File size: 88,175 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
{
    "paper_id": "I08-1042",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:40:22.268212Z"
    },
    "title": "Heterogeneous Automatic MT Evaluation Through Non-Parametric Metric Combinations",
    "authors": [
        {
            "first": "Jes\u00fas",
            "middle": [],
            "last": "Gim\u00e9nez",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "LSI Department Universitat Polit\u00e8cnica de Catalunya Jordi Girona",
                "location": {
                    "addrLine": "Salgado 1-3",
                    "postCode": "E-08034",
                    "settlement": "Barcelona"
                }
            },
            "email": "jgimenez@lsi.upc.edu"
        },
        {
            "first": "Llu\u00eds",
            "middle": [],
            "last": "M\u00e0rquez",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "LSI Department Universitat Polit\u00e8cnica de Catalunya Jordi Girona",
                "location": {
                    "addrLine": "Salgado 1-3",
                    "postCode": "E-08034",
                    "settlement": "Barcelona"
                }
            },
            "email": "lluism@lsi.upc.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Combining different metrics into a single measure of quality seems the most direct and natural way to improve over the quality of individual metrics. Recently, several approaches have been suggested (Kulesza and Shieber, 2004; Liu and Gildea, 2007; Albrecht and Hwa, 2007a). Although based on different assumptions, these approaches share the common characteristic of being parametric. Their models involve a number of parameters whose weight must be adjusted. As an alternative, in this work, we study the behaviour of non-parametric schemes, in which metrics are combined without having to adjust their relative importance. Besides, rather than limiting to the lexical dimension, we work on a wide set of metrics operating at different linguistic levels (e.g., lexical, syntactic and semantic). Experimental results show that non-parametric methods are a valid means of putting different quality dimensions together, thus tracing a possible path towards heterogeneous automatic MT evaluation.",
    "pdf_parse": {
        "paper_id": "I08-1042",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Combining different metrics into a single measure of quality seems the most direct and natural way to improve over the quality of individual metrics. Recently, several approaches have been suggested (Kulesza and Shieber, 2004; Liu and Gildea, 2007; Albrecht and Hwa, 2007a). Although based on different assumptions, these approaches share the common characteristic of being parametric. Their models involve a number of parameters whose weight must be adjusted. As an alternative, in this work, we study the behaviour of non-parametric schemes, in which metrics are combined without having to adjust their relative importance. Besides, rather than limiting to the lexical dimension, we work on a wide set of metrics operating at different linguistic levels (e.g., lexical, syntactic and semantic). Experimental results show that non-parametric methods are a valid means of putting different quality dimensions together, thus tracing a possible path towards heterogeneous automatic MT evaluation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Automatic evaluation metrics have notably accelerated the development cycle of MT systems in the last decade. There exist a large number of metrics based on different similarity criteria. By far, the most widely used metric in recent literature is BLEU (Papineni et al., 2001) . Other well-known metrics are WER (Nie\u00dfen et al., 2000) , NIST (Doddington, 2002) , GTM (Melamed et al., 2003) , ROUGE (Lin and Och, 2004a) , METEOR (Banerjee and Lavie, 2005) , and TER (Snover et al., 2006) , just to name a few. All these metrics take into account information at the lexical level 1 , and, therefore, their reliability depends very strongly on the heterogeneity/representativity of the set of reference translations available (Culy and Riehemann, 2003) . In order to overcome this limitation several authors have suggested taking advantage of paraphrasing support (Zhou et al., 2006; Kauchak and Barzilay, 2006; Owczarzak et al., 2006) . Other authors have tried to exploit information at deeper linguistic levels. For instance, we may find metrics based on full constituent parsing (Liu and Gildea, 2005) , and on dependency parsing (Liu and Gildea, 2005; Amig\u00f3 et al., 2006; Mehay and Brew, 2007; Owczarzak et al., 2007) . We may find also metrics at the level of shallow-semantics, e.g., over semantic roles and named entities (Gim\u00e9nez and M\u00e0rquez, 2007) , and at the properly semantic level, e.g., over discourse representations (Gim\u00e9nez, 2007) .",
                "cite_spans": [
                    {
                        "start": 253,
                        "end": 276,
                        "text": "(Papineni et al., 2001)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 312,
                        "end": 333,
                        "text": "(Nie\u00dfen et al., 2000)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 336,
                        "end": 340,
                        "text": "NIST",
                        "ref_id": null
                    },
                    {
                        "start": 341,
                        "end": 359,
                        "text": "(Doddington, 2002)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 362,
                        "end": 365,
                        "text": "GTM",
                        "ref_id": null
                    },
                    {
                        "start": 366,
                        "end": 388,
                        "text": "(Melamed et al., 2003)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 391,
                        "end": 396,
                        "text": "ROUGE",
                        "ref_id": null
                    },
                    {
                        "start": 397,
                        "end": 417,
                        "text": "(Lin and Och, 2004a)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 427,
                        "end": 453,
                        "text": "(Banerjee and Lavie, 2005)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 464,
                        "end": 485,
                        "text": "(Snover et al., 2006)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 722,
                        "end": 748,
                        "text": "(Culy and Riehemann, 2003)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 860,
                        "end": 879,
                        "text": "(Zhou et al., 2006;",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 880,
                        "end": 907,
                        "text": "Kauchak and Barzilay, 2006;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 908,
                        "end": 931,
                        "text": "Owczarzak et al., 2006)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 1079,
                        "end": 1101,
                        "text": "(Liu and Gildea, 2005)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 1130,
                        "end": 1152,
                        "text": "(Liu and Gildea, 2005;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 1153,
                        "end": 1172,
                        "text": "Amig\u00f3 et al., 2006;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 1173,
                        "end": 1194,
                        "text": "Mehay and Brew, 2007;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 1195,
                        "end": 1218,
