/VBD/NN for the middle words, and NN for the last word. Thus, if there is a PoS mismatch, we perform the following replacements (if there is only one word in an Object or Landmark, we replace it with \"thing\" (NN)):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "-HWord 1 \u21d2\"the\" (DT) -HWord mid \u21d2\"unknown\" (JJ) (multiple times) -HWord last \u21d2\"thing\" (NN)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "To illustrate this process, consider the heard Object \"to:TO battle:NN played:VB\", which is replaced with \"the:DT battle:NN thing:NN\". Even though \"battle\" is incorrect, it is not modified, as its PoS is expected. However, Scusi? can cope with such unknown object attributes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "\u2022 Prepositions and Prepositional Phrases -This segment is more restricted than Objects and Landmarks, as it is largely composed of closed class words. We therefore use edit distance to find the prepositional phrase in the corpus of textual transcriptions that best matches the words in a heard prepositional phrase. The phrase from the corpus then replaces the heard segment. If there is no best-matching prepositional phrase, the generic \"at\" is used as a replacement. For example, \"for the wave from\" is replaced with \"further away from\" (with \"from\" being the next-best match), while \"a all\" is replaced with \"at\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "\u2022 Specifiers -This segment is similar to Objects and Landmarks plus a final \"of\" when it precedes a Landmark (about 5% of the descriptions had Specifiers without Landmarks).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "In addition, the head noun, which is normally the penultimate word in a Specifier, must be a positional noun, such as \"center\", \"edge\" or \"corner\". Thus, a word is replaced if a PoS mismatch occurs or the penultimate word is not an expected positional noun, as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "-HWord 1 \u21d2 \"the\" (DT)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "-HWord mid \u21d2\"unknown\" (JJ) (multiple times)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "-HWord last\u22121 \u21d2 \"position\" (NN)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "-HWord last \u21d2 \"of\" (IN, preposition) For instance, given the Specifier \"the:DT ride:NN into:IN\" followed by a Landmark, \"of:IN\" is appended, and \"into:IN\" is replaced with \"position:NN\", yielding \"the:DT ride:NN position:NN of:IN\". Clearly, other replacement options are possible, which will be investigated in the future.",
                "cite_spans": [
                    {
                        "start": 19,
                        "end": 36,
                        "text": "(IN, preposition)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "In principle, the penalty for replacing a word should depend on both the probability that it is wrong (as for noise removal) and on the similarity between the wrong word and the proposed replacement. That is, the higher the probability that a word is wrong, and the higher the similarity between the original word and the replacement, the lower the penalty for the replacement. However, at present, we replace words that do not match an expected PoS only with generic options, e.g., \"unknown\" for expected adjectives, \"thing\" for expected nouns in Objects and Landmarks, and \"position\" for expected positional nouns in Specifiers. Thus, our penalty consists only of the first of the above factors moderated by a generic similarity factor \u03b4(= 0.5), as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "Pr(replace HWord ji ) =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "(2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "\u03b4 Pr(IsW(HWord ji ))Pr(Class) if label = W \u03b4 (1\u2212Pr(IsC(HWord ji )))Pr(Class) if label = C",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "In the future, the generic \u03b4 will be replaced by a function of the similarity between an original word and its candidate replacements.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Replacing a word",
                "sec_num": "5.1.3"
            },
            {
                "text": "In this section, we describe our corpus and evaluation metrics, and compare the results obtained with Scusi? plus error correction with those obtained by the original Scusi? system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "6"
            },
            {
                "text": "Our model's performance was evaluated using part of the corpus constructed to evaluate the Scusi? system (Kleinbauer et al., 2013) . The original corpus comprises 432 free-form descriptions spoken by 26 trial subjects to refer to 12 designated objects in four scenarios (three objects per scenario, where a scenario contains between 8 and 16 objects; participants repeated or rephrased some descriptions). 32 descriptions could not be processed by the ASR, and 105 contained constructs that could not be represented by Scusi?. The remaining 295 descriptions were used in our evaluation.",
                "cite_spans": [
                    {
                        "start": 91,
                        "end": 130,
                        "text": "Scusi? system (Kleinbauer et al., 2013)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": "6.1"
            },
            {
                "text": "The descriptions, which varied in length and complexity, had an average description length of 10 words. Sample descriptions are: \"the green plate next to the screwdriver at the top of the table\", \"the large pink ball in the middle of the room\", \"the plate on the corner of the table\" and \"the computer under the table\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": "6.1"
            },
            {
                "text": "We use the evaluation metrics discussed in (Kleinbauer et al., 2013) , viz %NotFound@N , the percentage of descriptions that have no correct interpretation within the top N ranks; Fractional Recall@N (FRecall@N ), which represents the fact that the ranked order of equiprobable interpretations is arbitrary; and Normalized Discounted Cumulative Gain@N (NDCG@N ), which discounts interpretations with higher (worse) ranks (J\u00e4rvelin and Kek\u00e4l\u00e4inen, 2002) . The last two metrics are defined as follows:",
