File size: 90,202 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
{
    "paper_id": "I08-1002",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:41:34.025408Z"
    },
    "title": "An Empirical Comparison of Goodness Measures for Unsupervised Chinese Word Segmentation with a Unified Framework",
    "authors": [
        {
            "first": "Hai",
            "middle": [],
            "last": "Zhao",
            "suffix": "",
            "affiliation": {},
            "email": "haizhao@cityu.edu.hk"
        },
        {
            "first": "Chunyu",
            "middle": [],
            "last": "Kit",
            "suffix": "",
            "affiliation": {},
            "email": "ctckit@cityu.edu.hk"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper reports our empirical evaluation and comparison of several popular goodness measures for unsupervised segmentation of Chinese texts using Bakeoff-3 data sets with a unified framework. Assuming no prior knowledge about Chinese, this framework relies on a goodness measure to identify word candidates from unlabeled texts and then applies a generalized decoding algorithm to find the optimal segmentation of a sentence into such candidates with the greatest sum of goodness scores. Experiments show that description length gain outperforms other measures because of its strength for identifying short words. Further performance improvement is also reported, achieved by proper candidate pruning and by assemble segmentation to integrate the strengths of individual measures.",
    "pdf_parse": {
        "paper_id": "I08-1002",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper reports our empirical evaluation and comparison of several popular goodness measures for unsupervised segmentation of Chinese texts using Bakeoff-3 data sets with a unified framework. Assuming no prior knowledge about Chinese, this framework relies on a goodness measure to identify word candidates from unlabeled texts and then applies a generalized decoding algorithm to find the optimal segmentation of a sentence into such candidates with the greatest sum of goodness scores. Experiments show that description length gain outperforms other measures because of its strength for identifying short words. Further performance improvement is also reported, achieved by proper candidate pruning and by assemble segmentation to integrate the strengths of individual measures.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Unsupervised Chinese word segmentation was explored in a number of previous works for various purposes and by various methods (Ge et al., 1999; Fu and Wang, 1999; Peng and Schuurmans, 2001; SUN et al., 2004; Jin and Tanaka-Ishii, 2006) . However, various heuristic rules are often involved in most existing works, and there has not been a comprehensive comparison of their performance in a unified way with available large-scale \"gold standard\" data sets, especially, multi-standard ones since Bakeoff-1 1 .",
                "cite_spans": [
                    {
                        "start": 126,
                        "end": 143,
                        "text": "(Ge et al., 1999;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 144,
                        "end": 162,
                        "text": "Fu and Wang, 1999;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 163,
                        "end": 189,
                        "text": "Peng and Schuurmans, 2001;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 190,
                        "end": 207,
                        "text": "SUN et al., 2004;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 208,
                        "end": 235,
                        "text": "Jin and Tanaka-Ishii, 2006)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper we will propose a unified framework for unsupervised segmentation of Chinese text. Four existing approaches to unsupervised segmentations or word extraction are considered as its special cases, each with its own goodness measurement to quantify word likelihood. The output by each approach will be evaluated using benchmark data sets of Bakeoff-3 2 (Levow, 2006) . Note that unsupervised segmentation is different from, if not more complex than, word extraction, in that the former must carry out the segmentation task for a text, for which a segmentation (decoding) algorithm is indispensable, whereas the latter only acquires a word candidate list as output (Chang and Su, 1997; Zhang et al., 2000) .",
                "cite_spans": [
                    {
                        "start": 363,
                        "end": 376,
                        "text": "(Levow, 2006)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 674,
                        "end": 694,
                        "text": "(Chang and Su, 1997;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 695,
                        "end": 714,
                        "text": "Zhang et al., 2000)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We propose a generalized framework to unify the existing methods for unsupervised segmentation, assuming the availability of a list of word candidates each associated with a goodness for how likely it is to be a true word. Let W = {{w i , g(w i )} i=1,...,n } be such a list, where w i is a word candidate and g(w i ) its goodness function.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generalized Framework",
                "sec_num": "2"
            },
            {
                "text": "Two generalized decoding algorithms, (1) and (2), are formulated for optimal segmentation of a given plain text. The first one, decoding algorithm (1), is a Viterbi-style one to search for the best segmentation S * for a text T , as follows,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generalized Framework",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "S * = argmax w 1 \u2022\u2022\u2022w i \u2022\u2022\u2022wn = T n i=1 g(w i ),",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Generalized Framework",
                "sec_num": "2"
            },
            {
                "text": "with all {w i , g(w i )} \u2208 W . Another algorithm, decoding algorithm (2), is a maximal-matching one with respect to a goodness score. It works on T to output the best current word w * repeatedly with T =t * for the next round as follows, {w * , t * } = argmax",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generalized Framework",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "wt = T g(w)",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Generalized Framework",
                "sec_num": "2"
            },
            {
                "text": "with each {w, g(w)} \u2208 W . This algorithm will back off to forward maximal matching algorithm if the goodness function is set to word length. Thus the former may be regarded as a generalization of the latter. Symmetrically, it has an inverse version that works the other way around.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Generalized Framework",
                "sec_num": "2"
            },
            {
                "text": "An unsupervised segmentation strategy has to rest on some predefined criterion, e.g., mutual information (MI), in order to recognize a substring in the text as a word. Sproat and Shih (1990) is an early investigation in this direction. In this study, we examine four types of goodness measurement for a candidate substring 3 . In principle, the higher goodness score for a candidate, the more possible it is to be a true word. Frequency of Substring with Reduction A linear algorithm was proposed in (L\u00fc et al., 2004) to produce a list of such reduced substrings for a given corpus. The basic idea is that if two partially overlapped n-grams have the same frequency in the input corpus, then the shorter one is discarded as a redundant word candidate. We take the logarithm of FSR 3 Although there have been many existing works in this direction (Lua and Gan, 1994; Chien, 1997; Sun et al., 1998; Zhang et al., 2000; SUN et al., 2004) , we have to skip the details of comparing MI due to the length limitation of this paper. However, our experiments with MI provide no evidence against the conclusions in this paper.",
                "cite_spans": [
                    {
                        "start": 168,
