File size: 105,369 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 |
{
"paper_id": "I13-1018",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:15:10.417312Z"
},
"title": "Efficient Word Lattice Generation for Joint Word Segmentation and POS Tagging in Japanese",
"authors": [
{
"first": "Nobuhiro",
"middle": [],
"last": "Kaji",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "The University of Tokyo \u2020 National Institute of Informatics",
"location": {}
},
"email": "kaji@tkl.iis.u-tokyo.ac.jp"
},
{
"first": "Masaru",
"middle": [],
"last": "Kitsuregawa",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "The University of Tokyo \u2020 National Institute of Informatics",
"location": {}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "This paper investigates the importance of a word lattice generation algorithm in joint word segmentation and POS tagging. We conducted experiments on three Japanese data sets to demonstrate that the previously proposed pruning-based algorithm is in fact not efficient enough, and that the pipeline algorithm, which is introduced in this paper, achieves considerable speedup without loss of accuracy. Moreover, the compactness of the lattice generated by the pipeline algorithm was investigated from both theoretical and empirical perspectives.",
"pdf_parse": {
"paper_id": "I13-1018",
"_pdf_hash": "",
"abstract": [
{
"text": "This paper investigates the importance of a word lattice generation algorithm in joint word segmentation and POS tagging. We conducted experiments on three Japanese data sets to demonstrate that the previously proposed pruning-based algorithm is in fact not efficient enough, and that the pipeline algorithm, which is introduced in this paper, achieves considerable speedup without loss of accuracy. Moreover, the compactness of the lattice generated by the pipeline algorithm was investigated from both theoretical and empirical perspectives.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Many approaches to joint word segmentation and POS tagging can be interpreted as reranking with a word lattice (Jiang et al., 2008) , wherein a small lattice is generated for an input sentence, and then the lattice paths are reranked to obtain the optimal one. Examples of such a method include (Asahara and Matsumoto, 2000; Kudo et al., 2004; Kruengkrai et al., 2006; Jiang et al., 2008) .",
"cite_spans": [
{
"start": 111,
"end": 131,
"text": "(Jiang et al., 2008)",
"ref_id": "BIBREF6"
},
{
"start": 295,
"end": 324,
"text": "(Asahara and Matsumoto, 2000;",
"ref_id": "BIBREF0"
},
{
"start": 325,
"end": 343,
"text": "Kudo et al., 2004;",
"ref_id": "BIBREF9"
},
{
"start": 344,
"end": 368,
"text": "Kruengkrai et al., 2006;",
"ref_id": "BIBREF7"
},
{
"start": 369,
"end": 388,
"text": "Jiang et al., 2008)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In such a framework, it is crucial to develop an efficient lattice generation algorithm. Since there are n+1 C 2 = O(n 2 ) word candidates, where n is the number of characters in the sentence, to be included in the lattice, it is prohibitively expensive to check all of them exhaustively. Such a naive method constitutes a severe bottleneck in a reranking system. Accordingly, in practice, it is necessary to resort to some technique to speed-up lattice generation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "It is, however, not straightforward to speed-up lattice generation for reranking, because there are requirements that the lattice has to satisfy and it is necessary to achieve a speed-up while satisfying those requirements. Most importantly, the lattice should contain a sufficient amount of correct words; otherwise, the accuracy of the reranking system will be seriously degraded. Moreover, the lattice should be small: an excessively large lattice spoils the efficiency of the reranking system because it is expensive to find the optimal path of such a lattice.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "For the reasons stated above, it is not readily obvious what sort of technique is effective for lattice generation. Despite its practical importance, this question, however, has not been well studied. For example, (Kudo et al., 2004) used a dictionary to filter word candidates. While indeed efficient, such a method is obviously prone to removing outof-vocabulary (OOV) words from a lattice and degrade accuracy (Uchimoto et al., 2001) . Jiang et al. (2008) employed a pruning-based algorithm to reduce the O(n 2 ) cost, but they did not investigate computational time required.",
"cite_spans": [
{
"start": 214,
"end": 233,
"text": "(Kudo et al., 2004)",
"ref_id": "BIBREF9"
},
{
"start": 413,
"end": 436,
"text": "(Uchimoto et al., 2001)",
"ref_id": "BIBREF19"
},
{
"start": 439,
"end": 458,
"text": "Jiang et al. (2008)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Given the above issues, the present study revisits lattice reranking by exploring the effectiveness of the lattice generation algorithm. Specifically, large-scale experiments were conducted on three Japanese data sets. The results of the experiments show that the pruning-based algorithm (Jiang et al., 2008) in fact incurs a non-negligible computational cost, which constitutes a bottleneck in the reranking system. Moreover, a pipelined lattice generation algorithm (see Section 3) was investigated as an alternative to the pruning-based one, and it was demonstrated that the reranking system using the pipeline algorithm speeds up the reranking more than 10 times without loss of accuracy. After that, the compactness of the lattice generated by the pipeline algorithm was examined from not C 1 :",
"cite_spans": [
{
"start": 288,
"end": 308,
"text": "(Jiang et al., 2008)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "C 2 : C 3 : C 4 : C 5 : C 6 : b Noun e",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Noun Noun",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Noun",
"sec_num": null
},
{
"text": "Input sentence:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Particle Suffix",
"sec_num": null
},
{
"text": "(To live in Tokyo metropolis)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Particle Suffix",
"sec_num": null
},
{
"text": "Word lattice:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Particle Suffix",
"sec_num": null
},
{
"text": "Figure 1: Example lattice (Kudo et al., 2004) . The circle and arrow represent the node and edge, respectively. The bold edges represent the correct analysis.",
"cite_spans": [
{
"start": 26,
"end": 45,
"text": "(Kudo et al., 2004)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Particle Suffix",
"sec_num": null
},
{
"text": "only theoretical but also empirical perspectives. The first contribution of this study is to shed light on the importance of the lattice generation algorithm in lattice reranking. As mentioned earlier, past studies paid little attention to elaborating the lattice generation algorithm. On the contrary, the results of our experiments reveal that the design of the lattice generation algorithm crucially affects the performance of the reranking system (including speed, accuracy, and lattice size).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Particle Suffix",
"sec_num": null
},
{
"text": "The second contribution is to provide clear empirical evidence concerning the effectiveness of the pipeline algorithm. Although the pipeline algorithm itself is a simple application of wellknown techniques (Xue, 2003; Peng et al., 2004; Neubig et al., 2011) and does not have much novelty, its effectiveness has been left unexplored in the context of lattice reranking. Consequently, its merits (or demerits) in relation to the pruningbased algorithm have also been unknown.",
