File size: 74,452 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
{
    "paper_id": "I08-1021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:40:39.719233Z"
    },
    "title": "Modeling Context in Scenario Template Creation",
    "authors": [
        {
            "first": "Long",
            "middle": [],
            "last": "Qiu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National University of Singapore Singapore",
                "location": {
                    "postCode": "117590"
                }
            },
            "email": "qiul@comp.nus.edu.sg"
        },
        {
            "first": "Min-Yen",
            "middle": [],
            "last": "Kan",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National University of Singapore Singapore",
                "location": {
                    "postCode": "117590"
                }
            },
            "email": ""
        },
        {
            "first": "Tat-Seng",
            "middle": [],
            "last": "Chua",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National University of Singapore Singapore",
                "location": {
                    "postCode": "117590"
                }
            },
            "email": "chuats@comp.nus.edu.sg"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We describe a graph-based approach to Scenario Template Creation, which is the task of creating a representation of multiple related events, such as reports of different hurricane incidents. We argue that context is valuable to identify important, semantically similar text spans from which template slots could be generalized. To leverage context, we represent the input as a set of graphs where predicate-argument tuples are vertices and their contextual relations are edges. A context-sensitive clustering framework is then applied to obtain meaningful tuple clusters by examining their intrinsic and extrinsic similarities. The clustering framework uses Expectation Maximization to guide the clustering process. Experiments show that: 1) our approach generates high quality clusters, and 2) information extracted from the clusters is adequate to build high coverage templates.",
    "pdf_parse": {
        "paper_id": "I08-1021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We describe a graph-based approach to Scenario Template Creation, which is the task of creating a representation of multiple related events, such as reports of different hurricane incidents. We argue that context is valuable to identify important, semantically similar text spans from which template slots could be generalized. To leverage context, we represent the input as a set of graphs where predicate-argument tuples are vertices and their contextual relations are edges. A context-sensitive clustering framework is then applied to obtain meaningful tuple clusters by examining their intrinsic and extrinsic similarities. The clustering framework uses Expectation Maximization to guide the clustering process. Experiments show that: 1) our approach generates high quality clusters, and 2) information extracted from the clusters is adequate to build high coverage templates.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Scenario template creation (STC) is the problem of generating a common semantic representation from a set of input articles. For example, given multiple newswire articles on different hurricane incidents, an STC algorithm creates a template that may include slots for the storm's name, current location, direction of travel and magnitude. Slots in such a scenario template are often to be filled by salient entities in the scenario instance (e.g., \"Hurricane Charley\" or \"the coast area\") but some can also be filled by prominent clauses, verbs or adjectives that describe these salient entities. Here, we use the term salient aspect (SA) to refer to any of such slot fillers that people would regard as important to describe a particular scenario. Figure 1 shows such a manuallybuilt scenario template in which details about important actions, actors, time and locations are coded as slots. STC is an important task that has tangible benefits for many downstream applications. In the Message Understanding Conference (MUC), manuallygenerated STs were provided to guide Information Extraction (IE). An ST can also be viewed as regularizing a set of similar articles as a set of attribute/value tuples, enabling multi-document summarization from filled templates.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 749,
                        "end": 757,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Despite these benefits, STC has not received much attention by the community. We believe this is because it is considered a difficult task that requires deep NL understanding of the source articles. A problem in applications requiring semantic similarity is that the same word in different contexts may have different senses and play different roles. Conversely, different words in similar contexts may play similar roles. This problem makes approaches that rely on word similarity alone inadequate.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We propose a new approach to STC that incorporates the use of contextual information to address this challenge. Unlike previous approaches that concentrate on the intrinsic similarity of candidate slot fillers, our approach explicitly models contextual evidence. And unlike approaches to word sense disambiguation (WSD) and other semantic analyses that use neighboring or syntactically related words as contextual evidence, we define contexts by semantic relatedness which extends beyond sentence boundaries. Figure 2 illustrates a case in point with two excerpts from severe storm reports. Here, although the intrinsic similarity of the main verbs \"hit\" and \"land\" is low, their contextual similarity is high as both are followed by clauses sharing similar subjects (hurricanes) and the same verbs. Our approach encodes such contextual information as graphs, mapping the STC problem into a general graph overlay problem that is solvable by a variant of Expectation Maximization (EM).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 509,
