File size: 112,767 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
{
    "paper_id": "I11-1041",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:31:33.020350Z"
    },
    "title": "Efficient induction of probabilistic word classes with LDA",
    "authors": [
        {
            "first": "Grzegorz",
            "middle": [],
            "last": "Chrupa\u0142a",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Spoken Language Systems Saarland University",
                "location": {}
            },
            "email": "gchrupala@lsv.uni-saarland.de"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Word classes automatically induced from distributional evidence have proved useful many NLP tasks including Named Entity Recognition, parsing and sentence retrieval. The Brown hard clustering algorithm is commonly used in this scenario. Here we propose to use Latent Dirichlet Allocation in order to induce soft, probabilistic word classes. We compare our approach against Brown in terms of efficiency. We also compare the usefulness of the induced Brown and LDA word classes for the semi-supervised learning of three NLP tasks: fine-grained Named Entity Recognition, Morphological Analysis and semantic Relation Classification. We show that using LDA for word class induction scales better with the number of classes than the Brown algorithm and the resulting classes outperform Brown on the three tasks.",
    "pdf_parse": {
        "paper_id": "I11-1041",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Word classes automatically induced from distributional evidence have proved useful many NLP tasks including Named Entity Recognition, parsing and sentence retrieval. The Brown hard clustering algorithm is commonly used in this scenario. Here we propose to use Latent Dirichlet Allocation in order to induce soft, probabilistic word classes. We compare our approach against Brown in terms of efficiency. We also compare the usefulness of the induced Brown and LDA word classes for the semi-supervised learning of three NLP tasks: fine-grained Named Entity Recognition, Morphological Analysis and semantic Relation Classification. We show that using LDA for word class induction scales better with the number of classes than the Brown algorithm and the resulting classes outperform Brown on the three tasks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Word classes automatically induced from distributional evidence have proved useful in a variety of tasks, including Named Entity Recognition (Miller et al. 2004 , Ratinov and Roth 2009 , Chrupa\u0142a and Klakow 2010 , Turian et al. 2010 , parsing (Koo et al. 2008 , Suzuki et al. 2009 , Candito and Crabb\u00e9 2009 and sentence retrieval (Momtazi and Klakow 2009) . Brown et al. (1992) introduced an algorithm which assigns word types to disjoint clusters and it remains a common choice when a simple way to automatically obtain word classes is needed. We present a word class induction method using Latent Dirichlet Allocation (Blei et al. 2003) which has attractive properties compared to Brown:",
                "cite_spans": [
                    {
                        "start": 141,
                        "end": 160,
                        "text": "(Miller et al. 2004",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 161,
                        "end": 184,
                        "text": ", Ratinov and Roth 2009",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 185,
                        "end": 211,
                        "text": ", Chrupa\u0142a and Klakow 2010",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 212,
                        "end": 232,
                        "text": ", Turian et al. 2010",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 243,
                        "end": 259,
                        "text": "(Koo et al. 2008",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 260,
                        "end": 280,
                        "text": ", Suzuki et al. 2009",
                        "ref_id": null
                    },
                    {
                        "start": 281,
                        "end": 306,
                        "text": ", Candito and Crabb\u00e9 2009",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 330,
                        "end": 355,
                        "text": "(Momtazi and Klakow 2009)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 358,
                        "end": 377,
                        "text": "Brown et al. (1992)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 620,
                        "end": 638,
                        "text": "(Blei et al. 2003)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 It induces a soft, probabilistic clustering on both word types and context features.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 It runs in time linear in the number of classes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The model maps straightforwardly to the standard document topic model, and thus has the advantage of many existing high quality implementations. We evaluate the model's usefulness on finegrained Named Entity Recognition (NER), Morphological Analysis (MA) and semantic Relation Classification (RC) and show that",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 while the word classes obtained perform better than Brown classes,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 they can be induced in a fraction of the time necessary to run the equivalent Brown model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "There is a variety of approaches to inducing word representations from distributional information. In this section we briefly review the research most relevant to our proposed approach.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inducing word representations",
                "sec_num": "2"
            },
            {
                "text": "Hard classes Brown et al. (1992) introduced an early model which induces a mapping from word types to classes. It is an agglomerative clustering algorithm which starts with K classes for the K most frequent word types and then proceeds by alternately adding the next most frequent word to the class set and merging the two classes which result in the least decrease in the mutual information between class bigrams. The result is a class hierarchy with word types at the leaves. The overall runtime of the algorithm is O(K 2 V ) where K is the number of classes and V the number of word types. Lin and Wu (2009) use a distributed version of K-Means to assign words and phrases to hard classes, and successfully use them as features in a NER task and in query classification.",
                "cite_spans": [
                    {
                        "start": 13,
                        "end": 32,
                        "text": "Brown et al. (1992)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 593,
                        "end": 610,
                        "text": "Lin and Wu (2009)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inducing word representations",
                "sec_num": "2"
            },
            {
                "text": "Soft classes A limitation of the Brown model is that it performs hard clustering of word types, and cannot be used to disambiguate word occurrences based on context. Hidden Markov Models have been used to induce probabilistic (soft) word classes: training an HMM on unlabeled data one obtains classes which correspond to multinomial distributions over the vocabulary (Goldwater and Griffiths 2007, Gao and Johnson 2008) . Griffiths et al. (2005) propose a model factored into an HMM which generates function words and an LDA topic models which generates content words.",
                "cite_spans": [
                    {
                        "start": 367,
                        "end": 381,
                        "text": "(Goldwater and",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 382,
                        "end": 405,
                        "text": "Griffiths 2007, Gao and",
                        "ref_id": null
                    },
                    {
                        "start": 406,
                        "end": 419,
                        "text": "Johnson 2008)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 422,
                        "end": 445,
                        "text": "Griffiths et al. (2005)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inducing word representations",
                "sec_num": "2"
            },
            {
                "text": "Learning the parameters of a bigram HMM takes O(K 2 N ) time where N is the number of word tokens in the corpus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inducing word representations",
                "sec_num": "2"
            },
            {
                "text": "Other approaches Other approaches to inducing word representations do not rely on the notion of word class. Distributed word embeddings can be learned using a neural network-bases language models (Bengio et al. 2006 , Collobert and Weston 2008 , Mnih and Hinton 2009 . Dimensionality reduction techniques such as SVD (Sch\u00fctze 1995 , Lamar et al. 2010 and LSA (Deerwester et al. 1990 ) have also been found useful for generating word representations.",
