File size: 99,308 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
{
    "paper_id": "I11-1024",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:31:26.856940Z"
    },
    "title": "An Empirical Study on Compositionality in Compound Nouns",
    "authors": [
        {
            "first": "Siva",
            "middle": [],
            "last": "Reddy",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of York",
                "location": {
                    "country": "UK"
                }
            },
            "email": ""
        },
        {
            "first": "Diana",
            "middle": [],
            "last": "Mccarthy",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Lexical Computing Ltd",
                "location": {
                    "country": "UK"
                }
            },
            "email": ""
        },
        {
            "first": "Suresh",
            "middle": [],
            "last": "Manandhar",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of York",
                "location": {
                    "country": "UK"
                }
            },
            "email": "suresh@cs.york.ac.uk"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "A multiword is compositional if its meaning can be expressed in terms of the meaning of its constituents. In this paper, we collect and analyse the compositionality judgments for a range of compound nouns using Mechanical Turk. Unlike existing compositionality datasets, our dataset has judgments on the contribution of constituent words as well as judgments for the phrase as a whole. We use this dataset to study the relation between the judgments at constituent level to that for the whole phrase. We then evaluate two different types of distributional models for compositionality detection-constituent based models and composition function based models. Both the models show competitive performance though the composition function based models perform slightly better. In both types, additive models perform better than their multiplicative counterparts.",
    "pdf_parse": {
        "paper_id": "I11-1024",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "A multiword is compositional if its meaning can be expressed in terms of the meaning of its constituents. In this paper, we collect and analyse the compositionality judgments for a range of compound nouns using Mechanical Turk. Unlike existing compositionality datasets, our dataset has judgments on the contribution of constituent words as well as judgments for the phrase as a whole. We use this dataset to study the relation between the judgments at constituent level to that for the whole phrase. We then evaluate two different types of distributional models for compositionality detection-constituent based models and composition function based models. Both the models show competitive performance though the composition function based models perform slightly better. In both types, additive models perform better than their multiplicative counterparts.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Compositionality is a language phenomenon where the meaning of an expression can be expressed in terms of the meaning of its constituents. Multiword expressions (Sag et al., 2002, MWEs) are known to display a continuum of compositionality (McCarthy et al., 2003) where some of them are compositional e.g. \"swimming pool\", some are non-compositional e.g. \"cloud nine\", and some in between e.g. \"zebra crossing\".",
                "cite_spans": [
                    {
                        "start": 161,
                        "end": 185,
                        "text": "(Sag et al., 2002, MWEs)",
                        "ref_id": null
                    },
                    {
                        "start": 239,
                        "end": 262,
                        "text": "(McCarthy et al., 2003)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The past decade has seen interest in developing computational methods for compositionality in MWEs (Lin, 1999; Schone and Jurafsky, 2001; Baldwin et al., 2003; Bannard et al., 2003; Mc-Carthy et al., 2003; Venkatapathy and Joshi, 2005; Katz and Giesbrecht, 2006; Sporleder and Li, 2009) . Recent developments in vector-based semantic composition functions (Mitchell and Lapata, 2008; Widdows, 2008) have also been applied to compositionality detection (Giesbrecht, 2009) .",
                "cite_spans": [
                    {
                        "start": 99,
                        "end": 110,
                        "text": "(Lin, 1999;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 111,
                        "end": 137,
                        "text": "Schone and Jurafsky, 2001;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 138,
                        "end": 159,
                        "text": "Baldwin et al., 2003;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 160,
                        "end": 181,
                        "text": "Bannard et al., 2003;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 182,
                        "end": 205,
                        "text": "Mc-Carthy et al., 2003;",
                        "ref_id": null
                    },
                    {
                        "start": 206,
                        "end": 235,
                        "text": "Venkatapathy and Joshi, 2005;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 236,
                        "end": 262,
                        "text": "Katz and Giesbrecht, 2006;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 263,
                        "end": 286,
                        "text": "Sporleder and Li, 2009)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 356,
                        "end": 383,
                        "text": "(Mitchell and Lapata, 2008;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 384,
                        "end": 398,
                        "text": "Widdows, 2008)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 452,
                        "end": 470,
                        "text": "(Giesbrecht, 2009)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "While the existing methods of compositionality detection use constituent word level semantics to compose the semantics of the phrase, the evaluation datasets are not particularly suitable to study the contribution of each constituent word to the semantics of the phrase. Existing datasets (McCarthy et al., 2003; Venkatapathy and Joshi, 2005; Katz and Giesbrecht, 2006; Biemann and Giesbrecht, 2011) only have the compositionality judgment of the whole expression without constituent word level judgment, or they have judgments on the constituents without judgments on the whole (Bannard et al., 2003) . Our dataset allows us to examine the relationship between the two rather than assume the nature of it.",
                "cite_spans": [
                    {
                        "start": 289,
                        "end": 312,
                        "text": "(McCarthy et al., 2003;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 313,
                        "end": 342,
                        "text": "Venkatapathy and Joshi, 2005;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 343,
                        "end": 369,
                        "text": "Katz and Giesbrecht, 2006;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 370,
                        "end": 399,
                        "text": "Biemann and Giesbrecht, 2011)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 579,
                        "end": 601,
                        "text": "(Bannard et al., 2003)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper we collect judgments of the contribution of constituent nouns within noun-noun compounds (section 2) alongside judgments of compositionality of the compound. We study the relation between the contribution of the parts with the compositionality of the whole (section 3). We propose various constituent based models (section 4.3) which are intuitive and related to existing models of compositionality detection (section 4.1) and we evaluate these models in comparison to composition function based models. All the models discussed in this paper are built using a distributional word-space model approach (Sahlgren, 2006) .",
                "cite_spans": [
                    {
                        "start": 616,
                        "end": 632,
                        "text": "(Sahlgren, 2006)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this section, we describe the experimental setup for the collecting compositionality judgments of English compound nouns. All the existing datasets focused either on verb-particle, verbnoun or adjective-noun phrases. Instead, we focus on compound nouns for which resources are rel-atively scarce. In this paper, we only deal with compound nouns made up of two words separated by space.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compositionality in Compound Nouns",
                "sec_num": "2"
            },
            {
