File size: 65,560 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
{
    "paper_id": "I05-1014",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:26:15.475638Z"
    },
    "title": "Chunking Using Conditional Random Fields in Korean Texts",
    "authors": [
        {
            "first": "Yong-Hun",
            "middle": [],
            "last": "Lee",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "POSTECH and AITrc",
                "location": {
                    "addrLine": "San 31, Hyoja-dong, Nam-gu",
                    "postCode": "790-784",
                    "settlement": "Pohang",
                    "country": "R. of Korea"
                }
            },
            "email": ""
        },
        {
            "first": "Mi-Young",
            "middle": [],
            "last": "Kim",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "POSTECH and AITrc",
                "location": {
                    "addrLine": "San 31, Hyoja-dong, Nam-gu",
                    "postCode": "790-784",
                    "settlement": "Pohang",
                    "country": "R. of Korea"
                }
            },
            "email": ""
        },
        {
            "first": "Jong-Hyeok",
            "middle": [],
            "last": "Lee",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "POSTECH and AITrc",
                "location": {
                    "addrLine": "San 31, Hyoja-dong, Nam-gu",
                    "postCode": "790-784",
                    "settlement": "Pohang",
                    "country": "R. of Korea"
                }
            },
            "email": "jhlee@postech.ac.kr"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We present a method of chunking in Korean texts using conditional random fields (CRFs), a recently introduced probabilistic model for labeling and segmenting sequence of data. In agglutinative languages such as Korean and Japanese, a rule-based chunking method is predominantly used for its simplicity and efficiency. A hybrid of a rule-based and machine learning method was also proposed to handle exceptional cases of the rules. In this paper, we present how CRFs can be applied to the task of chunking in Korean texts. Experiments using the STEP 2000 dataset show that the proposed method significantly improves the performance as well as outperforms previous systems.",
    "pdf_parse": {
        "paper_id": "I05-1014",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We present a method of chunking in Korean texts using conditional random fields (CRFs), a recently introduced probabilistic model for labeling and segmenting sequence of data. In agglutinative languages such as Korean and Japanese, a rule-based chunking method is predominantly used for its simplicity and efficiency. A hybrid of a rule-based and machine learning method was also proposed to handle exceptional cases of the rules. In this paper, we present how CRFs can be applied to the task of chunking in Korean texts. Experiments using the STEP 2000 dataset show that the proposed method significantly improves the performance as well as outperforms previous systems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Text chunking is a process to identify non-recursive cores of various phrase types without conducting deep parsing of text [3] . Abney first proposed it as an intermediate step toward full parsing [1] . Since Ramshaw and Marcus approached NP chunking using a machine learning method, many researchers have used various machine learning techniques [2, 4, 5, 6, 10, 11, 13, 14] . The chunking task was extended to the CoNLL-2000 shared task with standard datasets and evaluation metrics, which is now a standard evaluation task for text chunking [3] .",
                "cite_spans": [
                    {
                        "start": 123,
                        "end": 126,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 197,
                        "end": 200,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 347,
                        "end": 350,
                        "text": "[2,",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 351,
                        "end": 353,
                        "text": "4,",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 354,
                        "end": 356,
                        "text": "5,",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 357,
                        "end": 359,
                        "text": "6,",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 360,
                        "end": 363,
                        "text": "10,",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 364,
                        "end": 367,
                        "text": "11,",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 368,
                        "end": 371,
                        "text": "13,",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 372,
                        "end": 375,
                        "text": "14]",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 544,
                        "end": 547,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Most previous works with relatively high performance in English used machine learning methods for chunking [4, 13] . Machine learning methods are mainly divided into the generative approach and conditional approach. The generative approach relies on generative probabilistic models that assign a joint probability p(X,Y) of paired input sequence and label sequence, X and Y respectively. It provides straightforward understanding of underlying distribution. However, this approach is intractable in most domains without strong independence assumptions that each input element is independent from the other elements in input sequence, and is also difficult to use multiple interacting features and long-range dependencies between input elements. The conditional approach views the chunking task as a sequence of classification problems, and defines a conditional probability p(Y|X) over label sequence given input sequence. A number of conditional models recently have been developed for use. They showed better performance than generative models as they can handle many arbitrary and overlapping features of input sequence [12] .",