                "cite_spans": [
                    {
                        "start": 43,
                        "end": 68,
                        "text": "(Kleinbauer et al., 2013)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 421,
                        "end": 452,
                        "text": "(J\u00e4rvelin and Kek\u00e4l\u00e4inen, 2002)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation metrics",
                "sec_num": "6.2"
            },
            {
                "text": "FRecall@N (d) = N j=1 fc(I j ) |C(d)| ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation metrics",
                "sec_num": "6.2"
            },
            {
                "text": "where d is a description, C(d) is the set of correct interpretations for d, I j is an interpretation generated by Scusi? at rank j, and fc is the fraction of correct interpretations among those with the same probability as I j (this is a proxy for the probability that I j is correct):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation metrics",
                "sec_num": "6.2"
            },
            {
                "text": "fc(I j ) = c j h j \u2212 l j + 1 ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation metrics",
                "sec_num": "6.2"
            },
            {
                "text": "where l j is the lowest rank of all the interpretations with the same probability as I j , h j the highest rank, and c j the number of correct interpretations between rank l j and h j inclusively. DCG@N allows the definition of a relevance measure for a result, and divides this measure by a logarithmic penalty that reflects the rank of the result. Using fc(I j ) as a measure of the relevance of interpretation I j , we obtain",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation metrics",
                "sec_num": "6.2"
            },
            {
                "text": "DCG@N (d) = fc(I 1 ) + N j=2 fc(I j ) log 2 j .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation metrics",
                "sec_num": "6.2"
            },
            {
                "text": "This score is normalized to the [0, 1] range by dividing it by the score of an ideal answer where |C(d)| correct interpretations are ranked in the top Table 2 compares the performance of the original Scusi? system with that of Scusi? plus error correction, and displays the performance obtained for three types of modifications: N+P, P+R and N+P+R, where N stands for noise removal, P for preposition insertion, and R for word replacement (preposition insertion was folded into all the options, as it happens in only 2% of the cases). The table shows the average of %NotFound, FRecall and NDCG for the 295 descriptions in our corpus. The best performance is boldfaced.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 151,
                        "end": 158,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation metrics",
                "sec_num": "6.2"
            },
            {
                "text": "|C(d)| places, yielding NDCG@N (d) = DCG@N (d) 1 + min{|C(d)|,N } j=2 1 log 2 j",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation metrics",
                "sec_num": "6.2"
            },
            {
                "text": "As seen in Table 2 , Scusi? plus error correction with word replacement generally outperforms the original Scusi? system (the Object/Landmark replacement has the greatest impact on performance among the three types of word replacements). Scusi?+N+P+R yields the best overall performance for FRecall@\u221e and %NotFound@\u221e (statistically significantly better than Scusi? with p<<0.01 for the Wilcoxon signed rank test), while Scusi?+P+R yields the best performance for the remaining measures (statistically significantly better than Scusi? for FRecall@\u221e,20,10,3, NDCG@\u221e,20,10,3 and all values of %NotFound; and statistically significantly better than Scusi?+N+P+R for FRecall@3,1, all values of NDCG and %NotFound@3,1, p\u22640.05). The fact that Scusi?+N+P+R outperforms Scusi?+P+R only for %NotFound@\u221e and FRecall@\u221e indicates that while the combination of noise removal with the other corrections enables Scusi? to find additional correct interpretations, these interpretations tend to appear in high (bad) ranks. The performance of Scusi?+N+P is generally worse than that of the original Scusi? system -a disappointing outcome that may be attributed to the low accuracy of SSP in the identification of Noise (54.75%, Section 3.2).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 11,
                        "end": 18,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6.3"
            },
            {
                "text": "Further examination of our results reveals the following types of errors: (1) ASR errors that rendered a description unprocessable by other stages, e.g., \"the green plate next to the hammer\" heard as \"degree in applied next to him are\", and \"the picture above the table\" heard as \"the picture of the that\"; (2) ASR errors that were not corrected, as the PoS was expected, e.g., \"the center off/IN the table\"; (3) wrong expression replacements, e.g., \"the plate:O | next to scholar of:P\" corrected as \"the plate:O | next to:P\"; and (4) out of vocabulary terms, e.g., \"motherboard\" and \"frame\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6.3"
            },
            {
                "text": "An interesting pattern emerges when considering ASR errors. Both Scusi?+N+P+R and Scusi?+P+R outperform the original version of ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "6.3"
            },
            {
                "text": "Average of Scusi? P+R N+P+R all wrong %NotFound@1 61.66% 52.85% 54.40% (193 desc.) %NotFound@10 44.56% 33.68% 35.75% one correct %NotFound@1 12.75% 15.69% 25.50% (102 desc.) %NotFound@10 7.84% 7.84% 9.80%",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ASR output",
                "sec_num": null
            },
            {