                "text": "In the literature (Nunberg et al., 1994; Baldwin et al., 2003; Fazly et al., 2009) , compositionality is discussed in many terms including simple decomposable, semantically analyzable, idiosyncratically decomposable and non-decomposable. For practical NLP purposes, Bannard et al. (2003) adopt a straightforward definition of a compound being compositional if \"the overall semantics of the multi-word expression (here compound) can be composed from the simplex semantics of its parts, as described (explicitly or implicitly) in a finite lexicon\". We adopt this definition and pose compositionality as a literality issue. A compound is compositional if its meaning can be understood from the literal (simplex) meaning of its parts. Similar views of compositionality as literality are found in (Lin, 1999; Katz and Giesbrecht, 2006) . In the past there have been arguments in favor/disfavor of compositionality as literality approach (e.g. see (Gibbs, 1989; Titone and Connine, 1999) ). The idea of viewing compositionality as literality is also motivated from the shared task organized by Biemann and Giesbrecht (2011) . From here on, we use the terms compositionality and literality interchangeably.",
                "cite_spans": [
                    {
                        "start": 18,
                        "end": 40,
                        "text": "(Nunberg et al., 1994;",
                        "ref_id": null
                    },
                    {
                        "start": 41,
                        "end": 62,
                        "text": "Baldwin et al., 2003;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 63,
                        "end": 82,
                        "text": "Fazly et al., 2009)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 266,
                        "end": 287,
                        "text": "Bannard et al. (2003)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 792,
                        "end": 803,
                        "text": "(Lin, 1999;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 804,
                        "end": 830,
                        "text": "Katz and Giesbrecht, 2006)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 942,
                        "end": 955,
                        "text": "(Gibbs, 1989;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 956,
                        "end": 981,
                        "text": "Titone and Connine, 1999)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 1088,
                        "end": 1117,
                        "text": "Biemann and Giesbrecht (2011)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation setup",
                "sec_num": "2.1"
            },
            {
                "text": "We ask humans to score the compositionality of a phrase by asking them how literal the phrase is. Since we wish to see in our data the extent that the phrase is compositional, and to what extent that depends on the contribution in meaning of its parts, we also ask them how literal the use of a component word is within the given phrase.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation setup",
                "sec_num": "2.1"
            },
            {
                "text": "For each compound noun, we create three separate tasks -one for each constituent's literality and one for the phrase compositionality. The motivation behind using three separate tasks is to make the scoring mechanism for each task independent of the other tasks. This enables us to study the actual relation between the constituents and the compound scores without any bias to any particular annotator's way of arriving at the scores of the compound w.r.t. the constituents.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation setup",
                "sec_num": "2.1"
            },
            {
                "text": "There are many factors to consider in eliciting compositionality judgments, such as ambiguity of the expression and individual variation of annotator in background knowledge. To control for this, we ask subjects if they can interpret the meaning of a compound noun from only the meaning of the component nouns where we also provide contextual information. All the possible definitions of a compound noun are chosen from WordNet (Fellbaum, 1998) , Wiktionary or defined by ourselves if some of the definitions are absent. Five examples of each compound noun are randomly chosen from the ukWaC (Ferraresi et al., 2008) corpus and the same set of examples are displayed to all the annotators. The annotators select the definition of the compound noun which occurs most frequently in the examples and then score the compound for literality based on the most frequent definition.",
                "cite_spans": [
                    {
                        "start": 428,
                        "end": 444,
                        "text": "(Fellbaum, 1998)",
                        "ref_id": null
                    },
                    {
                        "start": 592,
                        "end": 616,
                        "text": "(Ferraresi et al., 2008)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation setup",
                "sec_num": "2.1"
            },
            {
                "text": "We have two reasons for making the annotators read the examples, choose the most frequent definition and base literality judgments on the most frequent definition. The first reason is to provide a context to the decisions and reduce the impact of ambiguity. The second is that distributional models are greatly influenced by frequency and since we aim to work with distributional models for compositionality detection we base our findings on the most frequent sense of the compound noun. In this work we consider the compositionality of the noun-noun compound type without token based disambiguation which we leave for future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotation setup",
                "sec_num": "2.1"
            },
            {
                "text": "We could not find any compound noun datasets publicly available which are marked for compositionality judgments. Korkontzelos and Manandhar (2009) prepared a related dataset for compound nouns but compositionality scores were absent and their set contains only 38 compounds. There are datasets for verb-particle (McCarthy et al., 2003) , verb-noun judgments (Biemann and Giesbrecht, 2011; Venkatapathy and Joshi, 2005) and adjective-noun (Biemann and Giesbrecht, 2011) . Not only are these not the focus of our work, but also we wanted datasets with each constituent word's literality score. Bannard et al. (2003) obtained judgments on whether a verb-particle construction implies the verb or the particle or both. The judgments were binary and not on a scale and there was no judgment of compositionality of the whole construction. Ours is the first attempt to provide a dataset which have both scalar compositionality judgments of the phrase as well as the literality score for each component word.",
                "cite_spans": [
                    {
                        "start": 113,
                        "end": 146,
                        "text": "Korkontzelos and Manandhar (2009)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 312,
                        "end": 335,
                        "text": "(McCarthy et al., 2003)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 358,
                        "end": 388,
                        "text": "(Biemann and Giesbrecht, 2011;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 389,
                        "end": 418,
                        "text": "Venkatapathy and Joshi, 2005)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 438,
                        "end": 468,
                        "text": "(Biemann and Giesbrecht, 2011)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 592,
                        "end": 613,
                        "text": "Bannard et al. (2003)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound noun dataset",
                "sec_num": "2.2"
            },
            {
                "text": "We aimed for a dataset which would include compound nouns where: 1) both the component words are used literally, 2) the first word is used literally but not the second, 3) the second word is used literally but not the first and 4) both the words are used non-literally. Such a dataset would provide stronger evidence to study the relation between the constituents of the compound noun and its compositionality behaviour.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound noun dataset",
                "sec_num": "2.2"
            },
            {
                "text": "We used the following heuristics based on WordNet to classify compound nouns into 4 above classes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound noun dataset",
                "sec_num": "2.2"
            },
            {
                "text": "1. Each of the component word exists either in the hypernymy hierarchy of the compound noun or in the definition(s) of the compound noun. e.g. swimming pool because swimming exists in the WordNet definition of swimming pool and pool exists in the hypernymy hierarchy of swimming pool 2. Only the first word exists either in the hypernymy hierarchy or in the definition(s) of the compound and not the second word. e.g. night owl 3. Only the second word exists either in the hypernymy hierarchy or in the definition(s) of the compound and not the first word. e.g. zebra crossing 4. Neither of the words exist either in hypernymy hierarchy or in the definition(s) of the compound noun. e.g. smoking gun",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound noun dataset",
                "sec_num": "2.2"
            },
            {