                        "text": "Owczarzak et al., 2007)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1326,
                        "end": 1353,
                        "text": "(Gim\u00e9nez and M\u00e0rquez, 2007)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1429,
                        "end": 1444,
                        "text": "(Gim\u00e9nez, 2007)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "However, none of current metrics provides, in isolation, a global measure of quality. Indeed, all metrics focus on partial aspects of quality. The main problem of relying on partial metrics is that we may obtain biased evaluations, which may lead us to derive inaccurate conclusions. For instance, Callison-Burch et al. (2006) and Koehn and Monz (2006) have recently reported several problematic cases related to the automatic evaluation of systems oriented towards maximizing different quality aspects. Corroborating the findings by Culy and Riehemann (2003) , they showed that BLEU overrates SMT systems with respect to other types of systems, such as rule-based, or human-aided. The reason is that SMT systems are likelier to match the sublanguage (e.g., lexical choice and order) represented by the set of reference translations. We argue that, in order to perform more robust, i.e., less biased, automatic MT evaluations, different quality dimensions should be jointly taken into account.",
                "cite_spans": [
                    {
                        "start": 298,
                        "end": 326,
                        "text": "Callison-Burch et al. (2006)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 331,
                        "end": 352,
                        "text": "Koehn and Monz (2006)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 534,
                        "end": 559,
                        "text": "Culy and Riehemann (2003)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "A natural solution to this challenge consists in combining the scores conferred by different metrics, ideally covering a heterogeneous set of quality aspects. In the last few years, several approaches to metric combination have been suggested (Kulesza and Shieber, 2004; Liu and Gildea, 2007; Albrecht and Hwa, 2007a) . In spite of working on a limited set of quality aspects, mostly lexical features, these approaches have provided effective means of combining different metrics into a single measure of quality. All these methods implement a parametric combination scheme. Their models involve a number of parameters whose weight must be adjusted (see further details in Section 2).",
                "cite_spans": [
                    {
                        "start": 243,
                        "end": 270,
                        "text": "(Kulesza and Shieber, 2004;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 271,
                        "end": 292,
                        "text": "Liu and Gildea, 2007;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 293,
                        "end": 317,
                        "text": "Albrecht and Hwa, 2007a)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "As an alternative path towards heterogeneous MT evaluation, in this work, we explore the possibility of relying on non-parametric combination schemes, in which metrics are combined without having to adjust their relative importance (see Section 3). We have studied their ability to integrate a wide set of metrics operating at different linguistic levels (e.g., lexical, syntactic and semantic) over several evaluation scenarios (see Section 4). We show that nonparametric schemes offer a valid means of putting different quality dimensions together, effectively yielding a significantly improved evaluation quality, both in terms of human likeness and human acceptability. We have also verified that these methods port well across test beds.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Approaches to metric combination require two important ingredients:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Combination Scheme, i.e., how to combine several metric scores into a single score. As pointed out in Section 1, we distinguish between parametric and non-parametric schemes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Meta-Evaluation Criterion, i.e., how to evaluate the quality of a metric combination. The two most prominent meta-evaluation criteria are:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "\u2022 Human Acceptability: Metrics are evaluated in terms of their ability to capture the degree of acceptability to humans of automatic translations, i.e., their ability to emulate human assessors. The underlying assumption is that 'good' translations should be acceptable to human evaluators. Human acceptability is usually measured on the basis of correlation between automatic metric scores and human assessments of translation quality 2 . \u2022 Human Likeness: Metrics are evaluated in terms of their ability to capture the features which distinguish human from automatic translations. The underlying assumption is that 'good' translations should resemble human translations. Human likeness is usually measured on the basis of discriminative power (Lin and Och, 2004b; Amig\u00f3 et al., 2005 ).",
                "cite_spans": [
                    {
                        "start": 745,
                        "end": 765,
                        "text": "(Lin and Och, 2004b;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 766,
                        "end": 784,
                        "text": "Amig\u00f3 et al., 2005",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "In the following, we describe the most relevant approaches to metric combination suggested in recent literature. All are parametric, and most of them are based on machine learning techniques. We distinguish between approaches relying on human likeness and approaches relying on human acceptability.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "The first approach to metric combination based on human likeness was that by Corston-Oliver et al. (2001) who used decision trees to distinguish between human-generated ('good') and machinegenerated ('bad') translations. They focused on evaluating only the well-formedness of automatic translations (i.e., subaspects of fluency), obtaining high levels of classification accuracy. Kulesza and Shieber (2004) extended the approach by Corston-Oliver et al. (2001) to take into account other aspects of quality further than fluency alone. Instead of decision trees, they trained Support Vector Machine (SVM) classifiers. They used features inspired by well-known metrics such as BLEU, NIST, WER, and PER. Metric quality was evaluated both in terms of classification accuracy and correlation with human assessments at the sentence level.",
                "cite_spans": [
                    {
                        "start": 77,
                        "end": 105,
                        "text": "Corston-Oliver et al. (2001)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 380,
                        "end": 406,
                        "text": "Kulesza and Shieber (2004)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 432,
                        "end": 460,
                        "text": "Corston-Oliver et al. (2001)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approaches based on Human Likeness",
                "sec_num": "2.1"
            },
            {
                "text": "A significant improvement with respect to standard individual metrics was reported. Gamon et al. (2005) presented a similar approach which, in addition, had the interesting property that the set of human and automatic translations could be independent, i.e., human translations were not required to correspond, as references, to the set of automatic translations.",
