File size: 103,853 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
{
    "paper_id": "I08-1044",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:42:31.079932Z"
    },
    "title": "A Framework Based on Graphical Models with Logic for Chinese Named Entity Recognition *",
    "authors": [
        {
            "first": "Xiaofeng",
            "middle": [],
            "last": "Yu",
            "suffix": "",
            "affiliation": {
                "laboratory": "Information Systems Laboratory",
                "institution": "The Chinese University of Hong Kong Shatin",
                "location": {
                    "settlement": "Hong Kong",
                    "region": "N.T"
                }
            },
            "email": "xfyu@se.cuhk.edu.hk"
        },
        {
            "first": "Wai",
            "middle": [],
            "last": "Lam",
            "suffix": "",
            "affiliation": {
                "laboratory": "Information Systems Laboratory",
                "institution": "The Chinese University of Hong Kong Shatin",
                "location": {
                    "settlement": "Hong Kong",
                    "region": "N.T"
                }
            },
            "email": "wlam@se.cuhk.edu.hk"
        },
        {
            "first": "Shing-Kit",
            "middle": [],
            "last": "Chan",
            "suffix": "",
            "affiliation": {
                "laboratory": "Information Systems Laboratory",
                "institution": "The Chinese University of Hong Kong Shatin",
                "location": {
                    "settlement": "Hong Kong",
                    "region": "N.T"
                }
            },
            "email": "skchan@se.cuhk.edu.hk"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Chinese named entity recognition (NER) has recently been viewed as a classification or sequence labeling problem, and many approaches have been proposed. However, they tend to address this problem without considering linguistic information in Chinese NEs. We propose a new framework based on probabilistic graphical models with firstorder logic for Chinese NER. First, we use Conditional Random Fields (CRFs), a standard and theoretically well-founded machine learning method based on undirected graphical models as a base system. Second, we introduce various types of domain knowledge into Markov Logic Networks (MLNs), an effective combination of first-order logic and probabilistic graphical models for validation and error correction of entities. Experimental results show that our framework of probabilistic graphical models with first-order logic significantly outperforms the state-of-the-art models for solving this task.",
    "pdf_parse": {
        "paper_id": "I08-1044",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Chinese named entity recognition (NER) has recently been viewed as a classification or sequence labeling problem, and many approaches have been proposed. However, they tend to address this problem without considering linguistic information in Chinese NEs. We propose a new framework based on probabilistic graphical models with firstorder logic for Chinese NER. First, we use Conditional Random Fields (CRFs), a standard and theoretically well-founded machine learning method based on undirected graphical models as a base system. Second, we introduce various types of domain knowledge into Markov Logic Networks (MLNs), an effective combination of first-order logic and probabilistic graphical models for validation and error correction of entities. Experimental results show that our framework of probabilistic graphical models with first-order logic significantly outperforms the state-of-the-art models for solving this task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Named entity recognition (NER) is the task of identifying and classifying phrases that denote certain types of named entities (NEs), such as person names (PERs), locations (LOCs) and organizations (ORGs) in text documents. It is a well-established task in the NLP and data mining communities and is regarded as crucial technology for many higher-level applications, such as information extraction, question answering, information retrieval and knowledge management. The NER problem has generated much interest and great progress has been made, as evidenced by its inclusion as an understanding task to be evaluated in the * The work described in this paper is substantially supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region, China (Project Nos: CUHK 4179/03E and CUHK4193/04E) and the Direct Grant of the Faculty of Engineering, CUHK (Project Codes: 2050363 and 2050391) . This work is also affiliated with the Microsoft-CUHK Joint Laboratory for Human-centric Computing and Interface Technologies.",
                "cite_spans": [
                    {
                        "start": 865,
                        "end": 919,
                        "text": "Engineering, CUHK (Project Codes: 2050363 and 2050391)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Message Understanding Conference (MUC), the Multilingual Entity Task (MET) evaluations, and the Conference on Computational Natural Language Learning (CoNLL).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Compared to European-language NER, Chinese NER seems to be more difficult (Yu et al., 2006) . Recent approaches to Chinese NER are a shift away from manually constructed rules or finite state patterns towards machine learning or statistical methods. However, rulebased NER systems lack robustness and portability. Statistical methods often suffer from the problem of data sparsity, and machine learning approaches (e.g., Hidden Markov Models (HMMs) (Bikel et al., 1999; Zhou and Su, 2002) , Support Vector Machines (SVMs) (Isozaki and Kazawa, 2002) , Maximum Entropy (MaxEnt) (Borthwick, 1999; Chieu and Ng, 2003) , Transformation-based Learning (TBL) (Brill, 1995) or variants of them) might be unsatisfactory to learn linguistic information in Chinese NEs. Current state-of-the-art models often view Chinese NER as a classification or sequence labeling problem without considering the linguistic and structural information in Chinese NEs. They assume that entities are independent, however in most cases this assumption does not hold because of the existing relationships among the entities. They seek to locate and identify named entities in text by sequentially classifying tokens (words or characters) as to whether or not they participate in an NE, which is sometimes prone to noise and errors.",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 91,
                        "text": "(Yu et al., 2006)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 449,
                        "end": 469,
                        "text": "(Bikel et al., 1999;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 470,
                        "end": 488,
                        "text": "Zhou and Su, 2002)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 522,
                        "end": 548,
                        "text": "(Isozaki and Kazawa, 2002)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 576,
                        "end": 593,
                        "text": "(Borthwick, 1999;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 594,
                        "end": 613,
                        "text": "Chieu and Ng, 2003)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 652,
                        "end": 665,
                        "text": "(Brill, 1995)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In fact, Chinese NEs have distinct linguistic characteristics in their composition and human beings usually use prior knowledge to recognize NEs. For example, about 365 of the highest frequently used surnames cover 99% Chinese surnames (Sun et al., 1995) . Some LOCs contain location salient words, while some ORGs contain organization salient words. For the LOC \"lA\u00ab/Hong Kong Special Region\", \"l/Hong Kong\" is the name part and \"A\u00ab/Special Region\" is the salient word. For the ORG \"lA\u00ab?/Hong Kong Special Region Government\", \"l/Hong Kong\" is the LOC name part, \"A\u00ab/Special Region\" is the LOC salient word and \"?/Government\" is the ORG salient word. Some ORGs contain one or more PERs, LOCs and ORGs. A more complex exam-ple is the nested ORG \" \u00ae\u00bd\u00b0D\u00abuAEO \u00c5AE/School of Computer Science, Tsinghua University, Haidian District, Beijing City\" which contains two ORGs \"uAE/Tsinghua University\" and \"O\u00c5AE /School of Computer Science\" and two LOCs \" \u00ae \u00bd/Beijing City\" and \"\u00b0D\u00ab/Haidian District\". The two ORGs contain ORG salient words \"AE/University\" and \"AE/School\", while the two LOCs contain LOC salient words \"\u00bd/City\" and \"\u00ab/District\" respectively.",
                "cite_spans": [
                    {
                        "start": 236,
                        "end": 254,