                "text": "The intuition behind the heuristics is that if a component word is used literally in a compound, it would probably be used in the definition of the compound or may appear in the synset hierarchy of the compound. We changed the constraints, for example decreasing/increasing the depth of the hypernymy hierarchy, and for each class we randomly picked 30 potential candidates by rough manual verification. There were fewer instances in the classes 2 and 4. In order to populate these classes, we selected additional compound nouns from Wiktionary by manually inspecting if they can fall in either class.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound noun dataset",
                "sec_num": "2.2"
            },
            {
                "text": "These heuristics were only used for obtaining our sample, they were not used for categorizing the compound nouns in our study. The compound nouns in all these temporary classes are merged and 90 compound words are selected which have at least 50 instances in the ukWaC corpus. These 90 compound words are chosen for the dataset. Snow et al. (2008) used Amazon mechanical turk (AMT) for annotating language processing tasks. They found that although an individual turker (annotator) performance was lower compared to an expert, as the number of turkers increases, the quality of the annotated data surpassed expert level quality. We used 30 turkers for annotating each single task and then retained the judgments with sufficient consensus as described in section 2.4.",
                "cite_spans": [
                    {
                        "start": 329,
                        "end": 347,
                        "text": "Snow et al. (2008)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compound noun dataset",
                "sec_num": "2.2"
            },
            {
                "text": "For each compound noun, 3 types of tasks are created as described above: a judgment on how literal the phrase is and a judgment on how literal each noun is within the compound. For 90 compound nouns, 270 independent tasks are therefore created. Each of these tasks is assigned to 30 annotators. A task is assigned randomly to an annotator by AMT so each annotator may work on only some of the tasks for a given compound.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Annotators",
                "sec_num": "2.3"
            },
            {
                "text": "Recent studies 1 shows that AMT data is prone to spammers and outliers. We dealt with them in three ways. a). We designed a qualification test 2 which provides an annotator with basic training about literality, and they can participate in the annotation task only if they pass the test. b). Once all the annotations (90 phrases * 3 tasks/phrase * 30 annotations/task = 8100 annotations) are completed, we calculated the average Spearman correlation score (\u03c1) of every annotator by correlating their annotation values with every other annotator and taking the average. We discarded the work of annotators whose \u03c1 is negative and accepted all the work of annotators whose \u03c1 is greater than 0.6. c). For the other annotators, we accepted their annotation for a task only if their annotation judgment is within the range of \u00b11.5 from the task's mean. Table 1 displays AMT statistics. Overall, each annotator on average worked on 53 tasks randomly selected from the set of 270 tasks. This lowers the chance of bias in the data because of any particular annotator.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 847,
                        "end": 854,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Quality of the annotations",
                "sec_num": "2.4"
            },
            {
                "text": "Spearman correlation scores \u03c1 provide an estimate of annotator agreement. To know the difficulty level of the three types of tasks described in section 2, \u03c1 for each task type is also displayed in For each compound, we also studied the distribution of scores around the mean by observing the standard deviation \u03c3. All the compound nouns along with their mean and standard deviations are shown in table 2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Quality of the annotations",
                "sec_num": "2.4"
            },
            {
                "text": "Ideally, if all the annotators agree on a judgment for a given compound or a component word, the deviation should be low. Among the 90 compounds, 15 of them are found to have a deviation > \u00b11.5. We used this threshold to signify annotator disagreement. The reason for disagreement could be due to the ambiguity of the compound e.g. silver screen, brass ring or due to the subjective differences of opinion between the annotators.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Quality of the annotations",
                "sec_num": "2.4"
            },
            {
                "text": "Overall, the inter annotator agreement (\u03c1) is high and the standard deviation of most tasks is low (except for a few exceptions). So we are confident that the dataset can be used as a reliable goldstandard with which we conduct experiments. The dataset is publicly available for download 3 . 3 Analyzing the Human Judgments",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Quality of the annotations",
                "sec_num": "2.4"
            },
            {
                "text": "By analyzing the mean values of the phrase level annotations, we found that compounds displayed a varied level of compositionality. For some compounds annotators confirm that they can interpret the meaning of a compound from its component words and for some they do not. For others they grade in-between. Figure 1 displays the mean values of compositionality scores of all compounds. Compounds are arranged along the X-axis in increasing order of their score. The graph displays a continuum of compositionality (McCarthy et al., 2003) . We note that our sample of compounds was selected to exhibit a range of compositionality.",
                "cite_spans": [
                    {
                        "start": 511,
                        "end": 534,
                        "text": "(McCarthy et al., 2003)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 305,
                        "end": 313,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Quality of the annotations",
                "sec_num": "2.4"
            },
            {
                "text": "The dataset allows us to study the relation between constituent word level contributions to the phrase level compositionality scores. Let w1 and w2 be the constituent words of the compound w3. Let s1, s2 and s3 be the mean literality scores of w1, w2 and w3 respectively. Using a 3-fold cross validation on the annotated data, we tried various function fittings f over the judgments s1, s2 and s3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relation between the constituents and the phrase compositionality judgments",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 ADD: a.s1 + b.s2 = s3",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relation between the constituents and the phrase compositionality judgments",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 MULT: a.s1.s2 = s3 \u2022 COMB: a.s1 + b.s2 + c.s1.s2 = s3 \u2022 WORD1: a.s1 = s3 \u2022 WORD2: a.s2 = s3",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relation between the constituents and the phrase compositionality judgments",
                "sec_num": "3.1"
            },
            {
                "text": "where a, b and c are coefficients.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relation between the constituents and the phrase compositionality judgments",
                "sec_num": "3.1"
            },
            {
                "text": "We performed 3-fold cross validation to evaluate the above functions (two training samples and Results (both \u03c1 and R 2 ) clearly show that a relation exists between the constituent literality scores and the phrase compositionality. Existing compositionality approaches on noun-noun compounds such as (Baldwin et al., 2003; Korkontzelos and Manandhar, 2009) use the semantics of only one of the constituent words (generally the head word)",
                "cite_spans": [
                    {
                        "start": 300,
                        "end": 322,
                        "text": "(Baldwin et al., 2003;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 323,
                        "end": 356,
                        "text": "Korkontzelos and Manandhar, 2009)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relation between the constituents and the phrase compositionality judgments",
                "sec_num": "3.1"
            },
            {
                "text": "to determine the compositionality of the phrase. But the goodness of fit R 2 values show that the functions ADD, COMB and MULT which intuitively make use of both the constituent scores fit the data better than functions using only one of the constituents. Furthermore, COMB and ADD suggest that additive models are preferable to multiplicative. In this data, the first constituent word plays a slightly more important role than the second in determining compositionality.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relation between the constituents and the phrase compositionality judgments",
                "sec_num": "3.1"
            },
            {
