File size: 78,733 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
{
    "paper_id": "I11-1034",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:32:31.086425Z"
    },
    "title": "S 3 -Statistical Sam . dhi Splitting",
    "authors": [
        {
            "first": "Abhiram",
            "middle": [],
            "last": "Natarajan",
            "suffix": "",
            "affiliation": {
                "laboratory": "Brown Laboratory for Linguistic Information Processing Brown University",
                "institution": "",
                "location": {
                    "country": "USA"
                }
            },
            "email": "abhiram.nat@gmail.com"
        },
        {
            "first": "Eugene",
            "middle": [],
            "last": "Charniak",
            "suffix": "",
            "affiliation": {
                "laboratory": "Brown Laboratory for Linguistic Information Processing Brown University",
                "institution": "",
                "location": {
                    "country": "USA"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The problem of Sam. dhi-Splitting is central to computational processing of Sanskrit texts. Currently the best-known algorithm for this task, given a chunk, generates all possible splits and chooses the Maximum-a-Posteriori estimate as the final answer. Our contributions to the task of Sam. dhi-Splitting are twofold. Firstly, we improve upon the current algorithm by proposing a principled modification of the posterior probability function to achieve better results. Secondly, we propose an algorithm based on Bayesian Word-Segmentation methods. We find that the unsupervised version of our algorithm achieves a better precision than the current algorithm with the original probabilistic model. We then present a supervised version of our algorithm that outperforms all previous methods/models.",
    "pdf_parse": {
        "paper_id": "I11-1034",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The problem of Sam. dhi-Splitting is central to computational processing of Sanskrit texts. Currently the best-known algorithm for this task, given a chunk, generates all possible splits and chooses the Maximum-a-Posteriori estimate as the final answer. Our contributions to the task of Sam. dhi-Splitting are twofold. Firstly, we improve upon the current algorithm by proposing a principled modification of the posterior probability function to achieve better results. Secondly, we propose an algorithm based on Bayesian Word-Segmentation methods. We find that the unsupervised version of our algorithm achieves a better precision than the current algorithm with the original probabilistic model. We then present a supervised version of our algorithm that outperforms all previous methods/models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Sanskrit, considered to be among the oldest languages in the world, is elaborate in its oral specifications. It possesses a set of euphonic rules called Sam . dhi 1 rules, which when applied, cause phonological changes at word or morph boundaries. These rules are enumerated in P\u0101n . ini's As . t .\u0101 dhy\u0101y\u012b, and have been devised with the aim of achieving epigrammatic brevity. There are two kinds of Sam . dhi:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "1. Internal Sam . dhi: Euphonic transformation at morph boundaries; W 1 x + yW 2 \u21d2 W 1 zW 2 , where x and y are the final and initial segments of W 1 and W 2 , respectively, and z respresents the smoothed phonetic transformation of x and y together 1 Literally means \"Putting Together\". E.g: d\u012bpena udvejayati \u21d2 d\u012bpenodvejayati 2. External Sam . dhi: Phonetic change at word boundaries;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "W 1 x + W 2 \u21d2 W 1 x + W 2 ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "where the final segment of the first word x changes to x E.g: utthitah . vidy\u0101dharah . \u21d2 utthito vidy\u0101dharah .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We shall refer to the process of making the euphonic transformations as Sam . dhising and the text formed as a result as Sam . dhied text. The process of undoing the euphonic transformations shall be referred to as Analysis or Sam . dhi-Splitting 2 , and the text formed as a result will be referred to as Analysed text.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "It is easy to see that the task of Sam . dhi-Splitting is ambiguous. For instance, any of {(ca,api), (c\u0101,api), (ca,\u0101pi), (c\u0101,\u0101pi)} could have combined to form c\u0101pi.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Contextual knowledge is necessary for perfect analysis of Sanskrit text (Hellwig, 2009) , and current methods have not evolved enough to be able to supply context. However the field of Statistical Machine Learning, by making reasonable assumptions, allows us to provide approximations of these processes. Previous work (Beesley, 1998; Hyman, 2007) indicates that Finite State Transducers (FST) could be used to generate morphologically valid splits. Mittal (2010) considers the FST approach as well as an approach based on Optimality Theory (Prince and Smolensky, 1993) , by defining a posterior probability function to choose among all morphologically valid splits of a chunk (OT1). More recently, Kumar et al. (2010) report findings using a different posterior probability function with the same Optimality Theory approach (OT2).",
                "cite_spans": [
                    {
                        "start": 72,
                        "end": 87,
                        "text": "(Hellwig, 2009)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 319,
                        "end": 334,
                        "text": "(Beesley, 1998;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 335,
                        "end": 347,
                        "text": "Hyman, 2007)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 541,
                        "end": 569,
                        "text": "(Prince and Smolensky, 1993)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 699,
                        "end": 718,
                        "text": "Kumar et al. (2010)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Firstly, we derive our own posterior probability function, which is different from OT1 and OT2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We observe better results. Secondly, and more importantly, we present a Sam . dhi-Splitting technique based on the Bayesian Word-Segmentation methods presented by Goldwater et al. (2006a) . These methods in turn are based on the Dirichlet process. The Dirichlet process is a continuous multivariate distribution used in nonparametric Bayesian Statistics, often as a convenient prior distribution. Gibbs sampling is used to sample from the posterior distribution of analysed texts given the Sam . dhied text.",