                        "text": "(Sun et al., 1995)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Inspired by the above observation, we propose a new framework based on probabilistic graphical models with first-order logic which treats Chinese NER 1 as a statistical relational learning (SRL) problem and makes use of domain knowledge. First, we employ Conditional Random Fields (CRFs), a discriminatively trained undirected graphical model which has theoretical justification and has been shown to be an effective approach to segmenting and labeling sequence data, as our base system. We then exploit a variety of domain knowledge into Markov Logic Networks (MLNs), a powerful combination of logic and probability, to validate and correct errors made in the base system. We show how a variety of domain knowledge can be formulated as first-order logic and incorporated into MLNs. We use three Markov chain Monte Carlo (MCMC) algorithms, including Gibbs sampling, Simulated Tempering, as well as MC-SAT, and Maximum a posteriori/Most Probable Explanation (MAP/MPE) algorithm for probabilistic inference in MLNs. Experimental results show that our framework based on graphical models with logic yields substantially better NER results, leading to a relative error reduction of up to 23.75% on the F-measure over state-of-the-art models. McNemar's tests confirm that the improvements we obtained are statistically highly significant. (Lafferty et al., 2001) are undirected graphical models trained to maximize the conditional probability of the desired outputs given the corresponding inputs. CRFs have the great flexibility to encode a wide variety of arbitrary, non-independent features and to straightforwardly combine rich domain knowledge. Furthermore, they are discriminatively trained, and are often more accurate than generative models, even with the same features. CRFs have been successfully applied to a number of real-world tasks, including NP chunking (Sha and Pereira, 2003) , Chinese word segmentation , information extraction (Pinto et al., 2003; , named entity identification (Mc-Callum and Li, 2003; Settles, 2004) , and many others.",
                "cite_spans": [
                    {
                        "start": 1334,
                        "end": 1357,
                        "text": "(Lafferty et al., 2001)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 1865,
                        "end": 1888,
                        "text": "(Sha and Pereira, 2003)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 1942,
                        "end": 1962,
                        "text": "(Pinto et al., 2003;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 1993,
                        "end": 2017,
                        "text": "(Mc-Callum and Li, 2003;",
                        "ref_id": null
                    },
                    {
                        "start": 2018,
                        "end": 2032,
                        "text": "Settles, 2004)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Recently, CRFs have been shown to perform exceptionally well on Chinese NER shared task on the third SIGHAN Chinese language processing bakeoff (SIGHAN-06) (Zhou et al., 2006; Chen et al., 2006b,a) . We follow the state-of-the-art CRF models using features that have been shown to be very effective in Chinese NER, namely the current character and its part-of-speech (POS) tag, several characters surrounding (both before and after) the current character and their POS tags, current word and several words surrounding the current word.",
                "cite_spans": [
                    {
                        "start": 156,
                        "end": 175,
                        "text": "(Zhou et al., 2006;",
                        "ref_id": null
                    },
                    {
                        "start": 176,
                        "end": 197,
                        "text": "Chen et al., 2006b,a)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We also observe some important issues that significantly influence the performance as follows: Window size: The primitive window size we use is 5 ( 2 characters preceding the current character and 2 following the current character). We extend the window size to 7 but find that it slightly hurts. The reason is that CRFs can deal with non-independent features. A larger window size may introduce noisy and irrelevant features. Feature representation: For character features, we use character identities. For word features, BIES representation (each character is beginning of a word, inside of a word, end of a word, or a single word) is employed. Labeling scheme: The labeling scheme can be BIO, BIOE or BIOES representation. In BIO representation, each character is tagged as either the beginning of a named entity (B), a character inside a named entity (I), or a character outside a named entity (O). In BIOE, the last character in an entity is labeled as E while in BIOES, single-character entities are labeled as S. In general, BIOES representation is more informative and yields better results than both BIO and BIOE.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Even though the CRF model is able to accommodate a large number of well-engineered features which can be easily obtained across languages, some NEs, especially LOCs and ORGs are difficult to identify due to the lack of linguistic or structural characteristics. Since predictions are made token by token, some typical and serious tagging errors are still made, as shown below:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "2.2"
            },
            {
                "text": "\u2022 ORG is incorrectly tagged as LOC: In Chinese, many",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "2.2"
            },
            {
                "text": "ORGs contain location information. The CRF model only tags the location information (in the ORGs) as LOCs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "2.2"
            },
            {
                "text": "For example, \"/ \u00ecn\u00f3AE/Tangshan Technical Institute\" and \"\u00b0H/Hainan Provincial Committee \" are ORGs and they contain LOCs \"/\u00ec/Tangshan\" and \"\u00b0H /Hainan Province\", respectively. \"/\u00ec/Tangshan\" and \"\u00b0H/Hainan Province\" are only incorrectly tagged as LOCs. This affects the tagging performance of both ORGs and LOCs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "2.2"
            },
            {
                "text": "\u2022 LOC is incorrectly tagged as ORG: The LOCs \"GZy\u00ec /Sydney Opera\" and \"\u00aeN,/Beijing Gymnasium\" are mistakenly tagged as ORGs by the CRF model without taking into account the location salient words \"y \u00ec /Opera\" and \"N,/Gymnasium\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "2.2"
            },
            {
                "text": "\u2022 The boundary of entity is tagged incorrectly: This mistake occurs for all the entities. For example, the PER \")0\u2022\u00b0d/Tom Cruise\" may be tagged as a PER \") 0/Tom\"; the LOC \"\u00d8 5r/Bremen\" may be tagged as a LOC \"5r/Laimei\", which is a meaningless word; the ORG \"u\u00fai/Huawei Corporation\" may be tagged as an ORG \"u/Huawei\". The reasons for these errors are both complicated and varied. However, some of them are related to linguistic knowledge.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "2.2"
            },
            {
                "text": "\u2022 Common nouns are incorrectly tagged as entities: For example, the two common nouns \"y\u00eaAE/Modern Mathematics\" and \"=\u00ac\u00c5\u00ac/Galanz Microwave Oven\" may be improperly tagged as a LOC and an ORG. Some tagging errors could be easily rectified. Take the erroneous ORG \"\u00bd| \u00a7/City Committee Organizes,\" for example, intuitively it is not an ORG since an entity cannot span any punctuation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "2.2"
            },
            {
                "text": "3 Our Proposed Framework",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Error Analysis",
                "sec_num": "2.2"
            },
            {
                "text": "We propose a framework based on probabilistic graphical models with first-order logic for Chinese NER. As shown in Figure 1 , the framework is composed of three main components. The CRF model is used as a base model. Then we incorporate domain knowledge that can be well formulated into first-order logic to extract entity candidates from CRF results. Finally, the Markov Logic Network (MLN), an undirected graphical model for statistical relational learning, is used to validate and correct the errors made in the base model. We begin by briefly reviewing the necessary background of MLNs, including weight learning and inference.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 115,
                        "end": 123,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Overview",
                "sec_num": "3.1"
            },
            {
                "text": "A Markov Network (also known as Markov Random Field) is a model for the joint distribution of a set of variables (Pearl, 1988) . It is composed of an undirected graph G = (V, E) and a set of real-valued potential functions \u03c6 k . A First-Order Knowledge Base (KB) (Genesereth and Nislsson, 1987) is a set of sentences or formulas in first-order logic.",
                "cite_spans": [
                    {
                        "start": 113,
                        "end": 126,
                        "text": "(Pearl, 1988)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Markov Logic Networks",
                "sec_num": "3.2"
            },
            {