                "text": "Overall, this study suggests that it is possible to estimate the phrase level compositionality scores given the constituent word level literality scores. This motivates us to present constituent based models (section 4.3) for compositionality score estimation of a compound. We begin the next section on computational models with a discussion of related work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relation between the constituents and the phrase compositionality judgments",
                "sec_num": "3.1"
            },
            {
                "text": "Most methods in compositionality detection can be classified into two types -those which make use of lexical fixedness and syntactic properties of the MWEs, and those which make use of the semantic similarities between the constituents and the MWE.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "4.1"
            },
            {
                "text": "Non compositional MWEs are known to have lexical fixedness in which the component words have high statistical association. Some of the methods which exploit this feature are (Lin, 1999; Pedersen, 2011) . This property does not hold always because institutionalized MWEs (Sag et al., 2002) are known to have high association even though they are compositional, especially in the case of compound nouns. Another property of non-compositional MWEs is that they show syntactic rigidness which do not allow internal modifiers or morphological variations of the components, or variations that break typical selectional preferences. Methods like (Cook et al., 2007; Mc-Carthy et al., 2007; Fazly et al., 2009 ) exploit this property. This holds mostly for verbal idioms but not for compound nouns since the variations of any compound noun are highly limited.",
                "cite_spans": [
                    {
                        "start": 174,
                        "end": 185,
                        "text": "(Lin, 1999;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 186,
                        "end": 201,
                        "text": "Pedersen, 2011)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 265,
                        "end": 288,
                        "text": "MWEs (Sag et al., 2002)",
                        "ref_id": null
                    },
                    {
                        "start": 639,
                        "end": 658,
                        "text": "(Cook et al., 2007;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 659,
                        "end": 682,
                        "text": "Mc-Carthy et al., 2007;",
                        "ref_id": null
                    },
                    {
                        "start": 683,
                        "end": 701,
                        "text": "Fazly et al., 2009",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "4.1"
            },
            {
                "text": "Other methods like (Baldwin et al., 2003; Sporleder and Li, 2009) are based on semantic similarities between the constituents and the MWE. Baldwin et al. (2003) use only the information of the semantic similarity between one of the constituents and the compound to determine the compositionality. Sporleder and Li (2009) determine the compositionality of verbal phrases in a given context (token-based disambiguation) based on the lexical chain similarities of the constituents and the context of the MWE. Bannard et al. (2003) and McCarthy et al. (2003) study the compositionality in verb particles and they found that methods based on the similarity between simplex parts (constituents) and the phrases are useful to study semantics of the phrases. These findings motivated our constituent based models along with the findings in section 3.1.",
                "cite_spans": [
                    {
                        "start": 19,
                        "end": 41,
                        "text": "(Baldwin et al., 2003;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 42,
                        "end": 65,
                        "text": "Sporleder and Li, 2009)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 139,
                        "end": 160,
                        "text": "Baldwin et al. (2003)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 297,
                        "end": 320,
                        "text": "Sporleder and Li (2009)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 506,
                        "end": 527,
                        "text": "Bannard et al. (2003)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 532,
                        "end": 554,
                        "text": "McCarthy et al. (2003)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "4.1"
            },
            {
                "text": "In addition to the constituent based models (section 4.3), there are composition function based vector models (Mitchell and Lapata, 2008; Widdows, 2008) which make use of the semantics of the constituents in a different manner. These models are described in section 4.4 and are evaluated in comparison with the constituent-based models.",
                "cite_spans": [
                    {
                        "start": 110,
                        "end": 137,
                        "text": "(Mitchell and Lapata, 2008;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 138,
                        "end": 152,
                        "text": "Widdows, 2008)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "4.1"
            },
            {
                "text": "The vector space model used in all our experiments is described as follows.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "4.1"
            },
            {
                "text": "Our vector space model is also called a word space model (Sahlgren, 2006 , WSM) since we represent a word's meaning in a dimensional space. In the WSM, a word meaning is represented in terms of its Co-occurrences observed in a large corpora where the co-occurrences are stored in a vector format.",
                "cite_spans": [
                    {
                        "start": 57,
                        "end": 72,
                        "text": "(Sahlgren, 2006",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Vector space model of meaning",
                "sec_num": "4.2"
            },
            {
                "text": "The lemmatised context words around the target word in a window of size 100 are treated as the co-occurrences. The top 10000 frequent content words in the ukWaC (along with their part-of-speech category) are used for the feature co-occurrences i.e. the dimensionality of the WSM. To measure similarity between two vectors, cosine similarity (sim) is used. Following Mitchell and Lapata (2008) , the context words in the vector are set to the ratio of probability of the context word given the target word to the overall probability of the context word 4 .",
                "cite_spans": [
                    {
                        "start": 366,
                        "end": 392,
                        "text": "Mitchell and Lapata (2008)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Vector space model of meaning",
                "sec_num": "4.2"
            },
            {
                "text": "Given a compound word w3 with the constituents w1 and w2, constituent based models determine the compositionality score s3 of the compound by first determining the literality scores s1 and s2 of w1 and w2 respectively (section 4.3.1) and then using one of the functions f (described in section 3.1), the compositionality score s3 is estimated using s3 = f (s1, s2) (section 4.3.2).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Constituent based models",
                "sec_num": "4.3"
            },
            {
                "text": "If a constituent word is used literally in a given compound it is highly likely that the compound and the constituent share common co-occurrences. For example, the compound swimming pool has the co-occurrences water, fun and indoor which are also commonly found with the constituents swimming and pool.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Literality scores of the constituents",
                "sec_num": "4.3.1"
            },
            {
                "text": "We define the literality of a word in a given compound as the similarity between the compound and the constituent co-occurrence vectors i.e. if the number of common co-occurrences are numerous then the constituent is more likely to be meant literally in the compound.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Literality scores of the constituents",
                "sec_num": "4.3.1"
            },
            {
                "text": "Let v1, v2 and v3 be the co-occurrence vectors of w1, w2 and w3. The literality scores s1 and s2 of w1 and w2 in the compound w3 are defined as s1 = sim(v1, v3) s2 = sim (v2, v3) where sim is the cosine similarity between the vectors.",
                "cite_spans": [
                    {
                        "start": 170,
                        "end": 178,
                        "text": "(v2, v3)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Literality scores of the constituents",
                "sec_num": "4.3.1"
            },
            {
                "text": "Given the literality scores s1 and s2 of the constituents, we can now compute the compositionality score s3 of the compound w3 using any of the functions f defined in section 3.1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compositionality of the compound",
                "sec_num": "4.3.2"
            },
            {