                "cite_spans": [
                    {
                        "start": 84,
                        "end": 103,
                        "text": "Gamon et al. (2005)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approaches based on Human Likeness",
                "sec_num": "2.1"
            },
            {
                "text": "Quirk 2004applied supervised machine learning algorithms (e.g., perceptrons, SVMs, decision trees, and linear regression) to approximate human quality judgements instead of distinguishing between human and automatic translations. Similarly to the work by Gamon et al. (2005) their approach does not require human references.",
                "cite_spans": [
                    {
                        "start": 255,
                        "end": 274,
                        "text": "Gamon et al. (2005)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approaches based on Human Acceptability",
                "sec_num": "2.2"
            },
            {
                "text": "More recently, Albrecht and Hwa (2007a; 2007b ) re-examined the SVM classification approach by Kulesza and Shieber (2004) and, inspired by the work of Quirk (2004) , suggested a regression-based learning approach to metric combination, with and without human references. The regression model learns a continuous function that approximates human assessments in training examples.",
                "cite_spans": [
                    {
                        "start": 15,
                        "end": 39,
                        "text": "Albrecht and Hwa (2007a;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 40,
                        "end": 45,
                        "text": "2007b",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 95,
                        "end": 121,
                        "text": "Kulesza and Shieber (2004)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 151,
                        "end": 163,
                        "text": "Quirk (2004)",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approaches based on Human Acceptability",
                "sec_num": "2.2"
            },
            {
                "text": "As an alternative to methods based on machine learning techniques, Liu and Gildea (2007) suggested a simpler approach based on linear combinations of metrics. They followed a Maximum Correlation Training, i.e., the weight for the contribution of each metric to the overall score was adjusted so as to maximize the level of correlation with human assessments at the sentence level.",
                "cite_spans": [
                    {
                        "start": 67,
                        "end": 88,
                        "text": "Liu and Gildea (2007)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approaches based on Human Acceptability",
                "sec_num": "2.2"
            },
            {
                "text": "As expected, all approaches based on human acceptability have been shown to outperform that of Kulesza and Shieber (2004) in terms of human acceptability. However, no results in terms of human likeness have been provided, thus leaving these comparative studies incomplete.",
                "cite_spans": [
                    {
                        "start": 95,
                        "end": 121,
                        "text": "Kulesza and Shieber (2004)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Approaches based on Human Acceptability",
                "sec_num": "2.2"
            },
            {
                "text": "In this section, we provide a brief description of the QARLA framework (Amig\u00f3 et al., 2005) , which is, to our knowledge, the only existing non-parametric approach to metric combination. QARLA is nonparametric because, rather than assigning a weight to the contribution of each metric, the evaluation of a given automatic output a is addressed through a set of independent probabilistic tests (one per metric) in which the goal is to falsify the hypothesis that a is a human reference. The input for QARLA is a set of test cases A (i.e., automatic translations), a set of similarity metrics X, and a set of models R (i.e., human references) for each test case. With such a testbed, QARLA provides the two essential ingredients required for metric combination:",
                "cite_spans": [
                    {
                        "start": 71,
                        "end": 91,
                        "text": "(Amig\u00f3 et al., 2005)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Non-Parametric Combination Schemes",
                "sec_num": "3"
            },
            {
                "text": "Combination Scheme Metrics are combined inside the QUEEN measure. QUEEN operates under the unanimity principle, i.e., the assumption that a 'good' translation must be similar to all human references according to all metrics. QUEEN X (a) is defined as the probability, over R \u00d7 R \u00d7 R, that, for every metric in X, the automatic translation a is more similar to a human reference r than two other references, r and r , to each other. Formally:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Non-Parametric Combination Schemes",
                "sec_num": "3"
            },
            {
                "text": "QUEEN X,R (a) = P rob(\u2200x \u2208 X : x(a, r) \u2265 x(r , r ))",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Non-Parametric Combination Schemes",
                "sec_num": "3"
            },
            {
                "text": "where x(a, r) stands for the similarity between a and r according to the metric x. Thus, QUEEN allows us to combine different similarity metrics into a single measure, without having to adjust their relative importance. Besides, QUEEN offers two other important advantages which make it really suitable for metric combination: (i) it is robust against metric redundancy, i.e., metrics covering similar aspects of quality, and (ii) it is not affected by the scale properties of metrics. The main drawback of the QUEEN measure is that it requires at least three human references, when in most cases only a single reference translation is available.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Non-Parametric Combination Schemes",
                "sec_num": "3"
            },
            {
                "text": "Metric quality is evaluated using the KING measure of human likeness. All human references are assumed to be equally optimal and, while they are likely to be different, the best similarity metric is the one that identifies and uses the features that are common to all human references, grouping them and separating them from automatic translations. Based on QUEEN, KING represents the probability that a human reference does not receive a lower score than the score attained by any automatic translation. Formally:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meta-evaluation Criterion",
                "sec_num": null
            },
            {
                "text": "KINGA,R(X) = P rob(\u2200a \u2208 A :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meta-evaluation Criterion",
                "sec_num": null
            },
            {
                "text": "QUEEN X,R\u2212{r} (r) \u2265 QUEEN X,R\u2212{r} (a))",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meta-evaluation Criterion",
                "sec_num": null
            },
            {
                "text": "KING operates, therefore, on the basis of discriminative power. The closest measure to KING is ORANGE (Lin and Och, 2004b) , which is, however, not intended for the purpose of metric combination.",
                "cite_spans": [
                    {
                        "start": 102,
