File size: 97,292 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
{
    "paper_id": "I11-1016",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:32:51.749355Z"
    },
    "title": "A Semantic-Specific Model for Chinese Named Entity Translation",
    "authors": [
        {
            "first": "Yufeng",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {
                "laboratory": "National Laboratory of Pattern Recognition",
                "institution": "Chinese Academy of Sciences",
                "location": {
                    "postCode": "100190",
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": "chenyf@nlpr.ia.ac.cn"
        },
        {
            "first": "Chengqing",
            "middle": [],
            "last": "Zong",
            "suffix": "",
            "affiliation": {
                "laboratory": "National Laboratory of Pattern Recognition",
                "institution": "Chinese Academy of Sciences",
                "location": {
                    "postCode": "100190",
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": "cqzong@nlpr.ia.ac.cn"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We observe that (1) it is difficult to combine transliteration and meaning translation when transforming named entities (NE); and (2) there are different translation variations in NE translation, due to different semantic information. From this basis, we propose a novel semantic-specific NE translation model, which automatically incorporates the global context from corpus in order to capture substantial semantic information. The presented approach is inspired by example-based translation and realized by log-linear models, integrating monolingual context similarity model, bilingual context similarity model, and mixed language model. The experiments show that the semantic-specific model has substantially and consistently outperformed the baselines and related NE translation systems.",
    "pdf_parse": {
        "paper_id": "I11-1016",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We observe that (1) it is difficult to combine transliteration and meaning translation when transforming named entities (NE); and (2) there are different translation variations in NE translation, due to different semantic information. From this basis, we propose a novel semantic-specific NE translation model, which automatically incorporates the global context from corpus in order to capture substantial semantic information. The presented approach is inspired by example-based translation and realized by log-linear models, integrating monolingual context similarity model, bilingual context similarity model, and mixed language model. The experiments show that the semantic-specific model has substantially and consistently outperformed the baselines and related NE translation systems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Named entity (NE) translation, which transforms a name entity from source language to target language, plays a very important role in translingual language processing tasks, such as machine translation and cross-lingual information retrieval.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Generally, NE translation 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(1) The combination of transliteration and meaning translation. Either transliteration or meaning translation is only a subtask of NE translation. There has been less work devoted to includes transliteration and meaning translation. Recently, many researches have been devoted to NE transliteration (most person names) or NE meaning translation (organization names) individually. However, there are still two main challenges in statistical Chinese-English (C2E) NE translation. the combination of transliteration and meaning translation for translating NEs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "(2) The selection of NE translation variations. Segments in different NEs could be translated differently due to NEs' origins and enrich language phenomenon (Huang et al., 2005) . As shown in Table 1 , the same Chinese character \"\u91d1\" is translated into different English variations (highlighted in aligned parts). Table 1\uff0eC2E Translation variations of a character \"\u91d1\" in different instances Furthermore, we randomly extract 100 Chinese characters from the person names of LDC2005T34 corpus, and find out all the characters have more than one translation variations. And each character has about average 7.8 translation variations. Also, (Li et al., 2004) have indicated that there is much confusion in C2E transliteration and Chinese NEs have much lower perplexity than English NEs.",
                "cite_spans": [
                    {
                        "start": 157,
                        "end": 177,
                        "text": "(Huang et al., 2005)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 636,
                        "end": 653,
                        "text": "(Li et al., 2004)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 192,
                        "end": 199,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 313,
                        "end": 324,
                        "text": "Table 1\uff0eC2E",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "According to the above two problems, we find that a crucial problem of C2E NE translation is selecting a correct syllable/word at each step, unlike traditional Statistical machine translation (SMT), which mainly focuses on (word, phrase or syntax) alignment and reordering. The selection in NE translation is much related to its semantic information, including NE types, origins, collocations of included Chinese characters, and position-sensitive etc. We want the translation model could automatically learn the semantic information. However, this semantic information for translation is various and difficult to classify.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Given an input \"\u5361\u79d1\u592b\u91d1(Kakovkin)\", how to identify the translation of \"\u91d1\"? Only selecting high probable translation across the training set is not reliable in this case. After simply comparing \"\u5361\u79d1\u592b\u91d1\" with the instances in Table 1 , we find that the input is much relevant to \"\u5361\u5217\u4f0a\u91d1 (kin)\", since both of them include \"\u91d1\" at the end position, and their contexts are much related (they share a common Chinese character usage mainly due to the same origin (Russia), such as \"\u5361\", \"\u5217\", and \"\u592b\" etc., according to clues supplied by global context). If we only considers the left/right context of \"\u91d1\", \"\u5361\u79d1\u592b\u91d1\" would have been related to \"\u963f\u5229\u4e9a\u592b\u91d1(din)\" wrongly. From this view, this strongly suggests using a global context as the knowledge base for the final translation decision.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 220,
                        "end": 227,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Therefore, we propose a semantic-specific NE translation model, which makes use of those related instances in the training data (defined as global context), to capture semantic information. The main idea is: for each input Chinese NE segment, it is assumed that its correct translation exists somewhere in the instances of the training set. What we need to do is to find out the correct answers based on semantic clues. It is achieved by selecting relevant instances, of which the semantic information is much relevant with the input. In other word, we choose those relevant instances from corpus to imitate translation. Here, semantic information is not directly learned, but is used as a bridge to measure the relevance or similarity between the input and those instances.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The proposed semantic-specific model has two advantages. Firstly, traditional translation approaches only exploit a general model to transform a source name into the target name with the same rules or distributions. Whereas our model could capture the transformation differences by measuring semantic similarity among different instances (global context). Secondly, we do not need define exact semantic labels for translation, such as various origins or NE types.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Formally, given a source (Chinese) name 1 ,..., ,...",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Framework",
                "sec_num": "2"
            },
            {
                "text": ", which consists of K Chinese segments, we want to find its target (English) translation 1 ,... ,...",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "k K C c c c =",