                "text": "s3 = f (s1, s2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Compositionality of the compound",
                "sec_num": "4.3.2"
            },
            {
                "text": "In these models (Schone and Jurafsky, 2001; Katz and Giesbrecht, 2006; Giesbrecht, 2009) of compositionality detection, firstly a vector for the compound is composed from its constituents using a compositionality function \u2295. Then the similarity between the composed vector and true cooccurrence vector of the compound is measured to determine the compositionality: the higher the similarity, the higher the compositionality of the compound. Guevara (2011) observed that additive models performed well for building composition vectors of phrases from their parts whereas Mitchell and Lapata (2008) found in favor of multiplicative models. We experiment using both the compositionality functions simple addition 5 and simple multiplication, which are the most widely used composition functions, known for their simplicity and good performance.",
                "cite_spans": [
                    {
                        "start": 16,
                        "end": 43,
                        "text": "(Schone and Jurafsky, 2001;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 44,
                        "end": 70,
                        "text": "Katz and Giesbrecht, 2006;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 71,
                        "end": 88,
                        "text": "Giesbrecht, 2009)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 570,
                        "end": 596,
                        "text": "Mitchell and Lapata (2008)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composition function based models",
                "sec_num": "4.4"
            },
            {
                "text": "Vector v1 \u2295 v2 for a compound w 3 is composed from its constituent word vectors v1 and v2 using the vector addition av1 + bv2 and simple multiplication v1v2 where the i th element of v1 \u2295 v2 is defined as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composition function based models",
                "sec_num": "4.4"
            },
            {
                "text": "(av1 + bv2) i = a.v1 i + b.v2 i (v1v2) i = v1 i .v2 i",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composition function based models",
                "sec_num": "4.4"
            },
            {
                "text": "first constituent second constituent s1 0.616 -s2 -0.707 Table 4 : Constituent level correlations",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 57,
                        "end": 64,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Composition function based models",
                "sec_num": "4.4"
            },
            {
                "text": "The compositionality score of the compound is then measured using s3 = sim(v1\u2295v2, v3) where v3 is the co-occurrence vector of the compound built from the corpus. For more details of these models please refer to (Mitchell and Lapata, 2008; Giesbrecht, 2009) .",
                "cite_spans": [
                    {
                        "start": 211,
                        "end": 238,
                        "text": "(Mitchell and Lapata, 2008;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 239,
                        "end": 256,
                        "text": "Giesbrecht, 2009)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composition function based models",
                "sec_num": "4.4"
            },
            {
                "text": "We evaluated all the models on the dataset developed in section 2. Since our dataset has constituent level contributions along with phrase compositionality judgments, we evaluated the constituent based models against both the literality scores of the constituents (section 4.3.1) and the phrase level judgments (section 4.3.2). The composition function models are evaluated only on phrase level scores following (McCarthy et al., 2003; Venkatapathy and Joshi, 2005; Biemann and Giesbrecht, 2011) : higher correlation scores indicate better compositionality predictions.",
                "cite_spans": [
                    {
                        "start": 412,
                        "end": 435,
                        "text": "(McCarthy et al., 2003;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 436,
                        "end": 465,
                        "text": "Venkatapathy and Joshi, 2005;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 466,
                        "end": 495,
                        "text": "Biemann and Giesbrecht, 2011)",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4.5"
            },
            {
                "text": "Spearman's \u03c1 correlations of s1 and s2 with the human constituent level judgments are shown in table 4. We observed that the predictions for the second constituent are more accurate than those for the first constituent. Perhaps these constitute an easier set of nouns for modelling but we need to investigate this further.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Constituent based models evaluation",
                "sec_num": null
            },
            {
                "text": "For the phrase compositionality evaluation we did a 3-fold cross validation. The parameters of the functions f (section 4.3.2) are predicted by least square linear regression over the training samples and optimum values are selected. The average Spearman correlation scores of phrase compositionality scores with human judgements on the testing samples are displayed in table 5. The goodness of fit R 2 values when trained over the whole dataset are also displayed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Constituent based models evaluation",
                "sec_num": null
            },
            {
                "text": "It is clear that models ADD and COMB which use both the constituents are better predictors of phrase compositionality compared to the single word based predictors WORD1 and WORD2. Both ADD and COMB are competitive in terms of both the correlations (accuracy) and goodness of Model sim(v1, v3) ) was found to be a better predictor of phrase compositionality than the second (WORD2) following the behaviour of the mechanical turkers as in table 3.",
                "cite_spans": [
                    {
                        "start": 281,
                        "end": 292,
                        "text": "sim(v1, v3)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Constituent based models evaluation",
                "sec_num": null
            },
            {
                "text": "These models are evaluated for phrase compositionality scores. As with the constituent based models, for estimating the model parameters a and b of the composition function based models, we did a 3-fold cross validation. The best results of additive model on the training samples are found at a=0.60 and b=0.40. Average Spearman correlation scores of both addition and multiplication models over the testing samples are displayed in table 5. The goodness of fit R 2 values when trained over the whole dataset are also displayed. Vector addition has a clear upper hand over multiplication in terms of both accuracy and goodness of fit for phrase compositionality prediction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Composition function based models evaluation",
                "sec_num": null
            },
            {
                "text": "For phrase compositionality prediction (table 5), both constituent based and compositionality function based models are found to be competitive, though compositionality function based models perform slightly better. The reason could be because while constituent based models use contextual information of each constituent independently, composition function models make use of collective evidence from the contexts of both the constituents simultaneously. In the public evaluations of compositionality detection (Biemann and Giesbrecht, 2011) , our system (Reddy et al., 2011) which uses the notion of contexts salient to both the constituents achieved better performance than the system which uses only one of the constituent's contexts.",
                "cite_spans": [
                    {
                        "start": 512,
                        "end": 542,
                        "text": "(Biemann and Giesbrecht, 2011)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 556,
                        "end": 576,
                        "text": "(Reddy et al., 2011)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Winner",
                "sec_num": null
            },
            {
                "text": "All the results when compared with random baseline (RAND in table 5), which assigns a random compositionality score to a compound, are highly significant.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Winner",
                "sec_num": null
            },
            {
                "text": "In this paper we examined the compositionality judgments of noun compounds and also the literality judgments of their constituent words. Our study reveals that both the constituent words play a major role in deciding the compositionality of the phrase. We showed that the functions which predict the compositionality using both the constituent literality scores have high correlations with compositionality judgments. Based on this evidence we proposed constituent based models for compositionality detection. We compared constituent based models with compositionality function based models. The additive compositionality functions were slightly superior to the best performing constituent models (again additive) but performance is comparable and we plan to examine more sophisticated constituent models in the future.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "5"
