File size: 125,401 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 |
{
"paper_id": "D07-1014",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T16:18:42.945684Z"
},
"title": "Probabilistic Models of Nonprojective Dependency Trees",
"authors": [
{
"first": "David",
"middle": [
"A"
],
"last": "Smith",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Johns Hopkins University Baltimore",
"location": {
"postCode": "21218",
"region": "MD",
"country": "USA"
}
},
"email": "dasmith@cs.jhu.edu"
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Carnegie Mellon University Pittsburgh",
"location": {
"postCode": "15213",
"region": "PA",
"country": "USA"
}
},
"email": "nasmith@cs.cmu.edu"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "A notable gap in research on statistical dependency parsing is a proper conditional probability distribution over nonprojective dependency trees for a given sentence. We exploit the Matrix Tree Theorem (Tutte, 1984) to derive an algorithm that efficiently sums the scores of all nonprojective trees in a sentence, permitting the definition of a conditional log-linear model over trees. While discriminative methods, such as those presented in McDonald et al. (2005b), obtain very high accuracy on standard dependency parsing tasks and can be trained and applied without marginalization, \"summing trees\" permits some alternative techniques of interest. Using the summing algorithm, we present competitive experimental results on four nonprojective languages, for maximum conditional likelihood estimation, minimum Bayes-risk parsing, and hidden variable training.",
"pdf_parse": {
"paper_id": "D07-1014",
"_pdf_hash": "",
"abstract": [
{
"text": "A notable gap in research on statistical dependency parsing is a proper conditional probability distribution over nonprojective dependency trees for a given sentence. We exploit the Matrix Tree Theorem (Tutte, 1984) to derive an algorithm that efficiently sums the scores of all nonprojective trees in a sentence, permitting the definition of a conditional log-linear model over trees. While discriminative methods, such as those presented in McDonald et al. (2005b), obtain very high accuracy on standard dependency parsing tasks and can be trained and applied without marginalization, \"summing trees\" permits some alternative techniques of interest. Using the summing algorithm, we present competitive experimental results on four nonprojective languages, for maximum conditional likelihood estimation, minimum Bayes-risk parsing, and hidden variable training.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Recently dependency parsing has received renewed interest, both in the parsing literature (Buchholz and Marsi, 2006) and in applications like translation (Quirk et al., 2005) and information extraction (Culotta and Sorensen, 2004) . Dependency parsing can be used to provide a \"bare bones\" syntactic structure that approximates semantics, and it has the additional advantage of admitting fast parsing algorithms (Eisner, 1996; McDonald et al., 2005b ) with a negligible grammar constant in many cases.",
"cite_spans": [
{
"start": 90,
"end": 116,
"text": "(Buchholz and Marsi, 2006)",
"ref_id": "BIBREF7"
},
{
"start": 154,
"end": 174,
"text": "(Quirk et al., 2005)",
"ref_id": "BIBREF41"
},
{
"start": 202,
"end": 230,
"text": "(Culotta and Sorensen, 2004)",
"ref_id": "BIBREF12"
},
{
"start": 412,
"end": 426,
"text": "(Eisner, 1996;",
"ref_id": "BIBREF15"
},
{
"start": 427,
"end": 449,
"text": "McDonald et al., 2005b",
"ref_id": "BIBREF34"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The latest state-of-the-art statistical dependency parsers are discriminative, meaning that they are based on classifiers trained to score trees, given a sentence, either via factored whole-structure scores (McDonald et al., 2005a) or local parsing decision scores (Hall et al., 2006) . In the works cited, these scores are not intended to be interpreted as probabilistic quantities.",
"cite_spans": [
{
"start": 207,
"end": 231,
"text": "(McDonald et al., 2005a)",
"ref_id": "BIBREF33"
},
{
"start": 265,
"end": 284,
"text": "(Hall et al., 2006)",
"ref_id": "BIBREF19"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Here we consider weighted dependency parsing models that can be used to define well-formed conditional distributions p(y | x), for dependency trees y and a sentence x. Conditional distributions over outputs (here, trees) given inputs (here, sentences) have certain advantages. They permit marginalization over trees to compute posteriors of interesting sub-events (e.g., the probability that two noun tokens bear a relation, regardless of which tree is correct). A probability model permits alternative decoding procedures (Goodman, 1996) . Well-motivated hidden variable training procedures (such as EM and conditional EM) are also readily available for probabilistic models. Finally, probability models can be chained together (as in a noisy channel model), mixed, or combined in a product-of-experts.",
"cite_spans": [
{
"start": 207,
"end": 220,
"text": "(here, trees)",
"ref_id": null
},
{
"start": 523,
"end": 538,
"text": "(Goodman, 1996)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Sequence models, context-free models, and dependency models have appeared in several guises; a cross-model comparison clarifies the contribution of this paper. First, there were generative, stochastic models like HMMs, PCFGs, and Eisner's (1996) models. Local discriminative classifiers were proposed by McCallum et al. (2000) for sequence modeling, by Ratnaparkhi et al. (1994) for constituent parsing, and by Hall et al. (2006) (among others) for dependencies. Large-margin whole-structure models were proposed for sequence labeling by Altun et al. (2003) , for constituents by , and for dependency trees by McDonald et al. (2005a) . In this paper, we propose a model most similar to the conditional random fieldsinterpretable as log-linear models-of Lafferty et al. (2001) , which are now widely used for sequence labeling. Log-linear models have been used in parsing by Riezler et al. (2000) (for constraint-based grammars) and Johnson (2001) and Miyao and Tsujii (2002) (for CFGs). Like McDonald et al., we use an edge-factored model that permits nonprojective trees; like Lafferty et al., we argue for an alternative interpretation as a log-linear model over structures, conditioned on the observed sentence.",
"cite_spans": [
{
"start": 230,
"end": 245,
"text": "Eisner's (1996)",
"ref_id": "BIBREF15"
},
{
"start": 304,
"end": 326,
"text": "McCallum et al. (2000)",
"ref_id": "BIBREF30"
},
{
"start": 353,
"end": 378,
"text": "Ratnaparkhi et al. (1994)",
"ref_id": "BIBREF42"
},
{
"start": 411,
"end": 429,
"text": "Hall et al. (2006)",
"ref_id": "BIBREF19"
},
{
"start": 538,
"end": 557,
"text": "Altun et al. (2003)",
"ref_id": "BIBREF0"
},
{
"start": 610,
"end": 633,