                "cite_spans": [
                    {
                        "start": 196,
                        "end": 215,
                        "text": "(Bengio et al. 2006",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 216,
                        "end": 243,
                        "text": ", Collobert and Weston 2008",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 244,
                        "end": 266,
                        "text": ", Mnih and Hinton 2009",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 317,
                        "end": 330,
                        "text": "(Sch\u00fctze 1995",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 331,
                        "end": 350,
                        "text": ", Lamar et al. 2010",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 359,
                        "end": 382,
                        "text": "(Deerwester et al. 1990",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inducing word representations",
                "sec_num": "2"
            },
            {
                "text": "Our main motivation for studying word class induction methods is to use them in a semisupervised learning scenario, where word representations are induced from a large unlabeled corpus and subsequently used as a source of features for a supervised model. Turian et al. (2010) compare the effect of using representations based on Brown classes, the Collobert and Weston (2008) embeddings and the Mnih and Hinton (2009) embeddings in learning English syntactic chunking (CoNLL 2000) and English coarse-grained Named Entity Recognition (CoNLL 2003) . For both tasks the best representation is fine-grained Brown classes (3200 and 1000 classes respectively). Combining the Brown features with distributed embeddings further improves performance on NER but not on chunking. Lin and Wu (2009) use induce word and phrase classes and report results on NER which are higher than Turian et al. (2010) 's Brown scores, but this research used 700 billion words of web text and needed a cloud computing infrastructure with 1000 CPUs to run. It is evident that the Brown clustering algorithm still provides an extremely competitive baseline nearly 20 years after it was proposed. We thus compare the performance of the LDA word class model to the Brown model on three NLP tasks: fine grained Named Entity Recognition, Morphological Analysis, and Relation Classification. The first two tasks are difficult due to the large number of labels and high potential for ambiguity. The third task is challenging for a different reason: it involves highly abstract semantic relations, often not obviously inferable from surface lexical clues.",
                "cite_spans": [
                    {
                        "start": 255,
                        "end": 275,
                        "text": "Turian et al. (2010)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 348,
                        "end": 375,
                        "text": "Collobert and Weston (2008)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 395,
                        "end": 417,
                        "text": "Mnih and Hinton (2009)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 468,
                        "end": 480,
                        "text": "(CoNLL 2000)",
                        "ref_id": null
                    },
                    {
                        "start": 533,
                        "end": 545,
                        "text": "(CoNLL 2003)",
                        "ref_id": null
                    },
                    {
                        "start": 769,
                        "end": 786,
                        "text": "Lin and Wu (2009)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 870,
                        "end": 890,
                        "text": "Turian et al. (2010)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Using word representations",
                "sec_num": "3"
            },
            {
                "text": "We propose an LDA-based model for word class induction and contrast its structure, efficiency, and performance to those exhibited by the Brown model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LDA model for word class induction",
                "sec_num": "4"
            },
            {
                "text": "Here we address what we see as two related weaknesses of the Brown model. The algorithm's quadratic dependence on K makes it inconvenient to induce more than a few hundred classes: running a 1.000 class model with a 400.000 vocabulary took over 100 hours. Second, the induced clustering is hard, and the only way to model ambiguous word types is to have a separate class for each kind of ambiguity. This in turn means that we need to learn a large number of classes, which exacerbates the problem with inefficiency. Very fine-grained Brown classes are typically needed for good performance as shown by Turian et al.'s results. Our model for word class induction addresses both of the weaknesses.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Weaknesses of Brown",
                "sec_num": "4.1"
            },
            {
                "text": "Latent Dirichlet Allocation (LDA) was initially introduced by Blei et al. (2003) in the context of topic modeling, i.e. finding coherent topics shared among subsets of a collection of documents. LDA is a generative, probabilistic hierarchical Bayesian model which induces a set of latent variables which correspond to the topics. The topics themselves are multinomial distributions over words. The graphical model is shown in plate notation in Figure 1 . The generative structure of the LDA model is as follows: The document collection is generated by drawing, for each topic k, a distribution over words \u03c6 k from a Dirichlet prior with parameters \u03b2. Then for each document d we draw a multinomial distribution over topics \u03b8 d from a Dirichlet prior parametrized by \u03b1. To generate the n th word in document d we draw the topic id z n d from the document-specific topic distribution \u03b8 d , and then draw the word from the word distribution corresponding to the chosen topic \u03c6 zn d . Thus each document is a mixture of different topics, giving the model the flexibility needed to reflect the topical structures in real-world document collections. This flexibility has contributed to the popularity of LDA as a common choice in a wide range of domains beyond topic modeling. Another important reason for LDA's success is the availability of efficient and well-understood estimation methods such as Variational EM (Blei et al. 2003) , and Gibbs sampling (Griffiths and Steyvers 2004) . For both methods efficient, well engineered and well tested implementations are readily available. These advantages have led us to try to use a model equivalent to an LDA topic model in order to induce word classes based on distributional clues.",
                "cite_spans": [
                    {
                        "start": 62,
                        "end": 80,
                        "text": "Blei et al. (2003)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1409,
                        "end": 1427,
                        "text": "(Blei et al. 2003)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1449,
                        "end": 1478,
                        "text": "(Griffiths and Steyvers 2004)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 444,
                        "end": 452,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "LDA for word class induction",
                "sec_num": "4.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03c6 k \u223c Dirichlet(\u03b2), k \u2208 [1, K] \u03b8 d \u223c Dirichlet(\u03b1), d \u2208 [1, D] z n d \u223c Multinomial(\u03b8 d ), n d \u2208 [1, N d ] w n d \u223c Multinomial(\u03c6 zn d ), n d \u2208 [1, N d ]",
                        "eq_num": "(1)"
                    }
                ],
                "section": "LDA for word class induction",
                "sec_num": "4.2"
            },
            {
                "text": "We associate each word type with a distribution over latent classes. Each class is in turn a distribution over contextually co-occurring features. In principle the contextual features could be arbitrary functions of the context, but to make our model use exactly the same information as the Brown model, we will restrict them to the word's immediate left and right neighbors. A direct mapping to document topic model can be seen:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LDA for word class induction",
                "sec_num": "4.2"
            },
            {
                "text": "Topic model Word class induction Document Word type Word Context feature Topic Word class",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LDA for word class induction",
                "sec_num": "4.2"
            },
            {
