File size: 73,219 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
{
    "paper_id": "I08-1017",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:40:31.347757Z"
    },
    "title": "A New Approach to Automatic Document Summarization",
    "authors": [
        {
            "first": "Xiaofeng",
            "middle": [],
            "last": "Wu",
            "suffix": "",
            "affiliation": {
                "laboratory": "National Laboratory of Pattern Recognition",
                "institution": "Chinese Academy of Sciences",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": "xfwu@nlpr.ia.ac.cn"
        },
        {
            "first": "Chengqing",
            "middle": [],
            "last": "Zong",
            "suffix": "",
            "affiliation": {
                "laboratory": "National Laboratory of Pattern Recognition",
                "institution": "",
                "location": {
                    "settlement": "Beijing",
                    "country": "China"
                }
            },
            "email": "cqzong@nlpr.ia.ac.cn"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "In this paper we propose a new approach based on Sequence Segmentation Models (SSM) to the extractive document summarization, in which summarizing is regarded as a segment labeling problem. Comparing with the previous work, the difference of our approach is that the employed features are obtained not only from the sentence level, but also from the segment level. In our approach, the semi-Markov CRF model is employed for segment labeling. The preliminary experiments have shown that the approach does outperform all other traditional supervised and unsupervised approaches to document summarization.",
    "pdf_parse": {
        "paper_id": "I08-1017",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "In this paper we propose a new approach based on Sequence Segmentation Models (SSM) to the extractive document summarization, in which summarizing is regarded as a segment labeling problem. Comparing with the previous work, the difference of our approach is that the employed features are obtained not only from the sentence level, but also from the segment level. In our approach, the semi-Markov CRF model is employed for segment labeling. The preliminary experiments have shown that the approach does outperform all other traditional supervised and unsupervised approaches to document summarization.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Document summarization has been a rapidly evolving subfield of Information Retrieval (IR) since (Luhn, 1958) . A summary can be loosely defined as a text that is produced from one or more texts and conveys important information of the original text(s). Usually it is no longer than half of the original text(s) or, significantly less (Radev et al., 2002) . Recently, many evaluation competitions (like the Document Understanding Conference DUC \"http://duc.nist.gov\", in the style of NIST's TREC), provided some sets of training corpus. It is obvious that, in the age of information explosion, document summarization will be greatly helpful to the internet users; besides, the techniques it uses can also find their applications in speech techniques and multimedia document retrieval, etc.",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 108,
                        "text": "(Luhn, 1958)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 334,
                        "end": 354,
                        "text": "(Radev et al., 2002)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The approach to summarizing can be categorized in many ways. Some of them are: 1) indicative, informative and evaluative, according to functionality; 2) single-document and multi-document, according to the amount of input documents; 3) generic and query-oriented, according to applications. Yet the taxonomy currently widely employed is to categorize summarization into abstractive and extractive.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "According to (Radev et al., 2002) , all methods that are not explicitly extractive are categorized as abstractive. These approaches include ontological information, information fusion, and compression. Abstract-based summarization never goes beyond conceptual stage, though ever since the dawn of summarization it has been argued as an alternative for its extract-based counterpart. On the other hand, extractive summarization is still attracting a lot of researchers (Yeh et al., 2005) (Daum\u00b4e III and Marcu, 2006) and many practical systems, say, MEAD \"http://www.summarization.com/mead/\", have been produced. Using supervised or unsupervised machine learning algorithms to extract sentences is currently the mainstream of the extractive summarization. However, all pervious methods focus on obtaining features from the sentence granularity.",
                "cite_spans": [
                    {
                        "start": 13,
                        "end": 33,
                        "text": "(Radev et al., 2002)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 468,
                        "end": 486,
                        "text": "(Yeh et al., 2005)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 487,
                        "end": 515,
                        "text": "(Daum\u00b4e III and Marcu, 2006)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper we focus on generating summarization by using a supervised extractive approach in which the features are obtained from a larger granularity, namely segment. The remainder of the paper is organized as follows: Section 2 introduces the related work concerning the extract-based summarization. Section 3 describes our motivations. Our experiments and results are given in Section 4, and Section 5 draws the conclusion and mentions the future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Early researchers approached the summarization problem by scoring each sentence with a combination of the features like word frequency and distribution, some proper names (Luhn, 1958) , sentence positions in a paragraph (Baxendale, 1958) , and sentence similarity (Gong, 2001) etc. The results were comparatively good. Most supervised extractive methods nowadays focus on finding powerful machine learning algorithms that can properly combine these features.",