"text": "McDonald et al. (2005a)",
"ref_id": "BIBREF33"
},
{
"start": 753,
"end": 775,
"text": "Lafferty et al. (2001)",
"ref_id": "BIBREF27"
},
{
"start": 874,
"end": 895,
"text": "Riezler et al. (2000)",
"ref_id": "BIBREF43"
},
{
"start": 932,
"end": 946,
"text": "Johnson (2001)",
"ref_id": "BIBREF21"
},
{
"start": 951,
"end": 974,
"text": "Miyao and Tsujii (2002)",
"ref_id": "BIBREF36"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "In Section 2 we point out what would be required, computationally, for conditional training of nonprojective dependency models. The solution to the conditionalization problem is given in Section 3, using a widely-known but newly-applied Matrix Tree Theorem due to Tutte (1984) , and experimental results are presented with a comparison to the MIRA learning algorithm used by McDonald et al. (2005a) . We go on to describe and experiment with two useful applications of conditional modeling: minimum Bayesrisk decoding (Section 4) and hidden-variable training by conditional maximum likelihood estimation (Section 5). Discussion in Section 6 considers the implications of our experimental results. Two indepedent papers, published concurrently with this one, report closely related results to ours. Koo et al. (2007) and McDonald and Satta (2007) both describe how the Matrix Tree Theorem can be applied to computing the sum of scores of edgefactored dependency trees and the edge marginals. Koo et al. compare conditional likelihood training (as here) to the averaged perceptron and a maximum margin model trained using exponentiatedgradient (Bartlett et al., 2004) ; the latter requires the same marginalization calculations as conditional log-linear estimation. McDonald and Satta discuss a variety of applications (including minimum Bayesrisk decoding) and give complexity results for nonedge-factored models. Interested readers are referred to those papers for further discussion.",
"cite_spans": [
{
"start": 264,
"end": 276,
"text": "Tutte (1984)",
"ref_id": "BIBREF48"
},
{
"start": 375,
"end": 398,
"text": "McDonald et al. (2005a)",
"ref_id": "BIBREF33"
},
{
"start": 798,
"end": 815,
"text": "Koo et al. (2007)",
"ref_id": "BIBREF24"
},
{
"start": 820,
"end": 845,
"text": "McDonald and Satta (2007)",
"ref_id": "BIBREF32"
},
{
"start": 1142,
"end": 1165,
"text": "(Bartlett et al., 2004)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Let x = x 1 , ..., x n be a sequence of words (possibly with POS tags, lemmas, and morphological information) that are the input to a parser. y will refer to a directed, unlabeled dependency tree, which is a map y : {1, ..., n} \u2192 {0, ..., n} from child indices to parent indices; x 0 is the invisible \"wall\" symbol. Let Y x be the set of valid dependency trees for x. In this paper, Y x is equivalent to the set of all directed spanning trees over x. 1 A conditional model defines a family of probability distributions p(y | x), for all x and y \u2208 Y x . We propose that this model take a log-linear form:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Training for Nonprojective Dependency Models",
"sec_num": "2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "p \u03b8 (y | x) = e \u03b8\u2022 f (x,y) y \u2208Yx e \u03b8\u2022 f (x,y ) = e \u03b8\u2022 f (x,y) Z \u03b8 (x)",
"eq_num": "(1)"
}
],
"section": "Conditional Training for Nonprojective Dependency Models",
"sec_num": "2"
},
{
"text": "where f is a feature vector function on parsed sentences and \u03b8 \u2208 R m parameterizes the model. Following McDonald et al. (2005a) , we assume that the features are edge-factored:",
"cite_spans": [
{
"start": 94,
"end": 127,
"text": "Following McDonald et al. (2005a)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Training for Nonprojective Dependency Models",
"sec_num": "2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "f (x, y) = n i=1 f (x, x i , x y(i) )",
"eq_num": "(2)"
}
],
"section": "Conditional Training for Nonprojective Dependency Models",
"sec_num": "2"
},
{
"text": "In other words, the dependencies between words in the tree are all conditionally independent of each other, given the sequence x and the fact that the parse is a spanning tree. Despite the constraints they impose on features, edge-factored models have the advantage of tractable O(n 3 ) inference algorithms or, with some trickery, O(n 2 ) maximum a posteriori (\"best parse tree\") inference algorithms in the nonprojective case. Exact nonprojective inference and estimation become intractable if we break edge factoring (McDonald and Pereira, 2006) . We wish to estimate the parameters \u03b8 by maximizing the conditional likelihood (like a CRF) rather than the margin (McDonald et al., 2005a) . For an empirical distributionp given by a set of training examples, this means:",
"cite_spans": [
{
"start": 520,
"end": 548,
"text": "(McDonald and Pereira, 2006)",
"ref_id": "BIBREF31"
},
{
"start": 665,
"end": 689,
"text": "(McDonald et al., 2005a)",
"ref_id": "BIBREF33"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Training for Nonprojective Dependency Models",
"sec_num": "2"
},
{
"text": "max \u03b8 x,yp (x, y) \u03b8 \u2022 f (x, y) \u2212 xp (x) log Z \u03b8 (x) (3)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Training for Nonprojective Dependency Models",
"sec_num": "2"
},
{
"text": "This optimization problem is typically solved using a quasi-Newton numerical optimization method such as L-BFGS (Liu and Nocedal, 1989) . Such a method requires the gradient of the objective function, which for \u03b8 k is given by the following difference in expectations of the value of feature f k :",
"cite_spans": [
{
"start": 112,
"end": 135,
"text": "(Liu and Nocedal, 1989)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Training for Nonprojective Dependency Models",
"sec_num": "2"
},
{
"text": "\u2202 \u2202\u03b8 k = (4) Ep (X,Y) [f k (X, Y)] \u2212 Ep (X)p \u03b8 (Y|X) [f k (X, Y)]",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Training for Nonprojective Dependency Models",
"sec_num": "2"
},
{
"text": "The computation of Z \u03b8 (x) and the sufficient statistics (second expectation in Equation 4) are typically the difficult parts. They require summing the scores of all the spanning trees for a given sentence. Note that, in large-margin training, and in standard maximum a posteriori decoding, only a maximum over spanning trees is called for-it is conditional training that requires Z \u03b8 (x). In Section 3, we will show how this can be done exactly in O(n 3 ) time.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Training for Nonprojective Dependency Models",
"sec_num": "2"
},
{
"text": "3 Exploiting the Matrix Tree Theorem for Z \u03b8 (x)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Training for Nonprojective Dependency Models",
"sec_num": "2"
},
{