                "text": "An example \"document\" in our scenario, corre-sponding to the word type Krzysztof looks like the following:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LDA for word class induction",
                "sec_num": "4.2"
            },
            {
                "text": "Bledkowski R Kieslowski R Kieslowski R Rutkowski R Sikorski R and L argues L argues R director L director L edits R said R",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LDA for word class induction",
                "sec_num": "4.2"
            },
            {
                "text": "The subscript on the word indicates whether it is a left or right context feature, i.e. whether it appears to left or to the right of Krzysztof in the corpus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LDA for word class induction",
                "sec_num": "4.2"
            },
            {
                "text": "Thus, strictly speaking our model does not generate the actual sequence of words in the corpus, but rather a collection of \"documents\" such as the above, or equivalently, a table listing bigram cooccurrence counts for each word type.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LDA for word class induction",
                "sec_num": "4.2"
            },
            {
                "text": "The generative structure of the model corresponds exactly to a standard LDA topic model in equation 1. Now K is the number of latent classes, D is the vocabulary size, and N d is the number of left and right contexts in which word type d appears, z n d is the class of word type d in the n th d context, and f n d is the n th d context feature of word type d.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "LDA for word class induction",
                "sec_num": "4.2"
            },
            {
                "text": "Once trained, the parameters provide two types of word representations. Each \u03b8 d gives the latent class probability distribution given a word type. Each \u03c6 k gives the feature distribution given a latent class. Thus the model provides a probabilistic representation for word types independently of their context, and also for contexts independently of the word type. This is a more powerful representation than hard word clustering: (i) soft clustering allows the modeling of ambiguity, (ii) additional source of information is available which helps determine the class of a word from its context. Figure 2 shows an example of how the classes discovered by the model deal with ambiguity. The pie charts depict the induced class distributions for two word types Martin and Cameron. These words are ambiguous in a similar way: they are mostly used as (i) first names or (ii) family names, and (iii) additionally can appear as part of a name of a company or place. This similarity of usage is reflected in closeness of the distributions over the induced classes for those words. Thus the first class (colored red) is associated with many family names, the second (blue) with titles and first names, and the third (green) with companies and locations. This correspondence is certainly not perfect (e.g. the first class is also associated with the word chief) but it is suggestive that soft LDAbased clustering can successfully model and discover this type of systematic shared ambiguities.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 597,
                        "end": 605,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "LDA for word class induction",
                "sec_num": "4.2"
            },
            {
                "text": "We can use the same three classes to illustrate the second advantage of LDA word classes mentioned above: we can obtain information about the class of a particular token based on its context. Thus even for a rare word which did not appear in the corpus used for word class induction, we can still find out what word classes it is associated with just by consulting the \u03c6 table and retrieving the classes strongly associated with the context features. Figure 3 shows the left and right context features which co-occurred most frequently with the same three classes illustrated in Figure 2 . For example the second (blue) class, which contains titles and first names, is associated with left contexts such as says and Chairman and right contexts such as Clinton and Dole.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 451,
                        "end": 459,
                        "text": "Figure 3",
                        "ref_id": null
                    },
                    {
                        "start": 579,
                        "end": 587,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "LDA for word class induction",
                "sec_num": "4.2"
            },
            {
                "text": "In order to evaluate the LDA word class induction model we assess two of its aspects: (i) we compare its efficiency to that of Brown clustering, and (ii) we compare the performance of the induced word classes to those obtained by Brown clustering in two difficult sequence labeling tasks and one classification task. Two main approaches have been used to train LDA topic models: variational EM (Blei et al. 2003) and Gibbs sampling (Griffiths and Steyvers 2004) . Both scale linearly with the number of topics. This property is one of the main advantages of the LDA word class induction model over HMM or Brown clustering. In this section we show that also in practice this means that LDA word classes can be induced much faster than equivalently performing Brown classes.",
                "cite_spans": [
                    {
                        "start": 394,
                        "end": 412,
                        "text": "(Blei et al. 2003)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 432,
                        "end": 461,
                        "text": "(Griffiths and Steyvers 2004)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental evaluation",
                "sec_num": "5"
            },
            {
                "text": "As training data for both models we use the North American News Text Corpus (over 60M words). For both models we only keep bigrams which occur at least 3 times. The resulting vocabulary is over 380K word types. The LDA class induction model scales as O (KN ) where N is the sum of all feature counts. Since we discard rare bigrams with frequencies under m, we can scale the remaining feature counts by 1/m and obtain an equivalent model, while reducing runtime by m times. For both models we induce 50, 100, 200, 500 and 1000 classes. For Brown we run the implementation of Liang (2005) until termination. For LDA we run 1000 iterations of a collapsed Gibbs sampler from Mallet (McCallum 2002) . Figure 4 shows how the models scale with growing value of K on a log-log plot. Brown terminates in 20 minutes for K=50, but takes over 110 hours for K=1000, while LDA takes between 1 hour for K=50 and 4 hours for K=1000.",
                "cite_spans": [
                    {
                        "start": 574,
                        "end": 586,
                        "text": "Liang (2005)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 678,
                        "end": 693,
                        "text": "(McCallum 2002)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 253,
                        "end": 258,
                        "text": "(KN )",
                        "ref_id": null
                    },
                    {
                        "start": 696,
                        "end": 704,
                        "text": "Figure 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experimental evaluation",
                "sec_num": "5"
            },
            {
                "text": "Another advantage of LDA word classes over hard clusters is the increased representational power. Ambiguity can be modeled more compactly, and there are two sources of information to draw on when deciding on the most likely class of a word in context: the word type identity, and the local context features. In this section we show that these theoretical advantages translate into performance on fine-grained Named Entity Recognition, Morphological Analysis and on semantic Relation Classification.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Performance",
                "sec_num": "5.2"
            },
            {
                "text": "In each of the tasks we tried to use the Brown classes and the LDA classes in an optimal way by taking advantage of the strength of each type of representation, and also to adapt the feature sets to the specifics of the task. We followed previous work when available and ran exploratory experiments with different feature combinations on the development data. The details of the final feature sets are given in the respective sections but in general we make use of the hierarchical nature of Brown classes by using them at several levels of granularity. For LDA classes we exploit their probabilistic softness by including feature probability or rank, and include classes inferred from context words when appropriate.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Performance",
                "sec_num": "5.2"
            },
            {