                "text": "A Markov Logic Network (MLN) (Richardson and Domingos, 2006 ) is a KB with a weight attached to each formula (or clause). Together with a set of constants representing objects in the domain, it species a ground Markov Network containing one feature for each possible grounding of a first-order formula F i in the KB, with the corresponding weight w i . The basic idea in MLNs is that: when a world violates one formula in the KB it is less probable, but not impossible. The fewer formulas a world violates, the more probable it is. The weights associated with the formulas in an MLN jointly determine the probabilities of those formulas (and vice versa) via a log-linear model. An MLN is a statistical relational model that defines a probability distribution over Herbrand interpretations (possible worlds), and can be thought of as a template for constructing Markov Networks. Given different sets of constants, it will produce different networks. These networks will have certain regularities in structure and parameter given by the MLN and they are called ground Markov Networks. Suppose Peter(A), Smith(B) and IBM(X) are 3 constants, a KB and generated features are listed in Table 1 . The formula Employ(x,y)\u21d2Person(x),Company(y) means x is employed by y and Colleague(x,y)\u21d2 Employ(x,z)\u2227Employ(y,z) means x and y are colleagues if they are employed by the same company. Figure 2 shows the graph of the ground Markov network defined by the formulas in Table 1 and the 3 constants Peter(A), Smith(B) and IBM(X). The probability distribution over possible worlds x specified by the ground Markov Network M L,C is given by",
                "cite_spans": [
                    {
                        "start": 29,
                        "end": 59,
                        "text": "(Richardson and Domingos, 2006",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1180,
                        "end": 1187,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 1375,
                        "end": 1381,
                        "text": "Figure",
                        "ref_id": null
                    },
                    {
                        "start": 1456,
                        "end": 1463,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Markov Logic Networks",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (X = x) = 1 Z exp( w i n i (x )) = 1 Z \u03c6 i x {i} ni(x)",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Markov Logic Networks",
                "sec_num": "3.2"
            },
            {
                "text": "where n i (x) is the number of true groundings of F i in x, x {i} is the true value of the atoms appearing in F i , and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Markov Logic Networks",
                "sec_num": "3.2"
            },
            {
                "text": "\u03c6 i x {i} = e wi .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Markov Logic Networks",
                "sec_num": "3.2"
            },
            {
                "text": "In the case of Chinese NER, a named entity can be connected to another named entity for instance, because they share the same location salient word. Thus in an undirected graph, two node types exist, the LOC nodes and the location salient word nodes. The links (edges) indicate the relation (LOCs contain location salient words) between them. This representation can be well expressed by MLNs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Markov Logic Networks",
                "sec_num": "3.2"
            },
            {
                "text": "However, one problem concerning relational data is, how to extract useful relations for Chinese NER. There are many kinds of relations between NEs, some relations are critical to the NER problem while others not. Another problem that we address is whether these relations can be formulated in first-order logic and combined in MLNs. In Section 3.3, we exploit domain knowledge. We will show how these knowledge can capture essential characteristics of Chinese NEs and can be well and concisely formulated in first-order logic in Section 3.4. 3.2.1 Learning Weights Given a relational database, MLN weights can in principle be learned generatively by maximizing the likelihood of this database on the closed world assumption. The gradient of the log-likelihood with respect to the weights is",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Markov Logic Networks",
                "sec_num": "3.2"
            },
            {
                "text": "\u2202 \u2202w i logP w (X = x) = n i (x) \u2212 P w (X = x )n i (x )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Markov Logic Networks",
                "sec_num": "3.2"
            },
            {
                "text": "(2) where the sum is over all possible databases x , and P w (X = x ) is P (X = x ) computed using the current weight vector w = (w 1 , ..., w i , ...). Unfortunately, computing these expectations can be very expensive. Instead, we can maximize the pseudo-log-likelihood of the data more efficiently. If x is a possible database and x l is the lth ground atom's truth value, the pseudo-log-likelihood of x given weights w is",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Markov Logic Networks",
                "sec_num": "3.2"
            },
            {
                "text": "logP * w (X = x) = n l=1 logP w (X l=x l | M B x (X l )) (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Markov Logic Networks",
                "sec_num": "3.2"
            },
            {
                "text": "where M B x (X l ) is the state of X l 's Markov blanket 2 in the data. Computing Equation 3 and its gradient does not require inference over the model, and is therefore much faster. We can optimize the pseudo-log-likelihood using the limited-memory BFGS algorithm (Liu and Nocedal, 1989) .",
                "cite_spans": [
                    {
                        "start": 265,
                        "end": 288,
                        "text": "(Liu and Nocedal, 1989)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Markov Logic Networks",
                "sec_num": "3.2"
            },
            {
                "text": "If F 1 and F 2 are two formulas in first-order logic, C is a finite set of constants including any constants that appear in F 1 or F 2 , and L is an MLN, then",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference",
                "sec_num": "3.2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (F 1 | F 2 , L, C) = P (F 1 | F 2 , M L,C ) = P (F 1 \u2227 F 2 | M L,C ) P (F 2 | M L,C ) = x\u2208\u03c7 F 1 \u2229\u03c7 F 2 P (X = x | M L,C ) x\u2208\u03c7 F 2 P (X = x | M L,C )",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Inference",
                "sec_num": "3.2.2"
            },
            {
                "text": "where \u03c7 Fi is the set of worlds where F i holds, and P (x | M L,C ) is given by Equation 1. The question of whether a knowledge base entails a formula F in first-order logic is the question of whether P (F | L KB , C KB,F ) = 1, where L KB is the MLN obtained by assigning infinite weight to all the formulas in KB, and C KB,F is the set of all constants appearing in KB or F .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference",
                "sec_num": "3.2.2"
            },
            {
                "text": "A large number of efficient inference techniques are applicable to MLNs. The most widely used approximate solution to probabilistic inference in MLNs is Markov chain Monte Carlo (MCMC) (Gilks et al., 1996) . In this framework, the Gibbs sampling algorithm is to generate an instance from the distribution of each variable in turn, conditional on the current values of the other variables. The key to the Gibbs sampler is that one only considers univariate conditional distributions-the distribution when all of the random variables but one are assigned fixed values. One way to speed up Gibbs sampling is by Simulated Tempering (Marinari and Parisi, 1992) , which performs simulation in a generalized ensemble, and can rapidly achieve an equilibrium state. Poon and Domingos (2006) proposed MC-SAT, an inference algorithm that combines ideas from MCMC and satisfiability. MC-SAT works well and is guaranteed to be sound, even when deterministic or neardeterministic dependencies are present in real-world reasoning.",
                "cite_spans": [
                    {
                        "start": 185,
                        "end": 205,
                        "text": "(Gilks et al., 1996)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 628,
                        "end": 655,
                        "text": "(Marinari and Parisi, 1992)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 757,
                        "end": 781,
                        "text": "Poon and Domingos (2006)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference",
                "sec_num": "3.2.2"
            },
            {
                "text": "Besides MCMC framework, maximum a posteriori (MAP) inference can be carried out using a weighted satisfiability solver like MaxWalkSAT. It is closely related to maximum likelihood (ML), but employs an augmented optimization objective which incorporates a prior distribution over the quantity one wants to estimate. MAP estimation can therefore be seen as a regularization of ML estimation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference",
