File size: 100,775 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
{
    "paper_id": "I11-1004",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:31:37.047717Z"
    },
    "title": "Extracting Pre-ordering Rules from Predicate-Argument Structures",
    "authors": [
        {
            "first": "Xianchao",
            "middle": [],
            "last": "Wu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "NTT Corporation",
                "location": {
                    "addrLine": "2-4 Hikaridai Seika-cho, Soraku-gun Kyoto",
                    "postCode": "619-0237",
                    "country": "Japan"
                }
            },
            "email": "wu.xianchao@lab.ntt.co.jp"
        },
        {
            "first": "Katsuhito",
            "middle": [],
            "last": "Sudoh",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "NTT Corporation",
                "location": {
                    "addrLine": "2-4 Hikaridai Seika-cho, Soraku-gun Kyoto",
                    "postCode": "619-0237",
                    "country": "Japan"
                }
            },
            "email": "sudoh.katsuhito@lab.ntt.co.jp"
        },
        {
            "first": "Kevin",
            "middle": [],
            "last": "Duh",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "NTT Corporation",
                "location": {
                    "addrLine": "2-4 Hikaridai Seika-cho, Soraku-gun Kyoto",
                    "postCode": "619-0237",
                    "country": "Japan"
                }
            },
            "email": "kevin.duh@lab.ntt.co.jp"
        },
        {
            "first": "Hajime",
            "middle": [],
            "last": "Tsukada",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "NTT Corporation",
                "location": {
                    "addrLine": "2-4 Hikaridai Seika-cho, Soraku-gun Kyoto",
                    "postCode": "619-0237",
                    "country": "Japan"
                }
            },
            "email": "tsukada.hajime@lab.ntt.co.jp"
        },
        {
            "first": "Masaaki",
            "middle": [],
            "last": "Nagata",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "NTT Corporation",
                "location": {
                    "addrLine": "2-4 Hikaridai Seika-cho, Soraku-gun Kyoto",
                    "postCode": "619-0237",
                    "country": "Japan"
                }
            },
            "email": "nagata.masaaki@lab.ntt.co.jp"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Word ordering remains as an essential problem for translating between languages with substantial structural differences, such as SOV and SVO languages. In this paper, we propose to automatically extract pre-ordering rules from predicateargument structures. A pre-ordering rule records the relative position mapping of a predicate word and its argument phrases from the source language side to the target language side. We propose 1) a lineartime algorithm to extract the pre-ordering rules from word-aligned HPSG-tree-tostring pairs and 2) a bottom-up algorithm to apply the extracted rules to HPSG trees to yield target language style source sentences. Experimental results are reported for large-scale English-to-Japanese translation, showing significant improvements of BLEU score compared with the baseline SMT systems.",
    "pdf_parse": {
        "paper_id": "I11-1004",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Word ordering remains as an essential problem for translating between languages with substantial structural differences, such as SOV and SVO languages. In this paper, we propose to automatically extract pre-ordering rules from predicateargument structures. A pre-ordering rule records the relative position mapping of a predicate word and its argument phrases from the source language side to the target language side. We propose 1) a lineartime algorithm to extract the pre-ordering rules from word-aligned HPSG-tree-tostring pairs and 2) a bottom-up algorithm to apply the extracted rules to HPSG trees to yield target language style source sentences. Experimental results are reported for large-scale English-to-Japanese translation, showing significant improvements of BLEU score compared with the baseline SMT systems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Statistical machine translation (SMT) suffers from an essential problem for translating between languages with substantial structural differences, such as between English which is a subject-verbobject (SVO) language and Japanese which is a typical subject-object-verb (SOV) language.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Numerous approaches have been consequently proposed to tackle this word-order problem, such as lexicalized reordering methods, syntax-based models, and pre-ordering ways. First, in order to overcome the shortages of traditional distance based distortion models (Brown et al., 1993; , phrase dependent lexicalized reordering models were proposed by several researchers (Tillman, 2004; Kumar and Byrne, 2005) . Lexicalized reordering models learn local orientations (monotone or reordering) with probabilities for each bilingual phrase from the training data. For example, by taking lexical information as features, a maximum entropy phrase reordering model was proposed by Xiong et al. (2006) .",
                "cite_spans": [
                    {
                        "start": 261,
                        "end": 281,
                        "text": "(Brown et al., 1993;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 368,
                        "end": 383,
                        "text": "(Tillman, 2004;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 384,
                        "end": 406,
                        "text": "Kumar and Byrne, 2005)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 672,
                        "end": 691,
                        "text": "Xiong et al. (2006)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Second, syntax-based models attempt to solve the word ordering problem by employing syntactic structures. For example, linguistically syntaxbased approaches (Galley et al., 2004; first parse source and/or target sentences and then learn reordering templates from the subtree fragments of the parse trees. In contrast, hierarchical phrase based translation (Chiang, 2005 ) is a formally syntax-based approach which can automatically extract hierarchical ordering rules from aligned string-string pairs without using additional parsers. These approaches have been proved to be both algorithmically appealing and empirically successful.",
                "cite_spans": [
                    {
                        "start": 157,
                        "end": 178,
                        "text": "(Galley et al., 2004;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 356,
                        "end": 369,
                        "text": "(Chiang, 2005",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "However, most of current syntax-based SMT systems use IBM models (Brown et al., 1993 ) and hidden Markov model (HMM) (Vogel et al., 1996) to generate word alignments. These models have a penalty parameter associated with long distance jumps, and tend to misalign words which move far from the window sizes of their expected positions (Xu et al., 2009; Genzel, 2010) .",
                "cite_spans": [
                    {
                        "start": 65,
                        "end": 84,
                        "text": "(Brown et al., 1993",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 117,
                        "end": 137,
                        "text": "(Vogel et al., 1996)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 334,
                        "end": 351,
                        "text": "(Xu et al., 2009;",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 352,
                        "end": 365,
                        "text": "Genzel, 2010)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The third type tackles the word-order problem in pre-ordering ways. Through the usage of a sequence of pre-ordering rules, the word order of an original source sentence is (approximately) changed into the word order of the target sentence. Here, the pre-ordering rules can be manually or automatically extracted. For manual extraction of pre-ordering rules, linguistic background and expertise are required for predetermined language pairs, such as for German-English (Collins et al., 2005) , Chinese-to-English (Wang et al., 2007) , Japanese-to-English (Katz-Brown and , and English-to-SOV languages (Xu et al., 2009) . Specially, for English-to-Japanese translation, Isozaki et al. (2010b) proposed to move syntactic or semantic heads to the end of corresponding phrases or clauses so that to yield head finalized English (HFE) sentences which follow the word order of Japanese. The head information of an English sentence is detected by a head-driven phrase structure grammar (HPSG) parser, Enju 1 (Miyao and Tsujii, 2008) . In addition, transformation rules were manually written for appending particle seed words, refining POS tags to be used before parsing, and deleting English determiners. Due to the usage of the same parser, we take this HFE approach as one of our baseline systems.",
                "cite_spans": [
                    {
                        "start": 468,
                        "end": 490,
                        "text": "(Collins et al., 2005)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 512,