                "sec_num": null
            },
            {
                "text": "E e e e = of the highest probability. Here, it is assumed that an NE is literally translated, without insertion or deletion during the transformation. Within a probabilistic framework, a translation system produces the optimum target name, E*, which yields the highest posterior probability given the source Chinese name.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "k K",
                "sec_num": null
            },
            {
                "text": "* arg max ( | ) E E E P E C \u2208\u03a6 = (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "k K",
                "sec_num": null
            },
            {
                "text": "where E \u03a6 is the set of all possible translations for the Chinese name. In order to incorporate enrich language phenomenon of NEs (i.e. origins or other semantic information that affect NE translation) for capturing more exact translation, ( | ) P E C is rewritten as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "k K",
                "sec_num": null
            },
            {
                "text": "( | ) ( , | ) max ( , | ) S S P E C P E S C P E S C = \u2245 \u2211 (2)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "k K",
                "sec_num": null
            },
            {
                "text": "where S is the semantic-specific information for C and E . Inspired by example-based machine translation model (Nagao, 1984; Sato and Nagao, 1990) , we assume that certain mappings in the training set are identical with the transformation of the input NE. Thus we materialize the semantic information as a set of C2E mappings coming from the training set Therefore, the semantic-specific translation model incorporates semantic information by finding out the most likely mappings coming from the training set to capture the semantic structure. If the mappings are known, the translation is achieved. Thus the semantic-specific model is further derived as: sc . Finally, ( ) P E is the probability to connect the target segments as the final translation E .Therefore, in our semantic-specific model, the traditional NE translation problem is transferred as searching the most probable (higher semantic similarity) mappings from the training data and then constructing the final translation.",
                "cite_spans": [
                    {
                        "start": 111,
                        "end": 124,
                        "text": "(Nagao, 1984;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 125,
                        "end": 146,
                        "text": "Sato and Nagao, 1990)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "k K",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 1 1 1 1 1 1 1 1 1 1 1 1 1 ( , | ) ( ,[ , ] | ) ( ,",
                        "eq_num": ", | )"
                    }
                ],
                "section": "k K",
                "sec_num": null
            },
            {
                "text": "( | ) ( , | , ) ( | ) ( | , ) ( | , , ) ( | ) ( | , ) ( ) K K K k k K K K K K K K K K K K P E S C P E",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "k K",
                "sec_num": null
            },
            {
                "text": "In the proposed model (Eq (3)), those features are equally weighted. However, they should be weighted differently according to their contributions. Considering the advantages of the maximum entropy model (Berger et al., 1996) to integrate different kinds of features, we use this framework to model the probability ( , | ) P E S C . Suppose that we have a set of M feature functions ( , , ) , m 1,... .The decision rule is used to choose the most probable target NE (Och and Ney, 2002) :",
                "cite_spans": [
                    {
                        "start": 204,
                        "end": 225,
                        "text": "(Berger et al., 1996)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 383,
                        "end": 390,
                        "text": "( , , )",
                        "ref_id": null
                    },
                    {
                        "start": 466,
                        "end": 485,
                        "text": "(Och and Ney, 2002)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "k K",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "{ }^1 , ( , ) arg max ( , , ) M m m m E S E S h C E S \u03bb = = \u2211",
                        "eq_num": "(4)"
                    }
                ],
                "section": "k K",
                "sec_num": null
            },
            {
                "text": "Here, the feature functions 1 ( , , )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "k K",
                "sec_num": null
            },
            {
                "text": "M h C E S are modeled by the probabilities of 1 ( | ) K P sc C , 1 1 ( | , )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "k K",
                "sec_num": null
            },
            {
                "text": "K K P se sc C , and ( ) P E respectively. Next, we discuss these three features in detail.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "k K",
                "sec_num": null
            },
            {
                "text": "The First feature 1 ( | ) K P sc C segments the source into several related segments assumed independence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Monolingual Similarity Model",
                "sec_num": "3.1"
            },
            {
                "text": "1 1 1 1 ( , , ) ( | ) ( | ) K K K k k k h C E S P sc c P sc c = = \u2248 \u220f (5)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Monolingual Similarity Model",
                "sec_num": "3.1"
            },
            {
                "text": "The probability ( | ) k k P sc c describes the relationship of k sc and the source NE segment k c . Since k sc and k c are on the same language side, ( | ) k k P sc c can be commonly measured by the frequency of k sc . However, this measurement usually produces short and high frequent segments, which is not really suitable for NE translation with multiple variations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Monolingual Similarity Model",
                "sec_num": "3.1"
            },
            {
                "text": "To better estimate the distribution ( | ) k k P sc c , this paper proposes a much more generic model called monolingual similarity model, which captures phonetic characteristics and corpus statistics, and also removes the bias of choosing shorter segment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Monolingual Similarity Model",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "( | ) ( , ) ( ) ( ) log(| | 1) k k l k k k k k P sc c sim sc c tf sc idf sc sc \u2245 \u00d7 \u00d7 \u00d7 +",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Monolingual Similarity Model",
                "sec_num": "3.1"
            },
            {
                "text": "Here we first adopt a local similarity function ( , ) ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Monolingual Similarity Model",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\uf8f4 = \uf8f2 \u00d7 \uf8f4 \uf8f3 \u2211",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Monolingual Similarity Model",
                "sec_num": "3.1"
            },
            {
                "text": "If all the characters of the two segments are identical ( k k sc c = ), their similarity is assigned as a high score 1.0. However, many phonetically similar segments are usually translated into a same syllable, such as \"\u80af\" and \"\u574e\" could align to a same syllable \"cam\". So we use NE alignment result to evaluate the phonetic similarity of two segments by 1 1",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Monolingual Similarity Model",
                "sec_num": "3.1"
            },
            {
                "text": "( | ) ( | ) I i k i k i P e sc P e c I = \u00d7 \u2211 ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Monolingual Similarity Model",
                "sec_num": "3.1"
            },
            {
                "text": "where i e denotes the same syllables they aligned in the training set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Monolingual Similarity Model",
                "sec_num": "3.1"
            },
            {
                "text": "On the other hand, a global concept, which is borrowed from tf\u00d7idf scheme in information retrieval (Chen et al., 2003) , is used in Eq (7). Therefore, Eq (7) prefers Chinese segments that occur frequently, but rarely have different English transformations. Besides, since a longer segment has less disambiguation of its translation variations, we also favor longer Chinese segments, so that the length of a Chinese segment, i.e., | | k sc , is also considered.",