                "cite_spans": [
                    {
                        "start": 107,
                        "end": 110,
                        "text": "[4,",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 111,
                        "end": 114,
                        "text": "13]",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 1123,
                        "end": 1127,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "A number of methods are applied to chunking in Korean texts. Unlike English, a rule-based chunking method [7, 8] is predominantly used in Korean because of its well-developed function words, which contain information such as grammatical relation, case, tense, modal, etc. Chunking in Korean texts with only simple heuristic rules obtained through observation on the text shows a good performance similar to other machine learning methods [6] . Park et al. proposed a hybrid of rule-based and machine learning method to handle exceptional cases of the rules, to improve the performance of chunking in Korean texts [5, 6] .",
                "cite_spans": [
                    {
                        "start": 106,
                        "end": 109,
                        "text": "[7,",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 110,
                        "end": 112,
                        "text": "8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 438,
                        "end": 441,
                        "text": "[6]",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 613,
                        "end": 616,
                        "text": "[5,",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 617,
                        "end": 619,
                        "text": "6]",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In this paper, we present how CRFs, a recently introduced probabilistic model for labeling and segmenting sequence of data [12] , can be applied to the task of chunking in Korean texts. CRFs are undirected graphical models trained to maximize conditional probabilities of label sequence given input sequence. It takes advantage of generative and conditional models. CRFs can include many correlated, overlapping features, and they are trained discriminatively like conditional model. Since CRFs have single exponential model for the conditional probability of entire label sequence given input sequence, they also guarantee to obtain globally optimal label sequence. CRFs successfully have been applied in many NLP problems such as part-of-speech tagging [12] , text chunking [13, 15] and table extraction from government reports [19] .",
                "cite_spans": [
                    {
                        "start": 123,
                        "end": 127,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 755,
                        "end": 759,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 776,
                        "end": 780,
                        "text": "[13,",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 781,
                        "end": 784,
                        "text": "15]",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 830,
                        "end": 834,
                        "text": "[19]",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The rest of this paper is organized as follows. Section 2 gives a simple introduction to CRFs. Section 3 explains how CRFs is applied to the task of chunking in Korean texts. Finally, we present experimental results and draw conclusions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Conditional Random Fields (CRFs) are conditional probabilistic sequence models first introduced by Lefferty et al [12] . CRFs are undirected graphical models, which can be used to define the joint probability distribution over label sequence given the entire input sequence to be labeled, rather than being directed graphical models such as Maximum Entropy Markov Models (MEMMs) [11] . It relaxes the strong independence assumption of Hidden Markov Models (HMMs), as well as resolves the label bias problem exhibited by MEMMs and other non-generative directed graphical models such as discriminative Markov models [12] .",
                "cite_spans": [
                    {
                        "start": 114,
                        "end": 118,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 379,
                        "end": 383,
                        "text": "[11]",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 614,
                        "end": 618,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Random Fields",
                "sec_num": "2"
            },
            {
                "text": "CRFs may be viewed as an undirected graphical model globally conditioned on input sequence [14] . Let X=x 1 x 2 x 3 \u2026x n be an input sequence and Y=y 1 y 2 y 3 \u2026y n a label sequence. In the chunking task, X is associated with a sequence of words and Y is associated with a sequence of chunk types. If we assume that the structure of a graph forms a simple first-order chain, as illustrated in Figure 1 , CRFs define the conditional probability of a label sequence Y given an input sequence X by the Hammersley-Clifford theorem [16] as follows:",
                "cite_spans": [
                    {
                        "start": 91,
                        "end": 95,
                        "text": "[14]",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 527,
                        "end": 531,
                        "text": "[16]",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 393,