                        "end": 190,
                        "text": "Sproat and Shih (1990)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 500,
                        "end": 517,
                        "text": "(L\u00fc et al., 2004)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 781,
                        "end": 782,
                        "text": "3",
                        "ref_id": null
                    },
                    {
                        "start": 846,
                        "end": 865,
                        "text": "(Lua and Gan, 1994;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 866,
                        "end": 878,
                        "text": "Chien, 1997;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 879,
                        "end": 896,
                        "text": "Sun et al., 1998;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 897,
                        "end": 916,
                        "text": "Zhang et al., 2000;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 917,
                        "end": 934,
                        "text": "SUN et al., 2004)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "as the goodness for a word candidate, i.e.,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "g F SR (w) = log(p(w))",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "wherep(w) is w's frequency in the corpus. This allows the arithmetic addition in (1). According to Zipf's Law (Zipf, 1949) , it approximates the use of the rank of w as its goodness, which would give it some statistical significance. For the sake of efficiency, only those substrings that occur more than once are considered qualified word candidates. Description Length Gain (DLG) The goodness measure is proposed in (Kit and Wilks, 1999) for compression-based unsupervised segmentation. The DLG from extracting all occurrences of",
                "cite_spans": [
                    {
                        "start": 99,
                        "end": 122,
                        "text": "Zipf's Law (Zipf, 1949)",
                        "ref_id": null
                    },
                    {
                        "start": 418,
                        "end": 439,
                        "text": "(Kit and Wilks, 1999)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "x i x i+1 ...x j (also denoted as x i..j ) from a corpus X= x 1 x 2 ...x n as a word is defined as DLG(x i..j ) = L(X) \u2212 L(X[r \u2192 x i..j ] \u2295 x i..j ) (4) where X[r \u2192 x i..j ]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "represents the resultant corpus from replacing all instances of x i..j with a new symbol r throughout X and \u2295 denotes the concatenation of two substrings. L(\u2022) is the empirical description length of a corpus in bits that can be estimated by the Shannon-Fano code or Huffman code as below, following classic information theory (Shannon, 1948) .",
                "cite_spans": [
                    {
                        "start": 326,
                        "end": 341,
                        "text": "(Shannon, 1948)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "L(X) . = \u2212|X| x\u2208Vp (x)log 2p (x)",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "where | \u2022 | denotes string length, V is the character vocabulary of X andp(x) x's frequency in X. For a given word candidate w, we define g DLG (w) = DLG(w). In principle, a substring with a negative DLG do not bring any positive compression effect by itself. Thus only substrings with a positive DLG value are added into our word candidate list. Accessor Variety (AV) Feng et al. (2004) propose AV as a statistical criterion to measure how likely a substring is a word. It is reported to handle lowfrequent words particularly well. The AV of a substring",
                "cite_spans": [
                    {
                        "start": 369,
                        "end": 387,
                        "text": "Feng et al. (2004)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "x i..j is defined as AV (x i..j ) = min{L av (x i..j ), R av (x i..j )}",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "where the left and right accessor variety L av (x i..j ) and R av (x i..j ) are, respectively, the number of distinct predecessor and successor characters. For a similar reason as to FSR, the logarithm of AV is used as goodness measure, and only substrings with AV > 1 are considered word candidates. That is, we have g AV (w) = logAV (w) for a word candidate w. Boundary Entropy (Branching Entropy, BE) It is proposed as a criterion for unsupervised segmentation in some existing works (Tung and Lee, 1994; Chang and Su, 1997; Huang and Powers, 2003; Jin and Tanaka-Ishii, 2006) . The local entropy for a given",
                "cite_spans": [
                    {
                        "start": 487,
                        "end": 507,
                        "text": "(Tung and Lee, 1994;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 508,
                        "end": 527,
                        "text": "Chang and Su, 1997;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 528,
                        "end": 551,
                        "text": "Huang and Powers, 2003;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 552,
                        "end": 579,
                        "text": "Jin and Tanaka-Ishii, 2006)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "x i..j , defined as h(x i..j ) = \u2212 x\u2208V p(x|x i..j )log p(x|x i..j ),",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "indicates the average uncertainty after (or before)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "x i..j in the text, where p(x|x i..j )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "is the co-occurrence probability for x and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "x i..j . Two types of h(x i..j ), namely h L (x i..j ) and h R (x i..j )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": ", can be defined for the two directions to extend x i..j (Tung and Lee, 1994) . Also, we can define h min = min{h R , h L } in a similar way as in (6). In this study, only substrings with BE > 0 are considered word candidates. For a candidate w, we have g BE (w) = h min (w) 4 .",
                "cite_spans": [
                    {
                        "start": 57,
                        "end": 77,
                        "text": "(Tung and Lee, 1994)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Goodness Measurement",
                "sec_num": "3"
            },
            {
                "text": "The evaluation is conducted with all four corpora from Bakeoff-3 (Levow, 2006) , as summarized in Table 1 with corpus size in number of characters. For unsupervised segmentation, the annotation in the training corpora is not used. Instead, they are used for our evaluation, for they are large and thus provide more reliable statistics than small ones. Segmentation performance is evaluated by word Fmeasure F = 2RP/(R + P ). The recall R and precision P are, respectively, the proportions of the correctly segmented words to all words in the goldstandard and a segmenter's output 5 . Note that a decoding algorithm always requires the goodness score of a single-character candidate 4 Both AV and BE share a similar idea from Harris (1970): If the uncertainty of successive token increases, then it is likely to be at a boundary. In this sense, one may consider them the discrete and continuous formulation of the same idea.",
                "cite_spans": [
                    {
                        "start": 65,
                        "end": 78,
                        "text": "(Levow, 2006)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 682,
                        "end": 683,
                        "text": "4",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 98,