                        "end": 122,
                        "text": "(Lin and Och, 2004b)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meta-evaluation Criterion",
                "sec_num": null
            },
            {
                "text": "Apart from being non-parametric, QARLA exhibits another important feature which differentiates it form other approaches; besides considering the similarity between automatic translations and human references, QARLA also takes into account the distribution of similarities among human references.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meta-evaluation Criterion",
                "sec_num": null
            },
            {
                "text": "However, QARLA is not well suited to port from human likeness to human acceptability. The reason is that QUEEN is, by definition, a very restrictive measure -a 'good' translation must be similar to all human references according to all metrics. Thus, as the number of metrics increases, it becomes easier to find a metric which does not satisfy the QUEEN assumption. This causes QUEEN values to get close to zero, which turns correlation with human assessments into an impractical meta-evaluation measure.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meta-evaluation Criterion",
                "sec_num": null
            },
            {
                "text": "We have simulated a non-parametric scheme based on human acceptability by working on uniformly averaged linear combinations (ULC) of metrics. Our approach is similar to that of Liu and Gildea (2007) except that in our case all the metrics in the combination are equally important 3 . In other words, ULC is indeed a particular case of a parametric scheme, in which the contribution of each metric is not adjusted. Formally:",
                "cite_spans": [
                    {
                        "start": 177,
                        "end": 198,
                        "text": "Liu and Gildea (2007)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meta-evaluation Criterion",
                "sec_num": null
            },
            {
                "text": "ULC X (a, R) = 1 |X| x\u2208X x(a, R)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meta-evaluation Criterion",
                "sec_num": null
            },
            {
                "text": "where X is the metric set, and x(a, R) is the similarity between the automatic translation a and the set of references R, for the given test case, according to the metric x. Since correlation with human assessments at the system level is vaguely informative (it is often estimated on very few system samples), we ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Meta-evaluation Criterion",
                "sec_num": null
            },
            {
                "text": "In this section, we study the behavior of the two combination schemes presented in Section 3 in the context of four different evaluation scenarios.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Work",
                "sec_num": "4"
            },
            {
                "text": "We use the test beds from the 2004 and 2005 NIST MT Evaluation Campaigns (Le and Przybocki, 2005) 4 . Both campaigns include two different translations exercises: Arabic-to-English ('AE') and Chinese-to-English ('CE'). Human assessments of adequacy and fluency are available for a subset of sentences, each evaluated by two different human judges. See, in Table 1 , a brief numerical description including the number of human references and system outputs available, as well as the number of sentences per output, and the number of system outputs and sentences per system assessed. For metric computation, we have used the IQMT v2.1, which includes metrics at different linguistic levels (lexical, shallow-syntactic, syntactic, shallowsemantic, and semantic). A detailed description may be found in (Gim\u00e9nez, 2007) 5 .",
                "cite_spans": [
                    {
                        "start": 73,
                        "end": 99,
                        "text": "(Le and Przybocki, 2005) 4",
                        "ref_id": null
                    },
                    {
                        "start": 799,
                        "end": 814,
                        "text": "(Gim\u00e9nez, 2007)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 356,
                        "end": 363,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Settings",
                "sec_num": "4.1"
            },
            {
                "text": "Prior to studying the effects of metric combination, we study the isolated behaviour of individual metrics. We have selected a set of metric representatives from each linguistic level. The first observation is that the two metaevaluation criteria provide very similar metric quality rankings for a same test bed. This seems to indicate that there is a relationship between the two meta-evaluation criteria employed. We have confirmed this intuition by computing the Pearson correlation coefficient between values in columns 1 to 4 and their counterparts in columns 5 to 8. There exists a high correlation (R = 0.79).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluating Individual Metrics",
                "sec_num": "4.2"
            },
            {
                "text": "A second observation is that metric quality varies significantly from task to task. This is due to the significant differences among the test beds employed. These are related to three main aspects: language pair, translation domain, and system typology. For instance, notice that most metrics exhibit a lower quality in the case of the 'AE 05 ' test bed. The reason is that, while in the rest of test beds all systems are statistical, the 'AE 05 ' test bed presents the particularity of providing automatic translations produced by heterogeneous MT systems (i.e., systems belonging to different paradigms) 6 . The fact that most systems are statistical also explains why, in general, lexical metrics exhibit a higher quality. However, highest levels of quality are not in all cases attained by metrics at the lexical level (see highlighted values). In fact, there is only one metric, 'ROUGEW ' (based on lexical matching), which is consistently among the top-scoring in all test beds according to both meta-evaluation criteria. The underlying cause is simple: current metrics do not provide a global measure of quality, but account only for partial aspects of it. Apart from evincing the importance of the meta-evaluation process, these results strongly suggest the need for conducting heterogeneous MT evaluations. ",
                "cite_spans": [
                    {
                        "start": 606,
                        "end": 607,
                        "text": "6",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluating Individual Metrics",
                "sec_num": "4.2"
            },
            {
                "text": "In that respect, we study the applicability of the two combination strategies presented. Optimal metric sets are determined by maximizing over the corresponding meta-evaluation measure (KING or R snt ). However, because exploring all possible combinations was not viable, we have used a simple algorithm which performs an approximate search. First, individual metrics are ranked according to their quality. Then, following that order, metrics are added to the optimal set only if in doing so the global quality increases. Since no training is required it has not been necessary to keep a held-out portion of the data for test (see Section 4.4 for further discussion).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Finding Optimal Metric Combinations",
                "sec_num": "4.3"
            },
            {