"text": "We wish to apply conditional training to estimate conditional models of nonprojective trees. This requires computing Z \u03b8 (x) for each training example (as an inner loop to training). In this section we show how the summation can be computed and how conditional training performs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conditional Training for Nonprojective Dependency Models",
"sec_num": "2"
},
{
"text": "Recall that we defined the unnormalized probability (henceforth, score) of a dependency tree as a combination of edge-factored scores for the edges present in the tree (Eq. 2):",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Kirchoff Matrix",
"sec_num": "3.1"
},
{
"text": "exp \u03b8\u2022 f (x, y) = n i=1 e \u03b8\u2022 f (x,x i ,x y(i) ) = n i=1 s x, \u03b8 (i, y(i)) (5) where y(i) denotes the parent of x i in y. s x, \u03b8 (i, j),",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Kirchoff Matrix",
"sec_num": "3.1"
},
{
"text": "then, denotes the (multiplicative) contribution of the edge from child i to parent j to the total score of the tree, if the edge is present. Define the Kirchoff",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Kirchoff Matrix",
"sec_num": "3.1"
},
{
"text": "matrix K x, \u03b8 \u2208 R n\u00d7n by K x, \u03b8 mom,kid = (6) \uf8f1 \uf8f2 \uf8f3 \u2212s x, \u03b8 (kid , mom) if mom = kid j\u2208{0,...n}:j =mom s x, \u03b8 (kid , j) if mom = kid .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Kirchoff Matrix",
"sec_num": "3.1"
},
{
"text": "where mom indexes a parent node and kid a child node. K x \u03b8 can be regarded as a special weighted adjacency matrix in which the ith diagonal entry is the sum of edge-scores directed into vertex i (i.e., x i is the child)-note that the sum includes the score of attaching x i to the wall x 0 .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Kirchoff Matrix",
"sec_num": "3.1"
},
{
"text": "In our notation and in one specific form, the Matrix Tree Theorem (Tutte, 1984) states: 2",
"cite_spans": [
{
"start": 66,
"end": 79,
"text": "(Tutte, 1984)",
"ref_id": "BIBREF48"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Kirchoff Matrix",
"sec_num": "3.1"
},
{
"text": "Theorem 1 The determinant of the Kirchoff matrix K x, \u03b8 is equal to the sum of scores of all directed spanning trees in Y x rooted at x 0 . Formally:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Kirchoff Matrix",
"sec_num": "3.1"
},
{
"text": "K x, \u03b8 = Z \u03b8 (x).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Kirchoff Matrix",
"sec_num": "3.1"
},
{
"text": "A proof is omitted; see Tutte (1984) .",
"cite_spans": [
{
"start": 24,
"end": 36,
"text": "Tutte (1984)",
"ref_id": "BIBREF48"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Kirchoff Matrix",
"sec_num": "3.1"
},
{
"text": "To compute Z \u03b8 (x), we need only take the determinant of K x, \u03b8 , which can be done in O(n 3 ) time using the standard LU factorization to compute the matrix inverse. Since all of the edge weights used to construct the Kirchoff matrix are positive, it is diagonally dominant and therefore non-singular (i.e., invertible).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Kirchoff Matrix",
"sec_num": "3.1"
},
{
"text": "The gradient of Z \u03b8 (x) (required for numerical optimization; see Eqs. 3-4) can be efficiently computed from the same matrix inverse. While \u2207 log Z \u03b8 (x) equates to a vector of feature expectations (Eq. 4), we exploit instead some facts from linear algebra",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "K x, \u03b8 = \uf8ee \uf8ef \uf8ef \uf8ef \uf8ef \uf8ef \uf8ef \uf8ef \uf8ef \uf8ef \uf8ef \uf8f0 j\u2208{0,...,n}:j =1 s x, \u03b8 (1, j) \u2212s x, \u03b8 (2, 1) \u2022 \u2022 \u2022 \u2212s x, \u03b8 (n, 1) \u2212s x, \u03b8 (1, 2) j\u2208{0,...,n}:j =2 s x, \u03b8 (2, j) \u2022 \u2022 \u2022 \u2212s x, \u03b8 (n, 2) . . . . . . . . . . . . \u2212s x, \u03b8 (1, n) \u2212s x, \u03b8 (2, n) \u2022 \u2022 \u2022 j\u2208{0,...,n}:j =n s x, \u03b8 (n, j) \uf8f9 \uf8fa \uf8fa \uf8fa \uf8fa \uf8fa \uf8fa \uf8fa \uf8fa \uf8fa \uf8fa \uf8fb",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "and the chain rule. First, note that, for any weight \u03b8 k ,",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u2202 log Z \u03b8 (x) \u2202\u03b8 k = \u2202 log |K x, \u03b8 | \u2202\u03b8 k = 1 |K x, \u03b8 | \u2202|K x, \u03b8 | \u2202\u03b8 k = 1 |K x, \u03b8 | n i=1 n j=0 \u2202|K x, \u03b8 | \u2202s x, \u03b8 (i, j) \u2202s x, \u03b8 (i, j) \u2202\u03b8 k = 1 |K x, \u03b8 | n i=1 n j=0 s x, \u03b8 (i, j)f k (x, x i , x j ) \u00d7 \u2202|K x, \u03b8 | \u2202s x, \u03b8 (i, j)",
"eq_num": "(7)"
}
],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "(We assume s x, \u03b8 (i, i) = 0, for simplicity of notation.) The last line follows from the definition of",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "s x, \u03b8 (i, j) as exp \u03b8\u2022 f (x, x i , x j ). Now, since s x, \u03b8 (i, j)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "affects the Kirchoff matrix in at most two cells-(i, i) and (j, i), the latter only when j > 0-we know that",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u2202|K x, \u03b8 | \u2202s x, \u03b8 (i, j) = \u2202|K x, \u03b8 | \u2202[K x, \u03b8 ] i,i \u2202[K x, \u03b8 ] i,i \u2202s x, \u03b8 (i, i) \u2212 \u2202|K x, \u03b8 | \u2202[K x, \u03b8 ] j,i \u2202[K x, \u03b8 ] j,i \u2202s x, \u03b8 (i, j) = \u2202|K x, \u03b8 | \u2202[K x, \u03b8 ] i,i \u2212 \u2202|K x, \u03b8 | \u2202[K x, \u03b8 ] j,i",
"eq_num": "(8)"
}
],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "We have now reduced the problem of the gradient to a linear function of \u2207|K x, \u03b8 | with respect to the cells of the matrix itself. At this point, we simplify notation and consider an arbitrary matrix A.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "The minor m j,i of a matrix A is the determinant of the submatrix obtained by striking out row j and column i of A; the cofactor c j,i of A is then (\u22121) i+j m j,i . Laplace's formula defines the determinant as a linear combination of matrix cofactors of an arbitrary row j:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "|A| = n i=1 [A] j,i c j,i",
"eq_num": "(9)"
}
],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "It should be clear that any c j,k is constant with respect to the cell [A] j,i (since it is formed by removing row j of A) and that other entries of A are constant with respect to the cell [A] j,i . Therefore:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u2202|A| \u2202[A] j,i = c j,i",
"eq_num": "(10)"
}
],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "The inverse matrix A \u22121 can also be defined in terms of cofactors:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "[A \u22121 ] i,j = c j,i |A|",
"eq_num": "(11)"
}
],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "Combining Eqs. 10 and 11, we have:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u2202|A| \u2202[A] j,i = |A|[A \u22121 ] i,j",