                "cite_spans": [
                    {
                        "start": 99,
                        "end": 118,
                        "text": "(Chen et al., 2003)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Monolingual Similarity Model",
                "sec_num": "3.1"
            },
            {
                "text": "The second feature is formulated as follows:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Bilingual Similarity Model",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "2 1 1 1 1 ( , , ) ( | , ) ( | , ) K K K K k k k k h C E S P se sc c P se sc c = = \u2248 \u220f",
                        "eq_num": "(8)"
                    }
                ],
                "section": "Bilingual Similarity Model",
                "sec_num": "3.2"
            },
            {
                "text": "The probability ( | , ) k k k P se sc c identifies the target segment k se , of which the semantic information is consistent with the input k c . This distribution estimates the bilingual similarity of k se and k c , thus is formulated as follows: sim sc c , which only measures the literal similarity based on characters or syllables as shown in Eq (7). Because it is difficult to measure the semantic similarity of two segments directly, we quantify their similarity in terms of their specific contexts. The context of k c is the input NE C , while the context of k sc is an instance SC that includes k sc in the training set. For example: given an input NE \"\u65e5\u672c\u677e\u5c71\u82ad\u857e\u821e\u56e2\" that acts as a context, we want to find the translation of a segment \"\u677e\", the segment \"\u677e\" in the training data have different global contexts, such as \"\u65af\u6587\u677e (Svensson)\", \"\u4e9a\u677e\u68ee (Asuncion)\", and \"\u8d64\u677e \u5e7f\u9686 (Akamatsu Hirotaka)\" and so on.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Bilingual Similarity Model",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "( | , )",
                        "eq_num": "( , )"
                    }
                ],
                "section": "Bilingual Similarity Model",
                "sec_num": "3.2"
            },
            {
                "text": "To address this problem, we adopt a vector space model that describes the context of k c and k sc . Some notions are defined here. A term set",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Bilingual Similarity Model",
                "sec_num": "3.2"
            },
            {
                "text": "1 1 { ,..., , ,..., } n n T t t t t \u2212 \u2212 =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Bilingual Similarity Model",
                "sec_num": "3.2"
            },
            {
                "text": "is an orderly character set of the context of k c , where [ , ] n n \u2212 is a Character-based n-range context window for k c . This term set not only represents the character set of the context, but also presents the position information of the context. The similar action is applied to SC (the context of k sc ). Therefore, the context of k c (the input Chinese NE) and each instance that includes k sc would be transformed into vectors. For example, given a segment \"\u677e\" in the input NE \"\u65e5\u672c\u677e\u5c71\u82ad\u857e\u821e\u56e2\", its term vector is {/s, \u65e5\uff0c\u672c\uff0c\u5c71\uff0c\u82ad\uff0c\u857e} when 3 n = , \"/s\" denotes the start position. While \"\u677e\" in the instance \"\u8d64\u677e\u5e7f\u9686\", its vector is {/, /s, \u8d64, \u5e7f, \u9686, /e}, where \"/\" denotes a valid character and \"/e\" represents the end position.",
                "cite_spans": [
                    {
                        "start": 58,
                        "end": 63,
                        "text": "[ , ]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Bilingual Similarity Model",
                "sec_num": "3.2"
            },
            {
                "text": "We don't use Boolean weighting or tf/idf conceptions as traditional information retrieval (IR) to calculate the terms' weight, due to the sparse data problem. The mutual information is adopted to calculate the weight of t , which expresses the relevance between the context of k c and the con-",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Bilingual Similarity Model",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "text of k sc . ( , ) ( , ) log ( ) ( ) C SC weigh C SC C SC p t t t MI t t p t p t = = \u00d7",
                        "eq_num": "(10)"
                    }
                ],
                "section": "Bilingual Similarity Model",
                "sec_num": "3.2"
            },
            {
                "text": "After transferring the contexts into general vectors, the similarity of two vectors is measured by computing the cosine value of the angle between them. This measure, called cosinesimilarity measure, has been widely used in information retrieval tasks (Baeza-Yates and Ribeiro-Neto, 1999), and is thus utilized here.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Bilingual Similarity Model",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "C SC s k k C SC V V sim sc c V V = \u00d7 \uf067",
                        "eq_num": "(11)"
                    }
                ],
                "section": "( , )",
                "sec_num": null
            },
            {
                "text": "The numerator is the inner product of two vectors. The denominator is product of the length of C V and the length of SC V . If an instance SC (including the segment k sc ) is much related to the input NE C (including the segment k c ), this case suggests that the semantic similarity between k c and k sc is much high. In other words, the two probably have the same translation k se . Here k sc acts as a bridge to realize the transformation from k c to k se .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "( , )",
                "sec_num": null
            },
            {
                "text": "The probability ( ) P E in Eq (3) encodes the popularity distribution of an English NE E , i.e. English language model. As mentioned above, there are two transformation styles for NEs: transliteration and meaning translation. Hence the glue rules for the final result are different. Transliteration is syllable-connecting without space on the English side, such as \"Matsu (\u677e)\" and \"yama (\u5c71)\" are connected as \"Matsuyama (\u677e\u5c71)\", its language model can be defined as a syllable-based n-gram model",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mixed Language Model",
                "sec_num": "3.3"
            },
            {
                "text": ", 1 , , 1 1 1 ( ) ( | ) K J k j LM tl k j k j n k j P E P e e \u2212 \u2212 + = = = \u220f \u220f",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mixed Language Model",
                "sec_num": "3.3"
            },
            {
                "text": "(suppose there are j letters in the k segment). In contrast, the output of meaning translation is chained word by word with spaces, for example, \"Wuyi (\u6b66\u5937)\" and \"Mountain (\u5c71)\" are connected as \"Wuyi Mountain\", of which the language model is presented as a general word-based n-gram ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Mixed Language Model",
                "sec_num": "3.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "model 1 1 1 ( )",
                        "eq_num": "( | )"
                    }
                ],
                "section": "Mixed Language Model",
                "sec_num": "3.3"
            },
            {
                "text": "Without Chinese word segmentation, we have to calculate every possible mapping to determine the most probable one in a large corpus, which will make the search space significantly huge. Therefore, we only measure those instances that including at least one character of the input NE. And the candidates, of which the feature values are below a threshold, are discarded.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training and Search",
                "sec_num": "4"
            },
            {
                "text": "The weighting coefficients for the three features in Eq (3) can be learned from the development set via Maximum Entropy (ME) training.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ME Parameter Training",
                "sec_num": "4.1"
            },
            {