            },
            {
                "text": "All the 8100 annotations collected in this work are released publicly. We hope the dataset can reveal more insights into the compositionality in terms of the contribution from the constituents. Future directions of this work include token based disambiguation of phrases and designing more sophisticated constituent based models. Extending this study on other kinds of phrases such as adjective-noun, verb particle, verb-noun phrases may throw more light into our understanding of compositionality.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "5"
            },
            {
                "text": "A study on AMT spammers http://bit.ly/ e1IPil2 The qualification test details are provided with the dataset. Please refer to footnote 3.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Annotation guidelines, Mechanical Turk hits, qualification test, annotators demographic and educational background, and final annotations are downloadable from http://sivareddy.in/downloads or http: //www.dianamccarthy.co.uk/downloads.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "This is similar to pointwise mutual information without logarithm",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Please note that simple additive model(Mitchell and Lapata, 2008) is different from the additive model described in(Guevara, 2011). In(Mitchell and Lapata, 2008) the coefficients are real numbers whereas in (Guevara, 2011) they are matrices.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A statistical approach to the semantics of verb-particles",
                "authors": [
                    {
                        "first": "Colin",
                        "middle": [],
                        "last": "Bannard",
                        "suffix": ""
                    },
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Baldwin",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Lascarides",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the ACL 2003 workshop on Multiword expressions: analysis, acquisition and treatment, MWE '03",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Colin Bannard, Timothy Baldwin, and Alex Las- carides. 2003. A statistical approach to the seman- tics of verb-particles. In Proceedings of the ACL 2003 workshop on Multiword expressions: analysis, acquisition and treatment, MWE '03.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Distributional Semantics and Compositionality 2011: Shared Task Description and Results",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Biemann",
                        "suffix": ""
                    },
                    {
                        "first": "Eugenie",
                        "middle": [],
                        "last": "Giesbrecht",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of DISCo-2011 in conjunction with ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chris Biemann and Eugenie Giesbrecht. 2011. Dis- tributional Semantics and Compositionality 2011: Shared Task Description and Results. In Proceed- ings of DISCo-2011 in conjunction with ACL 2011.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Pulling their weight: exploiting syntactic forms for the automatic identification of idiomatic expressions in context",
                "authors": [
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Cook",
                        "suffix": ""
                    },
                    {
                        "first": "Afsaneh",
                        "middle": [],
                        "last": "Fazly",
                        "suffix": ""
                    },
                    {
                        "first": "Suzanne",
                        "middle": [],
                        "last": "Stevenson",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the Workshop on a Broader Perspective on Multiword Expressions, MWE '07",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Paul Cook, Afsaneh Fazly, and Suzanne Stevenson. 2007. Pulling their weight: exploiting syntactic forms for the automatic identification of idiomatic expressions in context. In Proceedings of the Work- shop on a Broader Perspective on Multiword Ex- pressions, MWE '07.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Unsupervised type and token identification of idiomatic expressions",
                "authors": [
                    {
                        "first": "Afsaneh",
                        "middle": [],
                        "last": "Fazly",
                        "suffix": ""
                    },
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Cook",
                        "suffix": ""
                    },
                    {
                        "first": "Suzanne",
                        "middle": [],
                        "last": "Stevenson",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Computional. Linguististics",
                "volume": "35",
                "issue": "",
                "pages": "61--103",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Afsaneh Fazly, Paul Cook, and Suzanne Stevenson. 2009. Unsupervised type and token identification of idiomatic expressions. Computional. Linguististics., 35:61-103, March.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "WordNet: An Electronic Lexical Database",
                "authors": [],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christiane Fellbaum, editor. 1998. WordNet: An Elec- tronic Lexical Database. The MIT Press.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Introducing and evaluating ukWaC, a very large web-derived corpus of English",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ferraresi",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Zanchetta",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Baroni",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Bernardini",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the WAC4 Workshop at LREC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Ferraresi, E. Zanchetta, M. Baroni, and S. Bernar- dini. 2008. Introducing and evaluating ukWaC, a very large web-derived corpus of English. In Pro- ceedings of the WAC4 Workshop at LREC 2008.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Understanding and Literal Meaning",
                "authors": [
                    {
                        "first": "Raymond",
                        "middle": [
                            "W"
                        ],
                        "last": "Gibbs",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "Cognitive Science",
                "volume": "13",
                "issue": "2",
                "pages": "243--251",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Raymond W. Gibbs. 1989. Understanding and Literal Meaning. Cognitive Science, 13(2):243-251.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "In Search of Semantic Compositionality in Vector Spaces",
                "authors": [
                    {
                        "first": "Eugenie",
                        "middle": [],
                        "last": "Giesbrecht",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the 17th International Conference on Conceptual Structures: Conceptual Structures: Leveraging Semantic Technologies, ICCS '09",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eugenie Giesbrecht. 2009. In Search of Semantic Compositionality in Vector Spaces. In Proceedings of the 17th International Conference on Conceptual Structures: Conceptual Structures: Leveraging Se- mantic Technologies, ICCS '09.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Computing Semantic Compositionality in Distributional Semantics",
                "authors": [
                    {
                        "first": "Raul",
                        "middle": [],
                        "last": "Emiliano",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Guevara",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the Ninth International Conference on Computational Semantics, IWCS",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emiliano Raul Guevara. 2011. Computing Seman- tic Compositionality in Distributional Semantics. In Proceedings of the Ninth International Conference on Computational Semantics, IWCS '2011.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Automatic identification of non-compositional multiword expressions using latent semantic analysis",
                "authors": [
                    {
                        "first": "Graham",
                        "middle": [],
                        "last": "Katz",
                        "suffix": ""
                    },
                    {
                        "first": "Eugenie",
                        "middle": [],
                        "last": "Giesbrecht",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the Workshop on Multiword Expressions: Identifying and Exploiting Underlying Properties, MWE '06",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Graham Katz and Eugenie Giesbrecht. 2006. Au- tomatic identification of non-compositional multi- word expressions using latent semantic analysis. In Proceedings of the Workshop on Multiword Expres- sions: Identifying and Exploiting Underlying Prop- erties, MWE '06.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Detecting compositionality in multi-word expressions",