"eq_num": "(12)"
}
],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "Plugging back in through Eq. 8 to Eq. 7, we have:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "\u2202 log Z \u03b8 (x) \u2202\u03b8 k = n i=1 n j=0 s x, \u03b8 (i, j)f k (x, x i , x j ) \u00d7 K \u22121 x, \u03b8 i,i \u2212 K \u22121 x, \u03b8 i,j",
"eq_num": "(13)"
}
],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "where [K \u22121 ] i,0 is taken to be 0. Note that the cofactors do not need to be computed directly. We proposed in Section 3.1 to get Z \u03b8 (x) by computing the inverse of the Kirchoff matrix (which is known to exist). Under that procedure, the marginalization is a by-product of the gradient. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Gradient",
"sec_num": "3.2"
},
{
"text": "We compare conditional training of a nonprojective edge-factored parsing model to the online MIRA training used by McDonald et al. (2005b) . Four languages with relatively common nonprojective phenomena were tested: Arabic (Haji\u010d et al., 2004) , Czech (B\u00f6hmov\u00e1 et al., 2003) , Danish (Kromann, 2003) , and Dutch (van der Beek et al., 2002) . The Danish and Dutch datasets were prepared for the CoNLL 2006 shared task (Buchholz and Marsi, 2006) ; Arabic and Czech are from the 2007 shared task. We used the same features, extracted by Mc-Donald's code, in both MIRA and conditional training. In this paper, we consider only unlabeled dependency parsing.",
"cite_spans": [
{
"start": 115,
"end": 138,
"text": "McDonald et al. (2005b)",
"ref_id": "BIBREF34"
},
{
"start": 223,
"end": 243,
"text": "(Haji\u010d et al., 2004)",
"ref_id": "BIBREF18"
},
{
"start": 252,
"end": 274,
"text": "(B\u00f6hmov\u00e1 et al., 2003)",
"ref_id": "BIBREF4"
},
{
"start": 284,
"end": 299,
"text": "(Kromann, 2003)",
"ref_id": "BIBREF25"
},
{
"start": 312,
"end": 339,
"text": "(van der Beek et al., 2002)",
"ref_id": "BIBREF49"
},
{
"start": 417,
"end": 443,
"text": "(Buchholz and Marsi, 2006)",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experiment",
"sec_num": "3.3"
},
{
"text": "Our conditional training used an online gradientbased method known as stochastic gradient descent (see, e.g., Bottou, 2003) . Training with MIRA and conditional estimation take about the same amount of time: approximately 50 sentences per second. Training proceeded as long as an improvement on held-out data was evident. The accuracy of the hypothesized parses for the two models, on each language, are shown in the top two rows of Tab. 1 (labeled \"map\" for maximum a posteriori, meaning that the highest-weighted tree is hypothesized).",
"cite_spans": [
{
"start": 110,
"end": 123,
"text": "Bottou, 2003)",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experiment",
"sec_num": "3.3"
},
{
"text": "The two methods are, not surprisingly, close in performance; conditional likelihood outperformed MIRA on Arabic and Danish, underperformed MIRA on Czech, and the two tied on Dutch. Results are significant at the .05 level on a permutation test. Conditional estimation is in practice more prone to over-fitting than maximum margin methods, though we did not see any improvement using zero-mean Gaussian priors (variance 1 or 10).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiment",
"sec_num": "3.3"
},
{
"text": "These experiments serve to validate conditional estimation as a competitive learning algorithm for parsing models, and the key contribution of the summing algorithm that permits conditional estimation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiment",
"sec_num": "3.3"
},
{
"text": "A second application of probability distributions over trees is the alternative decoding algorithm known as minimum Bayes-risk (mBr) decoding. The more commonly used maximum a posteriori decoding (also known as \"Viterbi\" decoding) that we applied in Section 3.3 sought to minimize the expected whole-tree loss:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Minimum Bayes-Risk Decoding",
"sec_num": "4"
},
{
"text": "y = argmax y p \u03b8 (y | x) = argmin y E p \u03b8 (Y|x) [\u2212\u03b4(y, Y)] (14)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Minimum Bayes-Risk Decoding",
"sec_num": "4"
},
{
"text": "Minimum Bayes-risk decoding generalizes this idea to an arbitrary loss function on the proposed tree:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Minimum Bayes-Risk Decoding",
"sec_num": "4"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "y = argmin y E p \u03b8 (Y|x) [ (y, Y)]",
"eq_num": "(15)"
}
],
"section": "Minimum Bayes-Risk Decoding",
"sec_num": "4"
},
{
"text": "This technique was originally applied in speech recognition (Goel and Byrne, 2000) and translation (Kumar and Byrne, 2004) ; Goodman (1996) proposed a similar idea in probabilistic context-free parsing, seeking to maximize expected recall. For more applications in parsing, see Petrov and Klein (2007) .",
"cite_spans": [
{
"start": 60,
"end": 82,
"text": "(Goel and Byrne, 2000)",
"ref_id": "BIBREF16"
},
{
"start": 99,
"end": 122,
"text": "(Kumar and Byrne, 2004)",
"ref_id": "BIBREF26"
},
{
"start": 125,
"end": 139,
"text": "Goodman (1996)",
"ref_id": "BIBREF17"
},
{
"start": 278,
"end": 301,
"text": "Petrov and Klein (2007)",
"ref_id": "BIBREF38"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Minimum Bayes-Risk Decoding",
"sec_num": "4"
},
{
"text": "The most common loss function used to evaluate dependency parsers is the number of attachment errors, so we seek to decode using:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Minimum Bayes-Risk Decoding",
"sec_num": "4"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "y = argmin y E p \u03b8 (Y|x) n i=1 \u2212\u03b4(y(i), Y(i)) = argmax y n i=1 p \u03b8 (Y(i) = y(i) | x)",
"eq_num": "(16)"
}
],
"section": "Minimum Bayes-Risk Decoding",
"sec_num": "4"
},
{
"text": "To apply this decoding method, we make use of Eq. 13, which gives us the posterior probabilities of edges under the model, and the same Chiu-Liu-Edmonds maximum directed spanning tree algorithm used for maximum a posteriori decoding. Note that this decoding method can be applied regardless of how the model is trained. It merely requires assuming that the tree scores under the trained model (probabilistic or not) can be treated as unnormalized log-probabilities over trees given the sentence x.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Minimum Bayes-Risk Decoding",
"sec_num": "4"
},
{
"text": "We applied minimum Bayes-risk decoding to the models trained using MIRA and using conditional estimation (see Section 3.3). Table 1 shows that, across languages, minimum Bayes-risk decoding hurts slightly the performance of a MIRA-trained model, but helps slightly or does not affect the performance of a conditionally-trained model. Since MIRA does not attempt to model the distribution over trees, this result is not surprising; interpreting weights as defining a conditional log-linear distribution is questionable under MIRA's training criterion.",