                        "end": 105,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "5 All evaluations will be represented in terms of word F-measure if not otherwise specified. A standard scoring tool with this metric can be found in SIGHAN website, http://www.sighan.org/bakeoff2003/score. However, to compare with related work, we will also adopt boundary F-measure",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "F b = 2R b P b /(R b + P b )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": ", where the boundary recall R b and boundary precision P b are, respectively, the proportions of the correctly recognized boundaries to all boundaries in the goldstandard and a segmenter's output (Ando and Lee, 2000). for computation. There are two ways to get this score: (1) computed by the goodness measure, which is applicable only if the measure allows; (2) set to zero as default value, which is always applicable even to single-character candidates not in the word candidate list in use. For example, all singlecharacter candidates given up by DLG because of their negative DLG scores will have a default value during decoding. We will use a '/d' to indicate experiments using such a default value.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "4"
            },
            {
                "text": "We apply the decoding algorithm (1) to segment all Bakeoff-3 corpora with the above goodness measures. Both word candidates and goodness values are derived from the raw text of each training corpus. The performance of these measures is presented in Table 2 . From the table we can see that DLG and FSR have the strongest and the weakest performance, respectively, whereas AV and BE are highly comparable to each other.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 249,
                        "end": 256,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Comparison",
                "sec_num": "4.1"
            },
            {
                "text": "Decoding algorithm (2) runs the forward and backward segmentation with the respective AV and BE criteria, i.e., L AV /h L for backward and R AV /h R forward, and the output is the union of two segmentations 6 . A performance comparison of AV and BE with both algorithms (1) and (2) is presented in Table 3 . We can see that the former has a rela- tively better performance on shorter words and the latter outperforms on longer ones. How segmentation performance varies along with word length is exemplified with DLG and BE as examples in Figure 1 , with (1) and (2) indicating a respective decoding algorithm in use. It shows that DLG outperforms on two-character words and BE on longer ones.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 298,
                        "end": 305,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 538,
                        "end": 546,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Comparison",
                "sec_num": "4.1"
            },
            {
                "text": "Up to now, word candidates are determined by the default goodness threshold 0. The number of them for each of the four goodness measures is presented in Table 4 . We can see that FSR generates the largest set of word candidates and DLG the smallest. More interestingly or even surprising, AV and BE generate exactly the same candidate list for all corpora.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 153,
                        "end": 160,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Word Candidate Pruning",
                "sec_num": "4.2"
            },
            {
                "text": "In addition to word length, another crucial factor to affect segmentation performance is the quality of the word candidates as a whole. Since each candidate is associated with a goodness score to indicate how good it is, a straightforward way to ensure, and further enhance, the overall quality of a candidate set is to prune off those with low goodness scores. To examine how segmentation performance changes along with word candidate pruning and decide the optimal pruning rate, we conduct a series of experiments with each goodness measurements. Figures 2  and 3 present, as an illustration, the outcomes of two series of our experiments with DLG by decoding algorithm (1) and BE by decoding algorithm (1) and(2) on CityU training corpus. We find that appropriate pruning does lead to significant performance improvement and that both DLG and BE keep their superior performance respectively on two-character words and others. We also observe that each goodness measure has a stable and similar performance in a range of pruning rates around the optimal one, e.g., 79-62% around 70% in Figure 2 . The optimal pruning rates found through our experiments for the four goodness measures are given in Table 5 , and their correspondent segmentation performance in Table 6 . These results show a remarkable performance improvement beyond the de- F\u2212measure 100% size/(1) 38% size/(1) 32% size/(1) 19% size/(1) 10% size/(1) 100% size/(2) 27% size/(2) 19% size/(2) 16% size/(2) 13.5% size/(2) 11% size/(2) 4.5% size/(2) Figure 3 : Performance by candidate pruning: BE fault threshold setting. What remains unchanged is the advantage of DLG for two-character words and that of AV/BE for longer words. However, DLG achieves the best overall performance among the four, although it uses only single-and two-character word candidates. The overwhelming number of twocharacter words in Chinese allows it to triumph.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 549,
                        "end": 565,
                        "text": "Figures 2  and 3",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1088,
                        "end": 1096,
                        "text": "Figure 2",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1199,
                        "end": 1206,
                        "text": "Table 5",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 1261,
                        "end": 1268,
                        "text": "Table 6",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 1513,
                        "end": 1521,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Word Candidate Pruning",
                "sec_num": "4.2"
            },
            {
                "text": "Although proper pruning of word candidates brings amazing performance improvement, it is unlikely for one to determine an optimal pruning rate in practice for an unlabeled corpus. Here we put forth a parameter-free method to tackle this problem with the aids of all available goodness measures. The first step of this method to do is to derive an optimal set of word candidates from the input. We have shown above that quality candidates play a critical role in achieving quality segmentation. Without any better goodness criterion available, the best we can opt for is the intersection of all word candidate lists generated by available goodness measures with the default threshold. A good reason for this is that the agreement of them can give a more reliable decision than any individual one of them. In fact, we only need DLG and AV/BE to get this intersection, because AV and BE give the same word candidates and DLG generates only a subset of what FSR does. The next step is to use this intersection set of word candidates to perform optimal segmentation with each goodness measures, to see if any further improvement can be achieved. The best results are given in Table 7 , showing that decoding algorithm (1) achieves marvelous improvement using short word candidates with all other goodness measures than DLG. Interestingly, DLG still remains at the top by performance despite of some slip-back.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1171,
                        "end": 1178,
                        "text": "Table 7",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Ensemble Segmentation",
                "sec_num": "4.3"
            },
            {
                "text": "To explore further improvement, we also try to combine the strengths of DLG and AV/BE respectively for recognizing two-and multi-character word. Our strategy to combine them together is to enforce the multi-character words in AV/BE segmentation upon the correspondent parts of DLG segmentation. This ensemble method gives a better overall performance than all others that we have tried so far, as presented at the bottom of Table 7 . Jin and Tanaka-Ishii (2006) give an unsupervised segmentation criterion, henceforth referred to as decoding algorithm (3), to work with BE. It works as follows: if g(x i..j+1 ) > g(x i..j ) for any two overlapped substrings x i..j and x i..j+1 , then a segmenting point should be located right after x i..j+1 . This algorithm has a forward and a backward version. The union of the segmentation outputs by both versions is taken as the final output of the algorithm, in exactly the same way as how decoding algorithm (2) works 7 . This algorithm is evaluated in (Jin and Tanaka-Ishii, 2006) using Peking University (PKU) (Jin and Tanaka-Ishii, 2006) report their best result of boundary precision 0.88 and boundary recall 0.79, equal to boundary F-measure 0.833.",