                "cite_spans": [
                    {
                        "start": 163,
                        "end": 187,
                        "text": "Goldwater et al. (2006a)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The paper is organised as follows. In Section 2, we discuss the Optimality Theory approach in detail. In Section 3, we introduce our framework for Sam . dhi-Splitting. We present both the unsupervised and supervised versions of our algorithm in this section. Section 4 then provides specific details of our implementations and Section 5 contrasts the results obtained by all the methods/models considered. Section 6 concludes the paper.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The literature on Sam . dhi-Splitting is too huge for us to do justice. We shall stick to the best published results so far, which have been obtained by the OT method (Kumar et al., 2010; Mittal, 2010) . Procedure 1 is a pseudocode representation of the OT method.",
                "cite_spans": [
                    {
                        "start": 167,
                        "end": 187,
                        "text": "(Kumar et al., 2010;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 188,
                        "end": 201,
                        "text": "Mittal, 2010)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current Methods",
                "sec_num": "2"
            },
            {
                "text": "Procedure 1 : Sam . dhi-Splitting using OT 1: for each chunk \u2208 D do 2:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current Methods",
                "sec_num": "2"
            },
            {
                "text": "S \u2190 getAllPossibleSplits(chunk) 3: S \u2190 {x : x \u2208 S, x is morphologically valid} 4: l \u2190 arg max s {P (s) : s \u2208 S } 5: print l",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current Methods",
                "sec_num": "2"
            },
            {
                "text": "The procedure is quite straightforward. Each candidate chunk is recursively broken (Line 2) to generate all possible splits. Each split is passed through a morphological analyser and the splits that contain one or more invalid morphs are discarded (Line 3). Finally, the Maximum a posteriori (MAP) estimate is chosen as the answer (Line 4). P (s) is the posterior probability function, which we derive as follows. Consider a morphologically valid split s =< c 1 , . . . , c m >, where c 1 . . . c m are its constituents, which was obtained after applying rules r =< r 1 , . . . , r m\u22121 > 3 on a chunk C. We would need to find the most probable split, which is given by arg max s\u2208S P (s|C). Using the noisy channel model framework (Shannon, 1948) , we get arg max s\u2208S P (s|C) = arg max s\u2208S P (C|s) \u00d7 P (s) 1We know that s is a result of applying r on C at specific points. Now, P (C|s) reads as the conditional probability of obtaining C given that r was applied at exactly those points. Clearly, this is 1. Thus the MAP estimate would be a split that maximises the probability of the prior",
                "cite_spans": [
                    {
                        "start": 730,
                        "end": 745,
                        "text": "(Shannon, 1948)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current Methods",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "l = arg max s\u2208S P (s)",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Current Methods",
                "sec_num": "2"
            },
            {
                "text": "Note that we use the notationP instead of P because we can never know the true value of P (s), but can only estimate it from our training set. Let us now turn our attention toP (s). We read P (s) as the probability of generating the morphs < c 1 , . . . , c m >. Thus we get:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current Methods",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (s) =P (c 1 ) \u00d7P (c 2 | c 1 ) \u00d7P (c 3 | c 1 , c 2 ) \u00d7 . . . = m j=1P (c j ) [Assuming Independence]",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Current Methods",
                "sec_num": "2"
            },
            {
                "text": "Equation 3 describes a generative model in that it shows us how we can generate the morphs < c 1 , . . . , c m >. Mittal (2010) ",
                "cite_spans": [
                    {
                        "start": 114,
                        "end": 127,
                        "text": "Mittal (2010)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current Methods",
                "sec_num": "2"
            },
            {
                "text": "definesP (s) as m\u22121 i=1 P (c i ) +P (c i+1 ) \u00d7P (r i ) m (4) Kumar et al. (2010) defineP (s) as m i=1P (c i ) \u00d7 m\u22121 j=1P (r j ) m (5)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current Methods",
                "sec_num": "2"
            },
            {
                "text": "In each of these models, the maximum likelihood estimators forP (c i ) andP (r j ) are used, i.e. P (c i ) is set to the relative frequency of c i in the training set, andP (r j ) to the relative frequency of the usage of r j in the training set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current Methods",
                "sec_num": "2"
            },
            {
                "text": "Note that unlike Equation 4 and Equation 5, Equation 3 does not have rule probabilities. This can be explained by keeping in mind that Equation 3 describes a generative model. If we generated morphs and knew that they had to be combined to form a chunk, the rules are uniquely determined. In Section 5, we shall compare the results obtained by using each of Equations 3, 4 and 5 on standard datasets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current Methods",
                "sec_num": "2"
            },
            {
                "text": "3 Sam . dhi-Splitting based on the Dirichlet Process",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current Methods",
                "sec_num": "2"
            },
            {
                "text": "Our method is similar to the two-stage modelling framework described by Goldwater et al. (2006a; 2006b) . The framework has two components, a morph generator which generates morphs likely to be found in a lexicon, from some probability distribution, and an adaptor which determines how often each of these morphs occur. Section 3.1 and Section 3.2 describe the unsupervised version of our algorithm while Section 3.3 describes the supervised version.",
                "cite_spans": [
                    {
                        "start": 72,