                        "end": 401,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Fundamentals of CRFs",
                "sec_num": "2.1"
            },
            {
                "text": "\u239f \u23a0 \u239e \u239c \u239d \u239b = \u2211\u2211 \u2212 i k i i k k i X y y f X Z X Y p ) , , , ( exp ) ( 1 ) | ( 1 \u03bb (1)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fundamentals of CRFs",
                "sec_num": "2.1"
            },
            {
                "text": "where Z(X) is a normalization factor; f k (y i-1 , y i , X, i) is a feature function at positions i and i-1 in the label sequence; k \u03bb is a weight associated with feature k f . ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fundamentals of CRFs",
                "sec_num": "2.1"
            },
            {
                "text": "+ = \u2211\u2211 \u2211\u2211 \u2212 i k i k k i k i i k k i X y s i X y y t X Z X Y p ) , , ( ) , , , ( exp ) ( 1 ) | ( 1 \u00b5 \u03bb (2) where t k (y i-1 , y i , X, i)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fundamentals of CRFs",
                "sec_num": "2.1"
            },
            {
                "text": "is a transition feature function of the entire input sequence and the labels at positions i and i-1 in the label sequence; s k (y i , X, i) is a state feature function of the label at position i and the observed input sequence; and k \u03bb and k \u00b5 are parameters to be estimated from training data. The parameters k \u03bb and k \u00b5 play similar roles to the transition and emission probabilities in HMMs [12] . Therefore, the most probable label sequence for input sequence X is Y* which maximizes a posterior probability.",
                "cite_spans": [
                    {
                        "start": 394,
                        "end": 398,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fundamentals of CRFs",
                "sec_num": "2.1"
            },
            {
                "text": ") | ( max arg * X Y P Y Y \u03bb = (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fundamentals of CRFs",
                "sec_num": "2.1"
            },
            {
                "text": "We can find Y* with dynamic programming using the Viterbi algorithm.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fundamentals of CRFs",
                "sec_num": "2.1"
            },
            {
                "text": "Assuming the training data {(X (n) , Y (n) )} are independently and identically distributed, the product of Equation 1 over all training sequences is a likelihood function of the parameter \u03bb . Maximum likelihood training chooses parameter values such that the log-likelihood is maximized [10] . For CRFs, the log-likelihood ) (\u03bb L is given by",
                "cite_spans": [
                    {
                        "start": 31,
                        "end": 34,
                        "text": "(n)",
                        "ref_id": null
                    },
                    {
                        "start": 288,
                        "end": 292,
                        "text": "[10]",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parameter Estimation for CRFs",
                "sec_num": "2.2"
            },
            {
                "text": "\u2211 \u2211\u2211 \u2211 \u23a5 \u23a6 \u23a4 \u23a2 \u23a3 \u23a1 \u2212 = = \u2212 n n i k n n i n i k k n n n X Z i X y y f X Y P L ) ( log ) , , , ( ) | ( log ) ( ) ( ) ( ) ( ) ( 1 ) ( ) ( \u03bb \u03bb \u03bb (4)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parameter Estimation for CRFs",
                "sec_num": "2.2"
            },
            {
                "text": "It is not possible to analytically determine the parameter values that maximize the log-likelihood. Instead, maximum likelihood parameters must be identified using an iterative technique such as iterative scaling [12] or gradient-based methods [13, 14] .",
                "cite_spans": [
                    {
                        "start": 213,
                        "end": 217,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 244,
                        "end": 248,
                        "text": "[13,",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 249,
                        "end": 252,
                        "text": "14]",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parameter Estimation for CRFs",
                "sec_num": "2.2"
            },
            {
                "text": "Lafferty et al. proposed two iterative scaling algorithms to find parameters for CRFs. However, these methods converge into a global maximum very slowly. To overcome this problem of slow convergence, several researchers adopted modern optimization algorithms such as the conjugate-gradient method or the limited-memory BFGS(L-BFGS) method [17] .",
                "cite_spans": [
                    {
                        "start": 339,
                        "end": 343,
                        "text": "[17]",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Parameter Estimation for CRFs",
                "sec_num": "2.2"
            },
            {
                "text": "We now describe how CRFs are applied to the task of chunking in Korean texts. Firstly, we explore characteristics and chunk types of Korean. Then we explain the features for the model of chunking in Korean texts using CRFs. The ultimate goal of a chunker is to output appropriate chunk tags of a sequence of words with part-ofspeech tags.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Chunking Using Conditional Random Fields in Korean Texts",
                "sec_num": "3"
            },
            {