                        "end": 531,
                        "text": "(Wang et al., 2007)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 601,
                        "end": 618,
                        "text": "(Xu et al., 2009)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 669,
                        "end": 691,
                        "text": "Isozaki et al. (2010b)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 1001,
                        "end": 1025,
                        "text": "(Miyao and Tsujii, 2008)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The goal in this paper, however, is to learn preordering rules from parallel data in an automatic way. Under this motivation, pre-ordering rules can be extracted in a language-independent manner. A number of researches follow this automatic way. For example, in (Xia and McCord, 2004) , a variety of heuristic rules were applied to bilingual parse trees to extract pre-ordering rules for French-English translation. Rottmann and Vogen (2007) learned reordering rules based on sequences of part-of-speech (POS) tags, instead of parse trees. Dependency trees were used by Genzel (2010) to extract source-side reordering rules for translating languages from SVO to SOV, etc..",
                "cite_spans": [
                    {
                        "start": 262,
                        "end": 284,
                        "text": "(Xia and McCord, 2004)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 416,
                        "end": 441,
                        "text": "Rottmann and Vogen (2007)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The novel idea expressed in this paper is that, predicate-argument structures (PASs) are introduced to extract fine-grained pre-ordering rules. PASs have the following merits for describing reordering phenomena:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 predicate words and argument phrases respectively record reordering phenomena in a lexicalized level and an abstract level;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 PASs provide a fine-grained classification of the reordering phenomena since they include factored representations of syntactic features of the predicate words and their argument phrases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The idea of using PASs for pre-ordering follows (Komachi et al., 2006) . Several reordering operations were manually designed by Komachi et al. (2006) to pre-ordering Japanese sentences into SVO-style English sentences. For comparison, our proposal 1) makes use of not only PASs but also the source syntactic tree structures for preordering rule matching, 2) extracts pre-ordering 1 http://www-tsujii.is.s.u-tokyo.ac.jp/enju/index.html rules in an automatic way, and 3) use factored representations of syntactic features to refine the preordering rules.",
                "cite_spans": [
                    {
                        "start": 48,
                        "end": 70,
                        "text": "(Komachi et al., 2006)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 129,
                        "end": 150,
                        "text": "Komachi et al. (2006)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Following (Wu et al., 2010a; Isozaki et al., 2010b) , we use the HPSG parser Enju to generate the PASs of English sentences. HPSG (Pollard and Sag, 1994 ) is a lexicalist grammar framework. In HPSG, linguistic entities such as words and phrases are represented by a data structure called a sign. A sign gives a factored representation of the syntactic features of a word/phrase, as well as a representation of their semantic content which corresponds to PASs.",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 28,
                        "text": "(Wu et al., 2010a;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 29,
                        "end": 51,
                        "text": "Isozaki et al., 2010b)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 130,
                        "end": 152,
                        "text": "(Pollard and Sag, 1994",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In order to record the relative positions among a predicate word and its argument phrases, we propose a linear-time algorithm to extract preordering rules from word-aligned HPSG-tree-tostring pairs 2 . The syntactic features included in signs and the types of PASs enable us to extract fine-grained pre-ordering rules and thus make it easier to select appropriate rules for given source HPSG trees. We further propose a bottom-up algorithm to apply the extracted rules to HPSG trees to pre-order source sentences. Using the preordered source sentences, we retrain word alignments again.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The remaining of this paper is organized as follows. In the next section, we describe the algorithms guided by using a real example for extracting and applying PAS-based pre-ordering rules. Then, we design experiments on large-scale English-to-Japanese translation to testify our proposal. Employing Moses , we show that our proposal can significantly improve BLEU scores of 2.47\u223c3.15 points compared with using the original English sentences. We finally conclude this paper by summarizing our proposal and the experiment results. denote non-terminal nodes (e.g., c0, c1), and the identifiers that start with 't' denote terminal nodes (e.g., t0, t2). In a complete HPSG tree (Wu et al., 2010b) , factored syntactic features listed in Table 1 are included in the terminal and nonterminal signs. These features are used by us to sub-categorize pre-ordering rules. As an example of the XML output of Enju, the signs of \"when\" (t0) and its arguments c16, c3 are shown in the top-left corner of Figure 1.",
                "cite_spans": [
                    {
                        "start": 675,
                        "end": 693,
                        "text": "(Wu et al., 2010b)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 734,
                        "end": 741,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u6d41 \u4f53 0 \u5727 1 \u30b7 \u30ea \u30f3 \u30c0 \u308c \u308b 12 \u3053 \u3068 13 31 3 \u306e 4 \u5834 \u5408 5 \u306f 6 \u6d41 \u4f53 7 \u304c 8 \u5f90 \u3005 \u306b 9 \u6392 \u51fa 10 \u3055 11 \u306a",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We define the following data structures for both extracting and applying pre-ordering rules. First, a PAS-based pre-ordering rule is defined to be a four-tuple <pw, args, srcOrder, trgOrder>. Here, pw is the predicate word, args are the argument nodes of pw, and srcOrder and trgOrder respectively record the relative positions among pw and args in the source and target language sides. Then, we suppose an HPSG tree/subtree object contains the following methods:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data structures",
                "sec_num": "2.2"
            },
            {
                "text": "\u2022 localize(): localize syntactic/semantic heads;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data structures",
                "sec_num": "2.2"
            },
            {
                "text": "\u2022 computeSrcSpans(): topologically compute the source span of each node;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data structures",
                "sec_num": "2.2"
            },
            {
                "text": "\u2022 computeSpans(A): topologically compute the source and target spans of each node (Galley et al., 2004) . A is the word alignment;",
                "cite_spans": [
                    {
                        "start": 82,
                        "end": 103,
                        "text": "(Galley et al., 2004)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data structures",
                "sec_num": "2.2"
            },
            {
                "text": "\u2022 getArgs(pw): return the argument nodes of pw;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data structures",
                "sec_num": "2.2"
            },
            {
                "text": "Name Description Examples WORD surface word form \"when\" BASE base word form \"when\" POS part-of-speech WRB (\"when\") LE lexical entry [when] (\"when\") PRED type of predicate conj arg12 argument structure (\"when\") CAT syntactic category SC (\"when\") TENSE tense of a verb (past, present (\"used\") present, untensed) ASPECT aspect of a verb none (\"used\") (none, prefect, progressive, prefect-progressive) VOICE voice of a verb passive (\"used\") (passive, active) AUX auxiliary verb or not minus (\"used\") (minus, modal, have, be, do, to, copular) CAT syntactic category S (c16), S (c3) XCAT extended category HEAD syntactic head R (c16), R(c3) SEM HEAD semantic head R (c16), R (c3) SCHEMA schema rule mod head (c16) \u2022 MCT(pw, args): return the minimum cover tree (Wu et al., 2010a) of pw and args.",
                "cite_spans": [
                    {
                        "start": 755,
                        "end": 773,
                        "text": "(Wu et al., 2010a)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data structures",
                "sec_num": "2.2"
            },
            {
                "text": "To implement the localize() method, we use the approach described in (Wu et al., 2010a) . That is, we replace the pointer values of HEAD and SEM HEAD features in non-terminal nodes with three labels: \"S\" for single daughter, \"L\" for the left-hand-side daughter, and \"R\" for the right-hand-side daughter. For example, for node c16 in Figure 1 , its HEAD and SEM HEAD will change from c18 to \"R\".",