                "text": "Optimal metric sets are displayed in Table 3 . Inside each set, metrics are sorted in decreasing quality order. The 'Optimal Combination' line in Table 2 shows the quality attained by these sets, combined under QUEEN in the case of KING optimization, and under ULC in the case of optimizing over R snt . In most cases optimal sets consist of metrics operating at different linguistic levels, mostly at the lexical and syntactic levels. This is coherent with the findings in Section 4.2. Metrics at the semantic level are selected only in two cases, corresponding to the R snt optimization in 'AE 04 ' and 'CE 04 ' test beds. Also in two cases, corresponding to the KING optimization in 'AE 04 ' and 'CE 05 ' test beds, it has not been possible to find any metric combination which outperforms the best individual metric. This is not a discouraging result. After all, in these cases, the best metric alone achieves already a very high quality (0.79 and 0.70, respectively). The fact that a single feature suffices to discern between manual and automatic translations indicates that MT systems are easily distinguishable, possibly because of their low quality and/or because they are all based on the same translation paradigm.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 37,
                        "end": 44,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 146,
                        "end": 153,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Finding Optimal Metric Combinations",
                "sec_num": "4.3"
            },
            {
                "text": "It can be argued that metric set optimization is itself a training process; each metric would have an associated binary parameter controlling whether it is selected or not. For that reason, in Table 4 , we have analyzed the portability of optimal metric sets (i) across test beds and (ii) across combination strategies. As to portability across test beds (i.e., across language pairs and years), the reader must focus on the cells for which the meta-evaluation criterion guiding the metric set optimization matches the criterion used in the evaluation, i.e., the top-left and bottom-right 16-cell quadrangles. The fact that the 4 values in each subcolumn are in a very similar range confirms that optimal metric sets port well across test beds. We have also studied the portability of optimal metric sets across combination strategies. In other words, although QUEEN and ULC are thought to operate on metric combinations respectively optimized on the basis of human likeness and human acceptability, we have studied the effects of applying either measure over metric combinations optimized on the basis of the alternative metaevaluation criterion. In this case, the reader must compare top-left vs. bottom-left (KING) and topright vs. bottom-right (R snt ) 16-cell quadrangles. It can be clearly seen that optimal metric sets, in general, do not port well across meta-evaluation criteria, particularly from human likeness to human acceptability. However, interestingly, in the case of 'AE 05 ' (i.e., heterogeneous systems), the optimal metric set ports well from human acceptability to human likeness. We speculate that system heterogeneity has contributed positively for the sake of robustness.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 193,
                        "end": 200,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Portability",
                "sec_num": "4.4"
            },
            {
                "text": "As an alternative to current parametric combination techniques, we have presented two different meth- Table 4 : Portability of combination strategies ods: a genuine non-parametric method based on human likeness, and a parametric method based human acceptability in which the parameter weights are set equiprobable. We have shown that both strategies may yield a significantly improved quality by combining metrics at different linguistic levels. Besides, we have shown that these methods generalize well across test beds. Thus, a valid path towards heterogeneous automatic MT evaluation has been traced. We strongly believe that future MT evaluation campaigns should benefit from these results specially for the purpose of comparing systems based on different paradigms. These techniques could also be used to build better MT systems by allowing system developers to perform more accurate error analyses and less biased adjustments of system parameters.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 102,
                        "end": 109,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "5"
            },
            {
                "text": "As an additional result, we have found that there is a tight relationship between human acceptability and human likeness. This result, coherent with the findings by Amig\u00f3 et al. (2006) , suggests that the two criteria are interchangeable. This would be a point in favour of combination schemes based on human likeness, since human assessments -which are expensive to acquire, subjective and not reusableare not required. We also interpret this result as an indication that human assessors probably behave in many cases in a discriminative manner. For each test case, assessors would inspect the source sentence and the set of human references trying to identify the features which 'good' translations should comply with, for instance regarding adequacy and fluency. Then, they would evaluate automatic translations roughly according to the number and relevance of the features they share and the ones they do not.",
                "cite_spans": [
                    {
                        "start": 165,
                        "end": 184,
                        "text": "Amig\u00f3 et al. (2006)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "5"
            },
            {
                "text": "For future work, we plan to study the integration of finer features as well as to conduct a rigorous comparison between parametric and non-parametric combination schemes. This may involve reproducing the works by Kulesza and Shieber (2004) and Albrecht and Hwa (2007a) . This would also allow us to evaluate their approaches in terms of both human likeness and human acceptability, and not only on the latter criterion as they have been evaluated so far.",
                "cite_spans": [
                    {
                        "start": 213,
                        "end": 239,
                        "text": "Kulesza and Shieber (2004)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 244,
                        "end": 268,
                        "text": "Albrecht and Hwa (2007a)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "5"
            },
            {
                "text": "ROUGE and METEOR may consider morphological variations. METEOR may also look up for synonyms in WordNet.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Usually adequacy, fluency, or a combination of the two.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "That would be assuming that all metrics operate in the same range of values, which is not always the case.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.nist.gov/speech/tests/ summaries/2005/mt05.htm 5 The IQMT Framework may be freely downloaded from http://www.lsi.upc.edu/\u02dcnlp/IQMT.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Specifically, all systems are statistical except one which is human-aided.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This research has been funded by the Spanish Ministry of Education and Science, project OpenMT (TIN2006-15307-C03-02). Our NLP group has been recognized as a Quality Research Group (2005 SGR-00130) by DURSI, the Research Department of the Catalan Government. We are thankful to Enrique Amig\u00f3, for his generous help and valuable comments. We are also grateful to the NIST MT Evaluation Campaign organizers, and participants who agreed to share their system outputs and human assessments for the purpose of this research.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A Reexamination of Machine Learning Approaches for Sentence-Level MT Evaluation",