                "text": "Scusi? for the 193 descriptions with no correct textual interpretation (SER = 65.3%, Section 1), while the original version of Scusi? performs at least as well as the best option, Scusi?+P+R, for the 102 descriptions where a correct textual interpretation was found (Table 3 ). This indicates that SSP is over-zealous in finding errors, and its performance must be further investigated, or another mode of operation considered (e.g., retaining both the original and the modified ASR output).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 266,
                        "end": 274,
                        "text": "(Table 3",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "ASR output",
                "sec_num": null
            },
            {
                "text": "We have offered a noisy channel approach for error correction in spoken utterances, with a firststage implementation that corrects errors by removing noise, inserting prepositions, and replacing wrong words with generic terms. Our approach yields significant improvements in interpretation performance, and shows promise for achieving further improvements with more sophisticated interventions. The structure of referring expressions is rather rigid in terms of the order of the semantic segments. To test the general applicability of our noisy channel model, we propose to consider other types of dialogue acts, and take into account the expectations from the dialogue, e.g., \"to play a CD\" is modified when it is considered a mis-heard description, but if it were a response to the question \"what would you like me to do?\", no changes would be required. In addition, we will extend our approach to propose specific, rather than generic, word replacements, and to handle superfluous information (i.e., information that is meaningless to the language interpretation module) or missing information (e.g., missing landmarks). Another avenue of research involves versions of Scusi? that employ SSP as an alternative to or in combination with a syntactic parser.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion and Future Work",
                "sec_num": "7"
            }
        ],
        "back_matter": [
            {
                "text": "This research was supported in part by grants DP110100500 and DP120100103 from the Australian Research Council. The authors thank Masud Moshtaghi for his help with statistical issues.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "The Berkeley FrameNet project",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "F"
                        ],
                        "last": "Baker",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "J"
                        ],
                        "last": "Fillmore",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "B"
                        ],
                        "last": "Lowe",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "COLING'98 -Proceedings of the 17th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "86--90",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C.F. Baker, C.J. Fillmore, and J.B. Lowe. 1998. The Berkeley FrameNet project. In COLING'98 -Pro- ceedings of the 17th International Conference on Computational Linguistics, pages 86-90, Montreal, Canada.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "An improved error model for noisy channel spelling correction",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Brill",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "C"
                        ],
                        "last": "Moore",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "ACL'2000 -Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "286--293",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "E. Brill and R.C. Moore. 2000. An improved er- ror model for noisy channel spelling correction. In ACL'2000 -Proceedings of the 38th Annual Meet- ing of the Association for Computational Linguis- tics, pages 286-293, Hong Kong.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Shallow semantic parsing for spoken language understanding",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Coppola",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Moschitti",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Riccardi",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "NAACL-HLT 2009 -Proceedings of Human Language Technologies: The Annual Conference of the North American Chapter of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "85--88",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Coppola, A. Moschitti, and G. Riccardi. 2009. Shal- low semantic parsing for spoken language under- standing. In NAACL-HLT 2009 -Proceedings of Human Language Technologies: The Annual Con- ference of the North American Chapter of the Asso- ciation for Computational Linguistics, pages 85-88, Boulder, Colorado.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "On the optimality of the simple Bayesian classifier under zero-one loss",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Domingos",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Pazzani",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Machine Learning",
                "volume": "29",
                "issue": "",
                "pages": "103--130",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Domingos and M. Pazzani. 1997. On the optimal- ity of the simple Bayesian classifier under zero-one loss. Machine Learning, 29:103-130.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Semantic interpretation of dutch spoken dialogue",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Geertzen",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "IWCS-8 -Proceedings of the 8th International Conference on Computational Semantics",
                "volume": "",
                "issue": "",
                "pages": "286--290",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Geertzen. 2009. Semantic interpretation of dutch spoken dialogue. In IWCS-8 -Proceedings of the 8th International Conference on Computational Se- mantics, pages 286-290, Tilburg, The Netherlands.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Cumulated gainbased evaluation of IR techniques",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "J\u00e4rvelin",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kek\u00e4l\u00e4inen",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "ACM Transactions on Information Systems (TOIS)",