                "text": "Named-entity recognition is one of the most commonly needed NLP task. Many evaluations have focused on learning the coarse-grained CoNLL and MUC entity labels (person, organization and location). Here we evaluate on the more challenging fine-grained entities from the BBN corpus (Weischedel and Brunstein 2005) . We use sections 2 to 21 as training data, section 22 for development and section 23 for final evaluation. We keep all labels appearing at least 100 times in training data. Less frequent labels we map to an existing more generic label if possible (e.g. LOCA-TION:LAKE SEA OCEAN \u2192 LOCATION:OTHER), otherwise we discard them. We also discard all description labels which are not proper named entities. We are left with 40 labels, shown in Table 1 .",
                "cite_spans": [
                    {
                        "start": 279,
                        "end": 310,
                        "text": "(Weischedel and Brunstein 2005)",
                        "ref_id": "BIBREF39"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 749,
                        "end": 756,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Named entity recognition",
                "sec_num": "5.2.1"
            },
            {
                "text": "We convert the labeling to the BIO format which encodes chunking information into tokenlevel labels: each label is prefixed with B if it starts a new chunk, I if it continues the previous chunk, or O if it does not belong to a named entity chunk. Thus we end up with 81 labels after conversion.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Named entity recognition",
                "sec_num": "5.2.1"
            },
            {
                "text": "lowercase Map all characters to lower case wordshape Encodes spelling of a token by mapping sequences of upper case letters to X, lower case letters to x, digits to 0, hyphens and underlines to themselves. For example IJCNLP-2011 maps to X-0 suffix n The n characters from the end of the token rank n z f (z) The n th class in the ranking ordered by the value of the function f prefix n",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Named entity recognition",
                "sec_num": "5.2.1"
            },
            {
                "text": "The first n characters from the start z Class id Baseline As a baseline we use a sequenceperceptron labeler (Collins 2002) with the following features:",
                "cite_spans": [
                    {
                        "start": 108,
                        "end": 122,
                        "text": "(Collins 2002)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Named entity recognition",
                "sec_num": "5.2.1"
            },
            {
                "text": "{w \u22122 , w \u22121 , w 0 , lowercase(w 0 ), wordshape(w 0 ), suffix 1 (w 0 ), suffix 2 (w 0 ), suffix 3 (w 0 ), w 1 , w 2 }.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Named entity recognition",
                "sec_num": "5.2.1"
            },
            {
                "text": "For the explanation of the feature functions see Table 2 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 49,
                        "end": 56,
                        "text": "Table 2",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Named entity recognition",
                "sec_num": "5.2.1"
            },
            {
                "text": "For inducing classes for this task we use the North American News Text Corpus described in section 5.1. When evaluating word classes we add to this feature set the Brown or LDA word class features:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Named entity recognition",
                "sec_num": "5.2.1"
            },
            {
                "text": "Brown Class IDs encode the path in the class hierarchy, we thus use ID prefixes of different lengths to include classes at several levels of granularity. We also add feature conjunctions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Named entity recognition",
                "sec_num": "5.2.1"
            },
            {
                "text": "The additional Brown class features are thus: prefix n (z(w m )) (for tokens at positions m \u2208 {\u22121, 0, 1}, class id prefix of length n for n \u2208 {4, 6, 10, 20}) and feature conjunctions {prefix 20 (z(w 0 ))} \u00d7 {lowercase(w 0 ), wordshape(w 0 ), suffix 1 (w 0 ), suffix 2 (w 0 ), suffix 3 (w 0 )}. The class ID prefix sizes we adopted were shown to be effective in Ratinov and Roth (2009) and Turian et al. (2010) .",
                "cite_spans": [
                    {
                        "start": 361,
                        "end": 384,
                        "text": "Ratinov and Roth (2009)",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 389,
                        "end": 409,
                        "text": "Turian et al. (2010)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Named entity recognition",
                "sec_num": "5.2.1"
            },
            {
                "text": "LDA We rank the classes according to posterior probability and take the 3 top ranked classes given the current word d, the 1 top ranked class given the previous word w \u22121 , and 1 top ranked class given the next word w +1 : {rank 1 z P (z|d), rank 2 z P (z|d), rank 3 z P (z|d), rank 1 z P (z|w \u22121 ), rank 1 z P (z|w +1 )}. We add the following feature conjunctions: Figure 5 shows the F1 error on section 22 for the baseline and for Brown and LDA classes of different granularity. A large number of classes (500 or 1000) is needed to achieve low error with Brown classes. With LDA, a lower number (100 or 200) is sufficient, and in fact the error rates are lower for LDA word class features than for Brown. The results for the test set (section 23) using Brown with 1000 classes and LDA with 200 classes are shown in the NER column of Table 5 . We are unaware of previous published results on BBN at a comparable level of NE label granularity.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 366,
                        "end": 374,
                        "text": "Figure 5",
                        "ref_id": "FIGREF4"
                    },
                    {
                        "start": 835,
                        "end": 842,
                        "text": "Table 5",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Named entity recognition",
                "sec_num": "5.2.1"
            },
            {
                "text": "{lowercase(w 0 ), wordshape(w 0 ), suffix 1 (w 0 ), suffix 2 (w 0 ), suffix 3 (w 0 )} \u00d7 {rank 1 z P (z|d),",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Named entity recognition",
                "sec_num": "5.2.1"
            },
            {
                "text": "rank 1 z P (z|w \u22121 ), rank 1 z P (z|w +1 )}.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Named entity recognition",
                "sec_num": "5.2.1"
            },
            {
                "text": "We next evaluate the induced word classes on a morphological analysis task. The goal is to learn to assign morpho-syntactic descriptors (MSD) (roughly speaking, fine-grained POS tags) and lemmas to tokens in sentences. The MSD tags encode all relevant inflectional features of a token such as gender, case and number for nouns or tense, aspect, person and number for verbs. A morphological tagger which performs this type of analysis is an important component for processing languages with rich inflectional morphology. Figure 6 : Morphosyntactic annotation of a Spanish which translates as When he was a boy he liked it.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 520,
                        "end": 528,
                        "text": "Figure 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Morphological analysis",
                "sec_num": "5.2.2"
            },
            {
                "text": "a short sentence in Spanish. As the supervised model we use the Morfette system (Chrupa\u0142a et al. 2008) 1 . Morfette trains two classifiers, one for morphological tags (i.e. fine-grained POS tags) and one for lemmatization classes. The classifiers are trained separately; their output is combined during decoding. For the baseline we used the default features (see Chrupa\u0142a et al. 2008) and trained the POS and lemma models for 10 and 3 iterations respectively. We added word-class features to the POS model.",
                "cite_spans": [
                    {
                        "start": 80,
                        "end": 102,
                        "text": "(Chrupa\u0142a et al. 2008)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 364,
                        "end": 385,
                        "text": "Chrupa\u0142a et al. 2008)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Morphological analysis",
                "sec_num": "5.2.2"
            },
            {
                "text": "We use class id prefixes for the focus word: prefix n (z(w 0 )), n \u2208 {4, 6, 10, 20}",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brown",
                "sec_num": null
            },
            {