                "text": "Korean is an agglutinative language, in which a word unit (called an eojeol) is a composition of a content word and function word(s). Function words -postpositions and endings -give much information such as grammatical relation, case, tense, modal, etc. Well-developed function words in Korean help with chunking, especially NP and VP chunking. For example, when the part-of-speech of current word is one of determiner, pronoun and noun, the following seven rules for NP chunking in Table 1 can find most NP chunks in text, with about 89% accuracy [6] . For this reason, boundaries of chunks are easily found in Korean, compared to other languages such as English or Chinese. This is why a rule-based chunking method is predominantly used. However, with sophisticated rules, the rule-based chunking method has limitations when handling exceptional cases. Park et al. proposed a hybrid of the rule-based and the machine learning method to resolve this problem [5, 6] . Many recent machine learning techniques can capture hidden characteristics for classification. Despite its simplicity and efficiency, the rule-based method has recently been outdone by the machine learning method in various classification problems.",
                "cite_spans": [
                    {
                        "start": 548,
                        "end": 551,
                        "text": "[6]",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 959,
                        "end": 962,
                        "text": "[5,",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 963,
                        "end": 965,
                        "text": "6]",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 483,
                        "end": 490,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Characteristics of Korean",
                "sec_num": "3.1"
            },
            {
                "text": "Abney was the first to use the term 'chunk' to represent a non-recursive core of an intra-clausal constituent, extending from the beginning of constituent to its head. In Korean, there are four basic phrases: noun phrase (NP), verb phrase (VP), adverb phrase (ADVP), and independent phrase (IP) [6] . As function words such as postposition or ending are well-developed, the number of chunk types is small compared to other languages such as English or Chinese. Table 2 lists the Korean chunk types, a simple explanation and examples of each chunk type. Like the CoNLL-2000 dataset, we use three types of chunk border tags, indicating whether a word is outside a chunk (O), starts a chunk (B), or continues a chunk (I). Each chunk type XP has two border tags: B-XP and I-XP. XP should be one of NP, VP, ADVP and IP. There exist nine chunk tags in Korean.",
                "cite_spans": [
                    {
                        "start": 295,
                        "end": 298,
                        "text": "[6]",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 461,
                        "end": 468,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Chunk Types of Korean",
                "sec_num": "3.2"
            },
            {
                "text": "One advantage of CRFs is that they can use many arbitrary, overlapping features. So we take advantage of all context information of a current word. We use words, partof-speech tags of context and combinations of part-of-speech tags to determine the chunk tag of the current word,. The window size of context is 5; from left two words to right two words. Table 3 summarizes the feature set for chunking in Korean texts. Table 3 . Feature set for the chunking in Korean texts",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 354,
                        "end": 361,
                        "text": "Table 3",
                        "ref_id": null
                    },
                    {
                        "start": 419,
                        "end": 426,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Feature Set of CRFs",
                "sec_num": "3.3"
            },
            {
                "text": "POS tag Bi-gram of tags Tri-gram of tags w i-2 = w w i-1 = w w i = w w i+1 = w w i+2 = w",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word",
                "sec_num": null
            },
            {
                "text": "For evaluation of our proposed method, we use the STEP 2000 Korean chunking dataset (STEP 2000 dataset) 1 , which is converted from the parsed KAIST Corpus [9] . The STEP 2000 dataset consists of 12,092 sentences. We divide this corpus into training data and test data. Training data has 10,883 sentences and test data has 1,209 sentences, 90% and 10% respectively. Table 4 summarizes characteristics of the STEP 2000 dataset. Figure 2 shows an example sentence of the STEP 2000 dataset and its format is equal to that of CoNLL-2000 dataset. Each line is composed of a word, its part-of-speech (POS) tag and a chunk tag.",
                "cite_spans": [
                    {
                        "start": 156,
                        "end": 159,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 366,
                        "end": 373,
                        "text": "Table 4",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 427,
                        "end": 435,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Data Preparation",
                "sec_num": "4.1"
            },
            {
                "text": "The standard evaluation metrics for chunking performance are precision, recall and Fscore (F ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Metric",
                "sec_num": "4.2"
            },
            {