                "cite_spans": [
                    {
                        "start": 69,
                        "end": 87,
                        "text": "(Wu et al., 2010a)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 333,
                        "end": 341,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Data structures",
                "sec_num": "2.2"
            },
            {
                "text": "We use the concept of minimum covering trees (MCT) defined in (Wu et al., 2010b) to guide the pre-ordering process. A MCT is a subtree of the original HPSG tree that takes a predicate node and its argument nodes as (new) leaf nodes. For example, as shown in the top-right corner of Figure 1 , the MCT of \"when\" (t0) and its argument nodes c3, c16 is \"c0(c1(c2(t0)c3)c16)\".",
                "cite_spans": [
                    {
                        "start": 62,
                        "end": 80,
                        "text": "(Wu et al., 2010b)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 282,
                        "end": 290,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Data structures",
                "sec_num": "2.2"
            },
            {
                "text": "Finally, the attributes in the nodes of an HPSG tree include: 1) pred: the PAS of a leaf node, 2) srcSpan: the index set of the source words that current node covers, 3) trgSpan: the index set of the target words that srcSpan aligned to, and 4) sr-cPhrase that stores the pre-ordered source phrase covered by current node.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data structures",
                "sec_num": "2.2"
            },
            {
                "text": "We express the idea for extracting PAS-based preordering rules by using the first word \"when\" of the English sentence in Figure 1 . Given the PAS information of \"when\" (t0) in the English side, we need to determine the target-side-order among t0 and its two arguments c16, c3. To achieve this, we compute the target spans of these three nodes by using current word alignment and then sort their target spans. Through referring to the word alignment shown in Figure 1 , we can collect the target spans which are {5}, {4,0,1,2,3,6,15}, and {7,8,9,10,11,12,13} respectively for t0, c3, and c16. However, we cannot sort these three spans since there are overlapping between the first two spans 3 . In order to solve this problem, we sort the spans in a heuristic way. Note that in c3's target span, five indices are smaller than 5 yet only two indices are larger than 5. Thus, we take {4,0,1,2,3,6,15} to be dominantly smaller than {5}. Now, we can determine the pre-order rule guided by the PAS of t0 to be \"t0 c3 c16 \u2192 c3 t0 c16\" and formally to be \"t0 0 c3 1 c16 2 \u2192 1 0 2\". Generally, we use the following heuristic rules to sort two spans, named span A and span B:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 121,
                        "end": 129,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 458,
                        "end": 466,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "\u2022 if more than half of numbers in A is bigger than the maximum number in B, or if more than half of numbers in B is smaller than the minimum number in A, then B < A;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "Algorithm 1 Pre-ordering Rule Extraction",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "Input: HPSG tree TE of an English sentence E, word alignment A Output: a pre-ordering rule set R 1: TE.localize() 2: TE.computeSpans(A) 3: for each leaf node t of TE do 4:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "if t.pred is opened and t.trgSpan != NULL then 5:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "Node[] args \u2190 TE.getArgs(t) 6:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "if all nodes in args are aligned then 7:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "int[] srcOrder \u2190 SORTSPANS(t.srcSpan, src-Spans of args) 8:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "int[] trgOrder \u2190 SORTSPANS(t.trgSpan, trgSpans of args) 9:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "R.add(< t, args, srcOrder, trgOrder>) 10:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "end if 11:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "end if 12: end for",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "\u2022 if more than half of numbers in B is bigger than the maximum number in A, or if more than half of numbers in A is smaller than the minimum number in B, then A < B.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "In case of a tie (e.g., A={3,4,7,8}, B={5,6}), we keep the original order of A and B in the sourceside sentence without any reordering. Algorithm 1 sketches the pre-ordering rule extraction algorithm guided by PASs. The algorithm collect pre-ordering rules through a traversal of the leaf nodes in an HPSG tree. A non-terminal node will not be accessed unless it is an argument of some predicate node(s). Thus, this algorithm runs in a time that is approximately linear to the number of leaf nodes in the tree, i.e., the number of words in the source sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "We define that a terminal node's PAS is opened if at least one of its arguments is neither empty nor unknown. We will not extract a pre-ordering rule if the terminal node is unaligned or any of its argument node is unaligned. These constraints are reflected by Line 4 and 6 in Algorithm 1. After heuristically sorting the source/target spans of a predicate node and its argument nodes, we finally extract a pre-ordering rule. Table 2 summarizes the PAS-based pre-ordering rules extracted from the example shown in Figure 1. Application of these pre-ordering rules to the original English sentence yields the following Japanese style sentence:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 426,
                        "end": 433,
                        "text": "Table 2",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 514,
                        "end": 520,
                        "text": "Figure",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "\u2022 the fluid pressure cylinder 31 is used when, fluid is gradually applied. Algorithm 2 sketches the algorithm for applying pre-ordering rules to a given HPSG tree T E . The algorithm contains three parts: rule matching (Lines 4-12), bottom-up rule applying (Lines 13-19), and sentence collecting (Lines 20-26). We first retrieve available pre-ordering rules from rule set R by a left-to-right traversal of the leaf nodes of T E . For each leaf node, we select one preordering rule with the highest frequency. Our experiments testified that this greedy rule selection strategy worked quite well. We selected 93% of the top frequent rule without facing a tie.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rule extraction algorithm",
                "sec_num": "2.3"
            },
            {
                "text": "The terminal node t, the argument nodes of t, and their source-side ordering are taken as the key for rule matching. Available rules will be assigned to the MCT of t. Then, we apply the available rules to the root nodes of each MCT through a bottom-up traversal of T E . A competitive problem is that, a non-terminal node can be shared by several MCTs. For example, node c3 and c18 (gray color) in Figure 1 are respectively shared by two MCTs (t6 and t7, t10 and t12). In order to avoid duplicated reordering of these nodes, we first pick the pre-ordering rule in which there are no \"gaps\" among the predicate words and argument phrases. For example, there is a gap (t6) between t7 and its argument node c4. We then pick a rule by frequency if there are still more than one rule available. Finally, after applying all available rules, we collect the pre-ordered source sentence from the root node of the HPSG tree.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 398,
                        "end": 406,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Applying pre-ordering rules",
                "sec_num": "2.4"
            },
            {
                "text": "We test our proposal by translating from English to Japanese. We use the NTCIR-9 English-Japanese patent corpus 4 as our experiment set. Since the reference set of the official test set has not been released yet, we instead split the original development set averagely into two parts, named dev.a and dev.b. In our experiments, we first take dev.a as our development set for minimum-error rate tuning (Och, 2003) and then report the final translation accuracies on dev.b. For direct comparison with other systems in the future, we use the configuration of the official baseline system 5 :",
                "cite_spans": [
                    {
                        "start": 401,
                        "end": 412,
                        "text": "(Och, 2003)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Setup",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Moses 6 : revision = \"3717\" as the baseline decoder. Note that we also train Moses using HFE sentences (Isozaki et al., 2010b) and the English sentences pre-ordered by PASs;",
                "cite_spans": [
                    {
                        "start": 105,
                        "end": 128,