                        "end": 517,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Our work also contributes resources for STC research. Until now, few scenario templates have been publicly available (as part of MUC), rendering any potential evaluation of automated STC statistically insignificant. As part of our study, we have compiled a set of input articles with annotations that we are making available to the research community. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "A natural way to automate the process of STC is to cluster similar text spans in the input article set. SAs then emerge through clustering; if a cluster of text spans is large enough, the aspects contained in it will be considered as SAs. Subsequently, these SAs will be generalized into one or more slots in the template, depending on the definition of the text span. Assuming scenarios are mainly defined by actions, the focus should be on finding appropriate clusters for text spans each of which represents an action. Most of the related work (although they may not directly address STC) shares this assumption and performs",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Charley landed further south on Florida's Gulf coast than predicted, ... The hurricane ... has weakened and is moving over South Carolina.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "At least 21 others are missing after the storm hit on Wednesday. .... But Tokage had weakened by the time it passed over Japan's capital, Tokyo, where it left little damage before moving out to sea. Curved lines indicate similar contexts, providing evidence that \"land\" and \"hit\" from two articles are semantically similar.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "action clustering accordingly. While the target application varies, most systems that need to group text spans by similarity measures are verb-centric. In addition to the verb, many systems expand their representation by including named entity tags (Collier, 1998; Yangarber et al., 2000; Sudo et al., 2003; Filatova et al., 2006) , as well as restricting matches (using constraints on subtrees (Sudo et al., 2003; Filatova et al., 2006) , predicate argument structures (Collier, 1998; Riloff and Schmelzenbach, 1998; Yangarber et al., 2000; Harabagiu and Maiorano, 2002) or semantic roles).",
                "cite_spans": [
                    {
                        "start": 249,
                        "end": 264,
                        "text": "(Collier, 1998;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 265,
                        "end": 288,
                        "text": "Yangarber et al., 2000;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 289,
                        "end": 307,
                        "text": "Sudo et al., 2003;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 308,
                        "end": 330,
                        "text": "Filatova et al., 2006)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 395,
                        "end": 414,
                        "text": "(Sudo et al., 2003;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 415,
                        "end": 437,
                        "text": "Filatova et al., 2006)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 470,
                        "end": 485,
                        "text": "(Collier, 1998;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 486,
                        "end": 517,
                        "text": "Riloff and Schmelzenbach, 1998;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 518,
                        "end": 541,
                        "text": "Yangarber et al., 2000;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 542,
                        "end": 571,
                        "text": "Harabagiu and Maiorano, 2002)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Given these representations, systems then cluster similar text spans. To our knowledge, all current systems use a binary notion of similarity, in which pairs of spans are either similar or not. How they determine similarity is tightly coupled with their text span representation. One criterion used is pattern overlap: for example, (Collier, 1998; Harabagiu and Lacatusu, 2005 ) judge text spans to be similar if they have similar verbs and share the same verb arguments. Working with tree structures, Sudo et al. and Filatova et al. instead require shared subtrees.",
                "cite_spans": [
                    {
                        "start": 332,
                        "end": 347,
                        "text": "(Collier, 1998;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 348,
                        "end": 376,
                        "text": "Harabagiu and Lacatusu, 2005",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Calculating text span similarity ultimately boils down to calculating word phrase similarity. Approaches such as Yangarber's or Riloff and Schmelzenbach's do not employ a thesaurus and thus are easier to implement, but can suffer from over-or under-generalization. In certain cases, either the same actor is involved in different actions or different verbs realize the same action. Other systems (Collier, 1998; Sudo et al., 2003) do employ lexical similarity but threshold it to obtain binary judgments. Systems then rank clusters by cluster size and correlation with the relevant article set and equate top clusters as output scenario slots.",
                "cite_spans": [
                    {
                        "start": 396,
                        "end": 411,
                        "text": "(Collier, 1998;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 412,
                        "end": 430,
                        "text": "Sudo et al., 2003)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Automating STC requires handling a larger degree of variations than most previous work we have surveyed. Note that the actors involved in actions in a scenario generally differ from event to event, which makes most related work on text span similarity calculation unsuitable. Also, action participants are not limited to named entities, so our approach needs to process all NPs. As both actions and actors may be realized using different words, a similarity thesaurus is necessary. Our approach to STC uses a thesaurus based on corpus statistics (Lin, 1998) for real-valued similarity calculation. In contrast to previous approaches, we do not threshold word similarity results; we retain their fractional values and incorporate these values holistically. Finally, as the same action can be realized in different constructions, the semantic (not just syntactic) roles of verb arguments must be considered, lest agent and patient roles be confused. For these reasons, we use a semantic role labeler (Pradhan et al., 2004) to provide and delimit the text spans that contain the semantic arguments of a predicate. We term the obtained text spans as predicate argument tuples (tuples) throughout the paper. The semantic role labeler reportedly achieves an F 1 measure equal to 68.7% on identificationclassification of predicates and core arguments on a newswire text corpus (LDC, 2002) . Within the confines of our study, we find it is able to capture most of the tuples of interest.",
                "cite_spans": [
                    {
                        "start": 546,