                        "end": 96,
                        "text": "Goldwater et al. (2006a;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 97,
                        "end": 103,
                        "text": "2006b)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Current Methods",
                "sec_num": "2"
            },
            {
                "text": "In the realm of the framework, a sam . dhied chunk C = c 1 c 2 . . . c m can be viewed to be created as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Foundations",
                "sec_num": "3.1"
            },
            {
                "text": "1. A generator P s generates a super-set sequence of morphs 4 : M = M 1 . . . M n from a probability distribution P s .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Foundations",
                "sec_num": "3.1"
            },
            {
                "text": "2. The adaptor P \u03b3 generates a sequence of integers: Z = z 1 . . . z m , each of which are identifiers of one particular item from M. This means that 1 \u2264 z i \u2264 n, and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Foundations",
                "sec_num": "3.1"
            },
            {
                "text": "z i = x \u21d2 c i = M x .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Foundations",
                "sec_num": "3.1"
            },
            {
                "text": "Once the morphs of a chunk are generated, Sam . dhi rules are applied between them to form C. Henceforth T woStage(P \u03b3 , P s ) shall be used to denote a two-stage framework with P \u03b3 as the adaptor and P s as the generator. Let us move to the Chinese Restaurant Process, which we use as our adaptor.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Foundations",
                "sec_num": "3.1"
            },
            {
                "text": "Having studied many corpora of natural language utterances, Zipf (1932) made a famous empirical observation that word frequencies follow a powerlaw distribution, i.e., the frequency of a word is inversely proportional to its frequency rank. This means that the most frequent word in a corpus occurs twice as often as the second most frequent word, thrice as often as the third most frequent word, and so on. Mathematically speaking, if w r is the r-ranked word in a corpus, then",
                "cite_spans": [
                    {
                        "start": 60,
                        "end": 71,
                        "text": "Zipf (1932)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "f (w r ) \u221d 1 r c (6)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "where f (w r ) denotes the frequency of occurrence of w r , and c \u2248 1. The veracity of this law has hence been verified by a study on present-day English (Kucera and Francis, 1967) . Typically, power-law distributions are produced by stochastic processes in which outcomes accrue probability based on the probability they already have. Such processes are called preferential attachment processes. Let us turn our attention to the Chinese Restaurant Process (Aldous et al., 1985) (CRP), which is one such process. The process is best explained by specifying how to draw a sample from it. Consider a restaurant with an infinite number of tables, each with infinite capacity. Customers enter the restaurant, one at a time, and seat themselves at a table of their choice. They choose an occupied table with probability proportional to the number of people already present at the table, or an unoccupied table with probability proportional to some real-valued scalar parameter \u03b1. The first customer always sits at the first table. Then onwards, the i th customer sits at a table T i , and T i follows the distribution:",
                "cite_spans": [
                    {
                        "start": 154,
                        "end": 180,
                        "text": "(Kucera and Francis, 1967)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 457,
                        "end": 478,
                        "text": "(Aldous et al., 1985)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "P (T i = k | Previous Customers) = \uf8f1 \uf8f2 \uf8f3 n k i\u22121+\u03b1 1 \u2264 k \u2264 N i\u22121 \u03b1 i\u22121+\u03b1 k = N i\u22121 + 1 (7)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "where n k is the number of people occupying table k and N i\u22121 is total number of tables occupied by the previous (i \u2212 1) customers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "When the CRP is combined with a morph generator, it can be used to generate a power-law distribution over morphs. Such a model can be described as T woStage(CRP (\u03b1), P s ). We could view this as restaurant where each table represents a morph. Every customer is also labelled with a morph and can either sit only at tables which are labelled with the same morph, or at an unoccupied table. A customer at a table represents one  occurence of the morph that is represented by the  table. To get the probability distribution of the i th morph, we must sum over all the tables labelled with that morph: 5",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 382,
                        "end": 484,
                        "text": "table. A customer at a table represents one  occurence of the morph that is represented by the  table.",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "P (c i = c | c \u2212i )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "= P (assign customer to any of the c tables)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "+ P (assign customer to a new table) = n c \u2212i c i \u2212 1 + \u03b1 + P s (c) \u00d7 \u03b1 i \u2212 1 + \u03b1 = n c \u2212i c + \u03b1 \u00d7 P s (c) i \u2212 1 + \u03b1 (8)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "c \u2212i = c 1 . . . c i\u22121 and n c \u2212i c",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "represents the number of occurrences of c in c \u2212i .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "Let us examine Equation 8. It is in accordance with the principle of preferential attachment. This is because the probability of generating a morph that has already been generated increases as more instances of the morph are observed. Also note that the sparseness of the distribution generated increases with an increase in the value of the parameter \u03b1. This is explained by the fact that \u03b1 \u00d7 P s (c) is constant and it reduces w.r.t. the first summand over time. What this means is that the probability of generating a novel morph decreases (but never dissapears fully) as more data is observed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "Let us now turn our attention to the generator. For simplicity, we choose a unigram phoneme distribution for P s . If a morph c i contains the phonemes a 1 . .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": ". a d P s (c i ) = p \u03a6 (1 \u2212 p \u03a6 ) d\u22121 d j=1 P (a j )",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "where p \u03a6 is the probability of a Sam . dhi rule being applied at any juncture. The reasoning for the equation is quite straightforward -the Sam . dhi rule is not applied (d \u2212 1) times, and applied at the d th phoneme. The unsupervised version of the algorithm uses an uniform distribution over phonemes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chinese Restaurant Process",