                "cite_spans": [
                    {
                        "start": 171,
                        "end": 183,
                        "text": "(Luhn, 1958)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 220,
                        "end": 237,
                        "text": "(Baxendale, 1958)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 264,
                        "end": 276,
                        "text": "(Gong, 2001)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Bayesian classifier was first applied to summarization by (Pedersen and Chen, 1995) , the authors claimed that the corpus-trained feature weights were in agreement with (Edmundson, 1969) , which employed a subjective combination of weighted features. Another usage of the na\u00efve Bayesian model in summarization can be found in (Aone et al., 1997) . Bayesian model treats each sentence individually, and misses the intrinsic connection between the sentences. (Yeh et al., 2005) employed genetic algorithm to calculate the belief or score of each sentence belonging to the summary, but it also bears this shortcoming.",
                "cite_spans": [
                    {
                        "start": 58,
                        "end": 83,
                        "text": "(Pedersen and Chen, 1995)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 169,
                        "end": 186,
                        "text": "(Edmundson, 1969)",
                        "ref_id": null
                    },
                    {
                        "start": 326,
                        "end": 345,
                        "text": "(Aone et al., 1997)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 457,
                        "end": 475,
                        "text": "(Yeh et al., 2005)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "To overcome this independence defect, (Conroy and O'leary, 2001 ) pioneered in deeming this problem as a sequence labeling problem. The authors used HMM, which has fewer independent assumptions. However, HMM can not handle the rich linguistic features among the sentences either. Recently, as CRF (Lafferty and McCallum, 2001) has been proved to be successful in part-of-speech tagging and other sequence labeling problems, (Shen et al., 2007) attempted to employ this model in document summarization. CRF can leverage all those features despite their dependencies, and absorb other summary system's outcome. By introducing proper features and making a comparison with SVM, HMM, etc., (Shen et al., 2007) claimed that CRF could achieve the best performance.",
                "cite_spans": [
                    {
                        "start": 38,
                        "end": 63,
                        "text": "(Conroy and O'leary, 2001",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 297,
                        "end": 326,
                        "text": "(Lafferty and McCallum, 2001)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 424,
                        "end": 443,
                        "text": "(Shen et al., 2007)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 685,
                        "end": 704,
                        "text": "(Shen et al., 2007)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "All these approaches above share the same viewpoint that features should be obtained at sentence level. Nevertheless, it can be easily seen that the non-summary or summary sentences tend to appear in a consecutive manner, namely, in segments. These rich features of segments can surely not be managed by those traditional methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Recently, Sequence Segmentation Model (SSM) has attracted more and more attention in some traditional sequence learning tasks. SSM builds a direct path to encapsulate the rich segmental features (e.g., entity length and the similarity with other entities, etc., in entity recognition). Semi-CRF (Sarawagi and Cohen, 2004) is one of the SSMs, and generally outperforms CRF.",
                "cite_spans": [
                    {
                        "start": 295,
                        "end": 321,
                        "text": "(Sarawagi and Cohen, 2004)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "According to the analysis in Section 2, our basic idea is clear that we regard the supervised summarizing as a problem of sequence segmentation. However, in our approach, the features are not only obtained on the sentence level but also on the segment level.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivations",
                "sec_num": "3"
            },
            {
                "text": "Here a segment means one or more sentences sharing the same label (namely, non-summary or summary), and a text is regarded as a sequence of segments. Semi-CRF is a qualified model to accomplish the task of segment labeling, besides it shares all the virtues of CRF. Using semi-CRF, we can easily leverage the features both in traditional sentence level and in the segment level. Some features, like Log Likelihood or Similarity, if obtained from each sentence, are inclined to give unexpected results due to the small granularity. Furthermore, semi-CRF is a generalized version of CRF. The features designed for CRF can be used in semi-CRF directly, and it has been proved that semi-CRF outperforms CRF in some Natural Language Processing (NLP) problems (Sarawagi and Cohen, 2004) .",
                "cite_spans": [
                    {
                        "start": 754,
                        "end": 780,
                        "text": "(Sarawagi and Cohen, 2004)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivations",
                "sec_num": "3"
            },
            {
                "text": "In the subsections below, we first introduce semi-CRF then describe the features we used in our approach.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Motivations",
                "sec_num": "3"
            },
            {