"cite_spans": [],
"ref_spans": [
{
"start": 124,
"end": 131,
"text": "Table 1",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Minimum Bayes-Risk Decoding",
"sec_num": "4"
},
{
"text": "One option, which we do not test here, is to use minimum Bayes-risk decoding inside of MIRA training, to propose a hypothesis tree (or k-best trees) at each training step. Doing this would more closely match the training conditions with the testing conditions; however, it is unclear whether there is a formal interpretation of such a combination, for example its relationship to McDonald et al.'s \"factored MIRA.\"",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Minimum Bayes-Risk Decoding",
"sec_num": "4"
},
{
"text": "Minimum Bayes-risk decoding, we believe, will become important in nonprojective parsing with non-edge-factored models. Note that minimium Bayes-risk decoding reduces any parsing problem to the maximum directed spanning tree problem, even if the original model is not edge-factored. All that is required are the marginals p \u03b8 (Y(i) = y(i) | x), which may be intractable to compute exactly, though it may be possible to develop efficient approximations.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Minimum Bayes-Risk Decoding",
"sec_num": "4"
},
{
"text": "A third application of probability distributions over trees is hidden-variable learning. The Expectation-Maximization (EM) algorithm (Baum and Petrie, 1966; Dempster et al., 1977; Baker, 1979) , for example, is a way to maximum the likelihood of training data, marginalizing out hidden variables. This has been applied widely in unsupervised parsing (Carroll and Charniak, 1992; Klein and Manning, 2002) . More recently, EM has been used to learn hidden variables in parse trees; these can be head-child annotations (Chiang and Bikel, 2002) , latent head features (Matsuzaki et al., 2005; Prescher, 2005; Dreyer and Eisner, 2006) , or hierarchicallysplit nonterminal states (Petrov et al., 2006) .",
"cite_spans": [
{
"start": 133,
"end": 156,
"text": "(Baum and Petrie, 1966;",
"ref_id": "BIBREF3"
},
{
"start": 157,
"end": 179,
"text": "Dempster et al., 1977;",
"ref_id": "BIBREF13"
},
{
"start": 180,
"end": 192,
"text": "Baker, 1979)",
"ref_id": "BIBREF1"
},
{
"start": 350,
"end": 378,
"text": "(Carroll and Charniak, 1992;",
"ref_id": "BIBREF8"
},
{
"start": 379,
"end": 403,
"text": "Klein and Manning, 2002)",
"ref_id": "BIBREF22"
},
{
"start": 516,
"end": 540,
"text": "(Chiang and Bikel, 2002)",
"ref_id": "BIBREF11"
},
{
"start": 564,
"end": 588,
"text": "(Matsuzaki et al., 2005;",
"ref_id": "BIBREF29"
},
{
"start": 589,
"end": 604,
"text": "Prescher, 2005;",
"ref_id": "BIBREF40"
},
{
"start": 605,
"end": 629,
"text": "Dreyer and Eisner, 2006)",
"ref_id": "BIBREF14"
},
{
"start": 674,
"end": 695,
"text": "(Petrov et al., 2006)",
"ref_id": "BIBREF39"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hidden Variables",
"sec_num": "5"
},
{
"text": "To date, we know of no attempts to apply hidden variables to supervised dependency tree models. If the trees are constrained to be projective, EM is easily applied using the inside-outside variant of the parsing algorithm described by Eisner (1996) to compute the marginal probability. Moving to the nonprojective case, there are two difficulties: (a) we must marginalize over nonprojective trees and (b) we must define a generative model over (X, Y).",
"cite_spans": [
{
"start": 235,
"end": 248,
"text": "Eisner (1996)",
"ref_id": "BIBREF15"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hidden Variables",
"sec_num": "5"
},
{
"text": "We have already shown in Section 3 how to solve (a); here we avoid (b) by maximizing conditional likelihood, marginalizing out the hidden variable, denoted z:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hidden Variables",
"sec_num": "5"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "max \u03b8 x,yp (x, y) log z p \u03b8 (y, z | x)",
"eq_num": "(17)"
}
],
"section": "Hidden Variables",
"sec_num": "5"
},
{
"text": "This sort of conditional training with hidden variables was carried out by Koo and Collins (2005) , for example, in reranking; it is related to the information bottleneck method (Tishby et al., 1999) and contrastive estimation (Smith and Eisner, 2005) .",
"cite_spans": [
{
"start": 75,
"end": 97,
"text": "Koo and Collins (2005)",
"ref_id": "BIBREF23"
},
{
"start": 178,
"end": 199,
"text": "(Tishby et al., 1999)",
"ref_id": "BIBREF46"
},
{
"start": 227,
"end": 251,
"text": "(Smith and Eisner, 2005)",
"ref_id": "BIBREF44"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hidden Variables",
"sec_num": "5"
},
{
"text": "Noting that our model is edge-factored (Eq. 2), we define our hidden variables to be edge-factored as well. We can think of the hidden variables as clusters on dependency tokens, and redefine the score of an edge to be:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Latent Dependency Labels",
"sec_num": "5.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "s x, \u03b8 (i, j) = z\u2208Z e \u03b8\u2022 f (x,x i ,x j ,z)",
"eq_num": "(18)"
}
],
"section": "Latent Dependency Labels",
"sec_num": "5.1"
},
{
"text": "where Z is a set of dependency clusters.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Latent Dependency Labels",
"sec_num": "5.1"
},
{
"text": "Note that keeping the model edge-factored means that the cluster of each dependency in a tree is conditionally independent of all the others, given the words. This is computationally advantageous (we can factor out the marginalization of the hidden variable by edge), and it permits the use of any clustering method at all. For example, if an auxiliary clustering model q(z | x, y)-perhaps one that did not make such independence assumptions-were used, the posterior probability q(Z i = z | x, y) could be a feature in the proposed model. On the other hand, we must consider carefully the role of the dependency clusters in the model; if clusters are learned extrinsic to estimation of the parsing model, we should not expect them to be directly advantageous to parsing accuracy.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Latent Dependency Labels",
"sec_num": "5.1"
},
{
"text": "We tried two sets of experiments with clustering. In one case, we simply augmented all of McDonald et al.'s edge features with a cluster label in hopes of improved accuracy. Models were initialized near zero, with Gaussian noise added to break symmetry among clusters.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "5.2"
},
{