                "sec_num": "3.1.1"
            },
            {
                "text": "Given a coin with an unknown bias, say p, what would be a suitable distribution that reflects our expectations about p? It would be the Beta distribution. The Dirichlet distribution is a generalisation of the Beta distribution, in that it may have more than just two dimensions. The Dirichlet process is an infinite dimensional version of the Dirichlet distribution. Each sample from a Dirichlet process returns a distribution over an infinite set of random variables. Let us consider a Dirichlet process with its parameters as \u03b1 and P s . A sample from this process, say G, will consist of a set of all possible morphs and their corresponding probabilities. Now, we can generate each morph c i in the corpus from the distribution G. This can be represented as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dirichlet Process Model",
                "sec_num": "3.1.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "c i \u223c G G \u223c DP (\u03b1, P s )",
                        "eq_num": "(10)"
                    }
                ],
                "section": "Dirichlet Process Model",
                "sec_num": "3.1.2"
            },
            {
                "text": "Following the argument in Goldwater (2006) , it is not hard to find that the model described by T woStage(CRP (\u03b1), P s ) is equivalent to the model represented by Equation 10.",
                "cite_spans": [
                    {
                        "start": 26,
                        "end": 42,
                        "text": "Goldwater (2006)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dirichlet Process Model",
                "sec_num": "3.1.2"
            },
            {
                "text": "We must also keep in mind that, analogous to Equation 8, the probability of i th morph c i = c is given by",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dirichlet Process Model",
                "sec_num": "3.1.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (c i = c | c \u2212i ) = n c \u2212i c + \u03b1 \u00d7 P s (c) i \u2212 1 + \u03b1",
                        "eq_num": "(11)"
                    }
                ],
                "section": "Dirichlet Process Model",
                "sec_num": "3.1.2"
            },
            {
                "text": "where c \u2212i = c 1 . . . c i\u22121 , and n",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dirichlet Process Model",
                "sec_num": "3.1.2"
            },
            {
                "text": "c \u2212i c",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dirichlet Process Model",
                "sec_num": "3.1.2"
            },
            {
                "text": "denotes the number of occurrences of c in c \u2212i . Going ahead a little, we realise that our input corpus is a set of sentences, where each sentence contains a set of Sam . dhied chunks, where each chunk is in turn formed by Sam . dhising separate morphs. The program does not need to separate the chunks from each other, all it needs to do is to separate a chunk into its constituent morphs. Referring to Equation 3, we recall our generative model view of how a Sam . dhied chunk is generated. We describe the process by the following PCFG: 6",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dirichlet Process Model",
                "sec_num": "3.1.2"
            },
            {
                "text": "P (r i = r branch | r \u2212i ): S \u2192 S C P (r i = r end | r \u2212i ): S \u2192 C P s (c i = c | c \u2212i ): C \u2192 c",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dirichlet Process Model",
                "sec_num": "3.1.2"
            },
            {
                "text": "We shall derive an equation for P (r i = r branch | r \u2212i ) in the next section.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dirichlet Process Model",
                "sec_num": "3.1.2"
            },
            {
                "text": "As suggested in Gilks et al. (1996) , we use Gibbs Sampling to sample from the posterior distrubition of Sam . dhi Analyses. One iteration of the algorithm causes the program control to consider every possible splitting point in the data and form two hypotheses, say H 1 and H 2 . These hypotheses contain the same structure, except at the point of consideration. If the point of consideration is part of a chunk c, H 2 splits c into two individual morphs (say c 1 and c 2 ) while H 1 does not. Let H \u2229 denote the structure common to both H 1 and H 2 .",
                "cite_spans": [
                    {
                        "start": 16,
                        "end": 35,
                        "text": "Gilks et al. (1996)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gibbs Sampling for Sam . dhi Analysis",
                "sec_num": "3.2"
            },
            {
                "text": "Given the way Gibbs sampling works, we know that we only need the relative probabilities of H 1 and H 2 . Also, we must recall that the order of arrival of customers in the metaphorical Chinese Restaurant does not affect seating probability, as shown by Aldous et al. (1985) . This means that we could consider H \u2229 to have already been generated. From Equation 11 we get",
                "cite_spans": [
                    {
                        "start": 254,
                        "end": 274,
                        "text": "Aldous et al. (1985)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gibbs Sampling for Sam . dhi Analysis",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P H 1 |H \u2229 = P c | H \u2229 = n H \u2229 c + \u03b1P s (c) |H \u2229 | + \u03b1",
                        "eq_num": "(12)"
                    }
                ],
                "section": "Gibbs Sampling for Sam . dhi Analysis",
                "sec_num": "3.2"
            },
            {
                "text": "We also derive",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gibbs Sampling for Sam . dhi Analysis",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P H 2 |H \u2229 = P r branch \u222a c 1 \u222a c 2 | H \u2229 = P r branch | H \u2229 \u00d7 n H \u2229 c 1 + \u03b1P s (c 1 ) |H \u2229 | + \u03b1 \u00d7 n H \u2229 c 2 + I(c 1 = c 2 ) + \u03b1P s (c 2 ) |H \u2229 | + 1 + \u03b1",