                "text": "CRF was first introduced in (Lafferty and McCallum, 2001) . It is a conditional model P(Y|X), and here both X and Y may have complex structure. The most prominent merits of CRF are that it offers relaxation of the strong independence assumptions made in HMM or Maximum Entropy Markov Models (MEMM) (McCallum, 2000) and it is no victim of the label bias problem. Semi-CRF is a generalization version of sequential CRF. It extends CRF by allowing each state to persist for a non-unit length of time. After this time has elapsed, the system might transmit to a new state, which only depends on its previous one. When the system is in the \"segment of time\", it is allowed to behave non-Markovianly.",
                "cite_spans": [
                    {
                        "start": 28,
                        "end": 57,
                        "text": "(Lafferty and McCallum, 2001)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 298,
                        "end": 314,
                        "text": "(McCallum, 2000)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semi-CRF",
                "sec_num": "3.1"
            },
            {
                "text": "Given an observed sentence sequence X=(x 1 ,x 2 ,\u2026,x M ). The corresponding output labels are Y=(y 1 ,y 2 ,\u2026,y M ), where y i gets its value from a fixed set \u03a8. For document summarization, \u03a8={0,1}. Here 1 for summary and 0 for nonsummary. The goal of CRF is to find a sequence of Y, that maximize the probability:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CRF vs. Semi-CRF",
                "sec_num": "3.1.1"
            },
            {
                "text": "1 ( | , ) exp( ( , )) ( ) P Y X W W F X Y Z X = \u22c5 (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CRF vs. Semi-CRF",
                "sec_num": "3.1.1"
            },
            {
                "text": "Here\uff0c is a vertical vector of size T. The vertical vector",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CRF vs. Semi-CRF",
                "sec_num": "3.1.1"
            },
            {
                "text": "1 ( , ) f( , , ) M i F X Y i X Y = = \u2211 1 2 ' f ( , ,..., ) T f f f =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CRF vs. Semi-CRF",
                "sec_num": "3.1.1"
            },
            {
                "text": "means there are T feature functions, and each of them can be written as f t (i,X,Y)\u2208R,t\u2208(1,\u2026,T),i\u2208(1,\u2026,M). For example, in our experiment the 10 th feature function is expressed as: [if the length of current sentence is bigger than the predefined threshold value]&[if the current sentence is a summary]. When this feature function is acting upon the third sentence in text_1 with label_sequence_1, the following feature equation f 10 (3,text_1, la-bel_sequence_1) means: in text_1 with la-bel_sequence_1, [if the length of the third sentence is bigger than the predefined threshold value]&[if the third sentence is a summary]. W is a horizontal vector of size T that represents the weights of these features respectively. Equation 2gives the definition of Z(X), which is a normalization constant that makes the probabilities of all state sequences sum to 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CRF vs. Semi-CRF",
                "sec_num": "3.1.1"
            },
            {
                "text": "' ( ) exp( ( , ')) Y Z X W F X = \u22c5 \u2211 Y |",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CRF vs. Semi-CRF",
                "sec_num": "3.1.1"
            },
            {
                "text": "(2) If we change the sequence vector X to S=<s 1 ,s 2 ,\u2026,s N >, which means one way to split X into N segments, we have the semi-CRF. Each element in S is a triple: S j =<t j ,u j ,y j >, which denotes the j th segment in this way of segmentation. In the triple, t j denotes the start point of the j th segment, u j denotes its end position, and y j is the output label of the segment (recall the example at the beginning of this subsection that there is only one output for a segment). Under this definition, segments should have no overlapping, and satisfy the following conditions:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CRF vs. Semi-CRF",
                "sec_num": "3.1.1"
            },
            {
                "text": "1 | | | N j j s X = = \u2211 (3) (4) 1 1 1, | |,1 | |, 1 N j j j t u X t u X t u + = = \u2264 \u2264 \u2264 = +",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CRF vs. Semi-CRF",
                "sec_num": "3.1.1"
            },
            {
                "text": "Here, |\u2022| denotes the length of\u2022.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CRF vs. Semi-CRF",
                "sec_num": "3.1.1"
            },
            {
                "text": "A 10-sentences text with label sequence For example, one way to segment a text of 10 sentences in Figure 1 is S=<(1,1,1) , (2, 4, 0) , (5, 5, 1) , (6,9,0),(10,10,1)> . The circles in the second row represent sentences, and actually are only some properties of the corresponding sentences.",
                "cite_spans": [
                    {
                        "start": 123,
                        "end": 126,
                        "text": "(2,",
                        "ref_id": null
                    },
                    {
                        "start": 127,
                        "end": 129,
                        "text": "4,",
                        "ref_id": null
                    },
                    {
                        "start": 130,
                        "end": 132,
                        "text": "0)",
                        "ref_id": null
                    },
                    {
                        "start": 135,
                        "end": 138,
                        "text": "(5,",
                        "ref_id": null
                    },
                    {
                        "start": 139,
                        "end": 141,
                        "text": "5,",
                        "ref_id": null
                    },
                    {
                        "start": 142,
                        "end": 144,
                        "text": "1)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 98,
                        "end": 120,
                        "text": "Figure 1 is S=<(1,1,1)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Figure 1",
                "sec_num": null
            },
            {