"cite_spans": [
{
"start": 206,
"end": 217,
"text": "(Xue, 2003;",
"ref_id": "BIBREF21"
},
{
"start": 218,
"end": 236,
"text": "Peng et al., 2004;",
"ref_id": "BIBREF15"
},
{
"start": 237,
"end": 257,
"text": "Neubig et al., 2011)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Particle Suffix",
"sec_num": null
},
{
"text": "The third contribution is to develop an accurate reranking system based on the pipeline algorithm. The developed system achieved considerably higher F 1 -score than three software tools that are widely used in Japanese NLP (JUMAN 1 , MeCab 2 , and Kytea 3 ), while achieving high speed close to two of the three.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Particle Suffix",
"sec_num": null
},
{
"text": "As a preliminary, a word lattice and lattice reranking for joint word segmentation and POS tagging are explained in Sections 2.1 and 2.2, respectively. After that, the pruning-based lattice generation algorithm proposed by Jiang et al. (2008) is introduced in Section 2.3.",
"cite_spans": [
{
"start": 223,
"end": 242,
"text": "Jiang et al. (2008)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Preliminaries",
"sec_num": "2"
},
{
"text": "A word lattice, or lattice for short, is a data representation that compactly encodes an exponentially large number of word segmentations and POS tagging results (Kudo et al., 2004; Jiang et al., 2008) .",
"cite_spans": [
{
"start": 162,
"end": 181,
"text": "(Kudo et al., 2004;",
"ref_id": "BIBREF9"
},
{
"start": 182,
"end": 201,
"text": "Jiang et al., 2008)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Word lattice",
"sec_num": "2.1"
},
{
"text": "An example lattice is illustrated in Figure 1 . A lattice is formally a directed acyclic graph. A node (a circle in Figure 1 ) corresponds to the position between two characters, representing a possible word boundary. Moreover, two special nodes, b and e, represent the beginning and ending of the sentence. An edge (an arrow) represents a word-POS pair (w, t), where w is a word defined by two nodes, and t is a member of the predefined POS tag set.",
"cite_spans": [],
"ref_spans": [
{
"start": 37,
"end": 45,
"text": "Figure 1",
"ref_id": null
},
{
"start": 116,
"end": 124,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Word lattice",
"sec_num": "2.1"
},
{
"text": "Since every path from node b to e represents one candidate analysis of the sentence, the task of joint word segmentation and POS tagging can be seen as locating the most probable path amongst those in the lattice. Dynamic programming is usually used to locate the optimal path.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word lattice",
"sec_num": "2.1"
},
{
"text": "For later convenience, notations that will be used throughout this paper are introduced as follows. x and y are used to denote an input sentence and a lattice path. It is presumed that sentence x has n characters, and c i is used to denote the i-th character (1 \u2264 i \u2264 n). w and t are used to denote a word and a POS tag, respectively.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word lattice",
"sec_num": "2.1"
},
{
"text": "Lattice reranking is an approximate inference technique for joint word segmentation and POS tagging (Jiang et al., 2008) . In this approach, a small lattice is generated for an input sentence, and the paths of the lattice are then reranked to obtain the optimal one. The advantage of this approach is that the search space is greatly reduced in the same manner as conventional list-based reranking (Collins, 2000) , while an exponentially large num-ber of candidates is maintained in the lattice (Jiang et al., 2008) .",
"cite_spans": [
{
"start": 100,
"end": 120,
"text": "(Jiang et al., 2008)",
"ref_id": "BIBREF6"
},
{
"start": 398,
"end": 413,
"text": "(Collins, 2000)",
"ref_id": "BIBREF1"
},
{
"start": 496,
"end": 516,
"text": "(Jiang et al., 2008)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Lattice reranking",
"sec_num": "2.2"
},
{
"text": "In this framework, the task of joint word segmentation and POS tagging can be formalized a\u015d",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lattice reranking",
"sec_num": "2.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "y = arg max y\u2208L(x) SCORE(x, y)",
"eq_num": "(1)"
}
],
"section": "Lattice reranking",
"sec_num": "2.2"
},
{
"text": "where\u0177 is the optimal path, L(x) is the lattice created for sentence x, and SCORE(x, y) is a function for scoring path y of lattice L(x). For notational convenience, lattice L(x) is treated as a set of paths.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Lattice reranking",
"sec_num": "2.2"
},
{
"text": "In this paper we explore the algorithm for generating the lattice L(x). A naive approach requires O(n 2 ) time to determine which word candidate to include in L(x), as mentioned in Section 1, and constitutes a bottleneck. Although additional time is required to perform the arg max operation, it is practically negligible because the lattice generated in this framework is generally small. Jiang et al. (2008) proposed a pruning-based lattice generation algorithm for reranking. Here, we briefly describe their algorithm. Interested readers may refer to (Jiang et al., 2008) for its details.",
"cite_spans": [
{
"start": 390,
"end": 409,
"text": "Jiang et al. (2008)",
"ref_id": "BIBREF6"
},
{
"start": 554,
"end": 574,
"text": "(Jiang et al., 2008)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Lattice reranking",
"sec_num": "2.2"
},
{
"text": "The pruning-based algorithm generates a lattice, specifically the edge set E constituting a lattice, by considering each character in a left-toright fashion (Algorithm 1). The algorithm enumerates word-POS pairs (w, t), or edges, that end with the current character, c i , and stores them in the candidate list, C (line 5-10). Top-scored k edges in C are then moved to E (line 11). Note that the word length l is limited to, at most, K characters (line 5).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pruning-based algorithm",
"sec_num": "2.3"
},
{
"text": "This algorithm can be understood as pruning O(n 2 ) candidate space by setting threshold K on the maximum word length. Although this method is much more efficient than exhaustively searching over the entire candidates, it still incurs non-negligible computational overhead, as we will demonstrate in the experiments.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pruning-based algorithm",
"sec_num": "2.3"
},
{
"text": "An additional issue involving the pruning-based algorithm is how to determine the value of K. Although a smaller value of K reduces computational cost more, it is prone to remove more correct word-POS pairs from the search space. While this trade-off was not investigated by Jiang et al. (2008) , it is examined in our experiment (see Section 5).",
"cite_spans": [
{
"start": 275,
"end": 294,
"text": "Jiang et al. (2008)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Pruning-based algorithm",
"sec_num": "2.3"
},
{
"text": "Algorithm 1 Pruning-based lattice generation algorithm.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pruning-based algorithm",
"sec_num": "2.3"
},
{
"text": "1: T \u2190 a set of all POS tags 2: E \u2190 \u2205 3:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pruning-based algorithm",
"sec_num": "2.3"
},
{
"text": "for i = 1 . . . n do 4: C \u2190 \u2205 5: for l = 1 . . . min(i, K) do 6: w \u2190 c i\u2212l+1 c i\u2212l+2 . . . ci 7: for t \u2208 T do 8: C \u2190 C \u222a (w, t) 9:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pruning-based algorithm",
"sec_num": "2.3"
},
{