                "sec_num": "3.2.2"
            },
            {
                "text": "We incorporate various kinds of domain knowledge via MLNs to predict the newly extracted NE candidates from CRF hypotheses. We extract 165 location salient words and 843 organization salient words from Wikipedia 3 and the LDC Chinese-English bi-directional NE lists compiled from Xinhua News database, as shown in Table 2 . We also make a punctuation list which contains 18 items and some stopwords which Chinese NEs cannot contain. The stopwords are mainly conjunctions, auxiliary and functional words. We extract new NE candidates from the CRF results according to the following consideration:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 314,
                        "end": 321,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Domain Knowledge",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 Definitely, if a chunk (a series of continuous characters) occurs in the training data as a PER or a LOC or an ORG, then this chunk should be a PER or a LOC or an ORG in the testing data. In general, a unique string is defined as a PER, it cannot be a LOC somewhere else.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Knowledge",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 Obviously, if a tagged entity ends with a location salient word, it is a LOC. If a tagged entity ends with an organization salient word, it is an ORG.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Knowledge",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 If a tagged entity is close to a subsequent location salient word, probably they should be combined together as a LOC. The closer they are, the more likely that they should be combined.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Knowledge",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 If a series of consecutive tagged entities are close to a subsequent organization salient word, they should probably be combined together as an ORG because an ORG may contain multiple PERs, LOCs and ORGs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Knowledge",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 Similarly, if there exists a series of consecutive tagged entities and the last one is tagged as an ORG, it is likely that all of them should be combined as an ORG.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Knowledge",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 Entity length restriction: all kinds of tagged entities cannot exceed 25 Chinese characters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Knowledge",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 Stopword restriction: intuitively, all tagged entities cannot comprise any stopword.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Knowledge",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 Punctuation restriction: in general, all tagged entities cannot span any punctuation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Knowledge",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 Since all NEs are proper nouns, the tagged entities should end with noun words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Knowledge",
                "sec_num": "3.3"
            },
            {
                "text": "\u2022 The CRF model tags each token (Chinese character) with a conditional probability. A low probability implies a low-confidence prediction. For a chunk with low conditional probabilities, all the above assumptions are adopted (The marginal probabilities are normalized, and probabilities lower than the user-defined threshold are regarded as low conditional probabilities).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Knowledge",
                "sec_num": "3.3"
            },
            {
                "text": "All the above domain knowledge can be formulated as first-order logic to construct the structure of MLNs. And all the extracted chunks are accepted as new NE candidates (or common nouns). We train an MLN to recognize them. 1/and so on \u00b5 @/that",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Domain Knowledge",
                "sec_num": "3.3"
            },
            {
                "text": "We declared 14 predicates (person(candidate), lo cation(candidate), organization(candidat e), endwith(candidate, salientword), clos eto(candidate, salientword), containstop word(candidate), containpunctuation(cand idate), etc) and specified 15 first-order formulas (See Table 3 for some examples) according to the domain knowledge described in Section 3.3. For example, we used person(candidate) to specify whether a candidate is a PER. Formulas are recursively constructed from atomic formulas using logical connectives and quantifiers. They are constructed using four types of symbols: constants, variables, functions, and predicates. Constant symbols represent objects in the domain of interest (e.g., \" \u00ae/Beijing\" and \"\u00fe\u00b0/Shanghai\" are LOCs). Variable symbols (e.g., r and p) range over the objects in the domain. To reduce the size of ground Markov Network, variables and constants are typed; for example, the variable r may range over candidates, and the constant \" \u00ae/Beijing\" may represent a LOC. Function symbols represent mappings from tuples of objects to objects. Predicate symbols represent relations among objects (e.g., person) in the domain or attributes of objects (e.g., endwith). A ground atom is an atomic formula all of whose arguments are ground terms (terms containing no variables). For example, the ground atom location( \u00ae\u00bd) conveys that \"\u00ae\u00bd/Beijing City\" is a LOC.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 270,
                        "end": 277,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "First-Order Logic Representation",
                "sec_num": "3.4"
            },
            {
                "text": "For example in Table 3 , \"\u00bf\u00bd/Wu City\" is mis-tagged as an ORG by the CRF model, but it contains the location salient word \"\u00bd/City\". So it is extracted as a new entity candidate, and the corresponding formula endwith(r, p)\u2227locsalientword(p)\u21d2location(r) means if r ends with a location salient word p, then it is a LOC. Besides the formulas listed in Table 3 , we also specified logic such as person(p)\u21d2!(location(p) v organization(p)), which means a candidate p can ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 15,
                        "end": 22,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 349,
                        "end": 356,
                        "text": "Table 3",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "First-Order Logic Representation",
                "sec_num": "3.4"
            },
            {
                "text": "containstopword(p)\u21d2!(person(p) v location(p) v organization(p)) \"z\"\u00d1\u00d6\u00a5%[ORG] \"z\"\u00d1\u00d6\u00a5% containpunctuation(p)\u21d2!(person(p) v location(p) v organization(p))",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "First-Order Logic Representation",
                "sec_num": "3.4"
            },
            {
                "text": "only belong to one class. We assume that the relational database contains only binary relations. Each extracted NE candidate is represented by one or more strings appearing as arguments of ground atoms in the database. The goal of NE prediction is to determine whether the candidates are entities and the types of entities (query predicates), given the evidence predicates and other relations that can be deterministically derived from the database. As we will see, despite their simplicity and consistency, these first-order formulas incorporate the essential features for NE prediction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "First-Order Logic Representation",
                "sec_num": "3.4"
            },
            {
                "text": "We used People's Daily corpus (January-Jun, 1998) in our experiments, which contains approximately 357K sentences, 156K PERs, 219K LOCs and 87K ORGs, respectively. We did some modifications on the original data to make it cleaner. We enriched some tags so that the abbreviation proper nouns are well labeled. We preprocessed some nested names to make them in better form. We also processed some person names. We enriched tags for different kinds of person names (e.g., Chinese and transliterated names) and separated consecutive person names.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "4.1"
            },
            {
                "text": "We use CRFs to build a character-based Chinese NER system, with features described in Section 2.1. To avoid overfitting, we penalized the log-likelihood by the commonly used zero-mean Gaussian prior over the parameters. In addition, we exploit clue word features which can capture non-local dependencies. This gives us a competitive baseline CRF model using both local and non-local information for Chinese NER.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Baseline NER System",
                "sec_num": "4.2"
            },
            {