                "text": "Consequently, the feature function f in CRF converts to the segmental feature function g=(g 1 ,g 2 ,\u2026,g T' ). Like f, g t (i,x,s) \u2208R also maps a triple (i,x,s) to a real number. Similarly, we may define . Now we give the final equation used to estimate the probability of S. Given a sequence X and feature weight W, we have",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 ( , ) g( , , ) N i G X S i X S = = \u2211 1 ( | , ) exp( ( , )) ( ) P S X W W G X S Z X = \u22c5 (5) Here, ' ( ) exp( ( , ')) S Z X W G X \u2208\u0394 = \u22c5 S \u2211",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Figure 1",
                "sec_num": null
            },
            {
                "text": "Where, { } all segmentations allowed \u0394 = \u2212 \u2212 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Figure 1",
                "sec_num": null
            },
            {
                "text": "The inference or the testing problem of semi-CRF is to find the best S that maximizes Equation (5). We use the following Viterbi-like algorithm to calculate the optimum path. Suppose the longest segment in corpus is K, let S 1:i,y represent all possible segmentations starting from 1 to i , and the output of the last segment is y. V(i,y) denotes the biggest value of P(S'|X,W). Note that it's also the largest value of W\u2022G(X,S'), S'\u2208S 1:i,y .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference",
                "sec_num": "3.1.2"
            },
            {
                "text": "Compared with the traditional Viterbi algorithm used in CRF, the inference for semi-CRF is more time-consuming. But by studying Algorithm 1, we can easily find out that the cost is only linear in K. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Inference",
                "sec_num": "3.1.2"
            },
            {
                "text": "Define the following function log ( | , ) (8) In this approach, the problem of parameter estimation is to find the best weight W that maximizes L W . According to (Bishop, 2006) , the Equation 8is convex. So it can be optimized by gradient ascent. Various methods can be used to do this work (Pietra et al. 1997 ).",
                "cite_spans": [
                    {
                        "start": 42,
                        "end": 45,
                        "text": "(8)",
                        "ref_id": null
                    },
                    {
                        "start": 163,
                        "end": 177,
                        "text": "(Bishop, 2006)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 292,
                        "end": 311,
                        "text": "(Pietra et al. 1997",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parameter Estimation",
                "sec_num": "3.1.3"
            },
            {
                "text": "( ( , ) log ( l W l l l l l l L PS X W W G X S Z X = \u2211 = \u22c5 \u2212 \u2211 ))",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parameter Estimation",
                "sec_num": "3.1.3"
            },
            {
                "text": "In our system, we use L-BFGS, a quasi-Newton algorithm (Liu and Nocedal. 1989) , because it has the fast converging speed and efficient memory usage. APIs we used for estimation and inference can be found in website \"http:\\\\crf.sourcefourge.net\". (Shen et al. 2007) has made a thorough investigation of the performances of CRF, HMM, and SVM. So, in order to simplify our work and make it comparable to the previous work, we shape our designation of features mainly under their framework. The mid column in Table 1 lists all of the features we used in our semi-CRF approach. For the convenience of comparison, we also list the name of the features used in (Shen et al. 2007) in the right column, and name them Regular Features. The features in bold-face in the mid column are the corresponding features tuned to fit for the usage of semi-CRF. We name them Extended Features. There are some features that are not in bold-face in the mid column. These features are the same as the Regular Features in the right column. We also used them in our approach. The mark star denotes that there is no counterpart. We number these features in the left column. Algorithm 1: Step1. Initialization: Step2. Induction:",
                "cite_spans": [
                    {
                        "start": 55,
                        "end": 78,
                        "text": "(Liu and Nocedal. 1989)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 247,
                        "end": 265,
                        "text": "(Shen et al. 2007)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 655,
                        "end": 673,
                        "text": "(Shen et al. 2007)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 506,
                        "end": 513,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Parameter Estimation",
                "sec_num": "3.1.3"
            },
            {
                "text": "Let V i ( , ) 0, 0",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "0 for i > ', 1,..., ( , ) max ( , ') g( , ', , 1, ) y k K V i y V i k y W y y x i d i = = \u2212 + \u22c5 \u2212 +",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "Step3. Termination and path readout: Table 1 . Features List The details of the features we used in semi-CRF are explained as follow.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 37,
                        "end": 44,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "max (| |, ) y bestSegment V X y =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "Extended Features: Ex_Position: is an extended version of the Position feature. It gives the description of the position of a segment in the current segmentation. If the sentences in the current segment contain the beginning sentence of a paragraph, the value of this feature will be 1, 2 if it contains the end of a paragraph; and 3 otherwise;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "Ex_Length: the number of words in the current segment after removing some stop-words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "Ex_Log_Likelihood: the log likelihood of the current segment being generated by the document. We use Equation (9) below to calculate this feature. N(w j ,s i ) denotes the number of occurrences of the word w j in the segment s i , and we use ( , ) ",
                "cite_spans": [
                    {
                        "start": 242,