                "text": "LDA Morfette can use real-valued features and initial tests on this task with class distributions showed that using them directly works as well as discretizing them. We use classes for the focus token (w 0 ) and set probabilities below 0.15 to 0 for sparseness.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Brown",
                "sec_num": null
            },
            {
                "text": "We chose two data sets for evaluation:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data sets",
                "sec_num": null
            },
            {
                "text": "\u2022 Spanish Ancora corpus (Taul\u00e9 et al. 2008) :",
                "cite_spans": [
                    {
                        "start": 24,
                        "end": 43,
                        "text": "(Taul\u00e9 et al. 2008)",
                        "ref_id": "BIBREF35"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data sets",
                "sec_num": null
            },
            {
                "text": "portion corresponding to data used by Chrupa\u0142a et al. (2008) , 188.803 tokens, 10.000 dev. and 10.000 test, 279 tags. For inducing word classes we used (i) Spanish Europarl (Koehn 2005) , 50M words and (ii) Est Republicain 2 147M words. We optimized the number of classes on the development set: for Brown the best was 500 for both languages, for LDA the best setting was 50 for Spanish and 100 for French. Table 5 (columns MA es and MA fr) shows the joint morphological tagging-lemmatization scores on the test set. Word classes give a moderate performance boost and in both cases LDA improves more. We do not know of published results on the French data with this level of granularity. However Seddah et al. (2010) show that Morfette on French data with a reduced tagset compares well to stateof-the-art, and thus can be assumed to be a strong baseline. For Spanish, our baseline error is almost identical to the error reported by Chrupa\u0142a et al. (2008) (4.98 vs 5.00): thus the word classes give 10% relative error reduction over previous results.",
                "cite_spans": [
                    {
                        "start": 38,
                        "end": 60,
                        "text": "Chrupa\u0142a et al. (2008)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 173,
                        "end": 185,
                        "text": "(Koehn 2005)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 696,
                        "end": 716,
                        "text": "Seddah et al. (2010)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 933,
                        "end": 955,
                        "text": "Chrupa\u0142a et al. (2008)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 407,
                        "end": 414,
                        "text": "Table 5",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Data sets",
                "sec_num": null
            },
            {
                "text": "The last task on which we evaluate induced word classes is multi-way classification of abstract semantic relations between nominals (RC). This task appeared at the Semeval 2007 and 2010 workshops. We use the task definition and the training and testing data from 2010.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification of semantic relations",
                "sec_num": "5.2.3"
            },
            {
                "text": "The relation inventory is shown in Table 3 . For example in the sentence The bowl was full of apples, pears and oranges the nominal pears is in a CONTENT-CONTAINER relation with the nominal bowl.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 35,
                        "end": 42,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Classification of semantic relations",
                "sec_num": "5.2.3"
            },
            {
                "text": "The training set consists of sentences annotated with the relations and their directionality. The arguments (nominals) participating in the relations are marked in both the training and test examples. We used the 2010 training set of 8000 sentences arg 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification of semantic relations",
                "sec_num": "5.2.3"
            },
            {
                "text": "The first argument arg 2",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification of semantic relations",
                "sec_num": "5.2.3"
            },
            {
                "text": "The second argument between n Each of the tokens between arg 1 and arg 2 before m Each of the 3 tokens before arg 1 after m Each of the 3 tokens after arg 2 We evaluated with the scoring script provided, using the official macro-averaged F1 score.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification of semantic relations",
                "sec_num": "5.2.3"
            },
            {
                "text": "Baseline For our baseline system we used the Weka (Hall et al. 2009) implementation of the Sequential Minimal Optimization algorithm to train an SVM classifier (Platt 1999) , with the default linear kernel. We treat each combination of the relation label and the direction label together as a single atomic class to be learned. Table 4 describes the features we extracted from each sentence for the RC task.",
                "cite_spans": [
                    {
                        "start": 50,
                        "end": 68,
                        "text": "(Hall et al. 2009)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 160,
                        "end": 172,
                        "text": "(Platt 1999)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 328,
                        "end": 335,
                        "text": "Table 4",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Classification of semantic relations",
                "sec_num": "5.2.3"
            },
            {
                "text": "Corpus For this task we initially used the word classes induced from The North American News Text Corpus described in section 5.1. The improvements we achieved were smaller than we expected. We suspected that the reason for this was that the training data for the RC task come from a variety of Web sources and are much less restricted in genre than the text in the NANT corpus. We thus decided to retrain word classes on the more balanced 100M-word BNC corpus (BNC Consortium 2001) . As expected, the word classes from the BNC worked better. Due to time constraints, for Brown we were able to induce only up to 500 classes.",
                "cite_spans": [
                    {
                        "start": 461,
                        "end": 482,
                        "text": "(BNC Consortium 2001)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification of semantic relations",
                "sec_num": "5.2.3"
            },
            {
                "text": "Brown With Brown classes we use class ID prefix prefix n (z(f )), n \u2208 {4, 6, 10, 20}, for each of the baseline features f listed in Table 4. LDA For this task we use the probabilities of the classes as real-valued features, and we took classes for each of the baseline features f listed Table 4 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 132,
                        "end": 140,
                        "text": "Table 4.",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 287,
                        "end": 294,
                        "text": "Table 4",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Classification of semantic relations",
                "sec_num": "5.2.3"
            },
            {
                "text": "We optimized the number of classes on the development data (second half of training data). We found 500 classes for Brown and 100 classes for LDA to give the best results, and we used these values for the final evaluation. The impact of adding word classes can be appreciated in Figure 7 , which plots the test error with and without word classes while varying the number of training examples (1000, 2000, 4000 and 8000). It can be seen that adding LDA word class features corresponds to almost doubling the amount of training data. Table 5 (column labeled RC) shows the macroaveraged F1 error on test data. Similarly to the previous tasks, the improvement is larger with LDA than with Brown classes.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 279,
                        "end": 287,
                        "text": "Figure 7",
                        "ref_id": "FIGREF6"
                    },
                    {
                        "start": 533,
                        "end": 540,
                        "text": "Table 5",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Classification of semantic relations",
                "sec_num": "5.2.3"
            },
            {
                "text": "For comparison, during the Semeval 2010 evaluation the F1 error of the top-scoring system (Rink and Harabagiu 2010) was 17.81%; the system ranked second (Tymoshenko and Giuliano 2010) achieved 22.37%.",
                "cite_spans": [
                    {
                        "start": 153,