                "text": "One way to get the associated weighting coefficients for those log-probability-factors adopted in the model is to regard each of them as realvalued features, and then use ME framework to find their corresponding lambda values, which are just the weighting coefficients that we look for. Following (Och et al. 2002; Liu et al. 2005) , we use the GIS (Generalized Iterative Scaling) algorithm (Darroch and Ratcliff, 1972) to train the model parameters 1 ,... M \u03bb \u03bb of the log-linear models according to Eq (4). In practice, YAS-",
                "cite_spans": [
                    {
                        "start": 287,
                        "end": 314,
                        "text": "Following (Och et al. 2002;",
                        "ref_id": null
                    },
                    {
                        "start": 315,
                        "end": 331,
                        "text": "Liu et al. 2005)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 391,
                        "end": 419,
                        "text": "(Darroch and Ratcliff, 1972)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ME Parameter Training",
                "sec_num": "4.1"
            },
            {
                "text": "MET 3 1 ,... M \u03bb \u03bb",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ME Parameter Training",
                "sec_num": "4.1"
            },
            {
                "text": "package is adopted here to train the model parameters . In our case, 3 M = .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ME Parameter Training",
                "sec_num": "4.1"
            },
            {
                "text": "We use a greedy search algorithm to search the translation with highest probability in the space of all possible mappings. A state in this space is a partial mapping. A transition is defined as the addition of a single mapping to the current state. Our start state is the empty translation result, where there is no selected mapping. A terminal state is a state in which no more mappings can be added to increase the probability of the current alignment. Our task is to find the terminal state with the highest probability. We can compute gain, a heuristic function, to figure out a probability when adding a new mapping, which is defined as follows: where k S s \uf055 means a single mapping k s is added to S . Since we have assumed that NE is literally translated in our model, there is a restriction: no overlap is allowed between the mapping k s and the mapping set S .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Search",
                "sec_num": "4.2"
            },
            {
                "text": "The greedy search algorithm for general loglinear models is formally described as follows: The above search algorithm generates the final translation result by adding one mapping for each time.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Search",
                "sec_num": "4.2"
            },
            {
                "text": "Input: C and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Search",
                "sec_num": "4.2"
            },
            {
                "text": "The training-set, testing-set, and development-set all come from Chinese-English Named Entity List v1.0 (LDC2005T34). The training-set consists of 218,172 proofread bilingual entries: 73,052 person name pairs, 76,460 location name pairs and 68,660 organization name pairs. Besides, 300 person names, 300 organization names, and 300 names of various NE types (including person names, location names and organization names) are used as three testing-sets respectively. Development-set includes 500 randomly selected name pairs of various NE types. There is no overlap between the training set, the development set and the open test sets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "Note that in the training set, the included transliterated parts and the meaning translated parts, which have been manually labeled, are trained separately. 218,172 NE pairs are split into 185,339 transliterated pairs (TL-training set) and 62,453 meaning translated pairs (TS-training set) (since transliteration and meaning translation would occur in one NE pair, so 185,339+62.453>218,172).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "In the TL-training set, the Chinese name of an NE pair is transformed into a character-based sequence and its aligned English name is split into syllables, of which the split rules are described in (Jiang et al., 2007) . Afterwards, GI-ZA++ 4",
                "cite_spans": [
                    {
                        "start": 198,
                        "end": 218,
                        "text": "(Jiang et al., 2007)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "First, we will show the experimental results when setting different parameters for the semantic similarity model, which is done on the development set with equal feature weightings. We set tool is invoked to align characters to syllables. On the other hand, for TS-training set, the Chinese part of an NE is also treated as a character-based sequence, while the English part is regarded as a word-based sequence. The alignment between Chinese characters and English words are achieved by GIZA++ toolkit as well.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "We use the recall of top-N hypotheses (Yang et al, 2008) as the evaluation metrics, and also adopt the Mean Reciprocal Rank (MRR) metric (Kantor and Voorhees, 2000) , a measure that is commonly used in information retrieval, assuming there is precisely one correct answer. Each NE translation generates at most top-50 hypotheses for each input when computing MRR. different ranges of the context window (the parameter n ) to find which range could get the best performance. Figure 1 illustrates the effect of the range parameter n for the final translation result (by MRR metric). From Figure 1 , we could find that when n=3, the proposed model gets the best performance (MRR value=0.498) . Therefore, n=3 is chosen for further study. Because the proposed three features cannot be used separately, we do not compare their individual effectiveness. Those normalized weighting coefficients (i.e., normalized lambda-values) obtained from YASMET package is 0.248, 0.565 and 0.187 (we all use 3-gram in the mixed language model). It is not surprising to find that 2 \u03bb (corresponding to the bilingual similarity feature) receives the highest value. This clearly indicates that the bilingual similarity model plays a critical role in our semantic-specific translation model.",
                "cite_spans": [
                    {
                        "start": 38,
                        "end": 56,
                        "text": "(Yang et al, 2008)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 137,
                        "end": 164,
                        "text": "(Kantor and Voorhees, 2000)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 671,
                        "end": 688,
                        "text": "(MRR value=0.498)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 474,
                        "end": 482,
                        "text": "Figure 1",
                        "ref_id": "FIGREF4"
                    },
                    {
                        "start": 586,
                        "end": 594,
                        "text": "Figure 1",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "We adopt a traditional statistical translation model (a phrase-based machine translation model, Moses 5 Setting decoder) to process transliteration, meaning translation, and their combination as three baselines respectively. All of the baselines generate Top-50 candidates for each input. Table 2 . The experiment configurations of baselines Note that baseline III combines transliteration and meaning translation only by training TL training set and TS training set individually, and then directly integrating generated syllable-based alignment and word-based alignment into a whole translation table.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 289,
                        "end": 296,
                        "text": "Table 2",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Semantic-Specific Model Vs. Baselines",
                "sec_num": "5.1"
            },
            {