                        "end": 247,
                        "text": "( , )",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "/ ( , ) k j w k N w D N w D \u2211",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "to estimate the probability of a word being generated by a document.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "log ( | ) ( , )log ( | ) j i j i w j P s D N w s p w D = \u2211",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "Ex_Similarity_to_Neighboring_Segments: we define the cosine similarity based on the TF*IDF (Frakes &Baeza-Yates, 1992 ) between a segment and its neighbors. But unlike (Shen et al. 2007) , in our work only the adjacent neighbors of the segment in our work are considered.",
                "cite_spans": [
                    {
                        "start": 91,
                        "end": 117,
                        "text": "(Frakes &Baeza-Yates, 1992",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 168,
                        "end": 186,
                        "text": "(Shen et al. 2007)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "EX_Segment_Length: this feature describes the number of sentences contained in a segment. All these features above are actually an extended version used in the regular CRF (or in other supervised model). It is easy to see that, if the segment length is equal to 1, then the features will degrade to their normal forms.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "There are some features that are also used in semi-CRF but we don't extend them like those features above. Because the extended version of these features leads to no improvement of our result. These features are:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "Regular features we used: Thematic: with removing of stop words, we define the words with the highest frequency in the document to be the thematic words. And this feature gives the count of these words in each sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "Indicator: indicative words such as \"conclusion\" and \"briefly speaking\" are very likely to be included in summary sentences, so we define this feature to signal if there are such words in a sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "Upper Case: some words with upper case are of high probability to be a name, and sentences with such words together with other words which the author might want to emphasize are likely to be appeared in a summary sentence. So we use this feature to indicate whether there are such words in a sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "It should be noted that theoretically the number of extended features obtained from the corpus goes linearly with K in Equation 7.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Features",
                "sec_num": "3.2"
            },
            {
                "text": "To evaluate our approach, we applied the widely used test corpus of (DUC2001), which is sponsored by ARDA and run by NIST \"http://www.nist.gov\". The basic aim of DUC 2001 is to further progress of summarization and enable researchers to participate into large-scale experiments. The corpus DUC2001 we used contains 147 news texts, each of which has been labeled manually whether a sentence belongs to a summary or not. Because in (Shen et al. 2007) all the experiments were conducted upon DUC2001, we may make a comparison between the sequence labeling models and the sequence segmentation modes we used. The only preprocessing we did is to remove some stop words according to a stop word list. We use F1 score as the evaluation criteria which is defined as:",
                "cite_spans": [
                    {
                        "start": 430,
                        "end": 448,
                        "text": "(Shen et al. 2007)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus & Evaluation Criteria",
                "sec_num": "4.1"
            },
            {
                "text": "2*Precesion*Recall 1 Precesion+Recall F = (10)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus & Evaluation Criteria",
                "sec_num": "4.1"
            },
            {
                "text": "We used 10-fold cross validation in order to reduce the uncertainty of the model we trained. The final F1 score reported is the average of all these 10 experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus & Evaluation Criteria",
                "sec_num": "4.1"
            },
            {
                "text": "All those steps above are strictly identical to the work in (Shen et al. 2007) , and its result is taken as our baseline.",
                "cite_spans": [
                    {
                        "start": 60,
                        "end": 78,
                        "text": "(Shen et al. 2007)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus & Evaluation Criteria",
                "sec_num": "4.1"
            },
            {
                "text": "As we mentioned in Sub-Section 3.2, those extended version of features only work when segment length is bigger than one. So, each of these extended version of features or their combination can be used together with all the other regular features listed in the right column in Table 1 . In order to give a complete test of the capacity of all these extended features and their combinations, we do the experiments according to the power set of {1, 2, 3, 4, 5} (the numbers are the IDs of these extended features as listed in Table 1 ), that is we need to do the test 2 5 -1 times with different combinations of the extended features. The results are given in Table 2. The rows with italic fonts (1, 3, 5, 7, 9, 11, 13) , in Table 2 denote the extended features used. For example, '1+2' means that the features Ex_Positon and the Ex_Length are together used with all other regular features are used. Other rows (2, 4, 6, 8, 10, 12, 14) give F1 scores corresponding to the features used.",
                "cite_spans": [
                    {
                        "start": 693,
                        "end": 696,
                        "text": "(1,",
                        "ref_id": null
                    },
                    {
                        "start": 697,
                        "end": 699,
                        "text": "3,",
                        "ref_id": null
                    },