                        "end": 183,
                        "text": "(Tymoshenko and Giuliano 2010)",
                        "ref_id": "BIBREF38"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification of semantic relations",
                "sec_num": "5.2.3"
            },
            {
                "text": "Both these systems used large amounts of external resources and heavy-duty linguistic processing tools. Rink and Harabagiu (2010) extracted features from dependency parses, from PropBank and FrameNet parses, from WordNet and NomLex as well as using Google n-grams and the output of TextRunner 3 . Tymoshenko and Giuliano (2010) extracted features from syntactic parses and from the massive semantic knowledge database Cyc (Lenat 1995) .",
                "cite_spans": [
                    {
                        "start": 104,
                        "end": 129,
                        "text": "Rink and Harabagiu (2010)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 297,
                        "end": 327,
                        "text": "Tymoshenko and Giuliano (2010)",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 422,
                        "end": 434,
                        "text": "(Lenat 1995)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification of semantic relations",
                "sec_num": "5.2.3"
            },
            {
                "text": "In comparison, our system is extremely resource-light since our features do not rely on any manually created databases or linguistic processing tools (not even POS tags). It is thus satisfying that by automatically and efficiently inducing simple word class features we can achieve results 3 A system for open information extraction from the Web (Yates et al. 2007 ",
                "cite_spans": [
                    {
                        "start": 290,
                        "end": 291,
                        "text": "3",
                        "ref_id": null
                    },
                    {
                        "start": 346,
                        "end": 364,
                        "text": "(Yates et al. 2007",
                        "ref_id": "BIBREF40"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification of semantic relations",
                "sec_num": "5.2.3"
            },
            {
                "text": "To our knowledge LDA word class induction has not been previously used in this particular scenario. LDA variants have been proposed in other settings: Brody and Lapata (2009) use LDA to induce latent variables corresponding to word senses; Toutanova and Johnson (2007) propose an LDA-inspired model where induced word-classes are used for semi-supervised POS tagging; Dinu and Lapata (2010) use LDA-induced word-classes for measuring word similarity in context. Rather than focus on adapting LDA to a particular task, we instead induce generic word classes that can be plugged in as features in a number of NLP applications. We show that the LDA word clustering algorithm is an attractive choice for semi-supervised learning. It is efficient to train and beats a competitive baseline provided by Brown clustering.",
                "cite_spans": [
                    {
                        "start": 151,
                        "end": 174,
                        "text": "Brody and Lapata (2009)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 240,
                        "end": 268,
                        "text": "Toutanova and Johnson (2007)",
                        "ref_id": "BIBREF36"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "Available athttp://code.google.com/p/ morfette/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.cnrtl.fr/corpus/ estrepublicain/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was carried out in the context of the Software-Cluster project EMERGENT (www. software-cluster.org). It was partially funded by the German Federal Ministry of Education and Research (BMBF) under grant number 01IC10S01O. The author assumes responsibility for the content.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Building a treebank for French",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Abeill\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Cl\u00e9ment",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Toussenel",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Abeill\u00e9, A., Cl\u00e9ment, L., and Toussenel, F. (2003). Building a treebank for French.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Neural Probabilistic Language Models. Innovations in Machine Learning",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Schwenk",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Sen\u00e9cal",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Morin",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Gauvain",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "137--186",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Bengio, Y., Schwenk, H., Sen\u00e9cal, J., Morin, F., and Gauvain, J. (2006). Neural Probabilis- tic Language Models. Innovations in Machine Learning, pages 137-186.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Latent dirichlet allocation",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Blei",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "Jordan",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "The Journal of Machine Learning Research",
                "volume": "3",
                "issue": "",
                "pages": "993--1022",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Blei, D., Ng, A., and Jordan, M. (2003). Latent dirichlet allocation. The Journal of Machine Learning Research, 3:993-1022.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "The British National Corpus, version 2 (BNC World)",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Bnc Consortium",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Distributed by Oxford University Computing Services on behalf of the BNC Consortium",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "BNC Consortium (2001). The British National Corpus, version 2 (BNC World). Distributed by Oxford University Computing Services on be- half of the BNC Consortium. http://www. natcorp.ox.ac.uk/.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Bayesian word sense induction",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Brody",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "EACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Brody, S. and Lapata, M. (2009). Bayesian word sense induction. In EACL 2009.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Class-based n-gram models of natural language",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "F"
                        ],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "L"
                        ],
                        "last": "Mercer",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "J"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Lai",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Computational Linguistics",
                "volume": "18",
                "issue": "4",
                "pages": "467--479",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Brown, P. F., Mercer, R. L., Della Pietra, V. J., and Lai, J. C. (1992). Class-based n-gram models of natural language. Computational Linguistics, 18(4):467-479.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Improving generative statistical parsing with semisupervised word clustering",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Candito",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Crabb\u00e9",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Candito, M. and Crabb\u00e9, B. (2009). Improv- ing generative statistical parsing with semi- supervised word clustering. In IWPT 2009.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Learning morphology with Morfette",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Chrupa\u0142a",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Dinu",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Van Genabith",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chrupa\u0142a, G., Dinu, G., and Van Genabith, J. (2008). Learning morphology with Morfette. In LREC 2008.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "A Named Entity Labeler for German: exploiting Wikipedia and distributional clusters",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Chrupa\u0142a",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Klakow",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "LREC 2010",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chrupa\u0142a, G. and Klakow, D. (2010). A Named Entity Labeler for German: exploiting Wikipedia and distributional clusters. In LREC 2010.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Discriminative training methods for Hidden Markov Models: Theory and experiments with perceptron algorithms",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Collins, M. (2002). Discriminative training meth- ods for Hidden Markov Models: Theory and ex- periments with perceptron algorithms. In ACL 2002.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "A unified architecture for natural language processing: Deep neural networks with multitask learning",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Collobert",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Weston",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Collobert, R. and Weston, J. (2008). A uni- fied architecture for natural language process- ing: Deep neural networks with multitask learn- ing. In ICML 2008.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Indexing by latent semantic analysis",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Deerwester",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Dumais",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Furnas",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Landauer",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Harshman",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Journal of the American society for information science",