"text": "Under these conditions, performance stayed the same or changed slightly (see Table 2 ); none of the improvements are significant. Note that three decoders were applied: maximum a posteriori (map) and minimum Bayes-risk (mBr) as described in Section 4, and \"max-z,\" in which each possible edge was labeled and weighted only with its most likely cluster (rather than the sum over all clusters), before finding the most probable tree. 3 For each of the three languages tested, some number of clusters and some decoding method gave small improvements over the baseline.",
"cite_spans": [],
"ref_spans": [
{
"start": 77,
"end": 84,
"text": "Table 2",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Experiments",
"sec_num": "5.2"
},
{
"text": "More ambitiously, we hypothesized that many lexicalized features on edges could be \"squeezed\" through clusters to reduce the size of the feature set. We thus removed all word-word and lemma-lemma features and all tag fourgrams. Although this reduced our feature set by a factor of 60 or more (prior to taking a cross-product with the clusters), the damage of breaking the features was tremendous, and performance even with a thousand clusters barely broke 25% accuracy.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "5.2"
},
{
"text": "Noting that adding latent features to nonterminals in unlexicalized context-free parsing has been very successful (Chiang and Bikel, 2002; Matsuzaki et al., 2005; Prescher, 2005; Dreyer and Eisner, 2006; Petrov et al., 2006) more substantial performance improvement through latent features. We propose several interpretations. First, it may simply be that many more clusters may be required. Note that the label-set sizes for the labeled versions of these datasets are larger than 32 (e.g., 50 for Danish). This has the unfortunate effect of blowing up the feature space beyond the memory capacity of our machines (hence our attempts at squeezing high-dimensional features through the clusters). Of course, improved clustering methods may also improve performance. In particular, a clusterlearning algorithm that permits clusters to split and/or merge, as in Petrov et al. (2006) or in Pereira et al. (1993) , may be appropriate.",
"cite_spans": [
{
"start": 114,
"end": 138,
"text": "(Chiang and Bikel, 2002;",
"ref_id": "BIBREF11"
},
{
"start": 139,
"end": 162,
"text": "Matsuzaki et al., 2005;",
"ref_id": "BIBREF29"
},
{
"start": 163,
"end": 178,
"text": "Prescher, 2005;",
"ref_id": "BIBREF40"
},
{
"start": 179,
"end": 203,
"text": "Dreyer and Eisner, 2006;",
"ref_id": "BIBREF14"
},
{
"start": 204,
"end": 224,
"text": "Petrov et al., 2006)",
"ref_id": "BIBREF39"
},
{
"start": 859,
"end": 879,
"text": "Petrov et al. (2006)",
"ref_id": "BIBREF39"
},
{
"start": 886,
"end": 907,
"text": "Pereira et al. (1993)",
"ref_id": "BIBREF37"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Discussion",
"sec_num": "6"
},
{
"text": "Given the relative simplicity of clustering methods for context-free parsing to date (gains were found just by using Expectation-Maximization), we believe the fundamental reason clustering was not particularly helpful here is a structural one. In context-free parsing, the latent features are (in published work to date) on nonterminal states, which are the stuctural \"bridge\" between context-free rules. Adding features to those states is a way of pushing information-encoded indirectly, perhaps-farther around the tree, and therefore circumventing the strict independence assumptions of probabilistic CFGs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Discussion",
"sec_num": "6"
},
{
"text": "In an edge-factored dependency model, on the other hand, latent features on the edges seem to have little effect. Given that they are locally \"summed out\" when we compute the scores of possible attachments, it should be clear that the edge clusters do not circumvent any independence assumptions. Three options appear to present themselves. First, we might attempt to learn clusters in tandem with estimating a richer, non-edge-factored model which would require approximations to Z \u03b8 (x), if conditional training were to be used. Note that the approximations to maximizing over spanning trees with second-order features, proposed by McDonald and Pereira (2006) , do not permit estimating the clusters as part of the same process as weight estimation (at least not without modification). In the conditional estimation case, a variational approach might be appropriate. The second option is to learn clusters offline, before estimating the parser. (We suggested how to incorporate soft clusters into our model in Section 5.1.) This option is computationally advantageous but loses sight of the aim of learning the clusters specifically to improve parsing accuracy. Third, noting that the structural \"bridge\" between two coincident edges is the shared vertex (word), we might consider word token clustering. We also believe this structural locality issue helps explain the modesty of the gains using minimum Bayes-risk decoding with conditional training (Section 4). In other dependency parsing scenarios, minimum Bayes-risk decoding has been found to offer significant advantages-why not here? Minimum Bayes-risk makes use of global statistical dependencies in the posterior when making local decisions. But in an edge-factored model, the edges are all conditionally independent, given that y is a spanning tree.",
"cite_spans": [
{
"start": 634,
"end": 661,
"text": "McDonald and Pereira (2006)",
"ref_id": "BIBREF31"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Discussion",
"sec_num": "6"
},
{
"text": "As a post hoc experiment, we compared purely greedy attachment (attach each word to its maximum-weighted parent, without any tree constraints). Edge scores as defined in the model were compared to minimum Bayes-risk posterior scores, and the latter were consistently better (though this always under-performed optimal spanning-tree decoding, unsurprisingly). This comparison serves only to confirm that minimum Bayes-risk decoding is a way to circumvent independence assumptions (here made by a decoder), but only when the trained model does not make those particular assumptions.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Discussion",
"sec_num": "6"
},
{
"text": "We have shown how to carry out exact marginalization under an edge-factored, conditional log-linear model over nonprojective dependency trees. The method has cubic runtime in the length of the sequence, but is very fast in practice. It can be used in conditional training of such a model, in minimum Bayes-risk decoding (regardless of how the model is trained), and in training with hidden variables. We demonstrated how each of these techniques gives results competitive with state-of-the-art existing dependency parsers.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion",
"sec_num": "7"
},
{