                "text": "Firstly, Table 3 compares the semanticspecific model (SS-model) with three baselines for the translation of person names. From Table  3 , we find that the proposed model raises the recall of top-50 6.2% over Baseline I. It proves that our proposed model is effective for the transliteration of person names, and outperforms the traditional transliteration model. Baseline II can not output result due to its used TS-training set is out of the range of transliterating. It is interesting that the performance of baseline III even deteriorates after combing TS and TL training sets. One explanation might be that the language model of baseline III is only trained on word level, so that there is a severe data sparse problem. Table 4 . Semantic-specific model vs. baselines for organization names' translation Secondly, the comparison between SS-model and three baselines for translating organization names are shown in Table 4 . Baseline III outperforms baseline II for combining both TL-training set and TS-training set. Also SS-model has substantially raised the Top-N recall and MRR value over the baselines. Intuitively, we might expect that SS model could play a greater advantage on translating organization names, because organization names usually combine transliteration and meaning translation. However, comparing Table  3 with Table 4 , the performance gaps between SS-model and baselines for organization names is smaller than that for person names. After checking those errors, this phenomenon is probably due to the word reordering problem, which usually occurs in the translation of organization names, but has not been considered by SS-model. Further study would be required for this problem.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 9,
                        "end": 16,
                        "text": "Table 3",
                        "ref_id": "TABREF8"
                    },
                    {
                        "start": 127,
                        "end": 135,
                        "text": "Table  3",
                        "ref_id": "TABREF8"
                    },
                    {
                        "start": 724,
                        "end": 731,
                        "text": "Table 4",
                        "ref_id": null
                    },
                    {
                        "start": 918,
                        "end": 925,
                        "text": "Table 4",
                        "ref_id": null
                    },
                    {
                        "start": 1323,
                        "end": 1344,
                        "text": "Table  3 with Table 4",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Semantic-Specific Model Vs. Baselines",
                "sec_num": "5.1"
            },
            {
                "text": "Thirdly, we measure the overall effect of SSmodel in Table 5 . Evidently, the proposed SSmodel yields significantly better results than the three baselines at all aspects. It is not surprising to find that the proposed SS-model is effective in translating various NEs of different NE types. Table 5 . Semantic-specific model vs. baselines for various names' translation",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 53,
                        "end": 60,
                        "text": "Table 5",
                        "ref_id": null
                    },
                    {
                        "start": 291,
                        "end": 298,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Semantic-Specific Model Vs. Baselines",
                "sec_num": "5.1"
            },
            {
                "text": "Actually, the proposed semantic-specific model captures semantic information by incorporating the global context information in the corpus, which is similar to the joint transliteration model proposed by (Li et al., 2004) . However, the joint model only utilized the local context of the input (joint n-gram model of transliteration pairs) Table 6 gives the comparison of the joint model and SS-model for person names' transliteration. Here previous used training-set I and 300 person names are adopted for training and testing here. Also we use 3-gram in both of the two models. As shown in Table 6 , even though the performance gap of Top1 (+0.8%) is not much obvious, the performance gap gets larger when the top-N hypotheses increase. This evidently proves the superiority of the proposed model on selecting the correct translation variation from global context. Table 6 . Semantic-specific model vs. joint model for person names' translation",
                "cite_spans": [
                    {
                        "start": 204,
                        "end": 221,
                        "text": "(Li et al., 2004)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 340,
                        "end": 347,
                        "text": "Table 6",
                        "ref_id": null
                    },
                    {
                        "start": 592,
                        "end": 599,
                        "text": "Table 6",
                        "ref_id": null
                    },
                    {
                        "start": 867,
                        "end": 874,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Semantic-Specific Model Vs. Joint Transliteration Model",
                "sec_num": "5.2"
            },
            {
                "text": "To further validate the capability of our proposed model, we measure its sensitivity to NE origin information. Thus we compare it with a wellknown semantic transliteration model (Li et al., 2007) , which only deals with transliteration. Li , and then uses its corresponding trained model, which is trained on instances all from origin O . The training and decoding process also use the Moses decoder.",
                "cite_spans": [
                    {
                        "start": 178,
                        "end": 195,
                        "text": "(Li et al., 2007)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 237,
                        "end": 239,
                        "text": "Li",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic-Specific Model Vs. Origin-Based Model",
                "sec_num": "5.3"
            },
            {
                "text": "In this experiment, we adopt training-set II, which includes 7,021 person names from USA, Japan and Korea (International whoswho corpus in LDC2005T34). And then we randomly select 100 person names from USA, Japan and Korea respectively (also in whoswho corpus) as our test data. Also, there is no overlap between the training set II and those test data. Here, baseline I is also the transliteration model, but trained on training set II, and we use the MRR criterion as well. Table 7 . Semantic-specific model vs. originbased model for person names' translation Considering Table 7 , though there is a slight drop comparing our model with origin-based model for the Japanese person names, the translation improvements on the person names of the other two origins show the superiority of our semantic-specific translation model. Actually, there would be much more origins to classify. For instance, there are more than 100 origins in whoswho data; it is tedious to train a large number of models in practice. And the origin labeled data for person names is hard to acquire. By using semantic-specific model, we could directly cluster instances of similar origin, and generate final translation result for origin consistency. The experiments prove that the SS-model is effective on capturing NE origin information to assist NE translation, and it could further accommodate more different semantic information.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 476,
                        "end": 483,
                        "text": "Table 7",
                        "ref_id": null
                    },
                    {
                        "start": 574,
                        "end": 581,
                        "text": "Table 7",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Semantic-Specific Model Vs. Origin-Based Model",
                "sec_num": "5.3"
            },
            {
                "text": "There are two strategies for NE translation. One is to extract NE translation pairs from the Web or from parallel/comparable corpora. This is essentially the same as constructing NE-pair dictionary (lee et al., 2006; Jiang et al., 2009) , which is usually not a real-time translation model and is limited by the coverage of the used corpus and the Web resource.",
                "cite_spans": [
                    {
                        "start": 198,
                        "end": 216,
                        "text": "(lee et al., 2006;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 217,
                        "end": 236,
                        "text": "Jiang et al., 2009)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "6"