                "text": "For clue word features, we employ 412 career titles (e.g., o\u00da/President, \u00c7/Professor,\u00b4\u00a9/Police), 59 family titles (e.g., ww/Father,~~/Sister), 33 personal pronouns (e.g., \\/Your, \u2022/We) and 109 direction words (e.g., \u00b1/North, H\u00dc/South) to represent non-local information. Career titles, family titles and personal pronouns may Figure 3 : An Example of Non-local Dependency. The Career Title \"\u00c7\" Indicates a PER \"^\" imply a nearby PER and direction words may indicate a LOC or an ORG. Figure 3 illustrates an example of nonlocal dependency. We do not take the advantage of using the goldenstandard word segmentation and POS tagging provided in the original corpus, since such information is hardly available in real text. Instead, we use an off-the-shelf Chinese lexical analysis system, the open source ICTCLAS (Zhang et al., 2003) , to segment and POS tag the corpus. This module employs a hierarchical Hidden Markov Model (HHMM) and provides word segmentation, POS tagging (labels Chinese words using a set of 39 tags) and unknown word recognition. It performs reasonably well, with segmentation precision recently evaluated at 97.58%. The recall of unknown words using role tagging is over 90%.",
                "cite_spans": [
                    {
                        "start": 810,
                        "end": 830,
                        "text": "(Zhang et al., 2003)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 326,
                        "end": 334,
                        "text": "Figure 3",
                        "ref_id": null
                    },
                    {
                        "start": 483,
                        "end": 491,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "The Baseline NER System",
                "sec_num": "4.2"
            },
            {
                "text": "We use one-month corpus for training and 9-day corpus for testing. Table 4 shows the experimental results.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 67,
                        "end": 74,
                        "text": "Table 4",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "The Baseline NER System",
                "sec_num": "4.2"
            },
            {
                "text": "To test the effectiveness of our proposed model, we extract all the NEs (19, 879 PERs, 25, 661 LOCs and 11, 590 ORGs) from the training corpus. An MLN training database, which consists of 14 predicates, 16,620 constants and 97,992 ground atoms was built. The MLNs were trained using a Gaussian prior with zero mean and unit variance on each weight to penalize the pseudo-likelihood, and with the weights initialized at the mode of the prior (zero). During MLN learning, each formula is converted to Conjunctive Normal Form (CNF), and a weight is learned for each of its clauses. The weight of a clause is used as the mean of a Gaussian prior for the learned weight. These weights reflect how often the clauses are actually observed in the training data. We extract 529 entity candidates to construct the MLN testing database, which contains 2,543 entries and these entries are used as evidence for inference. Inference is per-formed by grounding the minimal subset of the network required for answering the query predicates. We employed 3 MCMC algorithms: Gibbs sampling (GS), Simulated Tempering (ST) as well as MC-SAT, and the MAP/MPE algorithm for inference and the comparative NER results are shown. The probabilistic graphical models greatly outperform the CRF model stand-alone by a large margin. It can be seen from Table 5 , the probabilistic graphical models integrating first-order logic improve the precision and recall for all kinds of entities, thus boosting the overall Fmeasure. We achieve a 23.75% relative error reduction (RER) on F-measure by using 3 MCMC algorithms and a 20.54% RER by using MAP/MPE algorithm, over an already competitive CRF baseline. We obtained the same results using GS, ST and MC-SAT algorithms. MCMC algorithms yields slightly better results than the MAP/MPE algorithm.",
                "cite_spans": [
                    {
                        "start": 72,
                        "end": 76,
                        "text": "(19,",
                        "ref_id": null
                    },
                    {
                        "start": 77,
                        "end": 86,
                        "text": "879 PERs,",
                        "ref_id": null
                    },
                    {
                        "start": 87,
                        "end": 90,
                        "text": "25,",
                        "ref_id": null
                    },
                    {
                        "start": 91,
                        "end": 107,
                        "text": "661 LOCs and 11,",
                        "ref_id": null
                    },
                    {
                        "start": 108,
                        "end": 117,
                        "text": "590 ORGs)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1323,
                        "end": 1330,
                        "text": "Table 5",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "NER System Based on Graphical Models with Logic",
                "sec_num": "4.3"
            },
            {
                "text": "Ideally, comparisons among NER systems would control for feature sets, data preparation, training and test procedures, parameter tuning, and estimate the statistical significance of performance differences. Unfortunately, reported results sometimes leave out details needed for accurate comparisons.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Significance Test",
                "sec_num": "4.4"
            },
            {
                "text": "We give statistical significance estimates using McNemar's paired tests 4 (Gillick and Cox, 1989) on labeling disagreements for CRF model and graphical probabilistic models that we evaluated directly. Table 6 summarizes the correctness of the labeling decisions between the models with a 95% confidence interval (CI). These tests suggest that the graphical probabilistic models are significantly more accurate and confirm that the gains we obtained are statistically highly significant. ",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 97,
                        "text": "(Gillick and Cox, 1989)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 201,
                        "end": 208,
                        "text": "Table 6",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Significance Test",
                "sec_num": "4.4"
            },
            {
                "text": "As a well-established task, Chinese NER has been studied extensively and a number of techniques for this task have been reported in the literature. Most recently, the trend in Chinese NER is to use improved machine learning approaches, or to integrate various kinds of useful evidences, features, or resources. Fu and Luke (2005) presented a lexicalized HMMbased approach to unifying unknown word identification and NER as a single tagging task on a sequence of known words. Although lexicalized HMMs was shown to be superior to standard HMMs, this approach has some disadvantages: it is a purely statistical model and it suffers from the problem of data sparseness. And the model fails to tag some complicated NEs (e.g., nested ORGs) correctly due to lack of domain adaptive techniques. The F-measures of LOCs and ORGs are only 87.13 and 83.60, which show that there is still a room for improving.",
                "cite_spans": [
                    {
                        "start": 311,
                        "end": 329,
                        "text": "Fu and Luke (2005)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "A method of incorporating heuristic human knowledge into a statistical model was proposed in (Wu et al., 2005) . Here Chinese NER was regarded as a probabilistic tagging problem and the heuristic human knowledge was used to reduce the searching space. However, this method assumes that POS tags are golden-standard in the training data and heuristic human knowledge is often ad hoc. These drawbacks make the method unstable and highly sensitive to POS errors; and when golden-standard POS tags are not available (this is often the case), it may degrade the performance.",
                "cite_spans": [
                    {
                        "start": 93,
                        "end": 110,
                        "text": "(Wu et al., 2005)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "Cohen and Sarawagi 2004proposed a semi-Markov model which combines a Markovian, HMM-like extraction process and a dictionary component. This process is based on sequentially classifying segments of several adjacent words. However, this technique requires that entire segments have the same class label, while our technique does not. Moreover, compared to a large-scale dictionary, our domain knowledge is much easier to obtain.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "However, all the above models treat NER as classification or sequence labeling problem. To the best of our knowledge, MLNs have not been previously used for NER problem. To our knowledge, we first view Chinese NER as a statistical relational learning problem and exploit domain knowledge which can be concisely formulated in MLNs, allowing the training and inference algorithms to be directly applied to them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "5"
            },
            {