                "volume": "41",
                "issue": "6",
                "pages": "391--407",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Deerwester, S., Dumais, S., Furnas, G., Landauer, T., and Harshman, R. (1990). Indexing by la- tent semantic analysis. Journal of the American society for information science, 41(6):391-407.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Measuring distributional similarity in context",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Dinu",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "EMNLP 2010",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dinu, G. and Lapata, M. (2010). Measuring distri- butional similarity in context. In EMNLP 2010.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "A comparison of Bayesian estimators for unsupervised Hidden Markov Model POS taggers",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gao, J. and Johnson, M. (2008). A comparison of Bayesian estimators for unsupervised Hidden Markov Model POS taggers. In EMNLP 2008.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A fully Bayesian approach to unsupervised part-ofspeech tagging",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Goldwater",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Griffiths",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Goldwater, S. and Griffiths, T. (2007). A fully Bayesian approach to unsupervised part-of- speech tagging. In ACL 2007.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Finding scientific topics",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Griffiths",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Steyvers",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "101",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Griffiths, T. and Steyvers, M. (2004). Finding sci- entific topics. PNAS, 101(Suppl 1):5228.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Integrating topics and syntax",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Griffiths",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Steyvers",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Blei",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Tenenbaum",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Griffiths, T., Steyvers, M., Blei, D., and Tenen- baum, J. (2005). Integrating topics and syntax. In NIPS 2005.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "The weka data mining software: an update",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Hall",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Holmes",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Pfahringer",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Reutemann",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Witten",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "ACM SIGKDD Explorations Newsletter",
                "volume": "11",
                "issue": "1",
                "pages": "10--18",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. (2009). The weka data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1):10- 18.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Europarl: A parallel corpus for statistical machine translation",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "MT Summit",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Koehn, P. (2005). Europarl: A parallel corpus for statistical machine translation. In MT Summit 2005.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Simple semi-supervised dependency parsing",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Koo",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Carreras",
                        "suffix": ""
                    },
                    {
                        "first": "Collins",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Koo, T., Carreras, X., and Collins, M. (2008). Simple semi-supervised dependency parsing. In ACL 2008.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "SVD and clustering for unsupervised POS tagging",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Lamar",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Maron",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Bienenstock",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lamar, M., Maron, Y., Johnson, M., and Bienen- stock, E. (2010). SVD and clustering for unsu- pervised POS tagging. In ACL 2010.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Cyc: A large-scale investment in knowledge infrastructure",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Lenat",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Communications of the ACM",
                "volume": "38",
                "issue": "11",
                "pages": "33--38",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lenat, D. (1995). Cyc: A large-scale investment in knowledge infrastructure. Communications of the ACM, 38(11):33-38.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Semi-supervised learning for natural language",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Liang, P. (2005). Semi-supervised learning for natural language. PhD thesis, Massachusetts Institute of Technology.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Phrase clustering for discriminative learning",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "ACL/IJCNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lin, D. and Wu, X. (2009). Phrase clustering for discriminative learning. In ACL/IJCNLP 2009.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Mallet: A machine learning for language toolkit",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "McCallum, A. (2002). Mallet: A machine learning for language toolkit. http://mallet.cs. umass.edu.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Name tagging with word clusters and discriminative training",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Miller",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Guinness",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Zamanian",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "HLT/NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Miller, S., Guinness, J., and Zamanian, A. (2004). Name tagging with word clusters and discrimi- native training. In HLT/NAACL 2004.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "A scalable hierarchical distributed language model",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mnih",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Hinton",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mnih, A. and Hinton, G. (2009). A scalable hi- erarchical distributed language model. In NIPS 2009.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "A word clustering approach for language model-based sentence retrieval in Question Answering systems",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Momtazi",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Klakow",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "CIKM",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Momtazi, S. and Klakow, D. (2009). A word clus- tering approach for language model-based sen- tence retrieval in Question Answering systems. In CIKM 2009.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Sequential minimal optimization: A fast algorithm for training support vector machines",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Platt",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Advances in Kernel Methods-Support Vector Learning",
                "volume": "208",
                "issue": "",
                "pages": "98--112",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Platt, J. (1999). Sequential minimal optimization: A fast algorithm for training support vector ma- chines. Advances in Kernel Methods-Support Vector Learning, 208:98-112.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Design challenges and misconceptions in named entity recognition",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Ratinov",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ratinov, L. and Roth, D. (2009). Design chal- lenges and misconceptions in named entity recognition. In CoNLL 2009.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Utd: Classifying semantic relations by combining lexical and semantic resources",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Rink",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Harabagiu",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "SemEval 2010",