                        "text": "(Isozaki et al., 2010b)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Setup",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 GIZA++: giza-pp-v1.0.3 7 (Och and Ney, 2003) for first training word alignment using the original English sentences for preordering rule extraction, and then for retrain- ing word alignments using the pre-ordered English sentences;",
                "cite_spans": [
                    {
                        "start": 27,
                        "end": 46,
                        "text": "(Och and Ney, 2003)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Setup",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 SRILM 8 (Stolcke, 2002) : version 1.5.12 for training a 5-gram language model using the target sentences in the total training set;",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 25,
                        "text": "(Stolcke, 2002)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Setup",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Additional scripts 9 : for preprocessing English sentences and cleaning up too long (# of words > 40) parallel sentences;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Setup",
                "sec_num": "3.1"
            },
            {
                "text": "\u2022 Japanese word segmentation: Mecab v0.98 10 with the dictionary of mecab-ipadic-2.7.0-20070801.tar.gz 11 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Setup",
                "sec_num": "3.1"
            },
            {
                "text": "The statistics of the filtered training set, dev.a, and dev.b are shown in Table 3 . The success parsing rate ranges from 98.7% to 99.3% by using Enju2.3.1. The averaged parsing time for each English sentence ranges from 0.30 to 0.48 seconds.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 75,
                        "end": 82,
                        "text": "Table 3",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Setup",
                "sec_num": "3.1"
            },
            {
                "text": "pre-ordering rules Figure 2 shows the number (natural log) of the 40 types of the PASs that appeared in the HPSG trees of the three experiment sets. Top five types of opened PASs include adj arg1, det arg1, prep arg12, noun arg1, and verb arg12. By comparing the distributions of the number of PASs in the three sets, we can see that the distributions approximately share the same tendency. Thus, the pre-ordering rules learned from the PASs in the training set can be expected to be properly applied in dev.a and dev.b. Besides, the statistics of the number of arguments for the predicate words is shown in Table  4 . From this table, we find that the ratio of the number of arguments in the three sets are approximately similar. In particular, nearly half of the predicate words have one argument. The number of predicate words that contain two arguments occurs around 30.0% of all the predicate words. Also, we can not extract pre-ordering rules from around 23.0% of the predicate words since they do not contain any arguments. Finally, less than 1% of predicate words contain three arguments and we only find one four-argument example of verb arg1234 in the training set. Now, in Table 5 , we show the statistics of predicate words in the training set for pre-ordering rule extraction. Of the 48.3 million English words in the training set, there are 45.6 million words (94.4%) that are included in the HPSG trees that were successfully generated. Then, in the PASs of these 45.6 million words, there are 35.0 million words whose PASs are opened. We also list the number (34.0 million) of aligned predicate words, since we only extract pre-ordering rules from predicate words that are aligned to some target word(s) in Algorithm 1. Finally, there are 89.1% of aligned predicate words that are aligned to contiguous target words.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 19,
                        "end": 27,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 608,
                        "end": 616,
                        "text": "Table  4",
                        "ref_id": "TABREF8"
                    },
                    {
                        "start": 1184,
                        "end": 1191,
                        "text": "Table 5",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Statistics of PASs and PAS-based",
                "sec_num": "3.2"
            },
            {
                "text": "In order to investigate the sub-categorization effectiveness of the syntactic features included in the pre-ordering rules, we pick four subsets of the total feature set (Table 1) . These feature subsets, named from PAS-a to PAS-d, are listed in Table  6 . Through the comparison of these four feature subsets, we also attempt to investigate the datasparseness problem of available pre-ordering rules cased by the factored features.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 169,
                        "end": 178,
                        "text": "(Table 1)",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 245,
                        "end": 253,
                        "text": "Table  6",
                        "ref_id": "TABREF11"
                    }
                ],
                "eq_spans": [],
                "section": "Statistics of PASs and PAS-based",
                "sec_num": "3.2"
            },
            {
                "text": "PAS-a includes all the syntactic features listed in Table 1 . In PAS-b, we only keep three features for the predicate word and one feature for the argu -0   2   4   6   8   10   12   14   16   18   adj_arg1  adj_arg12  adj_mod_arg1  adj_mod_arg12  app_arg12  aux_arg12  aux_mod_arg12  comp_arg1  comp_arg12  conj_arg1  conj_arg12  conj_arg123  coord_arg12  det_arg1  dtv_arg2  it_arg1  lgs_arg2  lparen_arg123  noun_arg0  noun_arg1  noun_arg12  noun_arg2  poss_arg12  poss_arg2  prep_arg12  prep_arg123  prep_mod_arg12  punct_arg1  quote_arg23  relative_arg1  relative_arg12  rparen_arg0  there_arg0  verb_arg1  verb_arg12  verb_arg123  verb_arg1234  verb_mod_arg1  verb_mod_arg12  verb_mod_arg123 train (ln) dev.a (ln) dev.b (ln) Table 6 : Feature subsets used in pre-ordering rules and statistics of the extraction and application of the pre-ordering rules under these feature subsets. ment nodes. We further remove one feature (CAT) of the predicate word in PAS-c. In the fourth subset PAS-d, we only use two features WORD and PRED in the predicate word for sub-categorizing pre-ordering rules. Thus, PAS-d is only related to PASs (which can be generated by any kinds of parser) since it does not include additional features generated by the typical HPSG parser.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 52,
                        "end": 59,
                        "text": "Table 1",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 152,
                        "end": 697,
                        "text": "-0   2   4   6   8   10   12   14   16   18   adj_arg1  adj_arg12  adj_mod_arg1  adj_mod_arg12  app_arg12  aux_arg12  aux_mod_arg12  comp_arg1  comp_arg12  conj_arg1  conj_arg12  conj_arg123  coord_arg12  det_arg1  dtv_arg2  it_arg1  lgs_arg2  lparen_arg123  noun_arg0  noun_arg1  noun_arg12  noun_arg2  poss_arg12  poss_arg2  prep_arg12  prep_arg123  prep_mod_arg12  punct_arg1  quote_arg23  relative_arg1  relative_arg12  rparen_arg0  there_arg0  verb_arg1  verb_arg12  verb_arg123  verb_arg1234  verb_mod_arg1  verb_mod_arg12  verb_mod_arg123",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 731,
                        "end": 738,
                        "text": "Table 6",
                        "ref_id": "TABREF11"
                    }
                ],
                "eq_spans": [],
                "section": "Statistics of PASs and PAS-based",
                "sec_num": "3.2"
            },
            {
                "text": "As the number of syntactic features decreases, more rules can be unified together. Thus, the number of pre-ordering rules and reordering rules, as shown in Table 7 shows the final translation accuracies under BLEU score (Papineni et al., 2002) and RIBES 12 , i.e., the software implementation of Normalized Kendall's \u03c4 as proposed by (Isozaki et al., 2010a) to automatically evaluate the translation between distant language pairs based on rank correlation coefficients and significantly penalizes word order mistakes. Making use of our preordered English sentences significantly (p < 0.01) improved BLEU scores from 2.47 (PAS-d) to 3.15 (PAS-a) points. The effectiveness of our proposal for tackling word-ordering problem can also be proved by comparing the scores of RIBES. In addition, the accuracies change slightly among using the four types of pre-ordering rules. Among PAS-a, PAS-b, and PAS-c, we did significant test and could not differ them under p < 0.01 or p < 0.05. The only significant difference Table 8 : Translation accuracies by combining HFE and PAS based pre-ordering approach.",
                "cite_spans": [
                    {
                        "start": 220,
                        "end": 243,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 334,
                        "end": 357,
                        "text": "(Isozaki et al., 2010a)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 156,
                        "end": 163,
                        "text": "Table 7",
                        "ref_id": "TABREF12"
                    },
                    {
                        "start": 1011,
                        "end": 1018,