                        "end": 557,
                        "text": "(Lin, 1998)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 998,
                        "end": 1020,
                        "text": "(Pradhan et al., 2004)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 1370,
                        "end": 1381,
                        "text": "(LDC, 2002)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "Our approach explicitly captures contextual evidence. We define a tuple's contexts as other tuples in the same article segment where no topic shift occurs. This definition refines the n-surrounding word constraint commonly used in spelling correction (for example, (Hirst and Budanitsky, 2005) ), Word Sense Disambiguation ( (Preiss, 2001) , (Lee and Ng, 2002) , for instance), etc. while still ensures the relatedness between a tuple and its contexts. Specifically, a tuple is contextually related to other tuples by two quantifiable contextual relations: argument-similarity and position-similarity. For our experiments, we use the leads of newswire articles as they normally summarize the news. We also assume a lead qualifies as a single article segment, thus making all of its tuples as potential contexts to each other. Figure 3: Being similar contexts, \"weakened\" and \"moving\" provide contextual evidence that \"land\" and \"hit\" are similar.",
                "cite_spans": [
                    {
                        "start": 265,
                        "end": 293,
                        "text": "(Hirst and Budanitsky, 2005)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 325,
                        "end": 339,
                        "text": "(Preiss, 2001)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 342,
                        "end": 360,
                        "text": "(Lee and Ng, 2002)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "from A 2 from A 1 weakened(storm) v 2 1 hit(storm) v 2 2 moving(storm) v 2 3 weakened(hurricane) v 1 1 landed(hurricane) v 1 2 moving(hurricane) v 1 3 e 2 1,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "First, we split the input article leads into sentences and perform semantic role labeling immediately afterwards. Our system could potentially benefit from additional pre-processing such as co-reference resolution. Currently these pre-processing steps have not been properly integrated with the rest of the system, and thus we have not yet measured their impact.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "We then transform each lead A i into a graph",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "G i = {V i , E i }. As shown in Figure 3, vertices V i = {v i j }(j = 1, ..., N )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "are the N predicate argument tuples extracted from the ith article, and directed edges",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "E i = {e i m,n = (v i m , v i n )} reflect contextual relations between tuple v i m and v i n .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "Edges only connect tuples from the same article, i.e., within each graph G i . We differentiate between two types of edges. One is argument-similarity, where the two tuples have semantically similar arguments. This models tuple cohesiveness, where the edge weight is determined by the similarity score of the most similar inter-tuple argument pair. The other is positionsimilarity, represented as the offset of the ending tuple with respect to the other, measured in sentences. This edge type is directional to account for simple causality.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "Given this set of graphs, the clustering task is to find an optimal alignment of all graphs (i.e., superimposing the set of article graphs to maximize vertex overlap, constrained by the edges). We adapt Expectation Maximization (Dempster et al., 1977) to find an optimal clustering. This process assigns tuples to suitable clusters where they are semantically similar and share similar contexts with other tuples. Algorithm 1 outlines this alignment process. During initialization, tuples whose pairwise similarity higher than a threshold \u03c4 are merged to form highly cohesive seed clusters. To compute a continuous similarity Sim(t a , t b ) of tuples t a and t b , we use the similarity measure described in (Qiu et al., 2006) , which linearly combines similarities between the semantic roles shared by the two tuples. Some other tuples are related to these seed clusters by argument-similarity. These related tuples are temporarily put into a special \"other\" cluster. The cluster membership of these related tuples, together with those currently in the seed clusters, are to be further adjusted. The \"other\" cluster is so called because a tuple will end up being assigned to it if it is not found to be similar to any other tuple. Tuples that are neither similar to nor contextually related by argument-similarity to another tuple are termed singletons and excluded from being clustered.",
                "cite_spans": [
                    {
                        "start": 228,
                        "end": 251,
                        "text": "(Dempster et al., 1977)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 709,
                        "end": 727,
                        "text": "(Qiu et al., 2006)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "Algorithm 1 Graph Alignment(G) /*G is a set of graph {G i }*/ T \u2190 all tuples in G C \u2190",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "We then iteratively (re-)estimate clusters of tuples across the set of article graphs G. In the E-step of the EM algorithm, all contextual relations between each pair of clusters are collected as two set of edges.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "Here we assume argument-similarity and positionsimilarity are independent and thus we differentiate them in the computation. Accordingly, there are two sets: edges as and edges ps . For simplicity, we assume independent normal distributions for the strength of each set (inter-tuple argument similarity for edges as and sentence distance for edges ps ). The edge strength distribution parameters for both sets between each pair of clusters are re-estimated based on current edges in edges as and edges ps .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "In the M-step, we examine each tuple's fitness for belonging to its cluster and relocate some tuples to new clusters to maximize the likelihood given the latest estimated edge strength distributions. In the following equations, we denote the proposition that predicate argument tuple t a belongs to cluster c m as t a \u2208c m ; a typical tuple (the centroid) of the cluster c m as t cm ; and the cluster of t a as c ta . The objective function to maximize is:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "Obj(G) = X ta\u2208G log(P (ta\u2208ct a )),",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "where P (ta\u2208cm) = 2Ps(ta\u2208cm) Pc(ta\u2208cm) Ps(ta\u2208cm) + Pc(ta\u2208cm) .