                "volume": "20",
                "issue": "4",
                "pages": "422--446",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. J\u00e4rvelin and J. Kek\u00e4l\u00e4inen. 2002. Cumulated gain- based evaluation of IR techniques. ACM Trans- actions on Information Systems (TOIS), 20(4):422- 446.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A TAG-based noisy channel model of speech repairs",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Charniak",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "ACL'04 -Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "33--39",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Johnson and E. Charniak. 2004. A TAG-based noisy channel model of speech repairs. In ACL'04 - Proceedings of the 42nd Annual Meeting of the As- sociation for Computational Linguistics, pages 33- 39, Barcelona, Spain.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Evaluation of the Scusi? spoken language interpretation system -A case study",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Th",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Kleinbauer",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "N"
                        ],
                        "last": "Zukerman",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 6th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Th. Kleinbauer, I. Zukerman, and S.N. Kim. 2013. Evaluation of the Scusi? spoken language interpre- tation system -A case study. In Proceedings of the 6th International Joint Conference on Natural Lan- guage Processing, Nagoya, Japan.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Conditional random fields: Probabilistic models for segmenting and labeling sequence data",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "D"
                        ],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "C N"
                        ],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "ICML'2001 -Proceedings of the 18th International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "282--289",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J.D. Lafferty, A. McCallum, and F.C.N. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML'2001 -Proceedings of the 18th International Conference on Machine Learning, pages 282-289, Williamstown, Massachusetts.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "New technique to enhance the performance of spoken dialogue systems based on dialogue states-dependent language models and grammatical rules",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "L\u00f3pez-C\u00f3zar",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Griol",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of Interspeech 2010",
                "volume": "",
                "issue": "",
                "pages": "2998--3001",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. L\u00f3pez-C\u00f3zar and D. Griol. 2010. New technique to enhance the performance of spoken dialogue sys- tems based on dialogue states-dependent language models and grammatical rules. In Proceedings of In- terspeech 2010, pages 2998-3001, Makuhari, Japan.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Improving ASR error detection with non-decoder based features",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Pellegrini",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Trancoso",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of Interspeech 2010",
                "volume": "",
                "issue": "",
                "pages": "1950--1953",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Pellegrini and I. Trancoso. 2010. Improving ASR error detection with non-decoder based features. In Proceedings of Interspeech 2010, pages 1950-1953, Makuhari, Japan.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "C4.5: Programs for Machine Learning",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Quinlan",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. R. Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Ma- teo, California.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Error correction via a postprocessor for continuous speech recognition",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Ringger",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "F"
                        ],
                        "last": "Allen",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing",
                "volume": "",
                "issue": "",
                "pages": "427--430",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "E. Ringger and J.F. Allen. 1996. Error correction via a postprocessor for continuous speech recognition. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pages 427-430, Atlanta, Georgia.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Exemplarbased sparse representation features: From TIMIT to LVCSR",
                "authors": [
                    {
                        "first": "T",
                        "middle": [
                            "N"
                        ],
                        "last": "Sainath",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Ramabhadran",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Picheny",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Nahamoo",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Kanevsky",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "IEEE Transactions on Audio, Speech and Language Processing",
                "volume": "19",
                "issue": "8",
                "pages": "2598--2613",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T.N. Sainath, B. Ramabhadran, M. Picheny, D. Na- hamoo, and D. Kanevsky. 2011. Exemplar- based sparse representation features: From TIMIT to LVCSR. IEEE Transactions on Audio, Speech and Language Processing, 19(8):2598-2613.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Conceptual Structures: Information Processing in Mind and Machine",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "F"