                        "eq_num": "(13)"
                    }
                ],
                "section": "Gibbs Sampling for Sam . dhi Analysis",
                "sec_num": "3.2"
            },
            {
                "text": "The extra '1' in the denominator of the third item of the product is because after c 1 , we have an additional morph. Also, I is the indicator function, which is 1 when the expression inside its parathesis is true. Let us now examine P (r branch | H \u2229 ). Clearly, each time we can choose only one among {r branch , r end }, so we have P (r branch ) + P (r end ) = 1. The number of r rules applied at the point of consideration would be (|H \u2229 | + 1) -one each for the |H \u2229 | morphs, and an extra one for the chunk under consideration. We apply a Beta( \u03c1 2 , \u03c1 2 ) prior to get: 7",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gibbs Sampling for Sam . dhi Analysis",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P r branch | H \u2229 = n H \u2229 r branch + \u03c1 2 |H \u2229 | + 1 + \u03c1",
                        "eq_num": "(14)"
                    }
                ],
                "section": "Gibbs Sampling for Sam . dhi Analysis",
                "sec_num": "3.2"
            },
            {
                "text": "7 Henceforth, please substitute this expression in Equation 13",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gibbs Sampling for Sam . dhi Analysis",
                "sec_num": "3.2"
            },
            {
                "text": "The algorithm works as follows -we begin with a random analysis of the corpus. After that, using Equations 12 and 13, we sample every potential boundary point. An iteration is said to have completed when the sampler samples over the entire corpus. We run multiple iterations of this process, until convergence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gibbs Sampling for Sam . dhi Analysis",
                "sec_num": "3.2"
            },
            {
                "text": "Simulated annealing (Aarts and Korst, 1989 ) is used to facilitate choosing of low probability transitions early in the algorithm, lest it gets stuck at a local maximum.",
                "cite_spans": [
                    {
                        "start": 20,
                        "end": 42,
                        "text": "(Aarts and Korst, 1989",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gibbs Sampling for Sam . dhi Analysis",
                "sec_num": "3.2"
            },
            {
                "text": "As mentioned earlier, we use Gibbs Sampling to sample from the posterior distribution. Let us recall the relevant equations -Equations 12 and 13. In the supervised version of our algorithm, we use available training data (say D train ) to our advantage. Firstly, we define",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supervised Version",
                "sec_num": "3.3"
            },
            {
                "text": "H \u2229 = H \u2229 \u222a D train .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supervised Version",
                "sec_num": "3.3"
            },
            {
                "text": "Also, instead of assuming a uniform distribution over phonemes, we infer phoneme probabilities from D train :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supervised Version",
                "sec_num": "3.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P s (c i ) = p \u03a6 (1 \u2212 p \u03a6 ) d\u22121 d j=1P (a j )",
                        "eq_num": "(15)"
                    }
                ],
                "section": "Supervised Version",
                "sec_num": "3.3"
            },
            {
                "text": "Let \u03a0 denote the set of all phonemes found in D train . Given a phoneme a x , we setP (a x ) to be the maximum likelihood estimate:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supervised Version",
                "sec_num": "3.3"
            },
            {
                "text": "P (a x ) = n ax + \u03b1 0 n * + \u03b1 0 |\u03a0| (16)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supervised Version",
                "sec_num": "3.3"
            },
            {
                "text": "where n ax is the number of times a x occurs in D train , n * = p\u2208\u03a0 n p , and \u03b1 0 is the unigram smoothing constant.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supervised Version",
                "sec_num": "3.3"
            },
            {
                "text": "Thus we get",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supervised Version",
                "sec_num": "3.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P H 1 |H \u2229 = n H \u2229 c + \u03b1P s (c) |H \u2229 | + \u03b1",
                        "eq_num": "(17)"
                    }
                ],
                "section": "Supervised Version",
                "sec_num": "3.3"
            },
            {
                "text": "and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supervised Version",
                "sec_num": "3.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P H 2 |H \u2229 = n H \u2229 r branch + \u03c1 2 |H \u2229 | + 1 + \u03c1 \u00d7 n H \u2229 c 1 + \u03b1P s (c 1 ) |H \u2229 | + \u03b1 \u00d7 n H \u2229 c 2 + I(c 1 = c 2 ) + \u03b1P s (c 2 ) |H \u2229 | + 1 + \u03b1",
                        "eq_num": "(18)"
                    }
                ],
                "section": "Supervised Version",
                "sec_num": "3.3"
            },
            {
                "text": "The supervised version of the algorithm now works exactly the same way as the unsupervised version, except that Gibbs sampling is done using Equations 17 and 18.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Supervised Version",
                "sec_num": "3.3"
            },
            {
                "text": "As a part of the Consortium project in India, a corpus of nearly 25000 parallel strings of Sam . dhied and analysed text has been formed (say D 1 ). OT trains on the 25000 string dataset and tests on a separate dataset of 2148 Sam . dhied Chunks (say D 2 ). We see that the test set used in OT We also use the morphological analyser (Akshar Bharati, 2006) provided by the apertium group.",
                "cite_spans": [
                    {
                        "start": 291,
                        "end": 293,
                        "text": "OT",
                        "ref_id": null
                    },
                    {
                        "start": 341,
                        "end": 355,
                        "text": "Bharati, 2006)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Implementation Details",