                        "text": "Table 8",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Statistics of PASs and PAS-based",
                "sec_num": "3.2"
            },
            {
                "text": "(p < 0.05) appeared between PAS-a and PAS-d. Thus, we argue that the factored syntactic features such as WORD, PRED, and CAT are more essential for sub-categorizing pre-ordering rules than the remaining syntactic features.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "3.3"
            },
            {
                "text": "As former mentioned, we also take the language-dependent HFE approach (Isozaki et al., 2010b) as another baseline. Note that word alignment was retrained using head-finalized English sentences and Japanese sentences in this HFE approach. Through comparing the HFE results listed in Table 8 , we observe that the results are comparable between PAS-a and HFE: HFE is slightly better under BLEU score and PAS-a is slightly better under RIBES score.",
                "cite_spans": [
                    {
                        "start": 70,
                        "end": 93,
                        "text": "(Isozaki et al., 2010b)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 282,
                        "end": 289,
                        "text": "Table 8",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "3.3"
            },
            {
                "text": "Since similar HPSG parser (Enju) yet different linguistic information (syntactic head information vs. PASs) are used in HFE approach and our proposal. A straightforward question is whether we can combine these approaches together. Under this motivation, we select a better pre-ordered English sentence generated by the HFE method and our PAS-based method. Following (Genzel, 2010) , we use crossing score as the metric for sentence selection. Crossing score is the number of crossing alignment links for a given aligned sentence pair. For monotonic alignments without reordering, crossing score is zero. During selection, we found that nearly 10% of the pre-ordered English sentences yielded by head-finalization and PAS-based methods were similar. In addition, among the different sentences, around 30% of PAS-based pre-ordering sentences were selected. Since we can not compute crossing score in the development/test sets, we instead take both kinds of pre-ordered English sentences as inputs and pick one output with a higher translation score.",
                "cite_spans": [
                    {
                        "start": 366,
                        "end": 380,
                        "text": "(Genzel, 2010)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "3.3"
            },
            {
                "text": "The translation result based on this reselection approach is shown in Table 8 . Compared with HFE approach, the reselection approach significantly (p < 0.01) improved BLEU scores of from 1.22 (PAS-d) to 1.68 (PAS-b) points. These interesting results reflect that syntactic head infor- mation and PASs describe the linguistic information of an English sentence in different aspects. Furthermore, compared with the single headfinalization rule, the automatically extracted preordering rules kept the variety of word-ordering by dynamically inferring the word order of target sentences and thus enlarged the reordering space.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 70,
                        "end": 77,
                        "text": "Table 8",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "3.3"
            },
            {
                "text": "In order to investigate how closely the pre-ordered English sentences follow target language word order, we measured Kendall's \u03c4 (Kendall, 1948) , a rank correlation coefficient, as shown in Table 9 . We exactly follow Isozaki et al. (2010b) to compute Kendall's \u03c4 . From Table 9 , we can see that the quality of word alignments approximately reflects the final BLEU scores listed in Table 7 and 8.",
                "cite_spans": [
                    {
                        "start": 129,
                        "end": 144,
                        "text": "(Kendall, 1948)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 219,
                        "end": 241,
                        "text": "Isozaki et al. (2010b)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 191,
                        "end": 198,
                        "text": "Table 9",
                        "ref_id": "TABREF15"
                    },
                    {
                        "start": 272,
                        "end": 279,
                        "text": "Table 9",
                        "ref_id": "TABREF15"
                    },
                    {
                        "start": 384,
                        "end": 391,
                        "text": "Table 7",
                        "ref_id": "TABREF12"
                    }
                ],
                "eq_spans": [],
                "section": "Alignment comparison",
                "sec_num": "3.4"
            },
            {
                "text": "We have proposed a pre-ordering approach by making use of predicate argument structures. The pre-ordering rules record the relative source-target position mapping among predicate words and their argument phrases. We first proposed an algorithm for automatically extracting these lexical pre-ordering rules from aligned HPSG-tree-tostring pairs. Then, we apply these pre-ordering rules to HPSG trees to yield pre-ordered source sentences that follow the word order of target sentences. Finally, we do word alignment again by using the pre-ordered source sentences together with the original target sentences. Employing Moses , our proposal significantly improved 2.47\u223c3.15 BLEU points compared with using the original English sentences. Combining with the HFE approach (Isozaki et al., 2010b) , our approach significantly and impressively improved 5.29 points of BLEU score from 0.2773 to 0.3302. We finally argue that our proposal is not difficult to be implemented and can be easily applied to translate English into other languages.",
                "cite_spans": [
                    {
                        "start": 768,
                        "end": 791,
                        "text": "(Isozaki et al., 2010b)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "4"
            },
            {
                "text": "These word alignments are gained by running GIZA++(Och and Ney, 2003) on the original parallel sentences.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In this example, the overlapping is caused by the wrong/ambiguous alignments between \"used\" and \"naru15\", and between \"is\" and \"ha6\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://ntcir.nii.ac.jp/PatentMT/ 5 http://ntcir.nii.ac.jp/PatentMT/baselineSystems 6 http://www.statmt.org/moses/ 7 http://giza-pp.googlecode.com/files/giza-pp-v1.0.3.tar.gz",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.speech.sri.com/projects/srilm/ 9 http://homepages.inf.ed.ac.uk/jschroe1/howto/scripts.tgz 10 http://sourceforge.net/projects/mecab/files/ 11 http://sourceforge.net/projects/mecab/files/mecabipadic/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Code available at http://www.kecl.ntt.co.jp/icl/lirg/ribes",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "The mathematics of statistical machine translation: parameter estimation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Peter",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "Della"
                        ],
                        "last": "Vincent",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [
                            "A"
                        ],
                        "last": "Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [
                            "L"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mercer",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Computational Linguistics",
                "volume": "19",
                "issue": "2",
                "pages": "263--311",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. 1993. The mathematics of statistical machine translation: parameter estimation. Computational Linguistics, 19(2):263-311.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A hierarchical phrase-based model for statistical machine translation",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Chiang",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc.of ACL",
                "volume": "",
                "issue": "",
                "pages": "263--270",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Chiang. 2005. A hierarchical phrase-based model for statistical machine translation. In Proc.of ACL, pages 263-270.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Clause restructuring for statistical machine translation",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Ivona",
                        "middle": [],
                        "last": "Kucerova",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc.of ACL",
                "volume": "",
                "issue": "",
                "pages": "531--540",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael Collins, Philipp Koehn, and Ivona Kucerova. 2005. Clause restructuring for statistical machine translation. In Proc.of ACL, pages 531-540.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "What's in a translation rule",
                "authors": [
                    {