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "Equation 2 takes the harmonic mean of two factors: a contextual factor P c and and a semantic factor P s :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "Pc(ta\u2208cm) = max{P (edges(ta, t b )| t b :edges(ta,t b ) =null edges(cm, ct b ))},",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "Ps(ta\u2208cm) = ( sim def ault , cm = c other , Sim(ta, tc m ), otherwise.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "Here the contextual factor P c models how likely t a belongs to c m according to the contextual information, i.e., the conditional probability of the contextual relations between c m and c t b given the contextual relations between t a and one particular context t b , which maximizes this probability. According to Bayes' theorem, it is computed as shown in Equation 3. In practice, we multiply two conditional probabilities: P (edge as (t a , t b )|edges as (c m , c t b )) and P (edge ps (t a , t b )|edges ps (c m , c t b )), assuming independence between edges as and edges ps . We assume there are still singleton tuples that are not semantically similar to another tuple and should belong to the special \"other\" cluster. Given that they are dissimilar to each other, we set sim def ault to a small nonzero value in Equation 4 to prevent the \"other\" cluster from expelling them based on their low semantic similarity. Tuples' cluster memberships are recalculated, and the parameters describing the contextual relations between clusters are reestimated. New EM iterations are performed as long as one or more tuple relocations occur. Once the EM halts, clusters of equivalent tuples are formed. Among these clusters, some correspond to salient actions that, together with their actors, are all SAs to be generalized into template slots. Cluster size is a good indicator of salience, and each large cluster (excluding the \"other\" cluster) can be viewed as containing instances of a salient action.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "Formulating the clustering process as a variant of iterative EM is well-motivated as we consider the similarity scores as noisy and having missing observations. Calculating semantic similarity is at best inaccurate. Thus it is difficult to cluster tuples correctly based only on their semantic similarity. Also to check whether a tuple shares contexts with a cluster of tuples, the cluster has to be relatively clean. An iterative EM as we have proposed naturally improve the cleanness of these tuple clusters gradually as new similarity information comes to light.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Context-Sensitive Clustering (CSC)",
                "sec_num": "3"
            },
            {
                "text": "For STC, we argue that it is crucial to cluster tuples with high recall so that an SA's various surface forms can be captured and the size of clusters can serve as a salience indicator. Meanwhile, precision should not be sacrificed, as more noise will hamper the downstream generalization process which outputs template slots. We conduct experiments designed to answer two relevant research questions: 1) Cluster Quality: Whether using contexts (in CSC) produces better clustering results than ignoring it (in the K-means baseline); and 2) Template Coverage: Whether slots generalized from CSC clusters cover human-defined templates.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "A straightforward evaluation of a STC system would compare its output against manually-prepared gold standard templates, such as those found in MUC.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Set and Baseline",
                "sec_num": "4.1"
            },
            {
                "text": "Unfortunately, such scenario templates are severely limited and do not provide enough instances for a proper evaluation. To overcome this problem, we have prepared a balanced news corpus, where we have manually selected articles covering 15 scenarios. Each scenario is represented by a total of 45 to 50 articles which describe 10 different events.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Set and Baseline",
                "sec_num": "4.1"
            },
            {
                "text": "Our baseline is a standard K-means clusterer. Its input is identical to that of CSC -the tuples extracted from relevant news articles and are not excluded from being clustered by CSC in the initialization stage (refer to Section 3) -and employs the same tuple similarity measure (Qiu et al., 2006) . The differentiating factor between CSC and K-means is the use of contextual evidence. A standard K-means clusterer requires a k to be specified. For each scenario, we set its k as the number of clusters generated by CSC for direct comparison.",
                "cite_spans": [
                    {
                        "start": 279,
                        "end": 297,
                        "text": "(Qiu et al., 2006)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Set and Baseline",
                "sec_num": "4.1"
            },
            {
                "text": "We fix the test set for each scenario as ten randomly selected news articles, each reporting a different instance of the scenario; the development set (which also serves as the training set for determining the EM initialization threshold \u03c4 and sim def ault in Equation 4) is a set of ten articles from the \"Air-linerCrash\" scenario, which are excluded from the test set. Both systems analyze the first 15 sentences of each article, and sentences generate 2 to 3 predicate argument tuples on average, resulting in a total of 10 \u00d7 15 \u00d7 (2 to 3) = 300 to 450 tuples for each scenario.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Set and Baseline",
                "sec_num": "4.1"
            },
            {
                "text": "This experiment compares the clustering results of CSC and K-means. We use the standard clustering metrics of purity and inverse purity (Hotho et al., 2003) . The first author manually constructed the gold standard clusters for each scenario using a GUI before conducting any experiments. A special cluster, corresponding to the \"other\" cluster in the CSC clusters, was created to hold the singleton tuples for each scenario. Table 1 shows this under the column \"#Gold Standard Clusters\".",
                "cite_spans": [
                    {
                        "start": 136,
                        "end": 156,