                "sec_num": "4"
            },
            {
                "text": "As for the parameters of the model, we fixed \u03c1 = 2. We found that a decrease in p \u03a6 improved recall, but caused long words to get concatenated. At the same time higher values of p \u03a6 tended to cause over segmentation. It was also observed that higher \u03b1 values resulted in higher lexicon recall, once again only up to a point. Although it was not possible to arrive a single best value for either \u03b1 or p \u03a6 ; we fixed them to be p \u03a6 = 0.5 and \u03b1 = 20. The sampler is annealed with the following temperature schedule -1 \u03b3 = 0.1 to 1.0, in steps of 0.1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Implementation Details",
                "sec_num": "4"
            },
            {
                "text": "For evaluation, standard statistical measures of Precision, Recall and F-Score were used. Precision indicates how many among the items found are correct; Recall indicates how many among the correct items are found. F-score is the harmonic mean of the Precision and the Recall.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Implementation Details",
                "sec_num": "4"
            },
            {
                "text": "Our implementations work with the Sanskrit Library Phonetic Basic format (SLP1). Since the morphological analyser uses the This explains why our implementations of OT achieve lower scores than what is reported in their paper. Readers must note that our implementation of OT, when trained on D1 and tested on D2, achieved nearly the same accuracy reported in their paper. Thus we believe our implementation of OT is accurate.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Implementation Details",
                "sec_num": "4"
            },
            {
                "text": "Tirupati format (WX), we use the transcoding tools on the Sanskrit Library Website (Scharf and Hyman, 2010). One may refer Huet (2009) for more details about the formats.",
                "cite_spans": [
                    {
                        "start": 123,
                        "end": 134,
                        "text": "Huet (2009)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Implementation Details",
                "sec_num": "4"
            },
            {
                "text": "Let OT1, OT2, OT3 denote versions of Procedure 1, using Equations 4, 5, 3 as the posterior probability functions, respectively. Precision is calculated as the percentage of correct segmentations among all the segmentations made by the algorithm. Recall is calculated as the percentage of correct segmentations made by the algorithm among all the correct segmentations that need to be made. F-Score is the harmonic mean of the Precision and Recall. As we can see, using Equation 3 as the posterior probability function while obtaining the MAP estimate, we improve the previous best F-Score by nearly 3.5%. We shall now examine the results obtained by four different versions of the framework described in Section 3. Let these versions be denoted by NC1 . . . NC4:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "1. NC1 denotes the Two-Stage Framework in its most basic state. The algorithm possesses no linguistic knowledge whatsoever.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "2. Kessler (1994) shows that each Sanskrit syllable must have only one Sonority peak. NC2 uses this knowledge to effect. The method is largely similar to NC1 except for the way in which sampling is done. We only sample when we are sure that the segments we generate do not violate Sonority Hierarchy. Refer Appendix A for more details about sonority hierarchy.",
                "cite_spans": [
                    {
                        "start": 3,
                        "end": 17,
                        "text": "Kessler (1994)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "3. NC3 uses a morphological analyser. Sampling is only done when we know that the segment we are leaving behind is morphologically valid.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "4. NC4 uses a morphological analyser as well as training data. Sampling is done using Equations 17 and 18. Results obtained by these versions are shown in Table 2 . NC4 improves upon the F-Score achieved by OT2 by nearly 6%.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 155,
                        "end": 162,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "In this paper, we have presented an algorithm for Sam . dhi-Splitting which draws on expedients of Bayesian statistics. It is highly flexible in that it works even in the absence of (a) morphological analyser (b) training data. Also, one must remember that an entire corpus, as it is, can be fed to the algorithm, as opposed to OT which would require each Sam . dhied chunk separately. Finally, the fact that the algorithm runs in polynomial time, as opposed to OT which takes exponential time, further asserts the efficacy of the method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "We shall use these terms interchangeably.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Rule ri is applied between ci and ci+1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In the case of Internal Sam . dhi, we consider morph boundaries and in the case of External Sam . dhi, we consider word boundaries. The theoretical foundations hold good for both cases. Thus the reader must always keep in mind that the concepts presented in this section apply at word boundaries too.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Note that two different tables may represent the same morph.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Probabilistic Context-Free Grammar",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "Sonority hierarchy is as follows:A syllable is said possess a sonority violation if it has more than one sonority peak (e.g. 'rjA'). However, at the beginning of a syllable, we must rate Spirants at the same level as Unvoiced Stops (e.g. 'sTApayati' is valid).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A Sonority Hierarchy",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Simulated annealing and Boltzmann machines: a stochastic approach to combinatorial optimization and neural computing",
                "authors": [
                    {
                        "first": "Emile",
                        "middle": [],
                        "last": "Aarts",
                        "suffix": ""
                    },
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Korst",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emile Aarts and Jan Korst. 1989. Simulated annealing and Boltzmann machines: a stochastic approach to combinatorial optimization and neural computing.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Building a wide coverage sanskrit morphological analyzer: A practical approach",