"text": "To be precise, every word has in-degree 1, with the sole edge pointing from the word's parent, x y(i) \u2192 xi. x0 has indegree 0. By definition, trees are acyclic. The edges need not be planar and may \"cross\" in the plane, since we do not have a projectivity constraint. In some formulations, exactly one node in x can attach to x0; here we allow multiple nodes to attach to x0, since this occurs with some frequency in many existing datasets. Summation over trees where x0 has exactly one child is addressed directly byKoo et al. (2007).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "There are proven generalizations of this theorem(Chen, 1965;Chaiken, 1982;Minoux, 1999); we give the most specific form that applies to our case, originally proved by Tutte in 1948. Strictly speaking, our K x, \u03b8 is not the Kirchoff matrix, but rather a submatrix of the Kirchoff matrix with a leftmost column of zeroes and a topmost row [0, \u2212s x, \u03b8 (1, 0), ..., \u2212s x, \u03b8 (n, 0)] removed. Farther afield,Jaakkola et al. (1999) used an undirected matrix tree theorem for learning tree structures for graphical models.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Czech experiments were not done, since the number of features (more than 14 million) was too high to multiply out by clusters.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "The authors thank the anonymous reviewers, Jason Eisner, Keith Hall, and Sanjeev Khudanpur for helpful comments, and Michael Collins and Ryan Mc-Donald for sharing drafts of their related, concurrent papers. This work was supported in part by NSF ITR grant IIS-0313193.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Investigating loss functions and optimization methods for discriminative learning of label sequences",
"authors": [
{
"first": "M",
"middle": [],
"last": "Altun",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Johnson",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Hofmann",
"suffix": ""
}
],
"year": 2003,
"venue": "Proc. of EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Altun, M. Johnson, and T. Hofmann. 2003. Inves- tigating loss functions and optimization methods for discriminative learning of label sequences. In Proc. of EMNLP.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Trainable grammars for speech recognition",
"authors": [
{
"first": "J",
"middle": [
"K"
],
"last": "Baker",
"suffix": ""
}
],
"year": 1979,
"venue": "Proc. of the",
"volume": "",
"issue": "",
"pages": "547--550",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. K. Baker. 1979. Trainable grammars for speech recog- nition. In Proc. of the Acoustical Society of America, pages 547-550.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Exponentiated gradient algorithms for largemargin structured classification",
"authors": [
{
"first": "P",
"middle": [],
"last": "Bartlett",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Collins",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Taskar",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Mcallester",
"suffix": ""
}
],
"year": 2004,
"venue": "Advances in NIPS 17",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. Bartlett, M. Collins, B. Taskar, and D. McAllester. 2004. Exponentiated gradient algorithms for large- margin structured classification. In Advances in NIPS 17.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Statistical inference for probabilistic functions of finite state Markov chains",
"authors": [
{
"first": "L",
"middle": [
"E"
],
"last": "Baum",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Petrie",
"suffix": ""
}
],
"year": 1966,
"venue": "Annals of Mathematical Statistics",
"volume": "37",
"issue": "",
"pages": "1554--1563",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. E. Baum and T. Petrie. 1966. Statistical inference for probabilistic functions of finite state Markov chains. Annals of Mathematical Statistics, 37:1554-1563.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "The PDT: a 3-level annotation scenario",
"authors": [
{
"first": "A",
"middle": [],
"last": "B\u00f6hmov\u00e1",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Haji\u010d",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Haji\u010dov\u00e1",
"suffix": ""
},
{
"first": "B",
"middle": [],
"last": "Hladk\u00e1",
"suffix": ""
}
],
"year": 2003,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. B\u00f6hmov\u00e1, J. Haji\u010d, E. Haji\u010dov\u00e1, and B. Hladk\u00e1. 2003. The PDT: a 3-level annotation scenario.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Building and Exploiting Syntactically-Annotated Corpora",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "In A. Abeille, editor, Building and Exploiting Syntactically-Annotated Corpora. Kluwer.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Stochastic learning",
"authors": [
{
"first": "L",
"middle": [],
"last": "Bottou",
"suffix": ""
}
],
"year": 2003,
"venue": "Advanced Lectures in Machine Learning",
"volume": "",
"issue": "",
"pages": "146--168",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. Bottou. 2003. Stochastic learning. In Advanced Lec- tures in Machine Learning, pages 146-168. Springer.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "CoNLL-X shared task on multilingual dependency parsing",
"authors": [
{
"first": "S",
"middle": [],
"last": "Buchholz",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Marsi",
"suffix": ""
}
],
"year": 2006,
"venue": "Proc. of CoNLL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Buchholz and E. Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In Proc. of CoNLL.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Two experiments on learning probabilistic dependency grammars from corpora",
"authors": [
{
"first": "G",
"middle": [],
"last": "Carroll",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Charniak",
"suffix": ""
}
],
"year": 1992,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "G. Carroll and E. Charniak. 1992. Two experiments on learning probabilistic dependency grammars from cor- pora. Technical report, Brown University.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "A combinatorial proof of the all minors matrix tree theorem",
"authors": [
{
"first": "S",
"middle": [],
"last": "Chaiken",
"suffix": ""
}
],
"year": 1982,
"venue": "SIAM Journal on Algebraic and Discrete Methods",
"volume": "3",
"issue": "3",
"pages": "319--329",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Chaiken. 1982. A combinatorial proof of the all mi- nors matrix tree theorem. SIAM Journal on Algebraic and Discrete Methods, 3(3):319-329.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Topological analysis for active networks",
"authors": [
{
"first": "W.-K",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 1965,
"venue": "IEEE Transactions on Circuit Theory",
"volume": "12",
"issue": "1",
"pages": "85--91",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "W.-K. Chen. 1965. Topological analysis for active networks. IEEE Transactions on Circuit Theory, 12(1):85-91.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Recovering latent information in treebanks",