                "text": "Experiments were performed with C++ implementation of CRFs (FlexCRFs) on Linux with 2.4 GHz Pentium IV dual processors and 2.0Gbyte of main memory [18] . We use L-BFGS to train the parameters and use a Gaussian prior regularization in order to avoid overfitting [20] . Table 5 , the performances of most chunk type are 96~100%, very high performance. However, the performance of NP chunk type is lowest, 94.27% because the border of NP chunk type is very ambiguous in case of consecutive nouns. Using more features such as previous chunk tag should be able to improve the performance of NP chunk type. [6] . We add the experimental results of the chunking methods using HMMs-bigram and CRFs. In Table 6 , F-score of chunking using CRFs in Korean texts is 97.19%, the highest performance of all. It significantly outperforms all others, including machine learning methods, rule-based methods and hybrid methods. It is because CRFs have a global optimum solution hence overcoming the label bias problem. They also can use many arbitrary, overlapping features. Figure 3 shows the performance curve on the same test set in terms of the precision, recall and F-score with respect to the size of training data. In this figure, we can see that the performance slowly increases in proportion to the size of training data. In the experiment, we can see that CRFs can help improve the performance of chunking in Korean texts. CRFs have many promising properties except for the slow convergence speed compared to other models. In the next experiment, we have tried to analyze the importance of each feature and to make an additional experiment with various window sizes and any other useful features.",
                "cite_spans": [
                    {
                        "start": 147,
                        "end": 151,
                        "text": "[18]",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 262,
                        "end": 266,
                        "text": "[20]",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 602,
                        "end": 605,
                        "text": "[6]",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 269,
                        "end": 276,
                        "text": "Table 5",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 695,
                        "end": 702,
                        "text": "Table 6",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 1058,
                        "end": 1066,
                        "text": "Figure 3",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Results",
                "sec_num": "4.3"
            },
            {
                "text": "In this paper, we proposed a chunking method for Korean texts using CRFs. We observed that the proposed method outperforms other approaches. Experiments on the STEP 2000 dataset showed that the proposed method yields an F-score of 95.36%. This performance is 2.82% higher than that of SVMs and 1.15% higher than that of the hybrid method. CRFs use a number of correlated features and overcome the label bias problem. We obtained a very high performance using only small features. Thus, if we use more features such as semantic information or collocation, we can obtain a better performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "From the experiment, we know that the proposed method using CRFs can significantly improve the performance of chunking in Korean texts. CRFs are a good framework for labeling an input sequence. In our future work, we will investigate how CRFs can be applied to other NLP problems: parsing, semantic analysis and spam filtering. Finally, we hope that this work can contribute to the body of research in this field.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5"
            },
            {
                "text": "t i-2 = t t i-1 = t t i = t t i+1 = t t i+2 = t t i-2 = t', t i-1 = t t i-1 = t', t i = t t i = t', t i+1 = t t i+1 = t',t i+2 = t t i-2 = t\", t i-1 = t', t i = t t i-1 = t\", t i = t', t i+1 = t t i = t\", t i+1 = t', t i+2 = t4 ExperimentsIn this section, we present experimental results of chunking using CRFs in Korean texts and compare the performance with previous systems of Park et al[6]. To make a fare comparison, we use the same dataset as Park et al[6].",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "STEP is an abbreviation of Software Technology Enhancement Program. We download this dataset from http://bi.snu.ac.kr/~sbpark/Step2000. If you want to know the part-of-speech tags used in the STEP 2000 dataset, you can reference KAIST tagset[9].",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Performances of all methods except HMMs and CRFs are cited from the experiment of Park et al[6]. They also use the STEP 2000 dataset and similar feature set. Therefore, the comparison of performance is reasonable.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was supported by the KOSEF through the Advanced Information Technology Research Center (AITrc) and by the BK21 Project.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Parsing by chunks",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Abney",
                        "suffix": ""
                    }
                ],
                "year": 1991,
                "venue": "Principlebased Parsing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Abney: Parsing by chunks. In R. Berwick, S. Abney, and C. Tenny, editors, Principle- based Parsing. Kluwer Academic Publishers (1991).",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Text chunking using transformation-based learning",
                "authors": [
                    {
                        "first": "L",
                        "middle": [
                            "A"
                        ],
                        "last": "Ramashaw",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "P"
                        ],
                        "last": "Marcus",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Proceedings of the Thired ACL Workshop on Very Large Corpora",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L. A. Ramashaw and M. P. Marcus: Text chunking using transformation-based learning. Proceedings of the Thired ACL Workshop on Very Large Corpora (1995).",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Introduction to the CoNLL-2000 shared task: Chunking. Proceedings of CoNLL-2000",