                        "first": "Michel",
                        "middle": [],
                        "last": "Galley",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Hopkins",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Marcu",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc.of HLT-NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. 2004. What's in a translation rule? In Proc.of HLT-NAACL.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Automatically learning sourceside reordering rules for large scale machine translation",
                "authors": [
                    {
                        "first": "Dmitriy",
                        "middle": [],
                        "last": "Genzel",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proc.of COLING",
                "volume": "",
                "issue": "",
                "pages": "376--384",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dmitriy Genzel. 2010. Automatically learning source- side reordering rules for large scale machine transla- tion. In Proc.of COLING, pages 376-384.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Automatic evaluation of translation quality for distant language pairs",
                "authors": [
                    {
                        "first": "Hideki",
                        "middle": [],
                        "last": "Isozaki",
                        "suffix": ""
                    },
                    {
                        "first": "Tsutomu",
                        "middle": [],
                        "last": "Hirao",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Duh",
                        "suffix": ""
                    },
                    {
                        "first": "Katsuhito",
                        "middle": [],
                        "last": "Sudoh",
                        "suffix": ""
                    },
                    {
                        "first": "Hajime",
                        "middle": [],
                        "last": "Tsukada",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proc.of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "944--952",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh, and Hajime Tsukada. 2010a. Automatic evaluation of translation quality for distant language pairs. In Proc.of EMNLP, pages 944-952.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Head finalization: A simple reordering rule for sov languages",
                "authors": [
                    {
                        "first": "Hideki",
                        "middle": [],
                        "last": "Isozaki",
                        "suffix": ""
                    },
                    {
                        "first": "Katsuhito",
                        "middle": [],
                        "last": "Sudoh",
                        "suffix": ""
                    },
                    {
                        "first": "Hajime",
                        "middle": [],
                        "last": "Tsukada",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Duh",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proc.of WMT-MetricsMATR",
                "volume": "",
                "issue": "",
                "pages": "244--251",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hideki Isozaki, Katsuhito Sudoh, Hajime Tsukada, and Kevin Duh. 2010b. Head finalization: A simple reordering rule for sov languages. In Proc.of WMT- MetricsMATR, pages 244-251.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Syntactic reordering in preprocessing for japanese-english translation: Mit system description for ntcir-7 patent translation task",
                "authors": [
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Katz-Brown",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc.of NTCIR-7 Workshop Meeting",
                "volume": "",
                "issue": "",
                "pages": "409--414",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jason Katz-Brown and Michael Collins. 2007. Syntac- tic reordering in preprocessing for japanese-english translation: Mit system description for ntcir-7 patent translation task. In Proc.of NTCIR-7 Workshop Meeting, pages 409-414.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Rank Correlation Methods",
                "authors": [
                    {
                        "first": "Maurice",
                        "middle": [],
                        "last": "Kendall",
                        "suffix": ""
                    }
                ],
                "year": 1948,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maurice Kendall. 1948. Rank Correlation Methods. Charles Griffin.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Moses: Open source toolkit for statistical machine translation",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Hieu",
                        "middle": [],
                        "last": "Hoang",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Birch",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Callison-Burch",
                        "suffix": ""
                    },
                    {
                        "first": "Marcello",
                        "middle": [],
                        "last": "Federico",
                        "suffix": ""
                    },
                    {
                        "first": "Nicola",
                        "middle": [],
                        "last": "Bertoldi",
                        "suffix": ""
                    },
                    {
                        "first": "Brooke",
                        "middle": [],
                        "last": "Cowan",
                        "suffix": ""
                    },
                    {
                        "first": "Wade",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "the ACL 2007 Demo-Poster",
                "volume": "",
                "issue": "",
                "pages": "177--180",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ond\u0159ej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In the ACL 2007 Demo-Poster, pages 177-180.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Phrase reordering for statistical machine translation based on predicate-argument structure",
                "authors": [
                    {
                        "first": "Mamoru",
                        "middle": [],
                        "last": "Komachi",
                        "suffix": ""
                    },
                    {
                        "first": "Masaaki",
                        "middle": [],
                        "last": "Nagata",
                        "suffix": ""
                    },
                    {
                        "first": "Yuji",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc.of IWSLT",
                "volume": "",
                "issue": "",
                "pages": "77--82",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mamoru Komachi, Masaaki Nagata, and Yuji Mat- sumoto. 2006. Phrase reordering for statistical ma- chine translation based on predicate-argument struc- ture. In Proc.of IWSLT, pages 77-82.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Local phrase reordering models for statistical machine translation",
                "authors": [
                    {
                        "first": "Shankar",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Byrne",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc.of HLT-EMNLP",
                "volume": "",
                "issue": "",
                "pages": "161--168",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shankar Kumar and William Byrne. 2005. Lo- cal phrase reordering models for statistical machine translation. In Proc.of HLT-EMNLP, pages 161- 168.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Treeto-string alignment templates for statistical machine transaltion",
                "authors": [
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Qun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Shouxun",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc.of COLING-ACL",
                "volume": "",
                "issue": "",
                "pages": "609--616",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree- to-string alignment templates for statistical machine transaltion. In Proc.of COLING-ACL, pages 609- 616, Sydney, Australia.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Feature forest models for probabilistic hpsg parsing",
                "authors": [
                    {
                        "first": "Yusuke",
                        "middle": [],
                        "last": "Miyao",
                        "suffix": ""
                    },
                    {
                        "first": "Jun'ichi",
                        "middle": [],
                        "last": "Tsujii",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Computational Lingustics",
                "volume": "34",
                "issue": "1",
                "pages": "35--80",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yusuke Miyao and Jun'ichi Tsujii. 2008. Feature for- est models for probabilistic hpsg parsing. Computa- tional Lingustics, 34(1):35-80.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A systematic comparison of various statistical alignment models",
                "authors": [
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Franz",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Computational Linguistics",