                "authors": [
                    {
                        "first": "Joshua",
                        "middle": [],
                        "last": "Albrecht",
                        "suffix": ""
                    },
                    {
                        "first": "Rebecca",
                        "middle": [],
                        "last": "Hwa",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of ACL",
                "volume": "",
                "issue": "",
                "pages": "880--887",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joshua Albrecht and Rebecca Hwa. 2007a. A Re- examination of Machine Learning Approaches for Sentence-Level MT Evaluation. In Proceedings of ACL, pages 880-887.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Regression for Sentence-Level MT Evaluation with Pseudo References",
                "authors": [
                    {
                        "first": "Joshua",
                        "middle": [],
                        "last": "Albrecht",
                        "suffix": ""
                    },
                    {
                        "first": "Rebecca",
                        "middle": [],
                        "last": "Hwa",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of ACL",
                "volume": "",
                "issue": "",
                "pages": "296--303",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joshua Albrecht and Rebecca Hwa. 2007b. Regression for Sentence-Level MT Evaluation with Pseudo Refer- ences. In Proceedings of ACL, pages 296-303.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "QARLA: a Framework for the Evaluation of Automatic Sumarization",
                "authors": [
                    {
                        "first": "Enrique",
                        "middle": [],
                        "last": "Amig\u00f3",
                        "suffix": ""
                    },
                    {
                        "first": "Julio",
                        "middle": [],
                        "last": "Gonzalo",
                        "suffix": ""
                    },
                    {
                        "first": "Anselmo",
                        "middle": [],
                        "last": "Pe\u00f1as",
                        "suffix": ""
                    },
                    {
                        "first": "Felisa",
                        "middle": [],
                        "last": "Verdejo",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the 43th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Enrique Amig\u00f3, Julio Gonzalo, Anselmo Pe\u00f1as, and Fe- lisa Verdejo. 2005. QARLA: a Framework for the Evaluation of Automatic Sumarization. In Proceed- ings of the 43th Annual Meeting of the Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "MT Evaluation: Human-Like vs. Human Acceptable",
                "authors": [
                    {
                        "first": "Enrique",
                        "middle": [],
                        "last": "Amig\u00f3",
                        "suffix": ""
                    },
                    {
                        "first": "Jes\u00fas",
                        "middle": [],
                        "last": "Gim\u00e9nez",
                        "suffix": ""
                    },
                    {
                        "first": "Julio",
                        "middle": [],
                        "last": "Gonzalo",
                        "suffix": ""
                    },
                    {
                        "first": "Llu\u00eds",
                        "middle": [],
                        "last": "M\u00e0rquez",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of COLING-ACL06",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Enrique Amig\u00f3, Jes\u00fas Gim\u00e9nez, Julio Gonzalo, and Llu\u00eds M\u00e0rquez. 2006. MT Evaluation: Human-Like vs. Hu- man Acceptable. In Proceedings of COLING-ACL06.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments",
                "authors": [
                    {
                        "first": "Satanjeev",
                        "middle": [],
                        "last": "Banerjee",
                        "suffix": ""
                    },
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Lavie",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for MT Evaluation with Im- proved Correlation with Human Judgments. In Pro- ceedings of ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Re-evaluating the Role of BLEU in Machine Translation Research",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Callison",
                        "suffix": ""
                    },
                    {
                        "first": "-",
                        "middle": [],
                        "last": "Burch",
                        "suffix": ""
                    },
                    {
                        "first": "Miles",
                        "middle": [],
                        "last": "Osborne",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of EACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chris Callison-Burch, Miles Osborne, and Philipp Koehn. 2006. Re-evaluating the Role of BLEU in Ma- chine Translation Research. In Proceedings of EACL.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A Machine Learning Approach to the Automatic Evaluation of Machine Translation",
                "authors": [
                    {
                        "first": "Simon",
                        "middle": [],
                        "last": "Corston",
                        "suffix": ""
                    },
                    {
                        "first": "-",
                        "middle": [],
                        "last": "Oliver",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Gamon",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Brockett",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of ACL",
                "volume": "",
                "issue": "",
                "pages": "140--147",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Simon Corston-Oliver, Michael Gamon, and Chris Brockett. 2001. A Machine Learning Approach to the Automatic Evaluation of Machine Translation. In Proceedings of ACL, pages 140-147.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "The Limits of N-gram Translation Evaluation Metrics",
                "authors": [
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Culy",
                        "suffix": ""
                    },
                    {
                        "first": "Susanne",
                        "middle": [
                            "Z"
                        ],
                        "last": "Riehemann",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of MT-SUMMIT IX",
                "volume": "",
                "issue": "",
                "pages": "1--8",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christopher Culy and Susanne Z. Riehemann. 2003. The Limits of N-gram Translation Evaluation Metrics. In Proceedings of MT-SUMMIT IX, pages 1-8.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Automatic Evaluation of Machine Translation Quality Using N-gram Co-Occurrence Statistics",
                "authors": [