                "text": "The contribution of this paper is three-fold. First, we formulate Chinese NER as a statistical relational learning problem and propose a new framework incorporating probabilistic graphical models and first-order logic for Chinese NER which achieves state-of-the-art performance. Second, We incorporate domain knowledge to capture the essential features of the NER task via MLNs, a unified framework for SRL which produces a set of weighted firstorder clauses to predict new NE candidates. To the best of our knowledge, this is the first attempt at using MLNs for the NER problem in the NLP community. Third, our proposed framework can be extendable to languageindependent NER, due to the simplicity of the domain knowledge we could access. Directions for future work include learning the structure of MLNs automatically and using MLNs for information extraction (e.g., entity relation extraction).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "In this paper we only focus on PERs, LOCs and ORGs. Since temporal, numerical and monetary phrases can be well identified with rule-based approaches.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The Markov blanket of a node is the minimal set of nodes that renders it independent of the remaining network; in a MLN, this is simply the node's neighbors in the graph.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://en.wikipedia.org/wiki/.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Most researchers refer to statistically significant as p < 0.05 and statistically highly significant as p < 0.001.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Junsheng Zhou, Liang He, Xinyu Dai, and Jiajun Chen. Chinese named entity recognition with a multi-phase model. In 5th SIGHAN Workshop on Chinese Language Processing, Australia, July 2006.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "An algorithm that learns what's in a name",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Daniel",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Bikel",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [
                            "M"
                        ],
                        "last": "Schwartz",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Weischedel",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Machine Learning",
                "volume": "34",
                "issue": "",
                "pages": "211--231",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel. An algorithm that learns what's in a name. Machine Learning, 34(1-3):211-231, February 1999.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A Maximum Entropy Approach to Named Entity Recognition",
                "authors": [
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Borthwick",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andrew Borthwick. A Maximum Entropy Approach to Named Entity Recognition. PhD thesis, New York University, September 1999.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Transformation-based error-driven learning and natural language processing: A case study in part-of-speech tagging",
                "authors": [
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Brill",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Computational Linguistics",
                "volume": "21",
                "issue": "4",
                "pages": "543--565",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eric Brill. Transformation-based error-driven learning and natural language processing: A case study in part-of-speech tagging. Computational Linguistics, 21(4):543-565, 1995.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Chinese named entity recognition with conditional probabilistic models",
                "authors": [
                    {
                        "first": "Aitao",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Fuchun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Shan",
                        "suffix": ""
                    },
                    {
                        "first": "Gordon",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "5th SIGHAN Workshop on Chinese Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aitao Chen, Fuchun Peng, Roy Shan, and Gordon Sun. Chinese named entity recognition with conditional probabilistic models. In 5th SIGHAN Workshop on Chinese Language Processing, Australia, July 2006.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Chinese named entity recognition with conditional random fields",
                "authors": [
                    {
                        "first": "Wenliang",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Yujie",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Hitoshi",
                        "middle": [],
                        "last": "Isahara",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "5th SIGHAN Workshop on Chinese Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wenliang Chen, Yujie Zhang, and Hitoshi Isahara. Chinese named entity recognition with condi- tional random fields. In 5th SIGHAN Workshop on Chinese Language Processing, Australia, July 2006.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Named entity recognition with a maximum entropy approach",
                "authors": [
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Leong Chieu",
                        "suffix": ""
                    },
                    {
                        "first": "Hwee Tou",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of CoNLL-03",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hai Leong Chieu and Hwee Tou Ng. Named entity recognition with a maximum entropy approach. In Proceedings of CoNLL-03, 2003.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Exploiting dictionaries in named entity extraction: Combining semi-Markov extraction processes and data integration methods",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "William",
                        "suffix": ""
                    },
                    {
                        "first": "Sunita",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Sarawagi",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of ACM-SIGKDD 2004",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "William W. Cohen and Sunita Sarawagi. Exploiting dictionaries in named entity extraction: Com- bining semi-Markov extraction processes and data integration methods. In Proceedings of ACM-SIGKDD 2004, 2004.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Chinese named entity recognition using lexicalized HMMs",
                "authors": [
                    {
                        "first": "Guohong",
                        "middle": [],
                        "last": "Fu",
                        "suffix": ""
                    },
                    {
                        "first": "Kang-Kwong",
                        "middle": [],
                        "last": "Luke",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "ACM SIGKDD Explorations Newsletter",
                "volume": "7",
                "issue": "",
                "pages": "19--25",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guohong Fu and Kang-Kwong Luke. Chinese named entity recognition using lexicalized HMMs. ACM SIGKDD Explorations Newsletter, 7:19-25, June 2005.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Logical foundations of artificial intelligence",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Michael",
                        "suffix": ""
                    },
                    {
                        "first": "Nils",
                        "middle": [
                            "J"
                        ],
                        "last": "Genesereth",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Nislsson",
                        "suffix": ""
                    }
                ],
                "year": 1987,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael R. Genesereth and Nils J. Nislsson. Logical foundations of artificial intelligence. Morgan Kaufmann Publishers Inc., San Mateo, CA, 1987.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Markov chain Monte Carlo in practice. Chapman and Hall",
                "authors": [
                    {
                        "first": "W",
                        "middle": [
                            "R"
                        ],
                        "last": "Gilks",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Richardson",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "J"
                        ],
                        "last": "Spiegelhalter",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W.R. Gilks, S. Richardson, and D.J. Spiegelhalter. Markov chain Monte Carlo in practice. Chap- man and Hall, London, UK, 1996.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Some statistical issues in the comparison of speech recognition algorithms",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Gillick",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Cox",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "Proceedings of ICASSP-89",
                "volume": "",
                "issue": "",
                "pages": "532--535",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L. Gillick and Stephen Cox. Some statistical issues in the comparison of speech recognition algo- rithms. In Proceedings of ICASSP-89, pages 532-535, 1989.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Efficient support vector classifiers for named entity recognition",