                "volume": "",
                "issue": "",
                "pages": "256--259",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rink, B. and Harabagiu, S. (2010). Utd: Classify- ing semantic relations by combining lexical and semantic resources. In SemEval 2010, pages 256-259.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Distributional part-of-speech tagging",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Sch\u00fctze",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sch\u00fctze, H. (1995). Distributional part-of-speech tagging. In ACL 1995.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Lemmatization and Lexicalized Statistical Parsing of Morphologically Rich Languages: the Case of French",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Seddah",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Chrupa\u0142a",
                        "suffix": ""
                    },
                    {
                        "first": "\u00d6",
                        "middle": [],
                        "last": "Van Genabith",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Candito",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "SPMRL, NAACL workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Seddah, D., Chrupa\u0142a, G., \u00c7 etinoglu,\u00d6., van Gen- abith, J., and Candito, M. (2010). Lemma- tization and Lexicalized Statistical Parsing of Morphologically Rich Languages: the Case of French. In SPMRL, NAACL workshop.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "An empirical study of semisupervised structured conditional models for dependency parsing",
                "authors": [],
                "year": 2009,
                "venue": "EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "An empirical study of semi- supervised structured conditional models for dependency parsing. In EMNLP 2009.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Ancora: Multilevel annotated corpora for Catalan and Spanish",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Taul\u00e9",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Mart\u00ed",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Recasens",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Taul\u00e9, M., Mart\u00ed, M., and Recasens, M. (2008). Ancora: Multilevel annotated corpora for Cata- lan and Spanish. In LREC-2008.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "A Bayesian LDA-based model for semisupervised part-of-speech tagging",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Toutanova, K. and Johnson, M. (2007). A Bayesian LDA-based model for semi- supervised part-of-speech tagging. In NIPS 2007.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Word representations: A simple and general method for semi-supervised learning",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Turian",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Ratinov",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Turian, J., Ratinov, L., and Bengio, Y. (2010). Word representations: A simple and general method for semi-supervised learning. In ACL 2010.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Fbkirst: Semantic relation extraction using cyc",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Tymoshenko",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Giuliano",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "SemEval",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tymoshenko, K. and Giuliano, C. (2010). Fbk- irst: Semantic relation extraction using cyc. In SemEval 2010.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "BBN pronoun coreference and entity type corpus. Linguistic Data Consortium",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Weischedel",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Brunstein",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Weischedel, R. and Brunstein, A. (2005). BBN pronoun coreference and entity type corpus. Linguistic Data Consortium.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Textrunner: Open information extraction on the web",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Yates",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Cafarella",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Banko",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Etzioni",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Broadhead",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Soderland",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "NAACL-HLT 2007 Demonstration Program",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yates, A., Cafarella, M., Banko, M., Etzioni, O., Broadhead, M., and Soderland, S. (2007). Tex- trunner: Open information extraction on the web. In NAACL-HLT 2007 Demonstration Pro- gram.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "type_str": "figure",
                "text": "LDA plate diagram",
                "uris": null
            },
            "FIGREF1": {
                "num": null,
                "type_str": "figure",
                "text": "Newt Van Scott Roberts Mr. Ms. John Robert President Dr. David Street General Texas Fidelity State CaliforniaFigure 2: Class distributions for the word types Martin and Cameron. Also shown are the most common word types for the three largest. Newt, Speaker \u2022 executive, operating says, Chairman \u2022 Clinton, Dole, J. Wall, West, East \u2022 County, AG, Journal Figure 3: Most frequent left and right contextword features co-occurring with the three classes fromFigure 2",
                "uris": null
            },
            "FIGREF2": {
                "num": null,
                "type_str": "figure",
                "text": "Figure 4: Brown and LDA run times",
                "uris": null
            },
            "FIGREF3": {
                "num": null,
                "type_str": "figure",
                "text": "ANIMAL CARDINAL DATE:AGE DATE:DATE DATE:DURATION DATE:OTHER DISEASE EVENT:OTHER FAC:BUILDING FAC:HIGHWAY-STREET GPE:CITY GPE:COUNTRY GPE:OTHER GPE:STATE-PROVINCE LAW LOCATION:CONTINENT LOCATION:OTHER LOCATION:REGION MONEY NORP:NATIONALITY NORP:POLITICAL ORDINAL ORGANIZATION:CORPORATION ORGANIZATION:EDUCATIONAL ORGANIZATION:GOVERNMENT ORGANIZATION:OTHER ORGANIZATION:POLITICAL PERCENT PERSON PLANT PRODUCT:OTHER PRODUCT:VEHICLE QUANTITY:1D QUANTITY:WEIGHT SUBSTANCE:CHEMICAL SUBSTANCE:DRUG SUBSTANCE:FOOD SUBSTANCE:OTHER TIME WORK-OF-ART:OTHER",
                "uris": null
            },
            "FIGREF4": {
                "num": null,
                "type_str": "figure",
                "text": "F1 error on NER dev. set with word classes",
                "uris": null
            },
            "FIGREF5": {
                "num": null,
                "type_str": "figure",
                "text": "Figure 6 shows example morphological annotation of",
                "uris": null
            },
            "FIGREF6": {
                "num": null,
                "type_str": "figure",
                "text": "Relation classification error as a function of the number of training examples. The x-axis is plotted on a logarithmic scale.",
                "uris": null
            },
            "TABREF0": {
                "num": null,
                "type_str": "table",
                "text": "Meaning of feature functions",
                "content": "<table/>",
                "html": null
            },
            "TABREF1": {
                "num": null,
                "type_str": "table",
                "text": "BBN named entity labels",
                "content": "<table><tr><td>14</td><td/><td/></tr><tr><td>q</td><td>q</td><td/></tr><tr><td>12</td><td>q</td><td>q</td></tr><tr><td>10</td><td colspan=\"2\">q brown</td></tr><tr><td>8</td><td/><td>lda</td></tr><tr><td>50</td><td>200</td><td>1000</td></tr></table>",
                "html": null
            },
            "TABREF3": {
                "num": null,
                "type_str": "table",
                "text": "",
                "content": "<table><tr><td>: Relation classification labels</td></tr><tr><td>\u2022 French Treebank (Abeill\u00e9 et al. 2003), 351.873 tokens, 36.297 dev. and 37.967 test,</td></tr><tr><td>214 tags.</td></tr></table>",
                "html": null
            },
            "TABREF4": {
                "num": null,
                "type_str": "table",
                "text": "Description of features for RC and the test set of 2717 sentences. During development, we split the training set in half, and trained on the first half, while validating on the second half. For the final evaluation we trained on all the 8000 training sentences.",
                "content": "<table/>",
                "html": null
            },
            "TABREF6": {
                "num": null,
                "type_str": "table",
                "text": "Test set results on NER, MA, RC which are close to state-of-the-art.",
                "content": "<table/>",
                "html": null
            }
        }
    }
}