                "volume": "29",
                "issue": "1",
                "pages": "19--51",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Franz Josef Och and Hermann Ney. 2003. A sys- tematic comparison of various statistical alignment models. Computational Linguistics, 29(1):19-51.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Minimum error rate training in statistical machine translation",
                "authors": [
                    {
                        "first": "Franz Josef",
                        "middle": [],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc.of ACL",
                "volume": "",
                "issue": "",
                "pages": "160--167",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Franz Josef Och. 2003. Minimum error rate training in statistical machine translation. In Proc.of ACL, pages 160-167.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc.of ACL",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. Bleu: a method for automatic eval- uation of machine translation. In Proc.of ACL, pages 311-318.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Head-Driven Phrase Structure Grammar",
                "authors": [
                    {
                        "first": "Carl",
                        "middle": [],
                        "last": "Pollard",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [
                            "A"
                        ],
                        "last": "Sag",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Carl Pollard and Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar. University of Chicago Press.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Word reordering in statistical machine translation with a pos-based distortion model",
                "authors": [
                    {
                        "first": "Kay",
                        "middle": [],
                        "last": "Rottmann",
                        "suffix": ""
                    },
                    {
                        "first": "Stephan",
                        "middle": [],
                        "last": "Vogel",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc.of TMI",
                "volume": "",
                "issue": "",
                "pages": "171--180",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kay Rottmann and Stephan Vogel. 2007. Word re- ordering in statistical machine translation with a pos-based distortion model. In Proc.of TMI, pages 171-180, Skovde, Sweden.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Srilm-an extensible language modeling toolkit",
                "authors": [
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Stolcke",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc.of ICSLP",
                "volume": "",
                "issue": "",
                "pages": "901--904",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andreas Stolcke. 2002. Srilm-an extensible language modeling toolkit. In Proc.of ICSLP, pages 901-904.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "A unigram orientation model for statistical machine translation",
                "authors": [
                    {
                        "first": "Christoph",
                        "middle": [],
                        "last": "Tillman",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "101--104",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christoph Tillman. 2004. A unigram orienta- tion model for statistical machine translation. In Daniel Marcu Susan Dumais and Salim Roukos, ed- itors, HLT-NAACL 2004, pages 101-104.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Hmm-based word alignment in statistical translation",
                "authors": [
                    {
                        "first": "Stephan",
                        "middle": [],
                        "last": "Vogel",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    },
                    {
                        "first": "Christoph",
                        "middle": [],
                        "last": "Tillmann",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "COLING",
                "volume": "",
                "issue": "",
                "pages": "836--841",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stephan Vogel, Hermann Ney, and Christoph Tillmann. 1996. Hmm-based word alignment in statistical translation. In COLING, pages 836-841.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Chinese syntactic reordering for statistical machine translation",
                "authors": [
                    {
                        "first": "Chao",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc.of EMNLP-CoNLL",
                "volume": "",
                "issue": "",
                "pages": "737--745",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chao Wang, Michael Collins, and Philipp Koehn. 2007. Chinese syntactic reordering for statistical machine translation. In Proc.of EMNLP-CoNLL, pages 737-745.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Fine-grained tree-to-string translation rule extraction",
                "authors": [
                    {
                        "first": "Xianchao",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Takuya",
                        "middle": [],
                        "last": "Matsuzaki",
                        "suffix": ""
                    },
                    {
                        "first": "Jun'ichi",
                        "middle": [],
                        "last": "Tsujii",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proc.of the 48th ACL",
                "volume": "",
                "issue": "",
                "pages": "325--334",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xianchao Wu, Takuya Matsuzaki, and Jun'ichi Tsujii. 2010a. Fine-grained tree-to-string translation rule extraction. In Proc.of the 48th ACL, pages 325-334.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Improve syntax-based translation using deep syntactic structures. Machine Translation (Special Issue : Pushing the frontiers of SMT)",
                "authors": [
                    {
                        "first": "Xianchao",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Takuya",
                        "middle": [],
                        "last": "Matsuzaki",
                        "suffix": ""
                    },
                    {
                        "first": "Jun'ichi",
                        "middle": [],
                        "last": "Tsujii",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "",
                "volume": "24",
                "issue": "",
                "pages": "141--157",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xianchao Wu, Takuya Matsuzaki, and Jun'ichi Tsujii. 2010b. Improve syntax-based translation using deep syntactic structures. Machine Translation (Special Issue : Pushing the frontiers of SMT), 24(2):141- 157.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Improving a statistical mt system with automatically learned rewrite patterns",
                "authors": [
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Xia",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Mccord",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc.of COLING",
                "volume": "",
                "issue": "",
                "pages": "508--514",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fei Xia and Michael McCord. 2004. Improving a sta- tistical mt system with automatically learned rewrite patterns. In Proc.of COLING, pages 508-514.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Maximum entropy based phrase reordering model for statistical machine translation",
                "authors": [
                    {
                        "first": "Deyi",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "Qun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Shouxun",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc.of COLING-ACL",
                "volume": "",
                "issue": "",
                "pages": "521--528",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Deyi Xiong, Qun Liu, and Shouxun Lin. 2006. Maxi- mum entropy based phrase reordering model for sta- tistical machine translation. In Proc.of COLING- ACL, pages 521-528.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Using a dependency parser to improve smt for subject-object-verb languages",
                "authors": [
                    {
                        "first": "Peng",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Jaeho",
                        "middle": [],
                        "last": "Kang",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Ringgaard",
                        "suffix": ""
                    },
                    {
                        "first": "Franz",
                        "middle": [],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proc.of HLT-NAACL",
                "volume": "",
                "issue": "",
                "pages": "245--253",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Peng Xu, Jaeho Kang, Michael Ringgaard, and Franz Och. 2009. Using a dependency parser to improve smt for subject-object-verb languages. In Proc.of HLT-NAACL, pages 245-253.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "Illustration of a word-aligned HPSG-tree-to-string pair for English-to-Japanese translation."