"text": "end for 10: end for 11: add top-k edges in C to E. 12: end for 13: return E Algorithm 2 Pipelined lattice generation algorithm.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pruning-based algorithm",
"sec_num": "2.3"
},
{
"text": "1: E \u2190 \u2205 2: W \u2190 WORDGENERATOR(x) 3: for w \u2208 W do 4: T \u2190 POSTAGGENERATOR(x, w) 5: for t \u2208 T do 6:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pruning-based algorithm",
"sec_num": "2.3"
},
{
"text": "E \u2190 E \u222a (w, t) 7: end for 8: end for 9: return E",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pruning-based algorithm",
"sec_num": "2.3"
},
{
"text": "As an alternative to the pruning-based algorithm, a pipelined lattice generation algorithm, which generates words and POS tags independently, is proposed here. In a nutshell, this method first generates the word set W constituting the lattice (Algorithm 2 line 2), and it then generates POS tags for each of the words (line 4).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pipeline Algorithm",
"sec_num": "3"
},
{
"text": "The advantage of this approach is that it can naturally avoid searching the O(n 2 ) candidate space by exploiting a character-based word segmentation model (Xue, 2003; Peng et al., 2004; Neubig et al., 2011) to obtain the word set W . This algorithm has linear-time complexity in the sentence length and hence is efficient.",
"cite_spans": [
{
"start": 156,
"end": 167,
"text": "(Xue, 2003;",
"ref_id": "BIBREF21"
},
{
"start": 168,
"end": 186,
"text": "Peng et al., 2004;",
"ref_id": "BIBREF15"
},
{
"start": 187,
"end": 207,
"text": "Neubig et al., 2011)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Pipeline Algorithm",
"sec_num": "3"
},
{
"text": "This section proceeds as follows. Sections 3.1 and 3.2 describe how to generate words and POS tags, respectively. The computational complexity is then examined in Section 3.3.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pipeline Algorithm",
"sec_num": "3"
},
{
"text": "The character-based word segmentation model (Xue, 2003; Peng et al., 2004; Neubig et al., 2011) is used to generate word set W (Figure 2 line 2). This model performs segmentation by assigning tag sequence b to the input sentence: ci, bi , ci, ci+1, bi , ci+1, ci+2, bi , bi , ci, bi , ci, ci+1, bi ci, ci+1, ci+2, bi , ci+1, ci+2, ci+3, Table 1 : Feature templates of word generation. c i and c i represent the target character and its type, respectively. c i specifically takes one of the following values: (1) Roman alphabet, (2) Chinese kanji characters, (3) Japanese hiragana characters, (4) Japanese katakana characters, (5) numerical symbols, or (6) others. The neighboring characters and their types are similarly referred to as c i\u22121 , c i+1 , c i+1 , and so on. b i is the tag (B or I) given to the target character. BEGIN and END represent whether a word in a dictionary begins with or ends before the target character, respectively. INSIDE means that the target character is inside the word. s denotes the length (1, 2, 3, 4, or 5\u2264) of the word registered in the dictionary. LENGTH(w) returns the length of the word w in the number of characters: 1, 2, 3, 4, or 5\u2264. DICT(w, t) is an indicator representing that word w with POS tag t is registered in a dictionary. The features in the last row are fired only when the target word is found in a dictionary.",
"cite_spans": [
{
"start": 44,
"end": 55,
"text": "(Xue, 2003;",
"ref_id": "BIBREF21"
},
{
"start": 56,
"end": 74,
"text": "Peng et al., 2004;",
"ref_id": "BIBREF15"
},
{
"start": 75,
"end": 95,
"text": "Neubig et al., 2011)",
"ref_id": "BIBREF14"
},
{
"start": 230,
"end": 233,
"text": "ci,",
"ref_id": null
},
{
"start": 234,
"end": 238,
"text": "bi ,",
"ref_id": null
},
{
"start": 239,
"end": 242,
"text": "ci,",
"ref_id": null
},
{
"start": 243,
"end": 248,
"text": "ci+1,",
"ref_id": null
},
{
"start": 249,
"end": 253,
"text": "bi ,",
"ref_id": null
},
{
"start": 254,
"end": 259,
"text": "ci+1,",
"ref_id": null
},
{
"start": 260,
"end": 265,
"text": "ci+2,",
"ref_id": null
},
{
"start": 266,
"end": 270,
"text": "bi ,",
"ref_id": null
},
{
"start": 271,
"end": 275,
"text": "bi ,",
"ref_id": null
},
{
"start": 276,
"end": 279,
"text": "ci,",
"ref_id": null
},
{
"start": 280,
"end": 284,
"text": "bi ,",
"ref_id": null
},
{
"start": 285,
"end": 288,
"text": "ci,",
"ref_id": null
},
{
"start": 289,
"end": 294,
"text": "ci+1,",
"ref_id": null
},
{
"start": 295,
"end": 301,
"text": "bi ci,",
"ref_id": null
},
{
"start": 302,
"end": 307,
"text": "ci+1,",
"ref_id": null
},
{
"start": 308,
"end": 313,
"text": "ci+2,",
"ref_id": null
},
{
"start": 314,
"end": 318,
"text": "bi ,",
"ref_id": null
},
{
"start": 319,
"end": 324,
"text": "ci+1,",
"ref_id": null
},
{
"start": 325,
"end": 330,
"text": "ci+2,",
"ref_id": null
},
{
"start": 331,
"end": 336,
"text": "ci+3,",
"ref_id": null
},
{
"start": 1086,
"end": 1095,
"text": "LENGTH(w)",
"ref_id": null
},
{
"start": 1177,
"end": 1187,
"text": "DICT(w, t)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 127,
"end": 136,
"text": "(Figure 2",
"ref_id": null
},
{
"start": 337,
"end": 344,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Word generation",
"sec_num": "3.1"
},
{
"text": "b = arg max b \u039b w \u2022 F w (x, b) Name Template Char. n-gram ci\u22121, bi , ci, bi , ci+1, bi , ci\u22122, ci\u22121, bi , ci\u22121,",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word generation",
"sec_num": "3.1"
},
{
"text": "c i\u22121 , bi , c i , bi , c i+1 , bi , c i\u22122 , c i\u22121 , bi , c i\u22121 , c i , bi , c i , c i+1 , bi , c i+1 , c i+2 , bi , c i\u22123 , c i\u22122 , c i\u22121 , bi , c i\u22122 , c i\u22121 , c i , bi , c i\u22121 , c i , c i+1 , bi , c i , c i+1 , c i+2 , bi , c i+1 , c i+2 , c i+3 , bi Dictionary BEGIN, bi , END, bi , INSIDE, bi , BEGIN, s, bi , END, s, bi , INSIDE, s, bi",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word generation",
"sec_num": "3.1"
},
{
"text": "Name Template Word w, t Word length LENGTH(w), t Affix ci, t , ci, ci+1, t , cj\u22121, t , cj\u22122, cj\u22121, t Neighboring string ci\u22121, t , ci\u22122, ci\u22121, t , ci\u22123, ci\u22122, ci\u22121, t , cj, t , cj , cj+1, t , cj , cj+1, cj+2, t Dictionary DICT(w, t) , DICT(w, t), t",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word generation",
"sec_num": "3.1"
},
{
"text": "where b = b 1 . . . b n is the character-based tag sequence that encodes the segmentation results; b i = B and b i = I represent whether the i-th character is the beginning or inside of a word, respectively. \u039b w and F w (x, b) are weight and feature vectors, respectively. The model is trained with the averaged structured perceptron (Collins, 2002) due to its simplicity and efficiency. The features illustrated in Table 1 , as well as tag bigrams, were used for the training. The features in Table 1 is basically taken from (Neubig et al., 2011) . The first two rows represent character strings surrounding the target character; the last row represents dictionary-based features similar to those described in (Neubig et al., 2011) . The dictionary-based features are fired if a string in a sentence is registered as a word in a dictionary, and they encode whether the string begins with or ends before the target character, or includes the target character.",
"cite_spans": [
{
"start": 334,
"end": 349,
"text": "(Collins, 2002)",
"ref_id": "BIBREF2"
},
{
"start": 526,
"end": 547,
"text": "(Neubig et al., 2011)",
"ref_id": "BIBREF14"
},
{
"start": 711,
"end": 732,
"text": "(Neubig et al., 2011)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [
{
"start": 416,
"end": 423,
"text": "Table 1",
"ref_id": null
},
{
"start": 494,