                        ],
                        "last": "Sowa",
                        "suffix": ""
                    }
                ],
                "year": 1984,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J.F. Sowa. 1984. Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley, Reading, MA.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Statistical and Inductive Inference by Minimum Message Length",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "S"
                        ],
                        "last": "Wallace",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C.S. Wallace. 2005. Statistical and Inductive Inference by Minimum Message Length. Springer, Berlin, Germany.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "A probabilistic approach to the interpretation of spoken utterances",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Zukerman",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Makalic",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Niemann",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "George",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "PRICAI 2008 -Proceedings of the 10th Pacific Rim International Conference on Artificial Intelligence",
                "volume": "",
                "issue": "",
                "pages": "581--592",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I. Zukerman, E. Makalic, M. Niemann, and S. George. 2008. A probabilistic approach to the interpreta- tion of spoken utterances. In PRICAI 2008 -Pro- ceedings of the 10th Pacific Rim International Con- ference on Artificial Intelligence, pages 581-592, Hanoi, Vietnam.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Towards the interpretation of utterance sequences in a dialogue system",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Zukerman",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Ye",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [
                            "K"
                        ],
                        "last": "Gupta",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Makalic",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 10th SIGdial Conference on Discourse and Dialogue",
                "volume": "",
                "issue": "",
                "pages": "46--53",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I. Zukerman, P. Ye, K.K. Gupta, and E. Makalic. 2009. Towards the interpretation of utterance sequences in a dialogue system. In Proceedings of the 10th SIG- dial Conference on Discourse and Dialogue, pages 46-53, London, United Kingdom.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Detecting speech repairs incrementally using a noisy channel approach",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Zwarts",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Dale",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "COLING'2010 -Proceedings of the 23rd International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "1371--1378",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Zwarts, M. Johnson, and R. Dale. 2010. De- tecting speech repairs incrementally using a noisy channel approach. In COLING'2010 -Proceedings of the 23rd International Conference on Computa- tional Linguistics, pages 1371-1378, Beijing, China.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "text": "Pr(SemModel) = Pr(O|B, B) Pr(S|O, B) Pr(L|S, O) Pr(E|L, S) Pr(E|E, L) , where Pr(S|O, B) and Pr(L|S, O) are low, as they are ungrammatical. After adding the preposition, Pr(SemModel ) = Pr(O|B, B) Pr(P |O, B) Pr(S|P, O) Pr(L|S, P ) Pr(E|L, S) Pr(E|E, L) .",
                "type_str": "figure",
                "num": null
            },
            "TABREF0": {
                "html": null,
                "num": null,
                "text": "Spoken, heard and labeled descriptions.",
                "type_str": "table",
                "content": "<table><tr><td colspan=\"4\">Spoken: the stool to the left of</td><td>the table</td></tr><tr><td>Heard:</td><td>the storm</td><td/><td>the left of</td><td>the table</td></tr><tr><td>Labels:</td><td colspan=\"3\">Object Prep Specifier</td><td>Landmark</td></tr><tr><td colspan=\"2\">Spoken: the plate</td><td/><td>in</td><td>the microwave</td></tr><tr><td>Heard:</td><td>to play</td><td>it</td><td>in</td><td>the microwave</td></tr><tr><td>Labels:</td><td colspan=\"2\">Object Noise</td><td>Prep</td><td>Landmark</td></tr></table>"
            },
            "TABREF1": {
                "html": null,
                "num": null,
                "text": "Performance comparison: original Scusi? versus Scusi? + Noisy Channel Error Correction. \u221e 22.37% 22.03% 14.24% 13.90% %NotFound@20 28.14% 28.47% 23.39% 24.41% %NotFound@10 31.86% 31.19% 24.75% 26.78% %NotFound@3 37.97% 40.00% 32.88% 36.27% %NotFound@1 44.75% 47.80% 40.00% 44.41%",
                "type_str": "table",
                "content": "<table><tr><td>Average of</td><td colspan=\"4\">Scusi? Noisy Channel Error Correction</td></tr><tr><td/><td/><td>N+P</td><td>P+R</td><td>N+P+R</td></tr><tr><td>%NotFound@FRecall@\u221e</td><td>0.776</td><td>0.778</td><td>0.858</td><td>0.859</td></tr><tr><td>FRecall@20</td><td>0.709</td><td>0.699</td><td>0.753</td><td>0.741</td></tr><tr><td>FRecall@10</td><td>0.667</td><td>0.662</td><td>0.731</td><td>0.712</td></tr><tr><td>FRecall@3</td><td>0.598</td><td>0.567</td><td>0.636</td><td>0.600</td></tr><tr><td>FRecall@1</td><td>0.488</td><td>0.462</td><td>0.508</td><td>0.481</td></tr><tr><td>NDCG@\u221e</td><td>0.641</td><td>0.626</td><td>0.688</td><td>0.666</td></tr><tr><td>NDCG@20</td><td>0.628</td><td>0.610</td><td>0.669</td><td>0.644</td></tr><tr><td>NDCG@10</td><td>0.617</td><td>0.601</td><td>0.663</td><td>0.636</td></tr><tr><td>NDCG@3</td><td>0.589</td><td>0.562</td><td>0.624</td><td>0.591</td></tr><tr><td>NDCG@1</td><td>0.516</td><td>0.490</td><td>0.538</td><td>0.511</td></tr></table>"
            },
            "TABREF2": {
                "html": null,
                "num": null,
                "text": "Performance broken down by SER.",
                "type_str": "table",
                "content": "<table/>"
            }
        }
    }
}