            },
            "FIGREF1": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "Number (natural log) of the types of the PASs that appeared in the experiment sets."
            },
            "TABREF2": {
                "num": null,
                "text": "",
                "type_str": "table",
                "html": null,
                "content": "<table/>"
            },
            "TABREF4": {
                "num": null,
                "text": "",
                "type_str": "table",
                "html": null,
                "content": "<table><tr><td>: PAS-based pre-ordering rules extracted</td></tr><tr><td>from the example shown in Figure 1. We use real</td></tr><tr><td>words instead of predicate nodes here for intuitive</td></tr><tr><td>understanding.</td></tr><tr><td>Algorithm 2 Pre-ordering Rule Application</td></tr><tr><td>1: TE.localize() 2: TE.computeSrcSpans() 3: mct rule \u2190 {} 4: for each leaf node t of TE do 5: Node[] args \u2190 TE.getArgs(t) 6: int[] srcOrder \u2190 SORTSPANS(t.srcSpan, srcSpans of args) 7: Rule r \u2190RULEMATCH(R, &lt; t, args, srcOrder&gt;) 8: if r != NULL then 9: mct \u2190 TE.MCT(t, args) 10: mct rule.add(&lt;mct, r &gt;) 11: end if 12: end for 13: for each mct in mct rule in a bottom-up order do 14: Rule r \u2190 mct rule.get(mct) 15: mct.root().srcPhrase \u2190 '' \u25c3 root() returns root node 16: for i from 0 to r.trgOrder.length-1 do 17: mct.root().srcPhrase += ' ' + mct.leaves() [r.trgOrder[i]].srcPhrase 18: end for 19: end for 20: for each node n in TE in a topological order do 21: if n is a terminal node then 22: n.srcPhrase \u2190 E[n.srcSpan[0]] 23: else if n.srcPhrase = NULL then 24: n.srcPhrase \u2190 CONNECT(n.children().srcPhrase) 25: end if 26: end for</td></tr></table>"
            },
            "TABREF6": {
                "num": null,
                "text": "Statistics of the experiment sets.",
                "type_str": "table",
                "html": null,
                "content": "<table/>"
            },
            "TABREF8": {
                "num": null,
                "text": "Statistics of the number of arguments of the predicate words in the experiment sets.",
                "type_str": "table",
                "html": null,
                "content": "<table><tr><td>Number</td><td>Ratio</td></tr><tr><td colspan=\"2\">Parse success 45,617,387 94.4% Opened 35,004,893 76.7% Aligned 33,966,923 97.0% Contiguous 30,256,858 89.1%</td></tr></table>"
            },
            "TABREF9": {
                "num": null,
                "text": "Statistics of predicate words in the training set for rule extraction.",
                "type_str": "table",
                "html": null,
                "content": "<table/>"
            },
            "TABREF11": {
                "num": null,
                "text": "",
                "type_str": "table",
                "html": null,
                "content": "<table><tr><td>, also decreases. The number</td></tr><tr><td>of reordering rules occurs from 25.1% (PAS-d) to</td></tr><tr><td>38.2% (PAS-a) in the pre-ordering rules. For each</td></tr><tr><td>English sentence in the training set, there are aver-</td></tr><tr><td>agely 12 reordering rules (instead of monotonic</td></tr></table>"
            },
            "TABREF12": {
                "num": null,
                "text": "",
                "type_str": "table",
                "html": null,
                "content": "<table><tr><td>: Translation accuracies by using the orig-</td></tr><tr><td>inal English sentences or the pre-ordered English</td></tr><tr><td>sentences under four types of pre-ordering rules.</td></tr><tr><td>pre-ordering rules) available under either of the</td></tr><tr><td>four feature subsets. For each English sentence in</td></tr><tr><td>dev.a and dev.b, the number of available reorder-</td></tr><tr><td>ing rules is averagely 16. Around 99.1%, 99.0%,</td></tr><tr><td>and 98.6% English sentences were respectively re-</td></tr><tr><td>ordered in the training set, dev.a set, and dev.b set.</td></tr></table>"
            },
            "TABREF13": {
                "num": null,
                "text": ".7379 11.0% 34.7% HFE+PAS-b 0.3302 0.7397 12.3% 32.8% HFE+PAS-c 0.3300 0.7380 10.8% 35.0% HFE+PAS-d 0.3256 0.7337 11.5% 32.8%",
                "type_str": "table",
                "html": null,
                "content": "<table><tr><td colspan=\"3\">Source sent. BLEU RIBES Same</td><td>PAS</td></tr><tr><td>HFE HFE+PAS-a</td><td>0.3134 0.7370 0.3278 0</td><td>-</td><td>-</td></tr></table>"
            },
            "TABREF15": {
                "num": null,
                "text": "Comparison of Kendall's \u03c4 .",
                "type_str": "table",
                "html": null,
                "content": "<table/>"
            }
        }
    }
}