                "cite_spans": [
                    {
                        "start": 434,
                        "end": 461,
                        "text": "Jin and Tanaka-Ishii (2006)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 995,
                        "end": 1023,
                        "text": "(Jin and Tanaka-Ishii, 2006)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 1054,
                        "end": 1082,
                        "text": "(Jin and Tanaka-Ishii, 2006)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 424,
                        "end": 431,
                        "text": "Table 7",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Ensemble Segmentation",
                "sec_num": "4.3"
            },
            {
                "text": "Corpus of 1.1M words 8 as gold standard with a word candidate list extracted from the 200M Contemporary Chinese Corpus that mostly consists of several years of Peoples' Daily 9 . Here, we carry out evaluation with similar data: we extract word candidates from the unlabeled texts of People's Daily (1993 -1997) , of 213M and about 100M characters, in terms of the AV and BE criteria, yielding a list of 4.42 million candidates up to 6-character long 10 for each criterion. Then, the evaluation of the three decoding algorithms is performed on PKU corpus.",
                "cite_spans": [
                    {
                        "start": 298,
                        "end": 310,
                        "text": "(1993 -1997)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Yet Another Decoding Algorithm",
                "sec_num": "4.4"
            },
            {
                "text": "The evaluation results with both word and boundary F-measure are presented for the same segmentation outputs in Table 8 , with \"*\" to indicate candidate pruning by DLG > 0 as reported before. Note that boundary F-measure gives much more higher score than word F-measure for the same segmentation output. However, in either of metric, we can find no evidence in favor of decoding algorithm (3). Undesirably, this algorithm does not guarantee a stable performance improvement with the BE measure through candidate pruning.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 112,
                        "end": 119,
                        "text": "Table 8",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Yet Another Decoding Algorithm",
                "sec_num": "4.4"
            },
            {
                "text": "Huang and provide empirical evidence to estimate the degree to which the four segmentation standards involved in the Bakeoff-3 differ from each other. As quoted in Table 9 , a consistency rate Table 9 : Consistency rate among Bakeoff-3 segmentation standards (Huang and Zhao, 2007) beyond 84.8% is found among the four standards. If we do not over-expect unsupervised segmentation to achieve beyond what these standards agree with each other, it is reasonable to take this figure as the topline for evaluation. On the other hand, Zhao et al. (2006) show that the words of 1 to 2 characters long account for 95% of all words in Chinese texts, and single-character words alone for about 50%. Thus, we can take the result of the brute-force guess of every single character as a word as a baseline.",
                "cite_spans": [
                    {
                        "start": 259,
                        "end": 281,
                        "text": "(Huang and Zhao, 2007)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 530,
                        "end": 548,
                        "text": "Zhao et al. (2006)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 164,
                        "end": 171,
                        "text": "Table 9",
                        "ref_id": null
                    },
                    {
                        "start": 193,
                        "end": 200,
                        "text": "Table 9",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Comparison against Supervised Segmentation",
                "sec_num": "4.5"
            },
            {
                "text": "To compare to supervised segmentation, which usually involves training using an annotated training corpus and, then, evaluation using test corpus, we carry out unsupervised segmentation in a comparable manner. For each data track, we first extract word candidates from both the training and test corpora, all unannotated, and then evaluate the unsupervised segmentation with reference to the goldstandard segmentation of the test corpus. The results are presented in Table 10 , together with best and worst official results of the Bakeoff closed test. This comparison shows that unsupervised segmentation cannot compete against supervised segmentation in terms of performance. However, the experiments generate positive results that the best combination of the four goodness measures can achieve an F-measure in the range of 0.65-0.7 on all test corpora in use without using any prior knowledge, but extracting word candidates from the unlabeled training and test corpora in terms of their goodness scores.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 467,
                        "end": 475,
                        "text": "Table 10",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Comparison against Supervised Segmentation",
                "sec_num": "4.5"
            },
            {
                "text": "Note that DLG criterion is to perform segmentation with the intension to maximize the compression effect, which is a global effect through the text. Thus it works well incorporated with a probability maximization framework, where high frequent but independent substrings are effectively extracted and re- combined. We know that most unsupervised segmentation criteria will bring up long word bias problem, so does DLG measure. This explains why it gives the worse results as long candidates are added. As for AV and BE measures, both of them give the metric of the uncertainty before or after the current substring. This means that they are more concerned with local uncertainty information near the current substring, instead of global information among the whole text as DLG. Thus local greedy search in maximal matching style is more suitable for these two measures than Viterbi search.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion: How Things Happen",
                "sec_num": "5"
            },
            {
                "text": "Our empirical results about word candidate list with default threshold 0, where the same list is from AV and BE, give another proof that both AV and BE reflect the same uncertainty. The only difference is behind the fact that the former and the latter is in the discrete and continuous formulation, respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion: How Things Happen",
                "sec_num": "5"
            },
            {