                        "text": "(Hotho et al., 2003)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 426,
                        "end": 433,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Cluster Quality",
                "sec_num": "4.2"
            },
            {
                "text": "Using the manual clusters as the gold standard, we obtain the purity (P) and inverse purity (IP) scores of CSC and K-means on each scenario. In Table 1 , we see that CSC outperforms K-means on 10 of 15 scenarios for both P and IP. For the remaining 5 scenarios, where CSC and K-means have comparable P scores, the IP scores of CSC are all significantly higher than that of K-means. This suggests clusters tend to be split apart more in K-means than in CSC when they have similar purity. One thing worth mentioning here is that the \"other\" cluster normally is relatively large for each scenario, and thus may skew the results. To remove this effect, we excluded tuples belonging to the CSC \"other\" cluster from the K-means input, generating one fewer cluster. Running the evaluation again, the resulting P-IP scores again show that CSC outperforms the baseline Kmeans. We only report the results for all tuples in our paper for simplicity. Table 1 : CSC outperforms K-means with respect to the purity (P) and inverse purity (IP) scores.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 144,
                        "end": 151,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 939,
                        "end": 946,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Cluster Quality",
                "sec_num": "4.2"
            },
            {
                "text": "A close inspection of the results reveals some problematic cases. One issue worth mentioning is that for certain actions both CSC and K-means produce split clusters. In the CSC case, we traced this problem back to the thesaurus, where predicates for one action seem to belong to two or more totally dissimilar semantic categories. The corresponding tuples are thus assigned to different clusters as their low semantic similarity forces the tuples to remain separate, despite the shared contexts trying to join them. One example is \"blast (off)\" and \"lift (off)\" in the \"Launch Event\" scenario. The thesaurus shows the two verbs are dissimilar and the corresponding tuples end up being in two split clusters. This can not be solved easily without an improved thesaurus. We are considering adding a prior to model the op-timal size for clusters, which may help to compact such cases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Cluster Quality",
                "sec_num": "4.2"
            },
            {
                "text": "We also assess how well the resulting, CSCgenerated tuple clusters serve in creating good scenario template slots. We start from the top largest clusters from each scenario, and decompose each of them into six sets: the predicates, agents, patients, predicate modifiers, agent modifiers and patient modifiers. For each of the first three sets for each cluster, we create a generalized term to represent it using an extended version of a generalization algorithm (Tseng et al., 2006) . These terms are deemed output slots, and are put into the template with their agent-predicate-patient relations preserved. The size of the template may increase when more clusters are generalized, as new slots may result.",
                "cite_spans": [
                    {
                        "start": 462,
                        "end": 482,
                        "text": "(Tseng et al., 2006)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Template Coverage",
                "sec_num": "4.3"
            },
            {
                "text": "We manually compare the slots that are output from the system with those defined in existing scenario templates in MUC. The results here are only indicative and not conclusive, as there are only two MUC7 templates available for comparison: Aviation Disaster and Launch Event. shows an excerpt of the automatically generated template \"AviationDisaster\" (\"Airliner-Crash\" in our corpus) where the semantic roles in the top two biggest clusters have been generalized. Their modifiers are quite semantically diverse, as shown in Table 2 . Thus, generalization (probably after a categorization operation) remains as a challenging problem.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 525,
                        "end": 532,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Template Coverage",
                "sec_num": "4.3"
            },
            {
                "text": "Nonetheless, the information contained in these semantic roles and their modifiers covers human-semantic role modifier head samples agent:aircraft A, U.N., The, Swiss, Canadianbuilt, AN, China, military, Iranian, Air, refueling, US, ... action:crash Siberia, mountain, rain, Tuesday, flight, Sharjah, flames, Sunday, board, Saturday, 225 , Rockaway, approach, United, mountain, hillside patient:people all, 255, 71 Figure 5 : MUC-7 template coverage: asterisks marking all the slots that could be automatically generated.",
                "cite_spans": [
                    {
                        "start": 183,
                        "end": 186,
                        "text": "AN,",
                        "ref_id": null
                    },
                    {
                        "start": 187,
                        "end": 193,
                        "text": "China,",
                        "ref_id": null
                    },
                    {
                        "start": 194,
                        "end": 203,
                        "text": "military,",
                        "ref_id": null
                    },
                    {
                        "start": 204,
                        "end": 212,
                        "text": "Iranian,",
                        "ref_id": null
                    },
                    {
                        "start": 213,
                        "end": 217,
                        "text": "Air,",
                        "ref_id": null
                    },
                    {
                        "start": 218,
                        "end": 228,
                        "text": "refueling,",
                        "ref_id": null
                    },
                    {
                        "start": 229,
                        "end": 232,
                        "text": "US,",
                        "ref_id": null
                    },
                    {
                        "start": 233,
                        "end": 258,
                        "text": "... action:crash Siberia,",
                        "ref_id": null
                    },
                    {
                        "start": 259,