                "authors": [
                    {
                        "first": "E",
                        "middle": [
                            "F"
                        ],
                        "last": "Tjong Kim Sang",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Buchholz",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "127--132",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "E. F. Tjong Kim Sang and S. Buchholz: Introduction to the CoNLL-2000 shared task: Chunking. Proceedings of CoNLL-2000 (2000) 127-132.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Chunking with support vector machines. Proceedings of NAACL2001, ACL",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Kudo",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Kudo and Y. Matsumoto: Chunking with support vector machines. Proceedings of NAACL2001, ACL (2001).",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Combining a Rule-based Method and a k-NN for Chunking Korean Text",
                "authors": [
                    {
                        "first": "S.-B",
                        "middle": [],
                        "last": "Park",
                        "suffix": ""
                    },
                    {
                        "first": "B.-T",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of the 19 th International Conference on Computer Processing of Oriental Languages",
                "volume": "",
                "issue": "",
                "pages": "225--230",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Park, S.-B. and Zhang, B.-T.: Combining a Rule-based Method and a k-NN for Chunking Korean Text. Proceedings of the 19 th International Conference on Computer Processing of Oriental Languages (2001) 225-230.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Text Chunking by Combining Hand-Crafted Rules and Memory-Based Learning",
                "authors": [
                    {
                        "first": "S.-B",
                        "middle": [],
                        "last": "Park",
                        "suffix": ""
                    },
                    {
                        "first": "B.-T",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the 41 st Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "497--504",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Park, S.-B. and Zhang, B.-T.: Text Chunking by Combining Hand-Crafted Rules and Memory-Based Learning. Proceedings of the 41 st Annual Meeting of the Association for Computational Linguistics (2003) 497-504.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Maximally Efficient Syntactic Parsing with Minimal Resources",
                "authors": [
                    {
                        "first": "H.-P",
                        "middle": [],
                        "last": "Shin",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Proceedings of the Conference on Hangul and Korean Language Information Processing",
                "volume": "",
                "issue": "",
                "pages": "242--244",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H.-P. Shin: Maximally Efficient Syntactic Parsing with Minimal Resources. Proceedings of the Conference on Hangul and Korean Language Information Processing (1999) 242-244.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Dependency Parsing by Chunks. Proceedings of the 27 th KISS Spring Conference",
                "authors": [
                    {
                        "first": "M.-Y",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "S.-J",
                        "middle": [],
                        "last": "Kang",
                        "suffix": ""
                    },
                    {
                        "first": "J.-H",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "327--329",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M.-Y. Kim, S.-J. Kang and J.-H. Lee: Dependency Parsing by Chunks. Proceedings of the 27 th KISS Spring Conference (1999) 327-329.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Study on KAIST Corpus",
                "authors": [
                    {
                        "first": "J.-T",
                        "middle": [],
                        "last": "Yoon",
                        "suffix": ""
                    },
                    {
                        "first": "K.-S",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J.-T. Yoon and K.-S. Choi: Study on KAIST Corpus, CS-TR-99-139, KAIST CS (1999).",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "A maximum entropy approach to natural language processing",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "L"
                        ],
                        "last": "Berger",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "J"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Computational Linguistics",
                "volume": "22",
                "issue": "1",
                "pages": "39--71",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. L. Berger, S. A. Della Pietra and V. J. Della Pietra: A maximum entropy approach to natural language processing. Computational Linguistics, 22(1) (1996) 39-71.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Maximum entropy Markov models for information extraction and segmentation",
                "authors": [
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Freitag",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of International Conference on Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "591--598",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andrew McCallum, D. Freitag and F. Pereira: Maximum entropy Markov models for in- formation extraction and segmentation. Proceedings of International Conference on Ma- chine Learning , Stanford, California (2000) 591-598.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. Proceedings of the 18 th International Conference on Machine Learning",