                "authors": [
                    {
                        "first": "Ioannis",
                        "middle": [],
                        "last": "Korkontzelos",
                        "suffix": ""
                    },
                    {
                        "first": "Suresh",
                        "middle": [],
                        "last": "Manandhar",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the ACL-IJCNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ioannis Korkontzelos and Suresh Manandhar. 2009. Detecting compositionality in multi-word expres- sions. In Proceedings of the ACL-IJCNLP 2009",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Automatic identification of noncompositional phrases",
                "authors": [
                    {
                        "first": "Dekang",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Proceedings of the ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dekang Lin. 1999. Automatic identification of non- compositional phrases. In Proceedings of the ACL 1999.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Detecting a continuum of compositionality in phrasal verbs",
                "authors": [
                    {
                        "first": "Diana",
                        "middle": [],
                        "last": "Mccarthy",
                        "suffix": ""
                    },
                    {
                        "first": "Bill",
                        "middle": [],
                        "last": "Keller",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Carroll",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the ACL 2003 workshop on Multiword expressions: analysis, acquisition and treatment, MWE '03",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diana McCarthy, Bill Keller, and John Carroll. 2003. Detecting a continuum of compositionality in phrasal verbs. In Proceedings of the ACL 2003 workshop on Multiword expressions: analysis, ac- quisition and treatment, MWE '03.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Detecting Compositionality of Verb-Object Combinations using Selectional Preferences",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Joshi",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of EMNLP-CoNLL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joshi. 2007. Detecting Compositionality of Verb- Object Combinations using Selectional Preferences. In Proceedings of EMNLP-CoNLL 2007.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Vector-based Models of Semantic Composition",
                "authors": [
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Mitchell",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of ACL-08: HLT",
                "volume": "",
                "issue": "",
                "pages": "236--244",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jeff Mitchell and Mirella Lapata. 2008. Vector-based Models of Semantic Composition. In Proceedings of ACL-08: HLT, pages 236-244, Columbus, Ohio.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Identifying Collocations to Measure Compositionality : Shared Task System Description",
                "authors": [
                    {
                        "first": "Ted",
                        "middle": [],
                        "last": "Pedersen",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of DISCo-2011 in conjunction with ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ted Pedersen. 2011. Identifying Collocations to Mea- sure Compositionality : Shared Task System De- scription . In Proceedings of DISCo-2011 in con- junction with ACL 2011.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Exemplar-Based Word-Space Model for Compositionality Detection: Shared Task System Description",
                "authors": [
                    {
                        "first": "Siva",
                        "middle": [],
                        "last": "Reddy",
                        "suffix": ""
                    },
                    {
                        "first": "Diana",
                        "middle": [],
                        "last": "Mccarthy",
                        "suffix": ""
                    },
                    {
                        "first": "Suresh",
                        "middle": [],
                        "last": "Manandhar",
                        "suffix": ""
                    },
                    {
                        "first": "Spandana",
                        "middle": [],
                        "last": "Gella",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the ACL Workshop on Distributional Semantics and Compositionality",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Siva Reddy, Diana McCarthy, Suresh Manandhar, and Spandana Gella. 2011. Exemplar-Based Word-Space Model for Compositionality Detection: Shared Task System Description. In Proceedings of the ACL Workshop on Distributional Semantics and Compositionality.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Multiword Expressions: A Pain in the Neck for NLP",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ivan",
                        "suffix": ""
                    },
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Sag",
                        "suffix": ""
                    },
                    {
                        "first": "Francis",
                        "middle": [],
                        "last": "Baldwin",
                        "suffix": ""
                    },
                    {
                        "first": "Ann",
                        "middle": [
                            "A"
                        ],
                        "last": "Bond",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Copestake",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Flickinger",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the CICLing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ivan A. Sag, Timothy Baldwin, Francis Bond, Ann A. Copestake, and Dan Flickinger. 2002. Multiword Expressions: A Pain in the Neck for NLP. In Pro- ceedings of the CICLing 2002.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "The Word-Space Model: Using distributional analysis to represent syntagmatic and paradigmatic relations between words in highdimensional vector spaces",
                "authors": [
                    {
                        "first": "Magnus",
                        "middle": [],
                        "last": "Sahlgren",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Magnus Sahlgren. 2006. The Word-Space Model: Us- ing distributional analysis to represent syntagmatic and paradigmatic relations between words in high- dimensional vector spaces. Ph.D. thesis, Stockholm University.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Is Knowledge-Free Induction of Multiword Unit Dictionary Headwords a Solved Problem?",
                "authors": [
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Schone",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Patrick Schone and Daniel Jurafsky. 2001. Is Knowledge-Free Induction of Multiword Unit Dic- tionary Headwords a Solved Problem? In Proceed- ings of EMNLP 2001.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Cheap and fast-but is it good?: evaluating non-expert annotations for natural language tasks",
                "authors": [
                    {
                        "first": "Rion",
                        "middle": [],
                        "last": "Snow",
                        "suffix": ""
                    },
                    {
                        "first": "O'",
                        "middle": [],
                        "last": "Brendan",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Connor",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [
                            "Y"
                        ],
                        "last": "Jurafsky",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rion Snow, Brendan O'Connor, Daniel Jurafsky, and Andrew Y. Ng. 2008. Cheap and fast-but is it good?: evaluating non-expert annotations for natu- ral language tasks. In Proceedings of EMNLP 2008.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Unsupervised recognition of literal and non-literal use of idiomatic expressions",
                "authors": [
                    {
                        "first": "Caroline",
                        "middle": [],
                        "last": "Sporleder",
                        "suffix": ""
                    },
                    {
                        "first": "Linlin",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the EACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Caroline Sporleder and Linlin Li. 2009. Unsupervised recognition of literal and non-literal use of idiomatic expressions. In Proceedings of the EACL 2009.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "On the compositional and noncompositional nature of idiomatic expressions",
                "authors": [
                    {
                        "first": "Debra",
                        "middle": [
                            "A"
                        ],
                        "last": "Titone",
                        "suffix": ""
                    },
                    {
                        "first": "Cynthia",