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Doddington",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 2nd IHLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "George Doddington. 2002. Automatic Evaluation of Machine Translation Quality Using N-gram Co- Occurrence Statistics. In Proceedings of the 2nd IHLT.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Sentence-Level MT evaluation without reference translations: beyond language modeling",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Gamon",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Aue",
                        "suffix": ""
                    },
                    {
                        "first": "Martine",
                        "middle": [],
                        "last": "Smets",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of EAMT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael Gamon, Anthony Aue, and Martine Smets. 2005. Sentence-Level MT evaluation without refer- ence translations: beyond language modeling. In Pro- ceedings of EAMT.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Linguistic Features for Automatic Evaluation of Heterogeneous MT Systems",
                "authors": [
                    {
                        "first": "Jes\u00fas",
                        "middle": [],
                        "last": "Gim\u00e9nez",
                        "suffix": ""
                    },
                    {
                        "first": "Llu\u00eds",
                        "middle": [],
                        "last": "M\u00e0rquez",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the ACL Workshop on Statistical Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jes\u00fas Gim\u00e9nez and Llu\u00eds M\u00e0rquez. 2007. Linguistic Features for Automatic Evaluation of Heterogeneous MT Systems. In Proceedings of the ACL Workshop on Statistical Machine Translation.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "IQMT v 2.1. Technical Manual",
                "authors": [
                    {
                        "first": "Jes\u00fas",
                        "middle": [],
                        "last": "Gim\u00e9nez",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "TALP Research Center. LSI Department",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jes\u00fas Gim\u00e9nez. 2007. IQMT v 2.1. Technical Manual. Technical report, TALP Research Center. LSI Department. http://www.lsi.upc.edu/\u02dcnlp/IQMT/- IQMT.v2.1.pdf.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Paraphrasing for Automatic Evaluation",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Kauchak",
                        "suffix": ""
                    },
                    {
                        "first": "Regina",
                        "middle": [],
                        "last": "Barzilay",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of NLH-NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Kauchak and Regina Barzilay. 2006. Paraphras- ing for Automatic Evaluation. In Proceedings of NLH- NAACL.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Manual and Automatic Evaluation of Machine Translation between European Languages",
                "authors": [
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    },
                    {
                        "first": "Christof",
                        "middle": [],
                        "last": "Monz",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the Workshop on Statistical Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "102--121",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philipp Koehn and Christof Monz. 2006. Manual and Automatic Evaluation of Machine Translation between European Languages. In Proceedings of the Workshop on Statistical Machine Translation, pages 102-121.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "A learning approach to improving sentence-level MT evaluation",
                "authors": [
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Kulesza",
                        "suffix": ""
                    },
                    {
                        "first": "Stuart",
                        "middle": [
                            "M"
                        ],
                        "last": "Shieber",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the 10th International Conference on Theoretical and Methodological Issues in Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alex Kulesza and Stuart M. Shieber. 2004. A learning approach to improving sentence-level MT evaluation. In Proceedings of the 10th International Conference on Theoretical and Methodological Issues in Machine Translation.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "NIST 2005 machine translation evaluation official results",
                "authors": [
                    {
                        "first": "Audrey",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Przybocki",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Audrey Le and Mark Przybocki. 2005. NIST 2005 ma- chine translation evaluation official results. Technical report, NIST, August.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and Skip-Bigram Statics",
                "authors": [
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Franz Josef",
                        "middle": [],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chin-Yew Lin and Franz Josef Och. 2004a. Auto- matic Evaluation of Machine Translation Quality Us- ing Longest Common Subsequence and Skip-Bigram Statics. In Proceedings of ACL.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "ORANGE: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation",
                "authors": [
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Franz Josef",
                        "middle": [],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of COLING",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chin-Yew Lin and Franz Josef Och. 2004b. ORANGE: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation. In Proceedings of COLING.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Syntactic Features for Evaluation of Machine Translation",
                "authors": [
                    {
                        "first": "Ding",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ding Liu and Daniel Gildea. 2005. Syntactic Features for Evaluation of Machine Translation. In Proceed- ings of ACL Workshop on Intrinsic and Extrinsic Eval- uation Measures for Machine Translation and/or Sum- marization.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Source-Language Features and Maximum Correlation Training for Machine Translation Evaluation",
                "authors": [
                    {
                        "first": "Ding",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 2007 Meeting of the North American chapter of the Association for Computational Linguistics (NAACL-07)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ding Liu and Daniel Gildea. 2007. Source-Language Features and Maximum Correlation Training for Ma- chine Translation Evaluation. In Proceedings of the 2007 Meeting of the North American chapter of the As- sociation for Computational Linguistics (NAACL-07).",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "BLEUATRE: Flattening Syntactic Dependencies for MT Evaluation",
                "authors": [
                    {
                        "first": "Dennis",
                        "middle": [],
                        "last": "Mehay",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Brew",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 11th Conference on Theoretical and Methodological Issues in Machine Translation (TMI)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dennis Mehay and Chris Brew. 2007. BLEUATRE: Flattening Syntactic Dependencies for MT Evaluation. In Proceedings of the 11th Conference on Theoreti- cal and Methodological Issues in Machine Translation (TMI).",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Precision and Recall of Machine Translation",