            },
            {
                "text": "The other is to directly translate an NE phonetically or according to its meaning. For transliteration, several transliteration approaches have been applied to various language pairs (Knight and Graehl, 1998; Tsuji 2002; Li et al. 2004; Oh and Choi, 2005; Pervouchine et al., 2009; Durrani et al., 2010) . In contrast, for NE meaning translation, (Zhang et al., 2005; Chen and Zong, 2008; have proposed different statistical translation models only for organization names.",
                "cite_spans": [
                    {
                        "start": 183,
                        "end": 208,
                        "text": "(Knight and Graehl, 1998;",
                        "ref_id": null
                    },
                    {
                        "start": 209,
                        "end": 220,
                        "text": "Tsuji 2002;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 221,
                        "end": 236,
                        "text": "Li et al. 2004;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 237,
                        "end": 255,
                        "text": "Oh and Choi, 2005;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 256,
                        "end": 281,
                        "text": "Pervouchine et al., 2009;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 282,
                        "end": 303,
                        "text": "Durrani et al., 2010)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 347,
                        "end": 367,
                        "text": "(Zhang et al., 2005;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 368,
                        "end": 388,
                        "text": "Chen and Zong, 2008;",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "6"
            },
            {
                "text": "So far, semantic transliteration has been proposed for learning language origin and gender information of person names (Li et al., 2007) . However, semantic information is various for NE translation. It is complicated to define different semantic types, and is tedious to train a large number of models used for different semantic information. Moreover, a semantically labeled training corpus is hard to acquire. Hence this paper does not directly learn NE semantic information, but measures the semantic similarity between the input and global context to capture exact NE translation.",
                "cite_spans": [
                    {
                        "start": 119,
                        "end": 136,
                        "text": "(Li et al., 2007)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "6"
            },
            {
                "text": "In this paper, we present a novel semanticspecific model which could adaptively learn semantic information via instance-based similarity measurement from global context. Accordingly, this model combines transliteration and meaning translation, and automatically selects most probable translation candidates on the basis of the NE semantic-specific information. In summary, our experiments show that the semantic-specific model is much more effective than the traditional statistical model for named entity translation, which achieves a remarkable 31.6% relative improvement in MRR (Table 5) . Furthermore, the proposed model yields a comparable result with the joint transliteration model (also using context) and the origin-based model, which shows its advantage on capturing semantic information from global context, such as origin information.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 581,
                        "end": 590,
                        "text": "(Table 5)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "It is expected that the proposed semanticspecific translation model could be further applied to other language pairs, as no language dependent linguistic feature (or knowledge) is adopted in the model/algorithm used.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "NE translation referred to in this paper denotes bilingual NE transformation (either transliteration or meaning translation), and meaning translation is proposed as distinct from transliteration.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The source side of one mapping could be a character, a word or several words. The target side of one mapping could be several syllables or words. Therefore one mapping is defined as a segment pair.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.fjoch.com/YASMET.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.fjoch.com/GIZA++.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.statmt.org/moses/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "The research work has been funded by the Natural Science Foundation of China under Grant No. 6097 5053 and 61003160 and also supported by the External Cooperation Program of the Chinese Academy of Sciences. The authors also extend sincere thanks to Prof. Keh-Yih Su for his keen in-sights and suggestions on our work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Modern Information Retrieval",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Baeza-Yates",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Ribeiro-Neto",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Baeza-Yates and B. RiBeiro-Neto. 1999. Modern Information Retrieval. ISBN 0-201-39829-X.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A Maximum Entropy Approach to Natural Language Processing",
                "authors": [
                    {
                        "first": "Adam",
                        "middle": [
                            "L"
                        ],
                        "last": "Berger",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [
                            "A Della"
                        ],
                        "last": "Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "Vincent",
                        "middle": [
                            "J Della"
                        ],
                        "last": "Pietra",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Computational Linguistics",
                "volume": "22",
                "issue": "1",
                "pages": "39--72",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Adam L. Berger, Stephen A. Della Pietra and Vincent J. Della Pietra. 1996. A Maximum Entropy Approach to Natural Language Processing. Com- putational Linguistics, 22(1):39-72, March.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Learning Formulation and Transformation Rules for Multilingual Named Entities",
                "authors": [
                    {
                        "first": "Hsin-His",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Changhua",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Ying",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of ACL 2003 Workshop on Multilingual and Mixedlanguage Named Entity Recognition",
                "volume": "",
                "issue": "",
                "pages": "1--8",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hsin-His Chen, Changhua Yang and Ying Lin. 2003. Learning Formulation and Transformation Rules for Multilingual Named Entities. In Proceedings of ACL 2003 Workshop on Multilingual and Mixed- language Named Entity Recognition, pages 1-8.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A Structurebased Model for Chinese Organization Name Translation",
                "authors": [
                    {
                        "first": "Yufeng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Chengqing",
                        "middle": [],
                        "last": "Zong",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "ACM Transactions on Asian Language Information Processing",
                "volume": "7",
                "issue": "1",
                "pages": "1--30",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yufeng Chen, Chengqing Zong. 2008. A Structure- based Model for Chinese Organization Name Translation. ACM Transactions on Asian Language Information Processing, 7(1): 1-30, February 2008.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Generalized iterative scaling for log-linear models",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "N"
                        ],
                        "last": "Darroch",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Ratcliff",
                        "suffix": ""
                    }
                ],
                "year": 1972,
                "venue": "Annuals of Mathematical Statistics",