                "authors": [
                    {
                        "first": "Akshar",
                        "middle": [],
                        "last": "V Sheeba",
                        "suffix": ""
                    },
                    {
                        "first": "Amba",
                        "middle": [
                            "P"
                        ],
                        "last": "Bharati",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kulkarni",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "V Sheeba Akshar Bharati, Amba P. Kulkarni. 2006. Building a wide coverage sanskrit morphological analyzer: A practical approach.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "In\u00c9cole d'\u00c9t\u00e9 de Probabilit\u00e9s de Saint-Flour XIII -1983",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Aldous",
                        "suffix": ""
                    },
                    {
                        "first": "Illdar",
                        "middle": [],
                        "last": "Ibragimov",
                        "suffix": ""
                    },
                    {
                        "first": "Jean",
                        "middle": [],
                        "last": "Jacod",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Aldous",
                        "suffix": ""
                    }
                ],
                "year": 1985,
                "venue": "Lecture Notes in Mathematics",
                "volume": "1117",
                "issue": "",
                "pages": "1--198",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Aldous, Illdar Ibragimov, Jean Jacod, and David Aldous. 1985. Exchangeability and related topics. In\u00c9cole d'\u00c9t\u00e9 de Probabilit\u00e9s de Saint-Flour XIII - 1983, volume 1117 of Lecture Notes in Mathemat- ics, pages 1-198. Springer Berlin / Heidelberg.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Arabic morphology using only finite-state operations",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Kenneth",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Beesley",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Proceedings of the Workshop on Computational Approaches to Semitic Languages, Semitic '98",
                "volume": "",
                "issue": "",
                "pages": "50--57",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kenneth R. Beesley. 1998. Arabic morphology using only finite-state operations. In Proceedings of the Workshop on Computational Approaches to Semitic Languages, Semitic '98, pages 50-57. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Markov chain Monte Carlo in practice",
                "authors": [
                    {
                        "first": "W",
                        "middle": [
                            "R"
                        ],
                        "last": "Gilks",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Richardson",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "J"
                        ],
                        "last": "Spiegelhalter",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W.R. Gilks, S. Richardson, and D.J. Spiegelhalter. 1996. Markov chain Monte Carlo in practice. Chapman & Hall/CRC.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Contextual dependencies in unsupervised word segmentation",
                "authors": [
                    {
                        "first": "Sharon",
                        "middle": [],
                        "last": "Goldwater",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [
                            "L"
                        ],
                        "last": "Griffiths",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics, ACL-44",
                "volume": "",
                "issue": "",
                "pages": "673--680",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. 2006a. Contextual dependencies in un- supervised word segmentation. In Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the As- sociation for Computational Linguistics, ACL-44, pages 673-680, Stroudsburg, PA, USA. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Interpolating between types and tokens by estimating power-law generators",
                "authors": [
                    {
                        "first": "Sharon",
                        "middle": [],
                        "last": "Goldwater",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [
                            "L"
                        ],
                        "last": "Griffiths",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "18",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sharon Goldwater, Thomas L. Griffiths, and Mark Johnson. 2006b. Interpolating between types and tokens by estimating power-law generators. In In Advances in Neural Information Processing Systems 18, page 18.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Nonparametric Bayesian models of lexical acquisition",
                "authors": [
                    {
                        "first": "Sharon",
                        "middle": [],
                        "last": "Goldwater",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sharon Goldwater. 2006. Nonparametric Bayesian models of lexical acquisition. Ph.D. thesis, Brown University.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Sanskrittagger: A stochastic lexical and pos tagger for sanskrit",
                "authors": [
                    {
                        "first": "Oliver",
                        "middle": [],
                        "last": "Hellwig",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Sanskrit Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "266--277",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Oliver Hellwig. 2009. Sanskrittagger: A stochastic lexical and pos tagger for sanskrit. In Sanskrit Com- putational Linguistics, pages 266-277. Springer- Verlag, Berlin, Heidelberg.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Sanskrit computational linguistics. chapter Formal Structure of Sanskrit Text: Requirements Analysis for a Mechanical Sanskrit Processor",
                "authors": [
                    {
                        "first": "G\u00e9rard",
                        "middle": [],
                        "last": "Huet",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "162--199",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G\u00e9rard Huet. 2009. Sanskrit computational linguistics. chapter Formal Structure of Sanskrit Text: Require- ments Analysis for a Mechanical Sanskrit Proces- sor, pages 162-199. Springer-Verlag, Berlin, Heidel- berg.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "From Paninian Sandhi to Finite State Calculus",