                    {
                        "start": 700,
                        "end": 702,
                        "text": "5,",
                        "ref_id": null
                    },
                    {
                        "start": 703,
                        "end": 705,
                        "text": "7,",
                        "ref_id": null
                    },
                    {
                        "start": 706,
                        "end": 708,
                        "text": "9,",
                        "ref_id": null
                    },
                    {
                        "start": 709,
                        "end": 712,
                        "text": "11,",
                        "ref_id": null
                    },
                    {
                        "start": 713,
                        "end": 716,
                        "text": "13)",
                        "ref_id": null
                    },
                    {
                        "start": 908,
                        "end": 911,
                        "text": "(2,",
                        "ref_id": null
                    },
                    {
                        "start": 912,
                        "end": 914,
                        "text": "4,",
                        "ref_id": null
                    },
                    {
                        "start": 915,
                        "end": 917,
                        "text": "6,",
                        "ref_id": null
                    },
                    {
                        "start": 918,
                        "end": 920,
                        "text": "8,",
                        "ref_id": null
                    },
                    {
                        "start": 921,
                        "end": 924,
                        "text": "10,",
                        "ref_id": null
                    },
                    {
                        "start": 925,
                        "end": 928,
                        "text": "12,",
                        "ref_id": null
                    },
                    {
                        "start": 929,
                        "end": 932,
                        "text": "14)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 276,
                        "end": 283,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 523,
                        "end": 530,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 722,
                        "end": 729,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Results & Analysis",
                "sec_num": "4.2"
            },
            {
                "text": "In Table 3 we compare our approach with some of the most popular unsupervised methods, including LSA (Frakes & Baeza-Yates, 1992) and HITS (Mihalcea 2005) . The experiments were conducted by (Shen et al. 2007) .",
                "cite_spans": [
                    {
                        "start": 101,
                        "end": 129,
                        "text": "(Frakes & Baeza-Yates, 1992)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 139,
                        "end": 154,
                        "text": "(Mihalcea 2005)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 191,
                        "end": 209,
                        "text": "(Shen et al. 2007)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 10,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results & Analysis",
                "sec_num": "4.2"
            },
            {
                "text": "From the results in Table 2 we can see that individually applying these extended features can improve the performance somewhat. The best one of these extended features is feature 3, as listed in the 2nd row, the 5 th column. The highest improvement, 1.8%, is obtained by combining the features 1, 2, 3 and 4. Although a few of the combinations hurt the performance, most of them are helpful. This verifies our hypothesis that the extended features under SSM have greater power than the regular features. The results in Table 3 demonstrate that our approach significantly outperforms the traditional unsupervised methods. 8.3% and 4.9% improvements are respectively gained comparing to LSA and HITS models Currently, the main problem of our method is that the searching space goes large by using the extended features and semi-CRF, so the training procedure is time-consuming. However, it is not so unbearable, as it has been proved in (Sarawagi and Cohen, 2004) .",
                "cite_spans": [
                    {
                        "start": 935,
                        "end": 961,
                        "text": "(Sarawagi and Cohen, 2004)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 20,
                        "end": 27,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 519,
                        "end": 526,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Table 3 Comparison with unsupervised methods",
                "sec_num": null
            },
            {
                "text": "In this paper, we exploit the capacity of semi-CRF , we also make a test of most of the common features and their extended version designed for document summarization. We have compared our approach with that of the regular CRF and some of the traditional unsupervised methods. The comparison proves that, because summary sentences and non-summary sentences are very likely to show in a consecutive manner, it is more nature to obtain features from a lager granularity than sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "5"
            },
            {
                "text": "In our future work, we will test this approach on some other well known corpus, try the complex features used in (Shen et al. 2007) , and reduce the time for training.",
                "cite_spans": [
                    {
                        "start": 113,
                        "end": 131,
                        "text": "(Shen et al. 2007)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "5"
            }
        ],
        "back_matter": [
            {