"end": 501,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Word generation",
"sec_num": "3.1"
},
{
"text": "\u03b1-best outputs of this segmentation model are used to obtain word set W :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word generation",
"sec_num": "3.1"
},
{
"text": "W = \u222a i=1...\u03b1 W i",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word generation",
"sec_num": "3.1"
},
{
"text": "where W i is a word set included in the i-th best output. Hyperparameter \u03b1 controls the size of word set |W | and is tuned by using development data.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word generation",
"sec_num": "3.1"
},
{
"text": "To generate POS tags for each word (Figure 2 line 4 ), a linear model was used. Given sentence x and word w, it assigns the following score to each POS tag t (Neubig et al., 2011) :",
"cite_spans": [
{
"start": 159,
"end": 180,
"text": "(Neubig et al., 2011)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [
{
"start": 35,
"end": 52,
"text": "(Figure 2 line 4",
"ref_id": null
}
],
"eq_spans": [],
"section": "POS tag generation",
"sec_num": "3.2"
},
{
"text": "\u039b t \u2022 F t (x, w, t)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "POS tag generation",
"sec_num": "3.2"
},
{
"text": "where \u039b t and F t (x, w, t) are weight and feature vectors, respectively. Averaged perceptron was used for training (Freund and Schapire, 1999) . Table 2 shows the feature templates. Word string, word length, prefixes and suffixes up to length two were used, and the adjacent strings of the word up to length three were used. We also check the presence of the word in a dictionary.",
"cite_spans": [
{
"start": 116,
"end": 143,
"text": "(Freund and Schapire, 1999)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [
{
"start": 146,
"end": 153,
"text": "Table 2",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "POS tag generation",
"sec_num": "3.2"
},
{
"text": "For each word, top-\u03b2 tags were used as the POS tag set T (line 4). Hyperparameter \u03b2 is also tuned by using development data.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "POS tag generation",
"sec_num": "3.2"
},
{
"text": "Unlike the pruning-based algorithm, the pipeline algorithm can generate words of arbitrary lengths. Nevertheless, it still only needs O(n) time. This can be proved as follows. First, the word segmentation model takes O(n) time to output word set W , since this step can be efficiently performed by dynamic programming. In addition, since O(|W |) = O(n), the outer loop of the algorithm requires O(n) time. This can be verified as",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Computational complexity",
"sec_num": "3.3"
},
{
"text": "|W | = | \u222a i=1...\u03b1 W i | \u2264 i=1...\u03b1 |W i | \u2264 \u03b1 n",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Computational complexity",
"sec_num": "3.3"
},
{
"text": "where |W i | \u2264 n. Since the process in lines 4-7 is independent of n, the pipeline algorithm requires O(n) time.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Computational complexity",
"sec_num": "3.3"
},
{
"text": "It also follows from the above discussion that the lattice size, that is, the number of edges, is also linear in the sentence length, i.e., O(|E|) = O(n). Consequently, since the node degree is at most \u03b1 (i.e., not dependent on n), the lattice path can be efficiently reranked in O(n) time by using dynamic programming.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Computational complexity",
"sec_num": "3.3"
},
{
"text": "This section presents our reranker. Since the main focus of this study is in not reranking but lattice generation, a perceptron-based reranker was developed by simply following the procedure proposed by (Huang, 2008) .",
"cite_spans": [
{
"start": 203,
"end": 216,
"text": "(Huang, 2008)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Perceptron-based Reranker",
"sec_num": "4"
},
{
"text": "The scoring function SCORE(x, y) in equation (1) is defined as follows:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Perceptron-based Reranker",
"sec_num": "4"
},
{
"text": "y = argmax y\u2208L(x) SCORE(x, y) = argmax y\u2208L(x) \u039b \u2022 F(x, y)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Perceptron-based Reranker",
"sec_num": "4"
},
{
"text": "where \u039b is the weight vector and F(x, y) is the feature vector.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Perceptron-based Reranker",
"sec_num": "4"
},
{
"text": "The averaged perceptron algorithm was used to train weight vector \u039b (Huang, 2008) . Note here two minor technical issues that have to be addressed before the perceptron algorithm can be used for training the reranker.",
"cite_spans": [
{
"start": 68,
"end": 81,
"text": "(Huang, 2008)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Training",
"sec_num": "4.1"
},
{
"text": "First, the generated lattice L(x) might not include the oracle path. This possibility is avoided by simply adding all the nodes and edges in the oracle lattice to L(x). This approach worked reasonably well in our experiments, while having the advantage of being simpler than the alternative (Huang, 2008; Jiang et al., 2008) .",
"cite_spans": [
{
"start": 291,
"end": 304,
"text": "(Huang, 2008;",
"ref_id": "BIBREF5"
},
{
"start": 305,
"end": 324,
"text": "Jiang et al., 2008)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Training",
"sec_num": "4.1"
},
{
"text": "Second, the same data should not be used for training the lattice generator (i.e., the two models described in Sections 3.1 and 3.2) and reranker. If the same data were used, we will end up using injuriously better lattices when training the reranker than testing. To meet this requirement, the training data were split into ten subsets. During training of the reranker, the lattices of each subset were provided by the lattice generator trained by using the remaining nine subsets. During testing, on the other hand, the lattice generator trained by using the entire training data was used.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Training",
"sec_num": "4.1"
},
{
"text": "The features used for training the reranker include those listed in Table 1 and Table 2 , as well as POS tag bigrams. For the features in Table 1 , BIES encoding (Nakagawa, 2004) is used. Since all those features can be factorized, the optimal path is located by using dynamic programming.",
"cite_spans": [
{
"start": 162,
"end": 178,
"text": "(Nakagawa, 2004)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [
{
"start": 68,
"end": 87,
"text": "Table 1 and Table 2",
"ref_id": "TABREF0"
},
{
"start": 138,
"end": 145,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Features",
"sec_num": "4.2"
},
{
"text": "The effectiveness of the lattice generation algorithm was investigated in the experiment described in the following. Sections 5.1, 5.2, and 5.3 explain our experimental setting: data sets, lattice generation algorithms to be compared, and hyperparameter tuning. The experimental results are reported in Section 5.4. The experiments were performed on a computer with 3.2 GHz Intel R Xeon TM CPU and 32 GB memory.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiment",
"sec_num": "5"
},
{
"text": "Three evaluation data sets were developed from three corpora: Kyoto Corpus (KC) version 4.0 (Kurohashi and Nagao, 1998) , Kyoto university NTT Blog Corpus (KNBC) version 1.0 (Hashimoto et al., 2011) , and Balanced Corpus of Contemporary Written Japanese (BCCWJ) (Maekawa, 2008) . Each corpus was randomly split into three parts: training, development, and test set. The size of each data set is listed in Table 3. JUMAN dictionary version 7.0 4 was used to extract the dictionary-based features in the experiments using KC and KNBC. Because BCCWJ adopts word segmentation criteria and a POS tag set different from those of the other two corpora, a different dictionary, UniDic version 1.3.12 5 , was used in the experiment using BCCWJ. Table 3 : The number of sentences included in the three data sets.",