                "text": "This paper reported our empirical comparison of a number of goodness measures for unsupervised segmentation of Chinese texts with the aid two generalized decoding algorithms. We learn no previous work by others for a similar attempt. The comparison is carried out with Bakeoff-3 data sets, showing that all goodness measures exhibit their strengths for recognizing words of different lengths and achieve a performance far beyond the baseline. Among them, DLG with decoding algorithm (1) can achieve the best segmentation performance for single-and twocharacter words identification and the best overall performance as well. Our experiments also show that the quality of word candidates plays a critical role in ensuring segmentation performance 11 . Proper pruning of candidates with low goodness scores to enhance this quality enhances the segmentation performance significantly. Also, the success of unsupervised segmentation depends strongly on an appropriate decoding algorithm. Generally, Viterbi-style decoding produces better results than best-first maximal-matching. But the latter is not shy from exhibiting its particular strength for identifying multi-character words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "Finally, the ensemble segmentation we put forth to combine the strengths of different goodness measures proves to be a remarkable success. It achieves an impressive performance improvement on top of individual goodness measures.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "As for future work, it would be natural for researchers to enhance supervised learning for Chinese word segmentation with goodness measures introduced here. There does be two successful examples in our existing work (Zhao and Kit, 2007) . This is still an ongoing work.",
                "cite_spans": [
                    {
                        "start": 216,
                        "end": 236,
                        "text": "(Zhao and Kit, 2007)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "6"
            },
            {
                "text": "First International Chinese Word Segmentation Bakeoff, at http://www.sighan.org/bakeoff2003 2 The Third International Chinese Language Processing Bakeoff, at http://www.sighan.org/bakeoff2006.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "That is, all segmented points by either segmentation will be accounted into the final segmentation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Three segmentation criteria are given in(Jin and Tanaka- Ishii, 2006), among which the entropy increase criterion, namely, decoding algorithm (3), proves to be the best. Here we would like to thank JIN Zhihui and Prof. Kumiko Tanaka-Ishii for presenting the details of their algorithms.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://icl.pku.edu.cn/icl groups/corpus/dwldform1.asp 9 http://ccl.pku.edu.cn:8080/ccl corpus/jsearch/index.jsp 10 This is to keep consistence with(Jin and Tanaka-Ishii, 2006), where 6 is set as the maximum n-gram length.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "This observation is shared by other researchers, e.g.,(Peng et al., 2002).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Mostlyunsupervised statistical segmentation of Japanese: Applications to kanji",
                "authors": [
                    {
                        "first": "Rie",
                        "middle": [],
                        "last": "Kubota Ando",
                        "suffix": ""
                    },
                    {
                        "first": "Lillian",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of the first Conference on North American Chapter of the Association for Computational Linguistics and the 6th Conference on Applied Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "241--248",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rie Kubota Ando and Lillian Lee. 2000. Mostly- unsupervised statistical segmentation of Japanese: Ap- plications to kanji. In Proceedings of the first Confer- ence on North American Chapter of the Association for Computational Linguistics and the 6th Conference on Applied Natural Language Processing, pages 241- 248, Seattle, Washington, April 30.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "An unsupervised iterative method for Chinese new lexicon extraction",
                "authors": [
                    {
                        "first": "Jing-Shin",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Keh-Yih",
                        "middle": [],
                        "last": "Su",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Computational Linguistics and Chinese Language Processing",
                "volume": "2",
                "issue": "",
                "pages": "97--148",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jing-Shin Chang and Keh-Yih Su. 1997. An unsuper- vised iterative method for Chinese new lexicon ex- traction. Computational Linguistics and Chinese Lan- guage Processing, 2(2):97-148.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "PAT-tree-based keyword extraction for Chinese information retrieval",
                "authors": [
                    {
                        "first": "Lee-Feng",
                        "middle": [],
                        "last": "Chien",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proceedings of the 20th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval",
                "volume": "",
                "issue": "",
                "pages": "50--58",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lee-Feng Chien. 1997. PAT-tree-based keyword extrac- tion for Chinese information retrieval. In Proceedings of the 20th Annual International ACM SIGIR Confer- ence on Research and Development in Information Re- trieval, pages 50-58, Philadelphia.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Accessor variety criteria for Chinese word extraction",
                "authors": [
                    {
                        "first": "Haodi",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Kang",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaotie",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "Weimin",
                        "middle": [],
                        "last": "Zheng",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Computational Linguistics",
                "volume": "30",
                "issue": "1",
                "pages": "75--93",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Haodi Feng, Kang Chen, Xiaotie Deng, and Weimin Zheng. 2004. Accessor variety criteria for Chi- nese word extraction. Computational Linguistics, 30(1):75-93.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Unsupervised Chinese word segmentation and unknown word identification",
                "authors": [
                    {
                        "first": "Hong",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    },
                    {
                        "first": "Xiao-Long",
                        "middle": [],
                        "last": "Fu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "5th Natural Language Processing Pacific Rim Symposium 1999 (NLPRS'99), \"Closing the Millennium",
                "volume": "",
                "issue": "",
                "pages": "32--37",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guo-Hong Fu and Xiao-Long Wang. 1999. Unsu- pervised Chinese word segmentation and unknown word identification. In 5th Natural Language Process- ing Pacific Rim Symposium 1999 (NLPRS'99), \"Clos- ing the Millennium\", pages 32-37, Beijing, China, November 5-7.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Discovering Chinese words from unsegmented text",
                "authors": [
                    {
                        "first": "Xianping",
                        "middle": [],
                        "last": "Ge",
                        "suffix": ""
                    },
                    {
                        "first": "Wanda",
                        "middle": [],
                        "last": "Pratt",
                        "suffix": ""
                    },
                    {
                        "first": "Padhraic",
                        "middle": [],
                        "last": "Smyth",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "SIGIR '99: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval",
                "volume": "",
                "issue": "",
                "pages": "271--272",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xianping Ge, Wanda Pratt, and Padhraic Smyth. 1999. Discovering Chinese words from unsegmented text. In SIGIR '99: Proceedings of the 22nd Annual Interna- tional ACM SIGIR Conference on Research and De- velopment in Information Retrieval, pages 271-272, Berkeley, CA, USA, August 15-19. ACM.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Morpheme boundaries within words",
                "authors": [
                    {
                        "first": "Harris",
                        "middle": [],
                        "last": "Zellig Sabbetai",
                        "suffix": ""