                "authors": [
                    {
                        "first": "I",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Melamed",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Green",
                        "suffix": ""
                    },
                    {
                        "first": "Joseph",
                        "middle": [
                            "P"
                        ],
                        "last": "Turian",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of HLT/NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "I. Dan Melamed, Ryan Green, and Joseph P. Turian. 2003. Precision and Recall of Machine Translation. In Proceedings of HLT/NAACL.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Evaluation Tool for Machine Translation: Fast Evaluation for MT Research",
                "authors": [
                    {
                        "first": "Sonja",
                        "middle": [],
                        "last": "Nie\u00dfen",
                        "suffix": ""
                    },
                    {
                        "first": "Franz",
                        "middle": [
                            "Josef"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "Gregor",
                        "middle": [],
                        "last": "Leusch",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of the 2nd LREC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sonja Nie\u00dfen, Franz Josef Och, Gregor Leusch, and Her- mann Ney. 2000. Evaluation Tool for Machine Trans- lation: Fast Evaluation for MT Research. In Proceed- ings of the 2nd LREC.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Contextual Bitext-Derived Paraphrases in Automatic MT Evaluation",
                "authors": [
                    {
                        "first": "Karolina",
                        "middle": [],
                        "last": "Owczarzak",
                        "suffix": ""
                    },
                    {
                        "first": "Declan",
                        "middle": [],
                        "last": "Groves",
                        "suffix": ""
                    },
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Van Genabith",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas (AMTA)",
                "volume": "",
                "issue": "",
                "pages": "148--155",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Karolina Owczarzak, Declan Groves, Josef Van Gen- abith, and Andy Way. 2006. Contextual Bitext- Derived Paraphrases in Automatic MT Evaluation. In Proceedings of the 7th Conference of the Associa- tion for Machine Translation in the Americas (AMTA), pages 148-155.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Dependency-Based Automatic Evaluation for Machine Translation",
                "authors": [
                    {
                        "first": "Karolina",
                        "middle": [],
                        "last": "Owczarzak",
                        "suffix": ""
                    },
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Van Genabith",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of SSST, NAACL-HLT/AMTA Workshop on Syntax and Structure in Statistical Translation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Karolina Owczarzak, Josef van Genabith, and Andy Way. 2007. Dependency-Based Automatic Evalua- tion for Machine Translation. In Proceedings of SSST, NAACL-HLT/AMTA Workshop on Syntax and Struc- ture in Statistical Translation.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Bleu: a method for automatic evaluation of machine translation, RC22176, IBM",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2001. Bleu: a method for automatic evalu- ation of machine translation, RC22176, IBM. Techni- cal report, IBM T.J. Watson Research Center.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Training a Sentence-Level Machine Translation Confidence Metric",
                "authors": [
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Quirk",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of LREC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chris Quirk. 2004. Training a Sentence-Level Ma- chine Translation Confidence Metric. In Proceedings of LREC.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "A Study of Translation Edit Rate with Targeted Human Annotation",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Snover",
                        "suffix": ""
                    },
                    {
                        "first": "Bonnie",
                        "middle": [],
                        "last": "Dorr",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Schwartz",
                        "suffix": ""
                    },
                    {
                        "first": "Linnea",
                        "middle": [],
                        "last": "Micciulla",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Makhoul",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of AMTA",
                "volume": "",
                "issue": "",
                "pages": "223--231",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin- nea Micciulla, , and John Makhoul. 2006. A Study of Translation Edit Rate with Targeted Human Anno- tation. In Proceedings of AMTA, pages 223-231.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Re-evaluating Machine Translation Results with Paraphrase Support",
                "authors": [
                    {
                        "first": "Liang",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Chin-Yew",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Eduard",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Liang Zhou, Chin-Yew Lin, and Eduard Hovy. 2006. Re-evaluating Machine Translation Results with Para- phrase Support. In Proceedings of EMNLP.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Opt.K(AE.04) = {SP-NISTp} Opt.K(CE.04) = {ROUGEW , SP-NISTp, ROUGEL} Opt.K(AE.05) = {METEORwnsyn, SP-NISTp, DP-Or-*} Opt.K(CE.05) = {SP-NISTp} Opt.R(AE.04) = {ROUGEW , ROUGEL, CP-Oc-*, METEORwnsyn, DP-Or-*, DP-O l -*, GTM.e2, DR-Or-*, CP-STM} Opt.R(CE.04) = {ROUGEL, CP-Oc-*, ROUGEW , SP-Op-*, METEORwnsyn, DP-Or-*, GTM.e2, 1-WER, DR-Or-*} Opt.R(AE.05) = {DP-Or-*, ROUGEW } Opt.R(CE.05) = {ROUGEW , ROUGEL, DP GTM.e2,",
                "type_str": "figure",
                "num": null,
                "uris": null
            },
            "TABREF1": {
                "type_str": "table",
                "text": "",
                "num": null,
                "content": "<table><tr><td>: Description of the test beds</td></tr><tr><td>evaluate metric quality in terms of correlation with</td></tr><tr><td>human assessments at the sentence level (R snt ). We</td></tr><tr><td>use the sum of adequacy and fluency to simulate a</td></tr><tr><td>global assessment of quality.</td></tr></table>",
                "html": null
            },
            "TABREF2": {
                "type_str": "table",
                "text": "",
                "num": null,
                "content": "<table><tr><td>shows meta-</td></tr></table>",
                "html": null
            },
            "TABREF3": {
                "type_str": "table",
                "text": "",
                "num": null,
                "content": "<table><tr><td>: Metric Meta-evaluation</td></tr></table>",
                "html": null
            },
            "TABREF4": {
                "type_str": "table",
                "text": "Optimal metric sets",
                "num": null,
                "content": "<table/>",
                "html": null
            }
        }
    }
}