"cite_spans": [
{
"start": 92,
"end": 119,
"text": "(Kurohashi and Nagao, 1998)",
"ref_id": "BIBREF10"
},
{
"start": 174,
"end": 198,
"text": "(Hashimoto et al., 2011)",
"ref_id": "BIBREF4"
},
{
"start": 262,
"end": 277,
"text": "(Maekawa, 2008)",
"ref_id": "BIBREF11"
}
],
"ref_spans": [
{
"start": 405,
"end": 414,
"text": "Table 3.",
"ref_id": null
},
{
"start": 737,
"end": 744,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Data sets",
"sec_num": "5.1"
},
{
"text": "Two types of rerankers were implemented: one uses the pruning-based lattice generation algorithm, and the other uses the pipeline algorithm. All the rerankers were trained in the same manner as described in Section 4. Although Jiang et al. (2008) fixed pruning threshold K as 20, K \u2208 {5, 10, 20} was tested to examine the effect of this parameter. As a result, three rerankers that use the pruning-based algorithm were thus created.",
"cite_spans": [
{
"start": 227,
"end": 246,
"text": "Jiang et al. (2008)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Lattice generation algorithms",
"sec_num": "5.2"
},
{
"text": "The pruning-based algorithm uses a characterbased model 6 to obtain top-k edges (Figure 1 line 11) . Although Jiang et al. (2008) proposed several features to train this model, they are simplistic compared with those used in the pipeline algorithm (i.e., Table 1 and 2). To make the comparison as fair as possible, the feature listed in Table 1 and BIES encoding were used (c.f., Section 4.2) were used. The features listed in Table 2 were not used, because they are not usable in a character-based model. It is considered that this feature set is comparable with that used by the pipeline algorithm, because the reranker using the pruning-based algorithm achieved comparable F 1 -score with the one using the pipeline algorithm when K is large (see Section 5.4).",
"cite_spans": [
{
"start": 111,
"end": 130,
"text": "Jiang et al. (2008)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [
{
"start": 80,
"end": 99,
"text": "(Figure 1 line 11)",
"ref_id": null
},
{
"start": 256,
"end": 263,
"text": "Table 1",
"ref_id": null
},
{
"start": 338,
"end": 345,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Lattice generation algorithms",
"sec_num": "5.2"
},
{
"text": "Hyperparameter k of the pruning-based algorithm was tuned with the development data. The tuning was done by searching over {1, 2, 4, 8, 16, . . . , 256} and selecting k that gen-6 Not detailed this model in this paper; refer to (Jiang et al., 2008) for details. erated the lattice with the fewest edges amongst those covering at least \u03b8% of the correct edges.",
"cite_spans": [
{
"start": 123,
"end": 152,
"text": "{1, 2, 4, 8, 16, . . . , 256}",
"ref_id": null
},
{
"start": 228,
"end": 248,
"text": "(Jiang et al., 2008)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hyperparameter tuning",
"sec_num": "5.3"
},
{
"text": "Since the pipeline algorithm also has hyperparameters (\u03b1, \u03b2), the hyperparameters were tuned in a similar manner by performing a grid search over {1, 2, 4, 8, 16, . . . , 256} \u00d7 {1, 2, 4, 8, 16, . . . , 256}. The value of \u03b8 was set as 99, 97, and 99 for the three data sets, respectively. A smaller value of \u03b8 was used for KNBC because over 99% coverage could not be achieved in this data set. Table 4 summarizes the time in seconds spent on lattice generation, overall processing time spent on reranking, average number of candidates per sentence (see below), word-level F1-score in the joint task, and average lattice size per sentence, where lattice size refers to the number of edges in a lattice.",
"cite_spans": [
{
"start": 146,
"end": 208,
"text": "{1, 2, 4, 8, 16, . . . , 256} \u00d7 {1, 2, 4, 8, 16, . . . , 256}.",
"ref_id": null
}
],
"ref_spans": [
{
"start": 394,
"end": 401,
"text": "Table 4",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Hyperparameter tuning",
"sec_num": "5.3"
},
{
"text": "As for the pruning-based algorithm, the number of candidates refers to the number of words to be considered (Figure 1 line 6) . As for the pipeline algorithm, it refers to the size of word set W (Figure 2) . This number serves as an estimation of the computational cost. Notice that it corresponds to the time consumed by the two outer loops in Figure 1 or by the outer loop in Figure 2 .",
"cite_spans": [],
"ref_spans": [
{
"start": 108,
"end": 125,
"text": "(Figure 1 line 6)",
"ref_id": null
},
{
"start": 195,
"end": 205,
"text": "(Figure 2)",
"ref_id": null
},
{
"start": 345,
"end": 353,
"text": "Figure 1",
"ref_id": null
},
{
"start": 378,
"end": 386,
"text": "Figure 2",
"ref_id": null
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "5.4"
},
{
"text": "The symbol \u2020 is used to represent that the difference in F 1 -score from the best-performing system is statistically significant (p < 0.01). Bootstrap resampling with 1,000 samples was used to test the statistical significance. Table 4 reveals that the reranking system using the pruning-based algorithm consumes the vast majority of the time for lattice generation. In other words, the pruning-based algorithm is not efficient enough. This inefficiency was not pointed out in previous studies, e.g., (Zhang and Clark, 2010; Sun, 2011) .",
"cite_spans": [
{
"start": 501,
"end": 524,
"text": "(Zhang and Clark, 2010;",
"ref_id": "BIBREF23"
},
{
"start": 525,
"end": 535,
"text": "Sun, 2011)",
"ref_id": "BIBREF18"
}
],
"ref_spans": [
{
"start": 228,
"end": 235,
"text": "Table 4",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "5.4"
},
{
"text": "The results in Table 4 also demonstrate that the reranker using the pipeline algorithm is an order of magnitude faster than the pruning-based algorithms. It is significantly faster than even the case that K = 5. This result indicates the importance of using an efficient lattice generation algorithm in the reranking system. Table 4 also indicates that the number of the candidates roughly correlates with the actual computation time spent on lattice generation. This correlation confirms that the speed-up is achieved mainly by reducing the number of word candidates to be considered.",
"cite_spans": [],
"ref_spans": [
{
"start": 15,
"end": 22,
"text": "Table 4",
"ref_id": "TABREF2"
},
{
"start": 325,
"end": 332,
"text": "Table 4",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Runtime",
"sec_num": "5.4.1"
},
{
"text": "F 1 -score of the reranking systems was investigated next. The pipeline algorithm achieved comparable or higher F 1 -score than the pruning-based algorithm. This result shows that the speed-up does not come at the cost of accuracy.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "F 1 -score",
"sec_num": "5.4.2"
},
{
"text": "It is crucial for the pruning-based algorithm to select an appropriate threshold value, K. If the value is too small, F 1 -score will significantly drop. In case that K = 5, F 1 -score was statistically significantly worse than that attained by the best-performing system for all three data sets (p < 0.01). On the other hand, an excessively large value (K = 20) does not contribute to the increase of F 1 -score so much, while it considerably degrades the speed. Table 4 shows that the pipeline algorithm usually generates smaller lattices than the pruning-based algorithm. This is because the pruning-based algorithm has no mechanisms to prune nodes (Jiang et al., 2008) . To be more specific, the pruningbased algorithm always produces n + 1 nodes for a sentence with n characters; hence, the lattice size is prone to grow large. The pipeline algorithm is, on the other hand, free from such a problem.",