                "text": "The research work described in this paper has been funded by the Natural Science Foundation of China under Grant No. 60375018 and 60121302. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "An Intelligent Multilingual Information Browsing and Retrieval System Using Information Extraction",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Aone",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Charocopos",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gorlinsky",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "ANLP",
                "volume": "",
                "issue": "",
                "pages": "332--339",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aone, N. Charocopos, J. Gorlinsky. 1997. An Intelligent Multilingual Information Browsing and Retrieval System Using Information Extraction. In ANLP, 332-339.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Man-made Index for Technical Literature -An Experiment",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "B"
                        ],
                        "last": "Baxendale",
                        "suffix": ""
                    }
                ],
                "year": 1958,
                "venue": "IBM Journal of Research and Development",
                "volume": "2",
                "issue": "4",
                "pages": "354--361",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P.B. Baxendale. 1958. Man-made Index for Tech- nical Literature -An Experiment. IBM Journal of Research and Development, 2(4):354-361.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Linear Models for Classification",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "M"
                        ],
                        "last": "Bishop",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Pattern Recognition and Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C.M. Bishop. 2006. Linear Models for Classifica- tion, Pattern Recognition and Machine Learning, chapter 4, Springer.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Text Summarization via Hidden Markov Models",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "M"
                        ],
                        "last": "Conroy",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "P"
                        ],
                        "last": "O'leary",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "SIGIR",
                "volume": "",
                "issue": "",
                "pages": "406--407",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. M. Conroy and D. P. O'leary. 2001. Text Sum- marization via Hidden Markov Models. In SIGIR, 406-407.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Bayesian Query-Focused Summarization",
                "authors": [
                    {
                        "first": "Hal",
                        "middle": [],
                        "last": "Daum\u00b4e",
                        "suffix": ""
                    },
                    {
                        "first": "Iii",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Marcu",
                        "suffix": ""
                    }
                ],
                "year": 1969,
                "venue": "Journal of the Association for Computing Machinery",
                "volume": "16",
                "issue": "2",
                "pages": "264--285",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hal Daum\u00b4e III, and D. Marcu. 2006. Bayesian Query-Focused Summarization, In ACL H. P. Edmundson. 1969. New Methods in Auto- matic Extracting. Journal of the Association for Computing Machinery, 16(2):264-285.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Generic text summarization using relevance measure and latent semantic analysis",
                "authors": [
                    {
                        "first": "W",
                        "middle": [
                            "B"
                        ],
                        "last": "Frakes",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Baeza-Yates",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "SIGIR",
                "volume": "",
                "issue": "",
                "pages": "19--25",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W. B. Frakes, R. Baeza-Yates, 1992, Information Retrieval Data Structures & Algorithms. Prentice Hall PTR, New Jersey Y. H. Gong and X. Liu. 2001. Generic text summa- rization using relevance measure and latent seman- tic analysis. In SIGIR, 19-25",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "A Trainable Document Summarizer. Research and Development in Information Retrieval",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kupiec",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Pedersen",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "68--73",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Kupiec, J. Pedersen, and F. Chen. 1995. A Trainable Document Summarizer. Research and Development in Information Retrieval, 68-73",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Conditional random fields: probabilistic models for segmenting and labeling sequence data",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "D"
                        ],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "C N"
                        ],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "282--289",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. D. Lafferty, A. McCallum and F. C. N. Pereira. 2001. Conditional random fields: probabilistic models for segmenting and labeling sequence data. ICML, 282-289.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "On the limited memory BFGS method for large-scale optimization",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "C"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "Mathematic Programming",
                "volume": "45",
                "issue": "",
                "pages": "503--528",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. C. Liu and J. Nocedal. 1989. On the limited memory BFGS method for large-scale optimiza- tion. Mathematic Programming, 45:503-528.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "The Automatic Creation of Literature Abstracts",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "P"
                        ],
                        "last": "Luhn",
                        "suffix": ""
                    }
                ],
                "year": 1958,
                "venue": "IBM Journal of Research and Development",