                "authors": [
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "Fernando",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "282--289",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "John Lafferty, Andrew McCallum and Fernando Pereira: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. Proceedings of the 18 th International Conference on Machine Learning (2001) 282-289.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Shallow Parsing with Conditional Random Fields. Proceedings of Human Language Technology-NAACL",
                "authors": [
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Sha",
                        "suffix": ""
                    },
                    {
                        "first": "Fernando",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fei Sha and Fernando Pereira: Shallow Parsing with Conditional Random Fields. Proceed- ings of Human Language Technology-NAACL, Edmonton, Canada (2003).",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Efficient Training of Conditional Random Fields",
                "authors": [
                    {
                        "first": "Hanna",
                        "middle": [],
                        "last": "Wallach",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Thesis. Master of Science School of Cognitive Science",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hanna Wallach: Efficient Training of Conditional Random Fields. Thesis. Master of Sci- ence School of Cognitive Science, Division of Informatics. University of Edinburgh (2002).",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Applying Conditional Random Fields to Chinese Shallow Parsing",
                "authors": [
                    {
                        "first": "Yongmei",
                        "middle": [],
                        "last": "Tan",
                        "suffix": ""
                    },
                    {
                        "first": "Tianshun",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Qing",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Jingbo",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "The 6 th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing-2005)",
                "volume": "3406",
                "issue": "",
                "pages": "167--176",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yongmei Tan, Tianshun Yao, Qing Chen and Jingbo Zhu: Applying Conditional Random Fields to Chinese Shallow Parsing. The 6 th International Conference on Intelligent Text Processing and Computational Linguistics (CICLing-2005) . LNCS, Vol.3406, Springer, Mexico City, Mexico (2005) 167-176.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Markov fields on finite graphs and lattices. Unpublished manuscript",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Hammersley",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Clifford",
                        "suffix": ""
                    }
                ],
                "year": 1971,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. Unpublished manuscript (1971).",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "On the limited memory bfgs method for large-scale optimization",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "C"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "Mathematic Programming",
                "volume": "45",
                "issue": "",
                "pages": "503--528",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. C. Liu and J. Nocedal: On the limited memory bfgs method for large-scale optimiza- tion. Mathematic Programming, 45 (1989) 503-528.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "FlexCRFs: A Flexible Conditional Random Fields Toolkit",
                "authors": [
                    {
                        "first": "Minh",
                        "middle": [
                            "Le"
                        ],
                        "last": "Hieu Xuan Phan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Nguyen",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hieu Xuan Phan and Minh Le Nguyen: FlexCRFs: A Flexible Conditional Random Fields Toolkit. http:://www.jaist.ac.jp/~hieuxuan/flexcrfs/flexcrfs.html (2004).",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Table extraction using conditional random fields",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Pinto",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "B"
                        ],
                        "last": "Croft",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proceedings of the ACM SIGIR",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Pinto, A. McCallum, X. Wei and W. B. Croft: Table extraction using conditional ran- dom fields. Proceedings of the ACM SIGIR (2003).",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "A Gaussian prior for smoothing maximum entropy models",
                "authors": [
                    {
                        "first": "S",
                        "middle": [
                            "F"
                        ],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Rosenfeld",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. F. Chen and R. Rosenfeld: A Gaussian prior for smoothing maximum entropy models. Technical Report CMU-CS-99-108, Carnegie Mellon University (1999).",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "uris": null,
                "num": null,
                "text": "Graphical structure of chain-structured CRFs Equitation 1, the general form of a graph structure for modeling sequential data, can be expanded to Equation 2,"
            },
            "FIGREF1": {
                "type_str": "figure",
                "uris": null,
                "num": null,
                "text": ". F-score is used for comparisons with other reported results. Each equation is defined as follows."