                        "middle": [
                            "M"
                        ],
                        "last": "Connine",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Literal and Figurative Language",
                "volume": "31",
                "issue": "",
                "pages": "1655--1674",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Debra A. Titone and Cynthia M. Connine. 1999. On the compositional and noncompositional nature of idiomatic expressions. Journal of Pragmatics, 31(12):1655 -1674. Literal and Figurative Lan- guage.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Measuring the relative compositionality of verbnoun (V-N) collocations by integrating features",
                "authors": [
                    {
                        "first": "Sriram",
                        "middle": [],
                        "last": "Venkatapathy",
                        "suffix": ""
                    },
                    {
                        "first": "Aravind",
                        "middle": [
                            "K"
                        ],
                        "last": "Joshi",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the HLT-EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sriram Venkatapathy and Aravind K. Joshi. 2005. Measuring the relative compositionality of verb- noun (V-N) collocations by integrating features. In Proceedings of the HLT-EMNLP 2005.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Semantic Vector Products: Some Initial Investigations",
                "authors": [
                    {
                        "first": "Dominic",
                        "middle": [],
                        "last": "Widdows",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Second AAAI Symposium on Quantum Interaction",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dominic Widdows. 2008. Semantic Vector Products: Some Initial Investigations. In Second AAAI Sympo- sium on Quantum Interaction, Oxford, March.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "Mean values of phrase-level compositionality scores",
                "uris": null,
                "num": null
            },
            "TABREF1": {
                "content": "<table><tr><td>Function f</td><td>\u03c1</td><td>R 2</td></tr><tr><td>ADD</td><td colspan=\"2\">0.966 0.937</td></tr><tr><td>MULT</td><td colspan=\"2\">0.965 0.904</td></tr><tr><td>COMB</td><td colspan=\"2\">0.971 0.955</td></tr><tr><td>WORD1</td><td colspan=\"2\">0.767 0.609</td></tr><tr><td>WORD2</td><td colspan=\"2\">0.720 0.508</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "Amazon Mechanical Turk statistics",
                "html": null
            },
            "TABREF2": {
                "content": "<table/>",
                "num": null,
                "type_str": "table",
                "text": "Correlations between functions and phrase compositionality scores table 1. It is evident that annotators agree more at word level than phrase level annotations.",
                "html": null
            },
            "TABREF3": {
                "content": "<table><tr><td>Compound climate change 4.human being Word1 4.86\u00b10.34 4.33\u00b11.14 4.59\u00b10.72 interest rate Word2 Phrase Compound radio station 4.66\u00b10.96 4.34\u00b10.80 4.47\u00b10.72 health insurance law firm 4.72\u00b10.52 3.89\u00b11.50 4.40\u00b10.76 public service end user 3.87\u00b11.12 4.87\u00b10.34 4.25\u00b10.87 car park role model 3.55\u00b11.22 4.00\u00b11.03 4.11\u00b11.07 head teacher fashion plate 4.41\u00b11.07 3.31\u00b12.07 3.90\u00b11.42 balance sheet china clay 2.00\u00b11.84 4.62\u00b11.00 3.85\u00b11.27 game plan brick wall 3.16\u00b12.20 3.53\u00b11.86 3.79\u00b11.75 web site brass ring 3.73\u00b11.95 3.87\u00b11.98 3.72\u00b11.84 case study polo shirt 1.73\u00b11.41 5.00\u00b10.00 3.37\u00b11.38 rush hour search engine 4.62\u00b10.96 2.25\u00b11.70 3.32\u00b11.16 cocktail dress face value 1.39\u00b11.11 4.64\u00b10.81 3.04\u00b10.88 chain reaction cheat sheet 2.30\u00b11.59 4.00\u00b10.83 2.89\u00b11.11 blame game fine line 3.17\u00b11.34 2.03\u00b11.52 2.69\u00b11.21 front runner grandfather clock 0.43\u00b10.78 5.00\u00b10.00 2.64\u00b11.32 lotus position spelling bee 4.81\u00b10.77 0.52\u00b11.04 2.45\u00b11.25 silver screen smoking jacket 1.04\u00b10.82 4.90\u00b10.30 2.32\u00b11.29 spinning jenny number crunching 4.48\u00b10.77 0.97\u00b11.13 2.26\u00b11.00 guilt trip memory lane 4.75\u00b10.51 0.71\u00b10.80 2.17\u00b11.04 crash course rock bottom 0.74\u00b10.89 3.80\u00b11.08 2.14\u00b11.19 think tank night owl 4.47\u00b10.88 0.50\u00b10.82 1.93\u00b11.27 panda car diamond wedding 1.07\u00b11.29 3.41\u00b11.34 1.70\u00b11.05 firing line pecking order 0.78\u00b10.92 3.89\u00b11.40 1.69\u00b10.88 lip service cash cow 4.22\u00b11.07 0.37\u00b10.73 1.56\u00b11.10 graveyard shift sacred cow 1.93\u00b11.65 0.96\u00b11.72 1.52\u00b11.52 silver spoon flea market 0.38\u00b10.81 4.71\u00b10.84 1.52\u00b11.13 eye candy rocket science 0.64\u00b10.97 1.55\u00b11.40 1.43\u00b11.35 couch potato kangaroo court 0.17\u00b10.37 4.43\u00b11.02 1.37\u00b11.05 snail mail crocodile tears 0.19\u00b10.47 3.79\u00b11.05 1.25\u00b11.09 cutting edge zebra crossing 0.76\u00b10.62 4.61\u00b10.86 1.25\u00b11.02 acid test shrinking violet 2.28\u00b11.44 0.23\u00b10.56 1.07\u00b11.01 sitting duck rat race 0.25\u00b10.51 2.04\u00b11.32 0.86\u00b10.99 swan song gold mine 1.38\u00b11.42 0.70\u00b10.81 0.81\u00b10.82 rat run nest egg 0.79\u00b10.98 0.50\u00b10.87 0.78\u00b10.87 agony aunt snake oil 0.37\u00b10.55 0.81\u00b11.25 0.75\u00b11.12 monkey business 0.67\u00b11.01 1.85\u00b11.30 0.72\u00b10.69 Word1 Word2 Phrase 4.34\u00b10.99 4.69\u00b10.53 4.57\u00b10.90 4.53\u00b10.88 4.83\u00b10.58 4.40\u00b11.17 4.67\u00b10.65 4.77\u00b10.62 4.40\u00b10.76 4.90\u00b10.40 4.00\u00b11.10 4.20\u00b11.05 2.93\u00b11.51 4.52\u00b11.07 4.00\u00b11.16 3.82\u00b10.89 3.90\u00b10.96 3.86\u00b11.01 2.82\u00b11.96 4.86\u00b10.34 3.83\u00b11.23 2.68\u00b11.69 3.93\u00b11.18 3.79\u00b11.21 3.66\u00b11.12 4.67\u00b10.47 3.70\u00b10.97 3.11\u00b11.37 2.86\u00b11.36 3.33\u00b11.27 1.40\u00b11.08 5.00\u00b10.00 3.04\u00b11.22 2.41\u00b11.16 4.52\u00b10.72 2.93\u00b11.14 4.61\u00b10.67 2.00\u00b11.28 2.72\u00b10.92 3.97\u00b10.96 1.29\u00b11.10 2.66\u00b11.32 1.11\u00b11.17 4.78\u00b10.42 2.48\u00b11.22 1.41\u00b11.57 3.23\u00b11.45 2.38\u00b11.63 4.67\u00b10.54 0.41\u00b10.77 2.28\u00b11.08 4.71\u00b10.59 0.86\u00b10.94 2.19\u00b11.16 0.96\u00b10.94 4.23\u00b10.92 2.14\u00b11.27 3.96\u00b11.06 0.47\u00b10.62 2.04\u00b11.13 0.50\u00b10.56 4.66\u00b11.15 1.81\u00b11.07 1.61\u00b11.65 1.89\u00b11.50 1.70\u00b11.72 2.03\u00b11.25 1.75\u00b11.40 1.62\u00b11.06 0.38\u00b10.61 4.50\u00b10.72 1.52\u00b11.17 1.59\u00b11.47 1.44\u00b11.77 1.52\u00b11.45 3.83\u00b11.05 0.71\u00b10.75 1.48\u00b11.10 3.27\u00b11.48 0.34\u00b10.66 1.41\u00b11.03 0.60\u00b10.80 4.59\u00b11.10 1.31\u00b11.02 0.88\u00b11.19 1.73\u00b11.63 1.25\u00b11.18 0.71\u00b11.10 3.90\u00b11.24 1.22\u00b11.26 1.48\u00b11.48 0.41\u00b10.67 0.96\u00b11.04 0.38\u00b10.61 1.11\u00b11.14 0.83\u00b10.91 0.41\u00b10.62 2.33\u00b11.40 0.79\u00b10.66 1.86\u00b11.22 0.43\u00b10.56 0.76\u00b10.86 smoking gun 0.71\u00b10.75 1.00\u00b10.94 0.71\u00b10.84 silver bullet 0.52\u00b11.00 0.55\u00b11.10 0.67\u00b11.15 melting pot 1.00\u00b11.15 0.48\u00b10.63 0.54\u00b10.63 ivory tower 0.38\u00b11.03 0.54\u00b10.68 0.46\u00b10.68 cloud nine 0.47\u00b10.62 0.23\u00b10.42 0.33\u00b10.54 gravy train 0.30\u00b10.46 0.45\u00b10.77 0.31\u00b10.59</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "90\u00b10.30 4.83\u00b10.38 4.97\u00b10.18 engine room 4.86\u00b10.34 5.00\u00b10.00 4.93\u00b10.25 graduate student 4.70\u00b10.46 5.00\u00b10.00 4.90\u00b10.30 swimming pool 4.80\u00b10.40 4.90\u00b10.30 4.87\u00b10.34 speed limit 4.93\u00b10.25 4.83\u00b10.38 4.83\u00b10.46 research project 4.90\u00b10.30 4.53\u00b10.96 4.82\u00b10.38 application form 4.77\u00b10.42 4.86\u00b10.34 4.80\u00b10.48 bank account 4.87\u00b10.34 4.83\u00b10.46 4.73\u00b10.44 parking lot 4.83\u00b10.37 4.77\u00b10.50 4.70\u00b10.64 credit card 4.67\u00b10.54 4.90\u00b10.30 4.67\u00b10.70 ground floor 4.66\u00b10.66 4.70\u00b10.78 4.67\u00b10.60 mailing list 4.67\u00b10.54 4.93\u00b10.25 4.67\u00b10.47 call centre 4.73\u00b10.44 4.41\u00b10.72 4.66\u00b10.66 video game 4.50\u00b10.72 5.00\u00b10.00 4.60\u00b10.61",
                "html": null
            },
            "TABREF4": {
                "content": "<table/>",
                "num": null,
                "type_str": "table",
                "text": "Compounds with their constituent and phrase level mean\u00b1deviation scores one testing sample at each iteration). The coefficients of the functions are estimated using leastsquare linear regression technique over the training samples. The average Spearman correlation scores (\u03c1) over testing samples are displayed in table 3. The goodness of fit R 2 values when trained over the whole data are also displayed in table 3.",
                "html": null
            },
            "TABREF6": {
                "content": "<table><tr><td>: Phrase level correlations of composition-</td></tr><tr><td>ality scores</td></tr><tr><td>fit values. The model MULT shows good correla-</td></tr><tr><td>tion but the goodness of fit is lower. First con-</td></tr><tr><td>stituent (model WORD1 i.e.</td></tr></table>",
                "num": null,
                "type_str": "table",
                "text": "",
                "html": null
            }
        }
    }
}