"cite_spans": [
{
"start": 652,
"end": 672,
"text": "(Jiang et al., 2008)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [
{
"start": 464,
"end": 471,
"text": "Table 4",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "F 1 -score",
"sec_num": "5.4.2"
},
{
"text": "The coverage of the correct edges as the function of the average lattice size was investigated as follows ( Figure 2 ). For the pruning-based algorithm, which has only one hyperparameter, k, the graph was drawn by changing k over {1, 2, 4, 8, 16} . Note that the graph for K = 10 is omitted, because almost the same lattices are generated for K = 10 and K = 20. For the pipeline algorithm, \u03b1 = 32 is fixed and \u03b2 is changed over {1, 2, 4, 8, 16} to draw the two-dimensional graphs. It is clear that the lattice generated by Table 5 : Comparison of F 1 -score with that achieved by the existing software.",
"cite_spans": [
{
"start": 230,
"end": 246,
"text": "{1, 2, 4, 8, 16}",
"ref_id": null
}
],
"ref_spans": [
{
"start": 108,
"end": 116,
"text": "Figure 2",
"ref_id": null
},
{
"start": 523,
"end": 530,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "Lattice size",
"sec_num": "5.4.3"
},
{
"text": "the pipeline algorithm generally achieves higher coverage, while having a smaller number of edges than the pruning-based algorithm. As discussed in Section 3.3, the size of word set |W | is linear in the sentence length. This analysis empirically justified as follows. The number of words is illustrated in Figure 3 as a function of sentence length. The three graphs in the figure clearly illustrate that the number of words grows linearly with increasing sentence length.",
"cite_spans": [],
"ref_spans": [
{
"start": 307,
"end": 315,
"text": "Figure 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Lattice size",
"sec_num": "5.4.3"
},
{
"text": "As an additional experiment, the proposed pipeline-algorithm-based reranking system was compared with three software tools popular in Japanese NLP: JUMAN, MeCab (Kudo et al., 2004) , and Kytea (Neubig et al., 2011) . Table 5 compares the F 1 -score of the proposed system with that attained by the three tools. Bootstrap resampling with 1,000 samples was used for the statistical significance test. The symbol \u2020 indicates that the F 1 -score is significantly lower than that achieved by the proposed system (p < 0.01). It is clear that the proposed system outperforms the existing tools in the case of two of the three data sets, while performing comparably with JU-MAN in the case of KNBC. Note that JUMAN is a rule-based system and is not applicable to BC-CWJ because of the discrepancy in the definition of the segmentation criteria and POS tag set.",
"cite_spans": [
{
"start": 161,
"end": 180,
"text": "(Kudo et al., 2004)",
"ref_id": "BIBREF9"
},
{
"start": 193,
"end": 214,
"text": "(Neubig et al., 2011)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [
{
"start": 217,
"end": 224,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "Comparison with Existing Software",
"sec_num": "6"
},
{
"text": "The speeds of the algorithms were also investigated. The proposed system processed 1400 sentences in a second, while JUMAN, MeCab, and Kytea processed 2100, 29000, and 3200 sentences, respectively. This result demonstrates that the proposed reranking system using the pipeline algorithm successfully achieved speed close to the two of the three tools, while keeping considerably higher F 1 -score.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Comparison with Existing Software",
"sec_num": "6"
},
{
"text": "Several methods, other than the pruning-based algorithm (Jiang et al., 2008) , have been developed for lattice generation. However, they are dependent on an external dictionary and have limitations in handling OOV words. For example, Kudo et al. (2004) built a lattice based on dictionary-lookup.",
"cite_spans": [
{
"start": 56,
"end": 76,
"text": "(Jiang et al., 2008)",
"ref_id": "BIBREF6"
},
{
"start": 234,
"end": 252,
"text": "Kudo et al. (2004)",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "7"
},
{
"text": "While efficient, such a method is prone to remove OOV words from a lattice and degrade accuracy (Uchimoto et al., 2001) . Other researchers (Nakagawa and Uchimoto, 2007; Kruengkrai et al., 2009 ) used a word-character hybrid model, which combines dictionary-lookup and character-based modeling of OOV words. This method still has difficulty in using word-level information of OOV words.",
"cite_spans": [
{
"start": 96,
"end": 119,
"text": "(Uchimoto et al., 2001)",
"ref_id": "BIBREF19"
},
{
"start": 154,
"end": 169,
"text": "Uchimoto, 2007;",
"ref_id": "BIBREF12"
},
{
"start": 170,
"end": 193,
"text": "Kruengkrai et al., 2009",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "7"
},
{
"text": "The techniques utilized by the pipelined lattice generation algorithm have also been used elsewhere (Sassano, 2002; Peng et al., 2004; Shi and Wang, 2007; Neubig et al., 2011; Wang et al., 2011) . However, the present study is the first to investigate the effectiveness of such a technique in the context of lattice reranking. Empirical studies similar to the ones made in this study are not found in the other work. Zhang and Clark (2008) and Zhang and Clark (2010) proposed a fast decoding algorithm for joint word segmentation and POS tagging. The present study is largely complementary with theirs, since it did not investigate to improve decoding algorithm. Their algorithm should be useful for the decoding of our reranker especially when dynamic programming is not effective; for example, nonlocal features are used.",
"cite_spans": [
{
"start": 100,
"end": 115,
"text": "(Sassano, 2002;",
"ref_id": "BIBREF16"
},
{
"start": 116,
"end": 134,
"text": "Peng et al., 2004;",
"ref_id": "BIBREF15"
},
{
"start": 135,
"end": 154,
"text": "Shi and Wang, 2007;",
"ref_id": "BIBREF17"
},
{
"start": 155,
"end": 175,
"text": "Neubig et al., 2011;",
"ref_id": "BIBREF14"
},
{
"start": 176,
"end": 194,
"text": "Wang et al., 2011)",
"ref_id": "BIBREF20"
},
{
"start": 417,
"end": 439,
"text": "Zhang and Clark (2008)",
"ref_id": "BIBREF22"
},
{
"start": 444,
"end": 466,
"text": "Zhang and Clark (2010)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "7"
},
{
"text": "The effectiveness of the lattice generation algorithms used in joint word segmentation and POS tagging was investigated. While lattice generation has not been paid much attention to in previous studies, the present study demonstrated that the design of a lattice generation algorithm has a significant impact on the performance of a reranking system. It was showed that the simple pipeline algorithm outperforms the pruning-based algorithm. We hope that the pipeline algorithm serves as a simple but effective building block of future researches.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "8"
},
{
"text": "http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?JUMAN 2 http://code.google.com/p/mecab 3 http://www.phontron.com/kytea",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?NLPresources 5 http://www.tokuteicorpus.jp/dist",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "This work was supported by the FIRST program. The authors thank the anonymous reviewers for their helpful comments.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Extened models and tools for high-performance partof-speech tagger",
"authors": [
{