                        "end": 268,
                        "text": "mountain,",
                        "ref_id": null
                    },
                    {
                        "start": 269,
                        "end": 274,
                        "text": "rain,",
                        "ref_id": null
                    },
                    {
                        "start": 275,
                        "end": 283,
                        "text": "Tuesday,",
                        "ref_id": null
                    },
                    {
                        "start": 284,
                        "end": 291,
                        "text": "flight,",
                        "ref_id": null
                    },
                    {
                        "start": 292,
                        "end": 300,
                        "text": "Sharjah,",
                        "ref_id": null
                    },
                    {
                        "start": 301,
                        "end": 308,
                        "text": "flames,",
                        "ref_id": null
                    },
                    {
                        "start": 309,
                        "end": 316,
                        "text": "Sunday,",
                        "ref_id": null
                    },
                    {
                        "start": 317,
                        "end": 323,
                        "text": "board,",
                        "ref_id": null
                    },
                    {
                        "start": 324,
                        "end": 333,
                        "text": "Saturday,",
                        "ref_id": null
                    },
                    {
                        "start": 334,
                        "end": 337,
                        "text": "225",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 415,
                        "end": 423,
                        "text": "Figure 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Template Coverage",
                "sec_num": "4.3"
            },
            {
                "text": "defined scenario templates quite well. The two MUC7 templates are shown as a list of slots in Figure 5 , where horizontal lines delimit slots about different semantic roles, and asterisks mark all the slots that could be automatically generated by our system once it has an improved generalizer. We can see substantial amount of overlap, indicating that a STC system powered by CSC is able to capture scenarios' important facts.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 94,
                        "end": 102,
                        "text": "Figure 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Template Coverage",
                "sec_num": "4.3"
            },
            {
                "text": "We have introduced a new context-sensitive approach to the scenario template creation (STC) problem. Our method leverages deep NL processing, using semantic role labeler's structured semantic tuples as input. Despite the use of deeper semantics, we believe that intrinsic semantic similarity by itself is not sufficient for clustering. We have shown this through examples and argue that an approach that considers contextual similarity is necessary. A key aspect of our work is the incorporation of such contextual information. Our approach uses a notion of context that combines two aspects: positional similarity (when two tuples are adjacent in the text), and argument similarity (when they have similar arguments). The set of relevant articles are represented as graphs where contextual evidence is encoded. By mapping our problem into a graphical formalism, we cast the STC clustering problem as one of multiple graph alignment. Such a graph alignment is solved by an adaptation of EM, which handles contexts and real-valued similarity by treating both as noisy and potentially unreliable observations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "While scenario template creation (STC) is a difficult problem, its evaluation is arguably more difficult due to the dearth of suitable resources. We have compiled and released a corpus of over 700 newswire articles that describe different instances of 15 scenarios, as a suitable input dataset for further STC research. Using this dataset, we have evaluated and analyzed our context-sensitive approach. While our results are indicative, they show that considering contextual evidence improves performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            }
        ],
        "back_matter": [
            {
                "text": "The authors are grateful to Kathleen R. McKeown and Elena Filatova at Columbia University for their stimulating discussions and comments over different stages of the preparation of this paper.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Automatic Template Creation for Information Extraction",
                "authors": [
                    {
                        "first": "Robin",
                        "middle": [],
                        "last": "Collier",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robin Collier. 1998. Automatic Template Creation for Information Extraction. Ph.D. thesis, University of Sheffield, UK.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Maximum likelihood from incomplete data via the EM algorithm",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "P"
                        ],
                        "last": "Dempster",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [
                            "M"
                        ],
                        "last": "Laird",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "B"
                        ],
                        "last": "Rubin",
                        "suffix": ""
                    }
                ],
                "year": 1977,
                "venue": "JRSSB",
                "volume": "39",
                "issue": "",
                "pages": "1--38",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A.P. Dempster, N.M. Laird, and D.B. Rubin. 1977. Max- imum likelihood from incomplete data via the EM al- gorithm. JRSSB, 39:1-38.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Automatic creation of domain templates",
                "authors": [
                    {
                        "first": "Elena",
                        "middle": [],
                        "last": "Filatova",
                        "suffix": ""
                    },
                    {
                        "first": "Vasileios",
                        "middle": [],
                        "last": "Hatzivassiloglou",
                        "suffix": ""
                    },
                    {