                "volume": "43",
                "issue": "",
                "pages": "1470--1480",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. N. Darroch and D. Ratcliff. 1972. Generalized itera- tive scaling for log-linear models. Annuals of Ma- thematical Statistics, 43: 1470-1480.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Hindi-to-Urdu Machine Translation Through Transliteration",
                "authors": [
                    {
                        "first": "Nadir",
                        "middle": [],
                        "last": "Durrani",
                        "suffix": ""
                    },
                    {
                        "first": "Hassan",
                        "middle": [],
                        "last": "Sajjad",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Fraser",
                        "suffix": ""
                    },
                    {
                        "first": "Helmut",
                        "middle": [],
                        "last": "Schmid",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "465--474",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nadir Durrani, Hassan Sajjad, Alexander Fraser, and Helmut Schmid. 2010. Hindi-to-Urdu Machine Translation Through Transliteration. In Proceed- ings of the 48th Annual Meeting of the Association for Computational Linguistics, pages 465-474.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Cluster-Specific Name Transliteration",
                "authors": [
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the HLT-EMNLP 2005",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fei Huang. 2005. Cluster-Specific Name Translitera- tion. In Proceedings of the HLT-EMNLP 2005, Vancouver, BC, Canada.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Named Entity Translation with Web Mining and Transliteration",
                "authors": [
                    {
                        "first": "Long",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Lee-Feng",
                        "middle": [],
                        "last": "Chien",
                        "suffix": ""
                    },
                    {
                        "first": "Cheng",
                        "middle": [],
                        "last": "Niu",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of IJ-CAI",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Long Jiang, Ming Zhou, Lee-Feng Chien, and Cheng Niu. 2007. Named Entity Translation with Web Mining and Transliteration. In Proceedings of IJ- CAI-2007.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Mining Bilingual Data from the Web with Adaptively Learnt Patterns",
                "authors": [
                    {
                        "first": "Long",
                        "middle": [],
                        "last": "Jiang",
                        "suffix": ""
                    },
                    {
                        "first": "Shiquan",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaohua",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Qingsheng",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proc. of ACL-2009 and the 4th IJCNLP of the AFNLP",
                "volume": "",
                "issue": "",
                "pages": "870--878",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Long Jiang, Shiquan Yang, Ming Zhou, Xiaohua Liu, and Qingsheng Zhu. 2009. Mining Bilingual Data from the Web with Adaptively Learnt Patterns. In Proc. of ACL-2009 and the 4th IJCNLP of the AFNLP, pages 870-878.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "The TREC-5 Confusion Track: Comparing Retrieval Methods for Scanned Text. Informational Retrieval",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Paul",
                        "suffix": ""
                    },
                    {
                        "first": "Ellen",
                        "middle": [
                            "M"
                        ],
                        "last": "Kantor",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Voorhees",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "2",
                "issue": "",
                "pages": "165--176",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Paul B. Kantor and Ellen M. Voorhees, 2000, The TREC-5 Confusion Track: Comparing Retrieval Methods for Scanned Text. Informational Retrieval, 2, pp. 165-176.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Alignment of Bilingual Named Entities in Parallel Corpora Using Statistical Models and Multiple Knowledge Sources",
                "authors": [
                    {
                        "first": "Chun-Jen",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [
                            "S"
                        ],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Jyh-Shing",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Jang",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "ACM Transactions on Asian Language Information Processing (TALIP)",
                "volume": "5",
                "issue": "2",
                "pages": "121--145",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chun-Jen Lee, Jason S. Chang and Jyh-Shing R. Jang. 2006. Alignment of Bilingual Named Entities in Parallel Corpora Using Statistical Models and Mul- tiple Knowledge Sources. ACM Transactions on Asian Language Information Processing (TALIP), 5(2): 121-145.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "A Joint Source Channel Model for Machine Transliteraltion",
                "authors": [
                    {
                        "first": "Haizhou",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of 42nd ACL",
                "volume": "",
                "issue": "",
                "pages": "159--166",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Haizhou Li, Min Zhang and Jian Su. 2004. A Joint Source Channel Model for Machine Transliteral- tion. In Proceedings of 42nd ACL, pages 159-166.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Semantic Transliteration of Personal Names",
                "authors": [
                    {
                        "first": "Haizhou",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Khe Chai",
                        "middle": [],
                        "last": "Sim",
                        "suffix": ""
                    },
                    {
                        "first": "Jin-Shea",
                        "middle": [],
                        "last": "Kuo",
                        "suffix": ""
                    },
                    {
                        "first": "Minghui",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of 45th ACL",
                "volume": "",
                "issue": "",
                "pages": "120--127",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Haizhou Li, Khe Chai Sim, Jin-shea Kuo, and Ming- hui Dong. 2007. Semantic Transliteration of Per- sonal Names, In Proceedings of 45th ACL, pages 120-127.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Log-linear Models for Word Alignment",
                "authors": [
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Qun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Shouxun",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 43rd Annual meeting of the ACL",
                "volume": "",
                "issue": "",
                "pages": "459--466",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yang Liu, Qun Liu and Shouxun Lin. Log-linear Models for Word Alignment. 2005. In Proceedings of the 43rd Annual meeting of the ACL, pages 459- 466.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A Framework of a Mechanical Translation between Japanese and English by Analogy Principle",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Nagao",
                        "suffix": ""
                    }
                ],
                "year": 1984,
                "venue": "Artificial and Human Intelligence",
                "volume": "",
                "issue": "",
                "pages": "173--180",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Nagao. 1984. A Framework of a Mechanical Translation between Japanese and English by Analogy Principle, In Artificial and Human Intelli- gence, pages 173-180. NATO publications.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Discriminative Training and Maximum Entropy Models for Statistical Machine Translation",
                "authors": [
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Franz",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th Annual Meeting of the ACL",