"first": "Masayuki",
"middle": [],
"last": "Asahara",
"suffix": ""
},
{
"first": "Yuji",
"middle": [],
"last": "Matsumoto",
"suffix": ""
}
],
"year": 2000,
"venue": "Proceedings of COLING",
"volume": "",
"issue": "",
"pages": "21--27",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Masayuki Asahara and Yuji Matsumoto. 2000. Ex- tened models and tools for high-performance part- of-speech tagger. In Proceedings of COLING, pages 21-27.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Discriminative reranking for natural language parsing",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 2000,
"venue": "Proceedings of ICML",
"volume": "",
"issue": "",
"pages": "175--182",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Collins. 2000. Discriminative reranking for natural language parsing. In Proceedings of ICML, pages 175-182.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of EMNLP",
"volume": "",
"issue": "",
"pages": "1--8",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Collins. 2002. Discriminative training meth- ods for hidden Markov models: Theory and exper- iments with perceptron algorithms. In Proceedings of EMNLP, pages 1-8.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Large margin classification using the perceptron algorithm",
"authors": [
{
"first": "Yoav",
"middle": [],
"last": "Freund",
"suffix": ""
},
{
"first": "Robert",
"middle": [
"E"
],
"last": "Schapire",
"suffix": ""
}
],
"year": 1999,
"venue": "Machine Learning",
"volume": "37",
"issue": "",
"pages": "277--296",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yoav Freund and Robert E. Schapire. 1999. Large margin classification using the perceptron algorithm. Machine Learning, 37(3):277-296.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Construction of a blog corpus with syntactic, anaphoric, and semantic annotations",
"authors": [
{
"first": "Chikara",
"middle": [],
"last": "Hashimoto",
"suffix": ""
},
{
"first": "Sadao",
"middle": [],
"last": "Kurohashi",
"suffix": ""
},
{
"first": "Daisuke",
"middle": [],
"last": "Kawahara",
"suffix": ""
},
{
"first": "Keiji",
"middle": [],
"last": "Shinzato",
"suffix": ""
},
{
"first": "Masaaki",
"middle": [],
"last": "Nagata",
"suffix": ""
}
],
"year": 2011,
"venue": "Journal of Natural Language Processing",
"volume": "18",
"issue": "2",
"pages": "175--201",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chikara Hashimoto, Sadao Kurohashi, Daisuke Kawa- hara, Keiji Shinzato, and Masaaki Nagata. 2011. Construction of a blog corpus with syntac- tic, anaphoric, and semantic annotations (in Japanese). Journal of Natural Language Process- ing, 18(2):175-201.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Forest reranking: Discriminative parsing with non-local features",
"authors": [
{
"first": "Liang",
"middle": [],
"last": "Huang",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "586--594",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Liang Huang. 2008. Forest reranking: Discriminative parsing with non-local features. In Proceedings of ACL, pages 586-594.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Word lattice reranking for Chinese word segmentation and part-of-speech tagging",
"authors": [
{
"first": "Wenbin",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Haitao",
"middle": [],
"last": "Mi",
"suffix": ""
},
{
"first": "Qun",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of Coling",
"volume": "",
"issue": "",
"pages": "385--392",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wenbin Jiang, Haitao Mi, and Qun Liu. 2008. Word lattice reranking for Chinese word segmentation and part-of-speech tagging. In Proceedings of Coling, pages 385-392.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "A conditional random field framework for Thai morphological analysis",
"authors": [
{
"first": "Canasai",
"middle": [],
"last": "Kruengkrai",
"suffix": ""
},
{
"first": "Virach",
"middle": [],
"last": "Sornlertlamvnich",
"suffix": ""
},
{
"first": "Hitoshi",
"middle": [],
"last": "Isahara",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of LREC",
"volume": "",
"issue": "",
"pages": "2419--2424",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Canasai Kruengkrai, Virach Sornlertlamvnich, and Hi- toshi Isahara. 2006. A conditional random field framework for Thai morphological analysis. In Pro- ceedings of LREC, pages 2419-2424.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "An error-driven word-character hybrid model for joint Chinese word segmentation and POS tagging",
"authors": [
{
"first": "Canasai",
"middle": [],
"last": "Kruengkrai",
"suffix": ""
},
{
"first": "Kiyoaki",
"middle": [],
"last": "Uchimoto",
"suffix": ""
},
{
"first": "Yiou",
"middle": [],
"last": "Jun'ichi Kazama",
"suffix": ""
},
{
"first": "Kentaro",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Hitoshi",
"middle": [],
"last": "Torisawa",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Isahara",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "513--521",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Canasai Kruengkrai, Kiyoaki Uchimoto, Jun'ichi Kazama, Yiou Wang, Kentaro Torisawa, and Hitoshi Isahara. 2009. An error-driven word-character hy- brid model for joint Chinese word segmentation and POS tagging. In Proceedings of ACL, pages 513- 521.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Applying conditional random fields to Japanese morphological analysis",
"authors": [
{
"first": "Taku",
"middle": [],
"last": "Kudo",
"suffix": ""
},
{
"first": "Kaoru",
"middle": [],
"last": "Yamamoto",
"suffix": ""
},
{
"first": "Yuji",
"middle": [],
"last": "Matsumoto",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of EMNLP",
"volume": "",
"issue": "",
"pages": "230--237",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto. 2004. Applying conditional random fields to Japanese morphological analysis. In Proceedings of EMNLP, pages 230-237.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Building a Japanese parsed corpus while improving the parsing system",
"authors": [
{
"first": "Sadao",
"middle": [],
"last": "Kurohashi",
"suffix": ""
},
{
"first": "Makoto",
"middle": [],
"last": "Nagao",
"suffix": ""
}
],
"year": 1998,
"venue": "Proceedings of LREC",
"volume": "",
"issue": "",
"pages": "719--724",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Sadao Kurohashi and Makoto Nagao. 1998. Building a Japanese parsed corpus while improving the parsing system. In Proceedings of LREC, pages 719-724.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Balanced corpus of contemporary written Japanese",
"authors": [
{
"first": "Kikuo",
"middle": [],
"last": "Maekawa",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of the 6th Workshop on Asian Language Resources",
"volume": "",
"issue": "",
"pages": "101--102",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kikuo Maekawa. 2008. Balanced corpus of con- temporary written Japanese. In Proceedings of the 6th Workshop on Asian Language Resources, pages 101-102.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "A hybrid approach to word segmentation and POS tagging",
"authors": [
{
"first": "Tetsuji",
"middle": [],
"last": "Nakagawa",
"suffix": ""
},
{
"first": "Kiyoaki",
"middle": [],
"last": "Uchimoto",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of ACL, Demo and Poster Sessions",
"volume": "",
"issue": "",
"pages": "217--220",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tetsuji Nakagawa and Kiyoaki Uchimoto. 2007. A hybrid approach to word segmentation and POS tag- ging. In Proceedings of ACL, Demo and Poster Ses- sions, pages 217-220.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Chinese and Japanese word segmentation using word-level and character-level information",