                "authors": [
                    {
                        "first": "Hideki",
                        "middle": [],
                        "last": "Isozaki",
                        "suffix": ""
                    },
                    {
                        "first": "Hideto",
                        "middle": [],
                        "last": "Kazawa",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of COLING-02",
                "volume": "",
                "issue": "",
                "pages": "1--7",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hideki Isozaki and Hideto Kazawa. Efficient support vector classifiers for named entity recogni- tion. In Proceedings of COLING-02, pages 1-7, Taipei, Taiwan, 2002.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Conditional random fields: Probabilistic models for segmenting and labeling sequence data",
                "authors": [
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "Fernando",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of ICML-01",
                "volume": "",
                "issue": "",
                "pages": "282--289",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of ICML-01, pages 282- 289. Morgan Kaufmann, San Francisco, CA, 2001.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "On the limited memory BFGS method for large scale optimization",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Jorge",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Nocedal",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "Mathematical Programming",
                "volume": "45",
                "issue": "",
                "pages": "503--528",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for large scale optimiza- tion. Mathematical Programming, 45:503-528, 1989.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Simulated Tempering: A new Monte Carlo scheme",
                "authors": [
                    {
                        "first": "Enzo",
                        "middle": [],
                        "last": "Marinari",
                        "suffix": ""
                    },
                    {
                        "first": "Giorgio",
                        "middle": [],
                        "last": "Parisi",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Europhysics Letters",
                "volume": "19",
                "issue": "",
                "pages": "451--458",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Enzo Marinari and Giorgio Parisi. Simulated Tempering: A new Monte Carlo scheme. Europhysics Letters, 19:451-458, 1992.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons",
                "authors": [
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of CoNLL-03",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andrew McCallum and Wei Li. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons. In Proceedings of CoNLL-03, 2003.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Probabilistic reasoning in intelligent systems: networks of plausible inference",
                "authors": [
                    {
                        "first": "Judea",
                        "middle": [],
                        "last": "Pearl",
                        "suffix": ""
                    }
                ],
                "year": 1988,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Mor- gan Kaufmann Publishers Inc., San Francisco, CA, 1988.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Accurate information extraction from research papers using conditional random fields",
                "authors": [
                    {
                        "first": "Fuchun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of HLT-NAACL 2004",
                "volume": "",
                "issue": "",
                "pages": "329--336",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fuchun Peng and Andrew McCallum. Accurate information extraction from research papers using conditional random fields. In Proceedings of HLT-NAACL 2004, pages 329-336, 2004.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Chinese segmentation and new word detection using conditional random fields",
                "authors": [
                    {
                        "first": "Fuchun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Fangfang",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of COLING-04",
                "volume": "",
                "issue": "",
                "pages": "562--568",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fuchun Peng, Fangfang Feng, and Andrew McCallum. Chinese segmentation and new word de- tection using conditional random fields. In Proceedings of COLING-04, pages 562-568, 2004.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Table extraction using conditional random fields",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Pinto",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "Xing",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "Bruce"
                        ],
                        "last": "Croft",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of ACM SIGIR-03",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Pinto, Andrew McCallum, Xing Wei, and W. Bruce Croft. Table extraction using conditional random fields. In Proceedings of ACM SIGIR-03, 2003.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Sound and efficient inference with probabilistic and deterministic dependencies",
                "authors": [
                    {
                        "first": "Hoifung",
                        "middle": [],
                        "last": "Poon",
                        "suffix": ""
                    },
                    {
                        "first": "Pedro",
                        "middle": [],
                        "last": "Domingos",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of AAAI-06",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hoifung Poon and Pedro Domingos. Sound and efficient inference with probabilistic and deter- ministic dependencies. In Proceedings of AAAI-06, Boston, Massachusetts, July 2006. The AAAI Press.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Markov logic networks",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Richardson",
                        "suffix": ""
                    },
                    {
                        "first": "Pedro",
                        "middle": [],
                        "last": "Domingos",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Machine Learning",
                "volume": "62",
                "issue": "",
                "pages": "107--136",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew Richardson and Pedro Domingos. Markov logic networks. Machine Learning, 62(1- 2):107-136, 2006.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Biomedical named entity recognition using conditional random fields and rich feature sets",
                "authors": [
                    {
                        "first": "Burr",
                        "middle": [],
                        "last": "Settles",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the COLING 2004 International Joint Workshop on Natural Language Processing in Biomedicine and its Applications",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Burr Settles. Biomedical named entity recognition using conditional random fields and rich feature sets. In Proceedings of the COLING 2004 International Joint Workshop on Natural Language Processing in Biomedicine and its Applications, Geneva, Switzerland, 2004.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Shallow parsing with conditional random fields",
                "authors": [
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Sha",
                        "suffix": ""
                    },
                    {
                        "first": "Fernando",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of HLT-NAACL 2003",
                "volume": "",
                "issue": "",
                "pages": "213--220",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In Proceedings of HLT-NAACL 2003, pages 213-220, 2003.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Identifying Chinese names in unrestricted texts",
                "authors": [
                    {
                        "first": "Maosong",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Changning",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Haiyan",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Jie",
                        "middle": [],
                        "last": "Fang",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Journal of Chinese Information Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maosong Sun, Changning Huang, Haiyan Gao, and Jie Fang. Identifying Chinese names in unre- stricted texts. Journal of Chinese Information Processing, 1995.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Chinese named entity recognition based on multiple features",
                "authors": [
                    {