                        "first": "Kathleen",
                        "middle": [],
                        "last": "Mckeown",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the COLING/ACL '06",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Elena Filatova, Vasileios Hatzivassiloglou, and Kathleen McKeown. 2006. Automatic creation of domain tem- plates. In Proceedings of the COLING/ACL '06.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Topic themes for multi-document summarization",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Sanda",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "Finley"
                        ],
                        "last": "Harabagiu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lacatusu",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of SIGIR '05",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sanda M. Harabagiu and V. Finley Lacatusu. 2005. Topic themes for multi-document summarization. In Proceedings of SIGIR '05.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Multidocument summarization with GISTEXTER",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Sanda",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "J"
                        ],
                        "last": "Harabagiu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Maiorano",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of LREC '02",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sanda M. Harabagiu and S. J. Maiorano. 2002. Multi- document summarization with GISTEXTER. In Pro- ceedings of LREC '02.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Correcting real-word spelling errors by restoring lexical cohesion",
                "authors": [
                    {
                        "first": "Graeme",
                        "middle": [],
                        "last": "Hirst",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Budanitsky",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Natural Language Engineering",
                "volume": "",
                "issue": "1",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Graeme Hirst and Alexander Budanitsky. 2005. Cor- recting real-word spelling errors by restoring lexical cohesion. Natural Language Engineering, 11(1).",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "WordNet improves text document clustering",
                "authors": [
                    {
                        "first": "Andreas",
                        "middle": [],
                        "last": "Hotho",
                        "suffix": ""
                    },
                    {
                        "first": "Steffen",
                        "middle": [],
                        "last": "Staab",
                        "suffix": ""
                    },
                    {
                        "first": "Gerd",
                        "middle": [],
                        "last": "Stumme",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the SIGIR 2003 Semantic Web Workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andreas Hotho, Steffen Staab, and Gerd Stumme. 2003. WordNet improves text document clustering. In Pro- ceedings of the SIGIR 2003 Semantic Web Workshop.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "The aquaint corpus of english news text, catalog no",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ldc",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "LDC. 2002. The aquaint corpus of english news text, catalog no. LDC2002t31.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "An empirical evaluation of knowledge sources and learning algorithms for word sense disambiguation",
                "authors": [
                    {
                        "first": "Yoong Keok",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Hwee Tou",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of EMNLP '02",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yoong Keok Lee and Hwee Tou Ng. 2002. An empiri- cal evaluation of knowledge sources and learning algo- rithms for word sense disambiguation. In Proceedings of EMNLP '02.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Automatic retrieval and clustering of similar words",
                "authors": [
                    {
                        "first": "Dekang",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Proceedings of COLING/ACL '98",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dekang Lin. 1998. Automatic retrieval and clustering of similar words. In Proceedings of COLING/ACL '98.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Shallow semantic parsing using support vector machines",
                "authors": [
                    {
                        "first": "Sameer",
                        "middle": [],
                        "last": "Pradhan",
                        "suffix": ""
                    },
                    {
                        "first": "Wayne",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Kadri",
                        "middle": [],
                        "last": "Hacioglu",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Martin",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Jurafsky",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of HLT/NAACL '04",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James Martin, and Dan Jurafsky. 2004. Shallow semantic parsing using support vector machines. In Proceed- ings of HLT/NAACL '04.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Local versus global context for wsd of nouns",
                "authors": [
                    {
                        "first": "Judita",
                        "middle": [],
                        "last": "Preiss",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of CLUK4",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Judita Preiss. 2001. Local versus global context for wsd of nouns. In Proceedings of CLUK4.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Paraphrase recognition via dissimilarity significance classification",
                "authors": [
                    {
                        "first": "Long",
                        "middle": [],
                        "last": "Qiu",
                        "suffix": ""
                    },
                    {
                        "first": "Min-Yen",
                        "middle": [],
                        "last": "Kan",
                        "suffix": ""
                    },
                    {
                        "first": "Tat-Seng",
                        "middle": [],