                    }
                ],
                "year": 1970,
                "venue": "Papers in Structural and Transformational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "68--77",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zellig Sabbetai Harris. 1970. Morpheme boundaries within words. In Papers in Structural and Transfor- mational Linguistics, page 68 77.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Chinese word segmentation based on contextual entropy",
                "authors": [
                    {
                        "first": "Jin",
                        "middle": [
                            "Hu"
                        ],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Powers",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 17th Asian Pacific Conference on Language, Information and Computation",
                "volume": "",
                "issue": "",
                "pages": "1--3",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jin Hu Huang and David Powers. 2003. Chinese word segmentation based on contextual entropy. In Dong Hong Ji and Kim-Ten Lua, editors, Proceedings of the 17th Asian Pacific Conference on Language, In- formation and Computation, pages 152-158, Sentosa, Singapore, October, 1-3. COLIPS Publication.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Chinese word segmentation: A decade review",
                "authors": [
                    {
                        "first": "Chang-Ning",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Journal of Chinese Information Processing",
                "volume": "21",
                "issue": "3",
                "pages": "8--20",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chang-Ning Huang and Hai Zhao. 2007. Chinese word segmentation: A decade review. Journal of Chinese Information Processing, 21(3):8-20.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Unsupervised segmentation of Chinese text by use of branching entropy",
                "authors": [
                    {
                        "first": "Zhihui",
                        "middle": [],
                        "last": "Jin",
                        "suffix": ""
                    },
                    {
                        "first": "Kumiko",
                        "middle": [],
                        "last": "Tanaka-Ishii",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "COLING/ACL 2006",
                "volume": "",
                "issue": "",
                "pages": "428--435",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhihui Jin and Kumiko Tanaka-Ishii. 2006. Unsuper- vised segmentation of Chinese text by use of branch- ing entropy. In COLING/ACL 2006, pages 428-435, Sidney, Australia.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Unsupervised learning of word boundary with description length gain",
                "authors": [
                    {
                        "first": "Chunyu",
                        "middle": [],
                        "last": "Kit",
                        "suffix": ""
                    },
                    {
                        "first": "Yorick",
                        "middle": [],
                        "last": "Wilks",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "CoNLL-99",
                "volume": "",
                "issue": "",
                "pages": "1--6",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chunyu Kit and Yorick Wilks. 1999. Unsupervised learning of word boundary with description length gain. In M. Osborne and E. T. K. Sang, editors, CoNLL-99, pages 1-6, Bergen, Norway.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "The third international Chinese language processing bakeoff: Word segmentation and named entity recognition",
                "authors": [
                    {
                        "first": "Gina-Anne",
                        "middle": [],
                        "last": "Levow",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing",
                "volume": "",
                "issue": "",
                "pages": "108--117",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gina-Anne Levow. 2006. The third international Chi- nese language processing bakeoff: Word segmentation and named entity recognition. In Proceedings of the Fifth SIGHAN Workshop on Chinese Language Pro- cessing, pages 108-117, Sydney, Australia, July.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Statistical substring reduction in linear time",
                "authors": [
                    {
                        "first": "Xueqiang",
                        "middle": [],
                        "last": "L\u00fc",
                        "suffix": ""
                    },
                    {
                        "first": "Le",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Junfeng",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceeding of the 1st International Joint Conference on Natural Language Processing",
                "volume": "3248",
                "issue": "",
                "pages": "320--327",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Xueqiang L\u00fc, Le Zhang, and Junfeng Hu. 2004. Sta- tistical substring reduction in linear time. In Keh- Yih Su et al., editor, Proceeding of the 1st Interna- tional Joint Conference on Natural Language Process- ing (IJCNLP-2004), volume 3248 of Lecture Notes in Computer Science, pages 320-327, Sanya City, Hainan Island, China, March 22-24. Springer.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "An application of information theory in Chinese word segmentation",
                "authors": [
                    {
                        "first": "Kim-Teng",
                        "middle": [],
                        "last": "Lua",
                        "suffix": ""
                    },
                    {
                        "first": "Kok-Wee",
                        "middle": [],
                        "last": "Gan",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Computer Processing of Chinese and Oriental Languages",
                "volume": "8",
                "issue": "1",
                "pages": "115--123",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kim-Teng Lua and Kok-Wee Gan. 1994. An applica- tion of information theory in Chinese word segmenta- tion. Computer Processing of Chinese and Oriental Languages, 8(1):115-123.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Selfsupervised Chinese word segmentation",
                "authors": [
                    {
                        "first": "Fuchun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Dale",
                        "middle": [],
                        "last": "Schuurmans",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "The Fourth International Symposium on Intelligent Data Analysis",
                "volume": "",
                "issue": "",
                "pages": "13--15",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fuchun Peng and Dale Schuurmans. 2001. Self- supervised Chinese word segmentation. In The Fourth International Symposium on Intelligent Data Analysis, pages 238-247, Lisbon, Portugal, September, 13-15.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Using selfsupervised word segmentation in Chinese information retrieval",
                "authors": [
                    {
                        "first": "Fuchun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Xiangji",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Dale",
                        "middle": [],
                        "last": "Schuurmans",
                        "suffix": ""
                    },
                    {
                        "first": "Nick",
                        "middle": [],
                        "last": "Cercone",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Robertson",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval",
                "volume": "",
                "issue": "",
                "pages": "11--15",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fuchun Peng, Xiangji Huang, Dale Schuurmans, Nick Cercone, and Stephen Robertson. 2002. Using self- supervised word segmentation in Chinese information retrieval. In Proceedings of the 25th Annual Interna- tional ACM SIGIR Conference on Research and De- velopment in Information Retrieval, pages 349-350, Tampere, Finland, August, 11-15.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "A mathematical theory of communication",