            },
            "FIGREF2": {
                "type_str": "figure",
                "uris": null,
                "num": null,
                "text": "The performance curve respect to the size of training data"
            },
            "TABREF0": {
                "html": null,
                "type_str": "table",
                "num": null,
                "text": "Rules for NP chunking in Korean texts",
                "content": "<table><tr><td>No</td><td>Previous eojeol</td><td>Chunk tag of current word</td></tr><tr><td>1</td><td>determiner</td><td>I-NP</td></tr><tr><td>2</td><td>pronoun</td><td>I-NP</td></tr><tr><td>3</td><td>noun</td><td>I-NP</td></tr><tr><td>4</td><td>noun + possessive postposition</td><td>I-NP</td></tr><tr><td>5</td><td>noun + relative postfix</td><td>I-NP</td></tr><tr><td>6</td><td>adjective + relative ending</td><td>I-NP</td></tr><tr><td>7</td><td>others</td><td>B-NP</td></tr></table>"
            },
            "TABREF1": {
                "html": null,
                "type_str": "table",
                "num": null,
                "text": "The Korean chunk types",
                "content": "<table><tr><td colspan=\"2\">No Category Explanation</td><td>Example</td><td/><td/><td/></tr><tr><td>1 NP</td><td>Noun Phrase</td><td colspan=\"2\">[NP\uc800 ([the beautiful woman] [look]) \uc544 \ub984 \ub2e4 \uc6b4 \uc5ec \uc778 ] [\ubcf4\uc138\uc694]. \uc744</td><td/><td/></tr><tr><td>2 VP</td><td>Verb Phrase</td><td colspan=\"4\">[\uc9c0\ubd95\uc774] [\ubabd\ub545] [VP\ub0b4\ub824\uc549\uc544 ([the roof] [completely] [has fallen in]) \uc788 ]. \ub2e4</td></tr><tr><td>3 ADVP</td><td>Adverb Phrase</td><td>[\uc0c8\uac00] [ADVP ([a bird] [very high] [is flying]) \ub9e4 \uc6b0 \ub192 \uc774 ] [\ub0a0\uace0</td><td>\uc788</td><td>\ub2e4</td><td>].</td></tr><tr><td>4 IP</td><td>Independent Phrase</td><td colspan=\"2\">[IP ([wow] [this] [very] [is delicious]) ], [\uc774\uac70] [\uc815\ub9d0] [\ub9db\uc788\ub2e4]. \uc640</td><td/><td/></tr></table>"
            },
            "TABREF2": {
                "html": null,
                "type_str": "table",
                "num": null,
                "text": "Simple statistics on the STEP 2000 dataset",
                "content": "<table><tr><td/><td/><td colspan=\"2\">Information</td><td>Value</td></tr><tr><td/><td/><td>POS tags</td><td/><td>52</td></tr><tr><td/><td/><td>Words</td><td/><td>321,328</td></tr><tr><td/><td/><td>Sentences</td><td/><td>12,092</td></tr><tr><td/><td/><td>Chunk tags</td><td/><td>9</td></tr><tr><td/><td/><td>Chunks</td><td/><td>112,658</td></tr><tr><td>\uadf8 \uc758 \ucc45 \uc740 \ud30c \ub418 \uc5c8 \ub2e4 .</td><td>\uae30</td><td>npp jcm ncn jxt ncpa xsv ep ef sf</td><td>B-NP I-NP I-NP I-NP B-VP I-VP I-VP I-VP O</td><td>his postposition: possessive book postposition: topic destructed be pre-final ending : past ending : declarative</td></tr></table>"
            },
            "TABREF3": {
                "html": null,
                "type_str": "table",
                "num": null,
                "text": "The performance of proposed method",
                "content": "<table><tr><td>Chunk tag</td><td>Precision</td><td>Recall</td><td>F-score</td></tr><tr><td>NP</td><td>94.23</td><td>94.30</td><td>94.27</td></tr><tr><td>VP</td><td>96.71</td><td>96.28</td><td>96.49</td></tr><tr><td>ADVP</td><td>96.90</td><td>97.02</td><td>96.96</td></tr><tr><td>IP</td><td>99.53</td><td>99.07</td><td>99.30</td></tr><tr><td>All</td><td>95.42</td><td>95.31</td><td>95.36</td></tr><tr><td colspan=\"3\">Total number of CRF features is 83,264. As shown in</td><td/></tr></table>"
            },
            "TABREF4": {
                "html": null,
                "type_str": "table",
                "num": null,
                "text": "The experimental results of various chunking methods2",
                "content": "<table><tr><td/><td>HMMs</td><td>DT</td><td>MBL</td><td>Rule</td><td colspan=\"3\">SVMs Hybrid CRFs</td></tr><tr><td>Precision</td><td>73.75</td><td>92.29</td><td>91.41</td><td>91.28</td><td>93.63</td><td>94.47</td><td>95.42</td></tr><tr><td>Recall</td><td>76.06</td><td>90.45</td><td>91.43</td><td>92.47</td><td>91.48</td><td>93.96</td><td>95.31</td></tr><tr><td>F-score</td><td>74.89</td><td>91.36</td><td>91.38</td><td>91.87</td><td>92.54</td><td>94.21</td><td>95.36</td></tr><tr><td colspan=\"7\">Park et al. reported the performance of various chunking methods</td><td/></tr></table>"
            }
        }
    }
}