"authors": [
{
"first": "Tetsuji",
"middle": [],
"last": "Nakagawa",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of Coling",
"volume": "",
"issue": "",
"pages": "466--472",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tetsuji Nakagawa. 2004. Chinese and Japanese word segmentation using word-level and character-level information. In Proceedings of Coling, pages 466- 472.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Pointwise prediction for robust adaptable Japanese morphological analysis",
"authors": [
{
"first": "Graham",
"middle": [],
"last": "Neubig",
"suffix": ""
},
{
"first": "Yousuke",
"middle": [],
"last": "Nakata",
"suffix": ""
},
{
"first": "Shinsuke",
"middle": [],
"last": "Mori",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "529--533",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Graham Neubig, Yousuke Nakata, and Shinsuke Mori. 2011. Pointwise prediction for robust adaptable Japanese morphological analysis. In Proceedings of ACL, pages 529-533.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Chinese segmentation and new word detection using conditional random fields",
"authors": [
{
"first": "Fuchun",
"middle": [],
"last": "Peng",
"suffix": ""
},
{
"first": "Fangfang",
"middle": [],
"last": "Feng",
"suffix": ""
},
{
"first": "Andrew",
"middle": [],
"last": "Mccallum",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of Coling",
"volume": "",
"issue": "",
"pages": "562--568",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Fuchun Peng, Fangfang Feng, and Andrew McCallum. 2004. Chinese segmentation and new word detec- tion using conditional random fields. In Proceedings of Coling, pages 562-568.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "An empirical study of active learning with support vector machines for Japanese word segmentation",
"authors": [
{
"first": "Manabu",
"middle": [],
"last": "Sassano",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "505--512",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Manabu Sassano. 2002. An empirical study of active learning with support vector machines for Japanese word segmentation. In Proceedings of ACL, pages 505-512.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "A dual-layer CRFs based joint decoding method for cascaded segmentation and labeling tasks",
"authors": [
{
"first": "Yanxin",
"middle": [],
"last": "Shi",
"suffix": ""
},
{
"first": "Mengqiu",
"middle": [],
"last": "Wang",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of IJ-CAI",
"volume": "",
"issue": "",
"pages": "1707--1712",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yanxin Shi and Mengqiu Wang. 2007. A dual-layer CRFs based joint decoding method for cascaded seg- mentation and labeling tasks. In Proceedings of IJ- CAI, pages 1707-1712.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "A stacked sub-word model for joint Chinese word segmentation and part-of-speech tagging",
"authors": [
{
"first": "Weiwei",
"middle": [],
"last": "Sun",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "1385--1394",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Weiwei Sun. 2011. A stacked sub-word model for joint Chinese word segmentation and part-of-speech tagging. In Proceedings of ACL, pages 1385-1394.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "The unknown word problem: a morphological analysis of Japanese using maximum entropy aided by a dictionary",
"authors": [
{
"first": "Kiyotaka",
"middle": [],
"last": "Uchimoto",
"suffix": ""
},
{
"first": "Satoshi",
"middle": [],
"last": "Sekine",
"suffix": ""
},
{
"first": "Hitoshi",
"middle": [],
"last": "Isahara",
"suffix": ""
}
],
"year": 2001,
"venue": "Proceedings of EMNLP",
"volume": "",
"issue": "",
"pages": "91--99",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kiyotaka Uchimoto, Satoshi Sekine, and Hitoshi Isa- hara. 2001. The unknown word problem: a morpho- logical analysis of Japanese using maximum entropy aided by a dictionary. In Proceedings of EMNLP, pages 91-99.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Improving Chinese word segmentation and POS tagging with semi-supervised methods using large auto-analyzed data",
"authors": [
{
"first": "Yiou",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Yoshimasa",
"middle": [],
"last": "Kazama",
"suffix": ""
},
{
"first": "Wenliang",
"middle": [],
"last": "Tsuruoka",
"suffix": ""
},
{
"first": "Yujie",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Kentaro",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Torisawa",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of IJC-NLP",
"volume": "",
"issue": "",
"pages": "309--317",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yiou Wang, Jun'ichi Kazama, Yoshimasa Tsuruoka, Wenliang Chen, Yujie Zhang, and Kentaro Torisawa. 2011. Improving Chinese word segmentation and POS tagging with semi-supervised methods using large auto-analyzed data. In Proceedings of IJC- NLP, pages 309-317.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Chinese word segmentation as character tagging",
"authors": [
{
"first": "Nianwen",
"middle": [],
"last": "Xue",
"suffix": ""
}
],
"year": 2003,
"venue": "Computatioinal Linguistics and Chinese Language Processing",
"volume": "8",
"issue": "",
"pages": "29--48",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nianwen Xue. 2003. Chinese word segmentation as character tagging. Computatioinal Linguistics and Chinese Language Processing, 8(1):29-48.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Joint word segmentation and POS tagging using a single perceptron",
"authors": [
{
"first": "Yue",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Stephen",
"middle": [],
"last": "Clark",
"suffix": ""
}
],
"year": 2008,
"venue": "Proceedings of ACL",
"volume": "",
"issue": "",
"pages": "888--896",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yue Zhang and Stephen Clark. 2008. Joint word seg- mentation and POS tagging using a single percep- tron. In Proceedings of ACL, pages 888-896.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "A fast decoder for joint word segmentation and POS tagging using a single discriminative model",
"authors": [
{
"first": "Yue",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Stephen",
"middle": [],
"last": "Clark",
"suffix": ""
}
],
"year": 2010,
"venue": "Proceedings of EMNLP",
"volume": "",
"issue": "",
"pages": "843--852",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Yue Zhang and Stephen Clark. 2010. A fast decoder for joint word segmentation and POS tagging us- ing a single discriminative model. In Proceedings of EMNLP, pages 843-852.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"type_str": "figure",
"uris": null,
"num": null,
"text": "Coverage as the function of average lattice size (left: KC; middle: KNBC; right: BCCWJ). Number of words as a function of sentence length (left: KC; middle: KNBC; right: BCCWJ)."
},
"TABREF0": {
"num": null,
"type_str": "table",
"content": "<table/>",
"html": null,
"text": "Feature templates of POS tag generation. w = c i c i+1 . . . c j\u22121 represents the word string, and t represents the target POS tag."
},
"TABREF2": {
"num": null,
"type_str": "table",
"content": "<table><tr><td/><td colspan=\"3\">Training Development Testing</td></tr><tr><td>KC</td><td>30,608</td><td>4028</td><td>3764</td></tr><tr><td>KNBC</td><td>3453</td><td>385</td><td>348</td></tr><tr><td>BCCWJ</td><td>47,547</td><td>6144</td><td>5741</td></tr></table>",
"html": null,
"text": "Comparison of the reranking systems with the different lattice generation algorithms. Bestperforming results in each metric are highlighted in bold font."
}
}
}
} |