                "authors": [
                    {
                        "first": "Claude",
                        "middle": [
                            "E"
                        ],
                        "last": "Shannon",
                        "suffix": ""
                    }
                ],
                "year": 1948,
                "venue": "The Bell System Technical Journal",
                "volume": "27",
                "issue": "",
                "pages": "623--656",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Claude E. Shannon. 1948. A mathematical theory of communication. The Bell System Technical Journal, 27:379-423, 623-656, July, October.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "A statistical method for finding word boundaries in Chinese text",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Sproat",
                        "suffix": ""
                    },
                    {
                        "first": "Chilin",
                        "middle": [],
                        "last": "Shih",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Computer Processing of Chinese and Oriental Languages",
                "volume": "4",
                "issue": "4",
                "pages": "336--351",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard Sproat and Chilin Shih. 1990. A statistical method for finding word boundaries in Chinese text. Computer Processing of Chinese and Oriental Lan- guages, 4(4):336-351.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Chinese word segmentation without using lexicon and hand-crafted training data",
                "authors": [
                    {
                        "first": "Maosong",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    },
                    {
                        "first": "Dayang",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [
                            "K"
                        ],
                        "last": "Tsou",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "COLING-ACL '98, 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "1265--1271",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maosong Sun, Dayang Shen, and Benjamin K. Tsou. 1998. Chinese word segmentation without using lexi- con and hand-crafted training data. In COLING-ACL '98, 36th Annual Meeting of the Association for Com- putational Linguistics and 17th International Confer- ence on Computational Linguistics, volume 2, pages 1265-1271, Montreal, Quebec, Canada.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Chinese word segmentation without using dictionary based on unsupervised learning strategy",
                "authors": [
                    {
                        "first": "Mao",
                        "middle": [],
                        "last": "Song",
                        "suffix": ""
                    },
                    {
                        "first": "Sun",
                        "middle": [],
                        "last": "Ming",
                        "suffix": ""
                    },
                    {
                        "first": "Xiao",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Benjamin",
                        "middle": [
                            "K"
                        ],
                        "last": "Tsou",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mao Song SUN, Ming XIAO, and Benjamin K. Tsou. 2004. Chinese word segmentation without using dic- tionary based on unsupervised learning strategy (in Chinese) (",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Identification of unknown words from corpus",
                "authors": [
                    {
                        "first": "His-Jian",
                        "middle": [],
                        "last": "Cheng-Huang Tung",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Computational Proceedings of Chinese and Oriental Languages",
                "volume": "8",
                "issue": "",
                "pages": "131--145",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cheng-Huang Tung and His-Jian Lee. 1994. Iden- tification of unknown words from corpus. Compu- tational Proceedings of Chinese and Oriental Lan- guages, 8:131-145.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Extraction of Chinese compound words -an experimental study on a very large corpus",
                "authors": [
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Ming",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of the Second Chinese Language Processing Workshop",
                "volume": "",
                "issue": "",
                "pages": "132--139",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jian Zhang, Jianfeng Gao, and Ming Zhou. 2000. Ex- traction of Chinese compound words -an experimen- tal study on a very large corpus. In Proceedings of the Second Chinese Language Processing Workshop, pages 132-139, Hong Kong, China.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Incorporating global information into supervised learning for Chinese word segmentation",
                "authors": [
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Chunyu",
                        "middle": [],
                        "last": "Kit",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 10th Conference of the Pacific Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "66--74",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hai Zhao and Chunyu Kit. 2007. Incorporating global information into supervised learning for Chinese word segmentation. In Proceedings of the 10th Conference of the Pacific Association for Computational Linguis- tics, pages 66-74, Melbourne, Australia, September 19-21.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Effective tag set selection in Chinese word segmentation via conditional random field modeling",
                "authors": [
                    {
                        "first": "Hai",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Chang-Ning",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Mu",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Bao-Liang",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 20th Asian Pacific Conference on Language, Information and Computation",
                "volume": "",
                "issue": "",
                "pages": "87--94",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hai Zhao, Chang-Ning Huang, Mu Li, and Bao-Liang Lu. 2006. Effective tag set selection in Chinese word segmentation via conditional random field modeling. In Proceedings of the 20th Asian Pacific Conference on Language, Information and Computation, pages 87- 94, Wuhan, China, November 1-3.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Human Behavior and the Principle of Least Effort",
                "authors": [
                    {
                        "first": "George",
                        "middle": [],
                        "last": "Kingsley",
                        "suffix": ""
                    },
                    {
                        "first": "Zipf",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 1949,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "George Kingsley Zipf. 1949. Human Behavior and the Principle of Least Effort. Addison-Wesley, Cam- bridge, MA.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Performance vs. word length"
            },
            "FIGREF1": {
                "type_str": "figure",
                "num": null,
                "uris": null,
                "text": "Performance by candidate pruning: DLG"
            },
            "TABREF0": {
                "num": null,
                "content": "<table><tr><td>Corpus</td><td>AS</td><td colspan=\"3\">CityU CTB MSRA</td></tr><tr><td colspan=\"2\">Training(M) 8.42</td><td>2.71</td><td>0.83</td><td>2.17</td></tr><tr><td>Test(K)</td><td>146</td><td>364</td><td>256</td><td>173</td></tr></table>",
                "type_str": "table",
                "html": null,
                "text": "Bakeoff-3 Corpora"
            },
            "TABREF1": {