                "volume": "",
                "issue": "",
                "pages": "295--302",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Franz Josef Och and Hermann Ney. 2002. Discri- minative Training and Maximum Entropy Models for Statistical Machine Translation. In Proceedings of the 40th Annual Meeting of the ACL, pages 295- 302.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "An ensemble of grapheme and phoneme for machine transliteration",
                "authors": [
                    {
                        "first": "J.-H",
                        "middle": [],
                        "last": "Oh",
                        "suffix": ""
                    },
                    {
                        "first": "K.-S",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of IJCNLP",
                "volume": "",
                "issue": "",
                "pages": "450--461",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J.-H. Oh and Choi, K.-S. 2005. An ensemble of gra- pheme and phoneme for machine transliteration. In Proceedings of IJCNLP, pages 450-461.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Transliteration Alignment",
                "authors": [
                    {
                        "first": "Vladimir",
                        "middle": [],
                        "last": "Pervouchine",
                        "suffix": ""
                    },
                    {
                        "first": "Haizhou",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Bo",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of ACL-09",
                "volume": "",
                "issue": "",
                "pages": "136--144",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vladimir Pervouchine, Haizhou Li and Bo Lin. 2009. Transliteration Alignment. In Proceedings of ACL- 09, pages 136-144.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Toward Memory-Based Translation",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Sato",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Nagao",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Proceedings of COLING 1990",
                "volume": "3",
                "issue": "",
                "pages": "247--252",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Sato and M. Nagao. 1990. Toward Memory-Based Translation. In Proceedings of COLING 1990, Vol.3. pages 247-252.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Automatic extraction of translational Japanese-KATAKANA and English word pairs from bilingual corpora",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Tsuji",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Int. J. Comput. Process Oriental Lang",
                "volume": "15",
                "issue": "3",
                "pages": "261--279",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Tsuji. 2002. Automatic extraction of translational Japanese-KATAKANA and English word pairs from bilingual corpora. Int. J. Comput. Process Oriental Lang. 15(3): 261-279.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Chinese-English Backward Transliteration Assisted with Mining Monolingual Web Pages",
                "authors": [
                    {
                        "first": "Fan",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Bo",
                        "middle": [],
                        "last": "Zou",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Feifan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceeding of the 46th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "541--549",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fan Yang, Jun Zhao, Bo Zou, Kang Liu, Feifan Liu. 2008. Chinese-English Backward Transliteration Assisted with Mining Monolingual Web Pages, In Proceeding of the 46th Annual Meeting of the As- sociation for Computational Linguistics, pages 541-549, Columbus, OH.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "A Chinese-English Organization Name Translation System Using Heuristic Web Mining and Asymmetric Alignment",
                "authors": [
                    {
                        "first": "Fan",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 47th Annual Meeting of the ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fan Yang, Jun Zhao, Kang Liu. 2009. A Chinese- English Organization Name Translation System Using Heuristic Web Mining and Asymmetric Alignment. In Proceedings of the 47th Annual Meeting of the ACL, Singapore. August 2 -7.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "A Phrase-Based Context-Dependent Joint Probability Model for Named Entity Translation",
                "authors": [
                    {
                        "first": "Min",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Haizhou",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    },
                    {
                        "first": "Hendra",
                        "middle": [],
                        "last": "Setiawan",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "IJCNLP",
                "volume": "",
                "issue": "",
                "pages": "600--611",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Min Zhang, Haizhou Li, Jian Su, and Hendra Setia- wan. 2005. A Phrase-Based Context-Dependent Joint Probability Model for Named Entity Transla- tion. IJCNLP 2005, pages 600-611.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "uris": null,
                "num": null,
                "text": "Transliteration variations\u91d1\u70b3\u534e --Jin Binghua \u91d1\u6210\u52cb --Kim Sung-Hoon \u4f55\u585e \u534e\u91d1 \u5e03\u4f26\u7eb3 --Jose Joaquin Brunner \u82e5\u963f\u91d1\u2022\u5e0c\u6f58\u5fb7 --Joaquim Chipande \u9a6c\u4e01\u8def\u5fb7\u91d1 --Martin Luther King \u91d1\u4e38\u4fe1 --Kanemaru Shin \u7c73\u65af\u91d1 --Miskine \u9ea6\u91d1\u6258\u4ec0 --Aaron Mcintosh \u6587\u68ee\u7279\u2022\u4f2f\u91d1 --Vincent Burgen \u57c3\u5c14\u91d1\u2022\u6770\u62c9\u8f9b --Ergin Celasin \u963f\u5229\u4e9a\u592b\u91d1 --Alyavdin \u5361\u5217\u4f0a\u91d1 --Kaleikin \u2026\u2026 Meaning translation variations \u963f\u65af\u7279\u57fa\u91d1 --Astor Fund \u5317\u4eac\u51b6\u91d1\u5b66\u9662 --Beijing Institute of Metallurgy \u2026\u2026"
            },
            "FIGREF2": {
                "type_str": "figure",
                "uris": null,
                "num": null,
                "text": "to measure the relationship of the input Chinese segment k c and a possible Chinese segment k sc . It is measured on literal level (shallow level based on Chinese character and phonetic similarity"
            },
            "FIGREF4": {
                "type_str": "figure",
                "uris": null,
                "num": null,
                "text": "Effects of different context ranges (n) on translation results (by MRR metric)"
            },
            "FIGREF5": {
                "type_str": "figure",
                "uris": null,
                "num": null,
                "text": "the similarity of the global context amongst corpus."
            },
            "TABREF6": {
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td colspan=\"5\">shows their different settings comparing the</td></tr><tr><td colspan=\"4\">proposed semantic-specific (SS) model.</td><td/></tr><tr><td/><td colspan=\"4\">SS-model Baseline I Baseline II Baseline III</td></tr><tr><td>Input</td><td>Un-segmented</td><td>Character-based</td><td>Word-based</td><td>Character-based</td></tr><tr><td>Training data</td><td>TL-training set + TS-training set</td><td>TL-training set</td><td>TS-training set</td><td>TL-training set + TS-training set</td></tr><tr><td/><td>Mix of</td><td/><td/><td/></tr><tr><td>Language</td><td>syllable-</td><td>Syllable-</td><td>Word-</td><td>Word-</td></tr><tr><td>model</td><td>based and</td><td>based</td><td>based</td><td>based</td></tr><tr><td/><td>word-based</td><td/><td/><td/></tr></table>",
                "html": null,
                "text": ""
            },
            "TABREF8": {
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td/><td colspan=\"4\">. Semantic-specific model vs. baselines</td></tr><tr><td/><td colspan=\"3\">for person names' translation</td><td/></tr><tr><td colspan=\"5\">Metric SS-model Baseline I Baseline II Baseline III</td></tr><tr><td>Top1</td><td>34.4%</td><td>0%</td><td>26.5%</td><td>30.8%</td></tr><tr><td colspan=\"2\">Top10 38.7%</td><td>0%</td><td>29.8%</td><td>36.4%</td></tr><tr><td colspan=\"2\">Top50 46.9%</td><td>0%</td><td>35.2%</td><td>40.2%</td></tr><tr><td>MRR</td><td>0.381</td><td/><td>0.297</td><td>0.336</td></tr></table>",
                "html": null,
                "text": ""
            }
        }
    }
}