                "authors": [
                    {
                        "first": "Malcolm",
                        "middle": [],
                        "last": "Hyman",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "First International Sanskrit Computational Linguistics Symposium",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Malcolm Hyman. 2007. From Paninian Sandhi to Finite State Calculus. In First International San- skrit Computational Linguistics Symposium, Roc- quencourt France. INRIA Paris-Rocquencourt.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Sandhi and syllables in classical sanskrit",
                "authors": [
                    {
                        "first": "Brett",
                        "middle": [],
                        "last": "Kessler",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "The proceedings of the Twelfth West Coast Conference on Formal Linguistics",
                "volume": "",
                "issue": "",
                "pages": "35--50",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Brett Kessler. 1994. Sandhi and syllables in classi- cal sanskrit. In The proceedings of the Twelfth West Coast Conference on Formal Linguistics, pages 35- 50, Stanford, CA, USA. CSLI Publications.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Computational analysis of present-day American English",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Kucera",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "N"
                        ],
                        "last": "Francis",
                        "suffix": ""
                    }
                ],
                "year": 1967,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Kucera and W. N. Francis. 1967. Computational analysis of present-day American English. Brown University Press, Providence, RI.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Sanskrit compound processor",
                "authors": [
                    {
                        "first": "Anil",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "Vipul",
                        "middle": [],
                        "last": "Mittal",
                        "suffix": ""
                    },
                    {
                        "first": "Amba",
                        "middle": [],
                        "last": "Kulkarni",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Sanskrit Computational Linguistics",
                "volume": "6465",
                "issue": "",
                "pages": "57--69",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anil Kumar, Vipul Mittal, and Amba Kulkarni. 2010. Sanskrit compound processor. In Sanskrit Compu- tational Linguistics, volume 6465 of Lecture Notes in Computer Science, pages 57-69. Springer Berlin / Heidelberg.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Automatic sanskrit segmentizer using finite state transducers",
                "authors": [
                    {
                        "first": "Vipul",
                        "middle": [],
                        "last": "Mittal",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the ACL 2010 Student Research Workshop",
                "volume": "",
                "issue": "",
                "pages": "85--90",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vipul Mittal. 2010. Automatic sanskrit segmentizer using finite state transducers. In Proceedings of the ACL 2010 Student Research Workshop, ACLstudent '10, pages 85-90. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Optimality theory: Constraint interaction in generative grammar",
                "authors": [
                    {
                        "first": "Alan",
                        "middle": [],
                        "last": "Prince",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Smolensky",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alan Prince and Paul Smolensky. 1993. Optimality theory: Constraint interaction in generative gram- mar. Technical report, Rutgers University and Uni- versity of Colorado.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "A Mathematical Theory of Communication",
                "authors": [
                    {
                        "first": "Claude",
                        "middle": [
                            "E"
                        ],
                        "last": "Shannon",
                        "suffix": ""
                    }
                ],
                "year": 1948,
                "venue": "Bell System Technical Journal",
                "volume": "27",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Claude E. Shannon. 1948. A Mathematical Theory of Communication, volume 27. Bell System Technical Journal, Champaign, IL, USA.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Selective Studies and the Principle of Relative Frequency in Language",
                "authors": [
                    {
                        "first": "G",
                        "middle": [
                            "K"
                        ],
                        "last": "Zipf",
                        "suffix": ""
                    }
                ],
                "year": 1932,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. K. Zipf. 1932. Selective Studies and the Principle of Relative Frequency in Language. Harvard Uni- versity Press.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "content": "<table><tr><td>only</td></tr><tr><td>contains examples of Internal Sam . dhi. Thus, we merge the test set with the original 25000 string</td></tr><tr><td>dataset (D = D 1 \u222a D 2 ) and generate random samples of training data and test data. We use 3 4 of the data for training (D train ) and 1 4 for test-ing (D</td></tr></table>",
                "type_str": "table",
                "text": "test ). Note that D test can have instances of Internal Sam . dhi, External Sam . dhi as well as no Sam . dhi 8 at all. The scores we report are averaged over 5 random samples of D train and D test from D.",
                "html": null,
                "num": null
            },
            "TABREF1": {
                "content": "<table><tr><td>shows the scores</td></tr></table>",
                "type_str": "table",
                "text": "",
                "html": null,
                "num": null
            },
            "TABREF3": {
                "content": "<table/>",
                "type_str": "table",
                "text": "Accuracies obtained by different versions of NC; NC4 Outperforms NC1...3, as well OT1...3 in Precision and F-Score",
                "html": null,
                "num": null
            }
        }
    }
}