                "num": null,
                "content": "<table><tr><td/><td colspan=\"5\">: Performance with decoding algorithm (1)</td></tr><tr><td>M. L. a</td><td>Good-ness</td><td>AS</td><td colspan=\"3\">Training corpus CityU CTB MSRA</td></tr><tr><td/><td>FSR</td><td>.400</td><td>.454</td><td>.462</td><td>.432</td></tr><tr><td>2</td><td colspan=\"2\">DLG/d .592 AV .568</td><td>.610 .595</td><td>.604 .596</td><td>.603 .577</td></tr><tr><td/><td>BE</td><td>.559</td><td>.587</td><td>.592</td><td>.572</td></tr><tr><td/><td>FSR</td><td>.193</td><td>.251</td><td>.268</td><td>.235</td></tr><tr><td>7</td><td colspan=\"2\">DLG/d .331 AV .399</td><td>.397 .423</td><td>.409 .430</td><td>.379 .407</td></tr><tr><td/><td>BE</td><td>.390</td><td>.419</td><td>.428</td><td>.403</td></tr><tr><td colspan=\"6\">a M.L.: Maximal length allowable for word candidates.</td></tr></table>",
                "type_str": "table",
                "html": null,
                "text": ""
            },
            "TABREF2": {
                "num": null,
                "content": "<table><tr><td>M.</td><td>Good-</td><td/><td/><td colspan=\"2\">Training corpus</td></tr><tr><td>L.</td><td>ness</td><td>AS</td><td/><td colspan=\"3\">CityU CTB MSRA</td></tr><tr><td>2</td><td colspan=\"2\">.568 AV (2) /d .485 AV (1) AV (2) .445 .559 BE (1) BE (2) /d .485 BE (2) .504</td><td/><td>.595 .489 .366 .587 .489 .428</td><td>.596 .508 .367 .592 .508 .446</td><td>.577 .471 .387 .572 .471 .446</td></tr><tr><td>7</td><td colspan=\"2\">.399 AV (2) /d .570 AV (1) AV (2) .445 .390 BE (1) BE (2) /d .597 BE (2) .508</td><td/><td>.423 .581 .366 .419 .604 .431</td><td>.430 .588 .368 .428 .605 .449</td><td>.407 .572 .387 .403 .593 .446</td></tr><tr><td/><td/><td/><td/><td/><td>BE/(2): AS</td></tr><tr><td/><td>0.6</td><td/><td/><td/><td>BE/(2): CityU</td></tr><tr><td/><td/><td/><td/><td/><td>BE/(2): CTB</td></tr><tr><td/><td/><td/><td/><td/><td>BE/(2): MSRA</td></tr><tr><td/><td>0.55</td><td/><td/><td/><td>DLG/(1): AS DLG/(1): CityU</td></tr><tr><td/><td/><td/><td/><td/><td>DLG/(1): CTB</td></tr><tr><td>F\u2212measure</td><td>0.45 0.5</td><td/><td/><td/><td colspan=\"2\">DLG/(1): MSRA</td></tr><tr><td/><td>0.4</td><td/><td/><td/><td/></tr><tr><td/><td>0.35</td><td/><td/><td/><td/></tr><tr><td/><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td></tr><tr><td/><td/><td colspan=\"4\">The Range of Word Length</td></tr></table>",
                "type_str": "table",
                "html": null,
                "text": "Performance comparison: AV vs. BE"
            },
            "TABREF3": {
                "num": null,
                "content": "<table><tr><td colspan=\"2\">Good-</td><td/><td colspan=\"3\">Training Corpus</td></tr><tr><td colspan=\"2\">ness</td><td>AS</td><td colspan=\"4\">CityU CTB MSRA</td></tr><tr><td colspan=\"2\">FSR</td><td>2,009K</td><td colspan=\"2\">832K 294K</td><td colspan=\"2\">661K</td></tr><tr><td colspan=\"2\">DLG</td><td>543K</td><td>265K</td><td>96K</td><td colspan=\"2\">232K</td></tr><tr><td colspan=\"2\">AV</td><td>1,153K</td><td colspan=\"2\">443K 160K</td><td colspan=\"2\">337K</td></tr><tr><td colspan=\"2\">BE</td><td>1,153K</td><td colspan=\"2\">443K 160K</td><td colspan=\"2\">337K</td></tr><tr><td/><td>0.65</td><td/><td/><td/><td>100% size 89% size</td></tr><tr><td/><td/><td/><td/><td/><td>79% size</td></tr><tr><td/><td/><td/><td/><td/><td>74% size</td></tr><tr><td/><td>0.6</td><td/><td/><td/><td>70% size</td></tr><tr><td/><td/><td/><td/><td/><td>65% size</td></tr><tr><td/><td/><td/><td/><td/><td>62% size</td></tr><tr><td>F\u2212measure</td><td>0.5 0.55</td><td/><td/><td/><td>48% size 38% size</td></tr><tr><td/><td>0.45</td><td/><td/><td/><td/></tr><tr><td/><td>0.4</td><td/><td/><td/><td/></tr><tr><td/><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td></tr><tr><td/><td/><td/><td colspan=\"2\">The Range of Word Length</td><td/></tr></table>",
                "type_str": "table",
                "html": null,
                "text": "Word candidate number by threshold 0"
            },
            "TABREF4": {
                "num": null,
                "content": "<table><tr><td>Decoding</td><td/><td colspan=\"2\">Goodness measure</td><td/></tr><tr><td colspan=\"3\">algorithm FSR DLG</td><td>AV</td><td>BE</td></tr><tr><td>(1)</td><td>1.8</td><td>70</td><td>12.5</td><td>20</td></tr><tr><td>(2)</td><td>-</td><td>-</td><td>8</td><td>12.5</td></tr></table>",
                "type_str": "table",
                "html": null,
                "text": "Optimal rates for candidate pruning (%)"
            },
            "TABREF5": {
                "num": null,
                "content": "<table><tr><td/><td colspan=\"5\">: Performance via optimal candidate pruning</td></tr><tr><td>M.</td><td>Good-</td><td/><td colspan=\"2\">Training corpus</td></tr><tr><td>L.</td><td>ness</td><td>AS</td><td colspan=\"3\">CityU CTB MSRA</td></tr><tr><td>2</td><td colspan=\"2\">.501 DLG (1) /d .710 FSR (1) .616 AV (1) .613 BE (1) .585 AV (2) /d BE (2) /d .591</td><td>.525 .650 .625 .614 .602 .599</td><td>.513 .664 .609 .605 .589 .596</td><td>.522 .638 .618 .611 .599 .593</td></tr><tr><td>7</td><td colspan=\"2\">.444 DLG (1) /d .420 FSR (1) .517 AV (1) .501 BE (1) .623 AV (2) /d BE (2) /d .630</td><td>.491 .447 .568 .539 .624 .631</td><td>.486 .460 .549 .510 .604 .620</td><td>.486 .423 .544 .519 .615 .622</td></tr></table>",
                "type_str": "table",
                "html": null,
                "text": ""
            },
            "TABREF6": {
                "num": null,
                "content": "<table><tr><td>M.</td><td>Good-</td><td/><td colspan=\"2\">Training corpus</td><td/></tr><tr><td>L.</td><td>ness</td><td>AS</td><td colspan=\"3\">CityU CTB MSRA</td></tr><tr><td>2</td><td>FSR (1) DLG (1) /d AV (1) BE (1)</td><td>.629 .664 .641 .640</td><td>.635 .653 .644 .643</td><td>.624 .643 .631 .632</td><td>.623 .650 .634 .634</td></tr><tr><td>7</td><td>AV (2) /d BE (2) /d</td><td>.595 .593</td><td>.637 .635</td><td>.624 .620</td><td>.610 .609</td></tr><tr><td colspan=\"3\">DLG (1) /d+AV (2) /d .672 DLG (1) /d+BE (2) /d .660</td><td>.684 .681</td><td>.663 .656</td><td>.665 .653</td></tr></table>",
                "type_str": "table",
                "html": null,
                "text": "Performances of ensemble segmentation"
            },
            "TABREF7": {
                "num": null,
                "content": "<table><tr><td/><td>Good-</td><td/><td/><td colspan=\"3\">Decoding algorithm</td></tr><tr><td/><td>ness</td><td>(1)/d</td><td>(1)</td><td>(2)/d</td><td>(2)</td><td>(3)/d</td><td>(3)</td></tr><tr><td>F</td><td>AV AV  *</td><td colspan=\"5\">.313 .325 .588 .373 .376 .372 .372 .663 .663 .445</td><td>.453 .445</td></tr><tr><td/><td>BE BE  *</td><td colspan=\"5\">.309 .319 .624 .501 .376 .370 .370 .676 .676 .447</td><td>.624 .447</td></tr><tr><td>F b</td><td>AV AV  *  BE BE  *</td><td colspan=\"6\">.695 .700 .830 .762 .762 .728 .728 .865 .865 .783 .696 .699 .849 .810 .762 .837 a .728 .783 .728 .728 .872 .872 .784 .784</td></tr></table>",
                "type_str": "table",
                "html": null,
                "text": "Performance comparison by word and boundary F-measure on PKU corpus (M. L. = 6)"
            },
            "TABREF9": {
                "num": null,
                "content": "<table><tr><td>Type</td><td>AS</td><td colspan=\"3\">Test corpus CityU CTB MSRA</td></tr><tr><td>Baseline</td><td>.389</td><td>.345</td><td>.337</td><td>.353</td></tr><tr><td>DLG (1) /d DLG  *  (1) /d 2 AV (1) AV  *  (1) BE (1) BE  *  (1)</td><td>.597 .655 .577 .630 .570 .629</td><td>.616 .659 .603 .650 .598 .649</td><td>.601 .632 .597 .618 .594 .618</td><td>.602 .655 .583 .638 .580 .638</td></tr><tr><td colspan=\"2\">AV (2) /d AV  *  (2) /d 7 BE (2) /d BE  *  (2) /d DLG  *  (1) /d +AV  *  (2) /d .663 .512 .591 .518 .587 DLG  *  (1) /d +BE  *  (2) /d .650</td><td>.551 .644 .554 .641 .692 .689</td><td>.543 .618 .546 .614 .658 .650</td><td>.526 .604 .533 .605 .667 .656</td></tr><tr><td>Worst closed</td><td>.710</td><td>.589</td><td>0.818</td><td>.819</td></tr><tr><td>Best closed</td><td>.958</td><td>.972</td><td>0.933</td><td>.963</td></tr></table>",
                "type_str": "table",
                "html": null,
                "text": "Comparison of performances against supervised segmentation"
            }
        }
    }
}