                "volume": "2",
                "issue": "2",
                "pages": "159--165",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. P. Luhn. 1958. The Automatic Creation of Lit- erature Abstracts. IBM Journal of Research and Development, 2(2): 159 -165.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Maximum entropy Markov models for information extraction and segmentation",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Freitag",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "ICML",
                "volume": "",
                "issue": "",
                "pages": "591--598",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. McCallum, D. Freitag, and F. Pereira. 2000. Maximum entropy Markov models for information extraction and segmentation. In ICML, 591-598",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Language independent extractive summarization",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Mihalcea",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mihalcea",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "AAAI",
                "volume": "",
                "issue": "",
                "pages": "1688--1689",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mihalcea R. Mihalcea. 2005. Language independ- ent extractive summarization. In AAAI, 1688-1689",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Inducing features of random fields",
                "authors": [
                    {
                        "first": "S",
                        "middle": [
                            "D"
                        ],
                        "last": "Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "D"
                        ],
                        "last": "Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "D"
                        ],
                        "last": "Lafferty",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "IEEE Tran. on Pattern Analysis and Machine Intelligence",
                "volume": "19",
                "issue": "",
                "pages": "380--393",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. D. Pietra, V. D. Pietra, and J. D. Lafferty. 1997. Inducing features of random fields. IEEE Tran. on Pattern Analysis and Machine Intelligence, 19(:)380-393.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Introduction to the Special Issue on Summarization",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "R"
                        ],
                        "last": "Radev",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Mckeown",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Computational Linguistics",
                "volume": "28",
                "issue": "4",
                "pages": "399--408",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. R. Radev, E. Hovy and K. McKeown. 2002. Introduction to the Special Issue on Summarization. Computational Linguistics, 28(4): 399-408.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Semi-markov conditional random fields for information extraction",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Sarawagi",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "W"
                        ],
                        "last": "Cohen",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Sarawagi and W.W. Cohen. 2004. Semi-markov conditional random fields for information extrac- tion.In NIPS",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Document Summarization using Conditional Random Fields' In IJCAI",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "T"
                        ],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "1805--1813",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Shen, J. T. Sun, H. Li, Q. Yang, Z. Chen. 2007. Document Summarization using Conditional Ran- dom Fields' In IJCAI, 1805-1813",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Text summarization using trainable summarizer and latent semantic analysis",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "Y"
                        ],
                        "last": "Yeh",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [
                            "R"
                        ],
                        "last": "Ke",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "P"
                        ],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [
                            "H"
                        ],
                        "last": "Meng",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "IPM",
                "volume": "41",
                "issue": "1",
                "pages": "75--95",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Y. Yeh, H. R. Ke, W. P. Yang and I. H. Meng. 2005. Text summarization using trainable summar- izer and latent semantic analysis. IPM, 41(1): 75- 95",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "j"
            },
            "TABREF1": {
                "content": "<table><tr><td/><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr><tr><td>F1</td><td>0.395</td><td>0.391</td><td>0.398</td><td>0.394</td><td>0.392</td></tr><tr><td/><td>1+2</td><td>1+3</td><td>1+4</td><td>1+5</td><td>2+3</td></tr><tr><td>F1</td><td>0.395</td><td>0.396</td><td>0.396</td><td>0.395</td><td>0.382</td></tr><tr><td/><td>2+4</td><td>2+5</td><td>3+4</td><td>3+5</td><td>4+5</td></tr><tr><td>F1</td><td>0.389</td><td>0.384</td><td>0.398</td><td>0.399</td><td>0.380</td></tr><tr><td/><td>1+2+3</td><td>1+2+4</td><td>1+2+5</td><td>1+3+4</td><td>1+3+5</td></tr><tr><td>F1</td><td>0.398</td><td>0.397</td><td>0.393</td><td>0.403</td><td>0.402</td></tr><tr><td/><td>1+4+5</td><td>2+3+4</td><td>2+3+5</td><td>2+4+5</td><td>3+4+5</td></tr><tr><td>F1</td><td>0.402</td><td>0.403</td><td>0.401</td><td>0.403</td><td>0.404</td></tr><tr><td/><td>1+2</td><td>1+2</td><td>1+2</td><td>1+3</td><td>2+3</td></tr><tr><td/><td>+3+4</td><td>+3+5</td><td>+4+5</td><td>+4+5</td><td>+4+5</td></tr><tr><td>F1</td><td>0.407</td><td>0.404</td><td>0.406</td><td>0.402</td><td>0.404</td></tr><tr><td/><td>All</td><td/><td colspan=\"2\">CRF</td><td/></tr><tr><td>F1</td><td>0.406</td><td/><td colspan=\"2\">0.389</td><td/></tr></table>",
                "html": null,
                "text": "Experiment results.",
                "num": null,
                "type_str": "table"
            }
        }
    }
}