                        "last": "Chua",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of EMNLP '06",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Long Qiu, Min-Yen Kan, and Tat-Seng Chua. 2006. Paraphrase recognition via dissimilarity significance classification. In Proceedings of EMNLP '06.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "An empirical approach to conceptual case frame acquisition",
                "authors": [
                    {
                        "first": "Ellen",
                        "middle": [],
                        "last": "Riloff",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Schmelzenbach",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Proceedings of WVLC '98",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ellen Riloff and M. Schmelzenbach. 1998. An empiri- cal approach to conceptual case frame acquisition. In Proceedings of WVLC '98.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "An improved extraction pattern representation model for automatic IE pattern acquisition",
                "authors": [
                    {
                        "first": "Kiyoshi",
                        "middle": [],
                        "last": "Sudo",
                        "suffix": ""
                    },
                    {
                        "first": "Satoshi",
                        "middle": [],
                        "last": "Sekine",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of ACL '03",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kiyoshi Sudo, Satoshi Sekine, and Ralph Grishman. 2003. An improved extraction pattern representation model for automatic IE pattern acquisition. In Pro- ceedings of ACL '03.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Toward generic title generation for clustered documents",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Yuen-Hsien",
                        "suffix": ""
                    },
                    {
                        "first": "Chi-Jen",
                        "middle": [],
                        "last": "Tseng",
                        "suffix": ""
                    },
                    {
                        "first": "Hsiu-Han",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "Yu-I",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of AIRS '06",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yuen-Hsien Tseng, Chi-Jen Lin, Hsiu-Han Chen, and Yu- I Lin. 2006. Toward generic title generation for clus- tered documents. In Proceedings of AIRS '06.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Unsupervised discovery of scenario-level patterns for information extraction",
                "authors": [
                    {
                        "first": "Roman",
                        "middle": [],
                        "last": "Yangarber",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Grishman",
                        "suffix": ""
                    },
                    {
                        "first": "Pasi",
                        "middle": [],
                        "last": "Tapanainen",
                        "suffix": ""
                    },
                    {
                        "first": "Silja",
                        "middle": [],
                        "last": "Huttunen",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of ANLP '00",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Roman Yangarber, Ralph Grishman, Pasi Tapanainen, and Silja Huttunen. 2000. Unsupervised discovery of scenario-level patterns for information extraction. In Proceedings of ANLP '00.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "type_str": "figure",
                "text": "An example scenario template (filled).",
                "num": null
            },
            "FIGREF1": {
                "uris": null,
                "type_str": "figure",
                "text": "Contextual evidence of similarity.",
                "num": null
            },
            "FIGREF2": {
                "uris": null,
                "type_str": "figure",
                "text": "highly cohesive tuples clusters other \u2190 remaining tuples semantically connected with C C[C.length] \u2190 other repeat /*E step*/ for each i such that i < C.length do for each j such that j < C.length do if i == j then continue; re-estimate parameters[C[i], C[j]] /*distribution parameters of edges between two clusters*/ tupleReassigned = f alse /*reset*/ /*M step*/ for each i such that i < T.length do aBestLikelihood = T [i].likelihood; /*likelihood of being in its current cluster*/ for each tuple tcontxt that contextually related with T [i] do for each cluster c cand , any candidate cluster that contextually related with tcontxt.cluster do P (T [i] \u2208 c cand ) = comb(Ps, Pc) likelihood = log(P (T [i] \u2208 c cand )) if likelihood > aBestLikelihood then aBestLikelihood = likelihood T [i].cluster = c cand tupleReassigned = true until tupleReassigned == f alse /*alignment stable*/ return",
                "num": null
            },
            "FIGREF3": {
                "uris": null,
                "type_str": "figure",
                "text": "Figure 4: Automated scenario template of \"Avia-tionDisaster\".",
                "num": null
            },
            "FIGREF4": {
                "uris": null,
                "type_str": "figure",
                "text": "Figure 4 shows an excerpt of the automatically generated template \"AviationDisaster\" (\"Airliner-Crash\" in our corpus) where the semantic roles in the top two biggest clusters have been generalized. Their modifiers are quite semantically diverse, as shown in Table 2. Thus, generalization (probably after a categorization operation) remains as a challenging problem. Nonetheless, the information contained in these semantic roles and their modifiers covers human-",
                "num": null
            },
            "TABREF0": {
                "num": null,
                "html": null,
                "content": "<table><tr><td>Storm Name Charley Storm Action landed Location Florida's Gulf coast Time Friday at 1950GMT Speed 145 mph Victim Category 1 13 people Action died Victim Category 2 over one million Action affected</td></tr></table>",
                "type_str": "table",
                "text": ""
            },
            "TABREF2": {
                "num": null,
                "html": null,
                "content": "<table><tr><td>AviationDisaster * AIRCRAFT * AIRLINE DEPARTURE POINT DEPARTURE DATE * AIRCRAFT TYPE * CRASH DATE * CRASH SITE CAUSE INFO * VICTIMS NUM</td><td>LaunchEvent * VEHICLE * VEHICLE TYPE * VEHICLE OWNER * PAYLOAD PAYLOAD TYPE PAYLOAD FUNC * PAYLOAD OWNER PAYLOAD ORIGIN * LAUNCH DATE * LAUNCH SITE MISSION TYPE MISSION FUNCTION MISSION STATUS</td></tr></table>",
                "type_str": "table",
                "text": "Sample automatically detected modifier heads of different semantic roles."
            }
        }
    }
}