                        "first": "Youzheng",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Jun",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Bo",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of HLT-EMNLP 2005",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Youzheng Wu, Jun Zhao, Bo Xu, and Hao Yu. Chinese named entity recognition based on multiple features. In Proceedings of HLT-EMNLP 2005, 2005.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Boosting for Chinese named entity recognition",
                "authors": [
                    {
                        "first": "Xiaofeng",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "Marine",
                        "middle": [],
                        "last": "Carpuat",
                        "suffix": ""
                    },
                    {
                        "first": "Dekai",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "5th SIGHAN Workshop on Chinese Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xiaofeng Yu, Marine Carpuat, and Dekai Wu. Boosting for Chinese named entity recognition. In 5th SIGHAN Workshop on Chinese Language Processing, Australia, July 2006.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Chinese lexical analysis using Hierarchical Hidden Markov Model",
                "authors": [
                    {
                        "first": "Ping",
                        "middle": [],
                        "last": "Hua",
                        "suffix": ""
                    },
                    {
                        "first": "Qun",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xue-Qi",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Hong Kui",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "2nd SIGHAN Workshop on Chinese Language Processing",
                "volume": "17",
                "issue": "",
                "pages": "63--70",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hua Ping Zhang, Qun Liu, Xue-Qi Cheng, Hao Zhang, and Hong Kui Yu. Chinese lexical analysis using Hierarchical Hidden Markov Model. In 2nd SIGHAN Workshop on Chinese Language Processing, volume 17, pages 63-70, 2003.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Named entity recognition using an HMM-based chunk tagger",
                "authors": [
                    {
                        "first": "Guodong",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of ACL-02",
                "volume": "",
                "issue": "",
                "pages": "473--480",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guodong Zhou and Jian Su. Named entity recognition using an HMM-based chunk tagger. In Proceedings of ACL-02, pages 473-480, Philadelphia, USA, 2002.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "Figure 1: Framework Overview",
                "uris": null,
                "num": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "text": "A Ground Markov network defined by the formulas inTable 1and the constants Peter(A), Smith(B) and IBM(X).",
                "uris": null,
                "num": null
            },
            "TABREF1": {
                "content": "<table/>",
                "html": null,
                "type_str": "table",
                "text": "Example of a KB and Generated FeaturesFist-Order Logic (KB) Generated Features \u2200 x,y Employ(x,y)\u21d2Person(x),Company(y) Employ(Peter,IBM)\u21d2Person(Peter),Company(IBM) Employ(Smith,IBM)\u21d2Person(Smith),Company(IBM) \u2200 x,y,z Colleague(x,y)\u21d2 Employ(x,z)\u2227Employ(y,z) Colleague(Peter,Smith)\u21d2 Employ(Peter,IBM)   \u2227Employ(Smith,IBM)",
                "num": null
            },
            "TABREF2": {
                "content": "<table><tr><td colspan=\"2\">Location Salient Word g\u00a3\u00ab/Municipality z\u00c0\u00fai/Department Store Organization Salient Word \u00bb\u00d5/Railway Station n\u00f3AE/Technical Institute U,/Hotel \u00c01/Travel Agency \u00fa\u00a9/Park \u00d1/Press p\u00a6/Plateau &lt;\u00af\u00dc/Personnel Department /Province \u00d51/Bank \u00a9/Town AE/University \u00bd/City \u00bd/City Committee</td></tr><tr><td>Stopword E,/still \u00a2\u00b4/but ~/very '/of</td><td>Punctuation \" \u00ba  \u00a7 ;</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "Domain Knowledge for Chinese NER",
                "num": null
            },
            "TABREF3": {
                "content": "<table><tr><td>Mis-tagged NEs F.p[common noun] F.p New NE Candidates m[PER] m \u00f08\u00ec[common noun] \u00f08\u00ec \u00bf\u00bd[ORG] \u00bf\u00bd =!?[LOC] =!? \u00b0[LOC]s\u00a9 \u00b0s\u00a9 a\u00ac[LOC]\u00e9 a\u00ac\u00e9 \u00bd\u00ab'\u00cbe[LOC] \u00bd\u00ab'\u00cbe</td><td>First-Order Logic occurperson(p)\u21d2person(p) occurlocation(p)\u21d2location(p) occurorganization(p)\u21d2organization(p) endwith(r,p)\u2227locsalientword(p)\u21d2location(r) endwith(r,p)\u2227orgsalientword(p)\u21d2organization(r) closeto(r,p)\u2227locsalientword(p)\u21d2location(r) closeto(r,p)\u2227orgsalientword(p)\u21d2organization(r)</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "Examples of NE Candidates and First-Order Formulas",
                "num": null
            },
            "TABREF4": {
                "content": "<table><tr><td/><td colspan=\"2\">Precision Recall</td><td>F \u03b2=1</td></tr><tr><td colspan=\"2\">Character features</td><td/><td/></tr><tr><td>PER</td><td>92.88%</td><td>79.42%</td><td>85.62</td></tr><tr><td>LOC</td><td>90.95%</td><td>82.88%</td><td>86.73</td></tr><tr><td>ORG</td><td>88.16%</td><td>83.86%</td><td>85.96</td></tr><tr><td>Overall</td><td>90.92%</td><td>82.07%</td><td>86.27</td></tr><tr><td colspan=\"2\">Character+Word</td><td/><td/></tr><tr><td>PER</td><td>93.27%</td><td>82.99%</td><td>87.83</td></tr><tr><td>LOC</td><td>91.49%</td><td>85.16%</td><td>88.21</td></tr><tr><td>ORG</td><td>88.94%</td><td>84.79%</td><td>86.82</td></tr><tr><td>Overall</td><td>91.48%</td><td>84.46%</td><td>87.83</td></tr><tr><td colspan=\"2\">Character+Word+POS</td><td/><td/></tr><tr><td>PER</td><td>92.17%</td><td>90.64%</td><td>91.40</td></tr><tr><td>LOC</td><td>90.56%</td><td>89.74%</td><td>90.15</td></tr><tr><td>ORG</td><td>89.15%</td><td>85.19%</td><td>87.12</td></tr><tr><td>Overall</td><td>90.76%</td><td>89.13%</td><td>89.94</td></tr><tr><td>All features</td><td/><td/><td/></tr><tr><td>PER</td><td>92.12%</td><td>90.57%</td><td>91.34</td></tr><tr><td>LOC</td><td>90.62%</td><td>89.74%</td><td>90.18</td></tr><tr><td>ORG</td><td>89.72%</td><td>85.44%</td><td>87.53</td></tr><tr><td>Overall</td><td>90.89%</td><td>89.16%</td><td>90.02</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "Chinese NER by CRF Model",
                "num": null
            },
            "TABREF5": {
                "content": "<table><tr><td/><td colspan=\"2\">Precision Recall</td><td>F \u03b2=1</td><td>RER</td></tr><tr><td colspan=\"2\">CRF Baseline</td><td/><td/><td/></tr><tr><td>PER</td><td>92.12%</td><td>90.57%</td><td>91.34</td><td/></tr><tr><td>LOC</td><td>90.62%</td><td>89.74%</td><td>90.18</td><td/></tr><tr><td>ORG</td><td>89.72%</td><td>85.44%</td><td>87.53</td><td/></tr><tr><td>Overall</td><td>90.89%</td><td>89.16%</td><td>90.02</td><td/></tr><tr><td colspan=\"3\">Graphical Models (GS Inference)</td><td/><td/></tr><tr><td>PER</td><td>93.52%</td><td>93.32%</td><td>93.42</td><td/></tr><tr><td>LOC</td><td>93.19%</td><td>91.91%</td><td>92.55</td><td/></tr><tr><td>ORG</td><td>90.16%</td><td>90.71%</td><td>90.43</td><td/></tr><tr><td>Overall</td><td>92.70%</td><td>92.09%</td><td>92.39</td><td>23.75%</td></tr><tr><td colspan=\"3\">Graphical Models (ST Inference)</td><td/><td/></tr><tr><td>PER</td><td>93.52%</td><td>93.32%</td><td>93.42</td><td/></tr><tr><td>LOC</td><td>93.19%</td><td>91.91%</td><td>92.55</td><td/></tr><tr><td>ORG</td><td>90.16%</td><td>90.71%</td><td>90.43</td><td/></tr><tr><td>Overall</td><td>92.70%</td><td>92.09%</td><td>92.39</td><td>23.75%</td></tr><tr><td colspan=\"4\">Graphical Models (MC-SAT Inference)</td><td/></tr><tr><td>PER</td><td>93.52%</td><td>93.32%</td><td>93.42</td><td/></tr><tr><td>LOC</td><td>93.19%</td><td>91.91%</td><td>92.55</td><td/></tr><tr><td>ORG</td><td>90.16%</td><td>90.71%</td><td>90.43</td><td/></tr><tr><td>Overall</td><td>92.70%</td><td>92.09%</td><td>92.39</td><td>23.75%</td></tr><tr><td colspan=\"4\">Graphical Models (MAP/MPE Inference)</td><td/></tr><tr><td>PER</td><td>92.87%</td><td>93.15%</td><td>93.01</td><td/></tr><tr><td>LOC</td><td>93.15%</td><td>91.61%</td><td>92.37</td><td/></tr><tr><td>ORG</td><td>90.56%</td><td>89.10%</td><td>89.82</td><td/></tr><tr><td>Overall</td><td>92.57%</td><td>91.58%</td><td>92.07</td><td>20.54%</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "Chinese NER by Graphical Models with Logic",
                "num": null
            },
            "TABREF6": {
                "content": "<table><tr><td>Null Hypothesis</td><td>95% CI</td><td>p-value</td></tr><tr><td>Proposed Model (GS) vs. CRFs</td><td colspan=\"2\">5.71-9.52 &lt; 1 \u2022 10 \u22126</td></tr><tr><td>Proposed Model (ST) vs. CRFs</td><td colspan=\"2\">5.71-9.52 &lt; 1 \u2022 10 \u22126</td></tr><tr><td>Proposed Model (MC-SAT) vs. CRFs</td><td colspan=\"2\">5.71-9.52 &lt; 1 \u2022 10 \u22126</td></tr></table>",
                "html": null,
                "type_str": "table",
                "text": "McNemar's Tests on Labeling Disagreements Proposed Model (MAP/MPE) vs. CRFs 4.50-7.37 < 1 \u2022 10 \u22126",
                "num": null
            }
        }
    }
}