"authors": [
{
"first": "D",
"middle": [],
"last": "Chiang",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Bikel",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. of COLING",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Chiang and D. Bikel. 2002. Recovering latent infor- mation in treebanks. In Proc. of COLING.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Dependency tree kernels for relation extraction",
"authors": [
{
"first": "A",
"middle": [],
"last": "Culotta",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Sorensen",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Culotta and J. Sorensen. 2004. Dependency tree ker- nels for relation extraction. In Proc. of ACL.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Maximum likelihood estimation from incomplete data via the EM algorithm",
"authors": [
{
"first": "A",
"middle": [],
"last": "Dempster",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Laird",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Rubin",
"suffix": ""
}
],
"year": 1977,
"venue": "Journal of the Royal Statistical Society B",
"volume": "39",
"issue": "",
"pages": "1--38",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Dempster, N. Laird, and D. Rubin. 1977. Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39:1-38.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Better informed training of latent syntactic features",
"authors": [
{
"first": "M",
"middle": [],
"last": "Dreyer",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Eisner",
"suffix": ""
}
],
"year": 2006,
"venue": "Proc. of EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Dreyer and J. Eisner. 2006. Better informed training of latent syntactic features. In Proc. of EMNLP.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Three new probabilistic models for dependency parsing: An exploration",
"authors": [
{
"first": "J",
"middle": [],
"last": "Eisner",
"suffix": ""
}
],
"year": 1996,
"venue": "Proc. of COL-ING",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Eisner. 1996. Three new probabilistic models for de- pendency parsing: An exploration. In Proc. of COL- ING.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Minimum Bayes risk automatic speech recognition",
"authors": [
{
"first": "V",
"middle": [],
"last": "Goel",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Byrne",
"suffix": ""
}
],
"year": 2000,
"venue": "Computer Speech and Language",
"volume": "14",
"issue": "2",
"pages": "115--135",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "V. Goel and W. Byrne. 2000. Minimum Bayes risk auto- matic speech recognition. Computer Speech and Lan- guage, 14(2):115-135.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Parsing algorithms and metrics",
"authors": [
{
"first": "J",
"middle": [],
"last": "Goodman",
"suffix": ""
}
],
"year": 1996,
"venue": "Proc. of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Goodman. 1996. Parsing algorithms and metrics. In Proc. of ACL.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Prague Arabic Dependency Treebank: Development in data and tools",
"authors": [
{
"first": "J",
"middle": [],
"last": "Haji\u010d",
"suffix": ""
},
{
"first": "O",
"middle": [],
"last": "Smr\u017e",
"suffix": ""
},
{
"first": "P",
"middle": [],
"last": "Zem\u00e1nek",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "\u0160naidauf",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Be\u0161ka",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. of the NEMLAR Intern. Conf. on Arabic Language Resources and Tools",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Haji\u010d, O. Smr\u017e, P. Zem\u00e1nek J.\u0160naidauf, and E. Be\u0161ka. 2004. Prague Arabic Dependency Treebank: Devel- opment in data and tools. In Proc. of the NEMLAR In- tern. Conf. on Arabic Language Resources and Tools.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Discriminative learning for data-driven dependency parsing",
"authors": [
{
"first": "J",
"middle": [],
"last": "Hall",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Nivre",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Nilsson",
"suffix": ""
}
],
"year": 2006,
"venue": "Proc. of COLING-ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Hall, J. Nivre, and J. Nilsson. 2006. Discriminative learning for data-driven dependency parsing. In Proc. of COLING-ACL.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Maximum entropy discrimination",
"authors": [
{
"first": "T",
"middle": [],
"last": "Jaakkola",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Meila",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Jebara",
"suffix": ""
}
],
"year": 1999,
"venue": "Advances in NIPS 12",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "T. Jaakkola, M. Meila, and T. Jebara. 1999. Maximum entropy discrimination. In Advances in NIPS 12.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Joint and conditional estimation of tagging and parsing models",
"authors": [
{
"first": "M",
"middle": [],
"last": "Johnson",
"suffix": ""
}
],
"year": 2001,
"venue": "Proc. of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Johnson. 2001. Joint and conditional estimation of tagging and parsing models. In Proc. of ACL.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "A generative constituent-context model for improved grammar induction",
"authors": [
{
"first": "D",
"middle": [],
"last": "Klein",
"suffix": ""
},
{
"first": "C",
"middle": [
"D"
],
"last": "Manning",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Klein and C. D. Manning. 2002. A generative constituent-context model for improved grammar in- duction. In Proc. of ACL.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Hidden-variable models for discriminative reranking",
"authors": [
{
"first": "T",
"middle": [],
"last": "Koo",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. of EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "T. Koo and M. Collins. 2005. Hidden-variable models for discriminative reranking. In Proc. of EMNLP.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Structured prediction models via the Matrix-Tree Theorem",
"authors": [
{
"first": "T",
"middle": [],
"last": "Koo",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Globerson",
"suffix": ""
},
{
"first": "X",
"middle": [],
"last": "Carreras",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Collins",
"suffix": ""
}
],
"year": 2007,
"venue": "Proc. of EMNLP-CoNLL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "T. Koo, A. Globerson, X. Carreras, and M. Collins. 2007. Structured prediction models via the Matrix-Tree The- orem. In Proc. of EMNLP-CoNLL.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "The Danish dependency treebank and the underlying linguistic theory",
"authors": [
{
"first": "M",
"middle": [
"T"
],
"last": "Kromann",
"suffix": ""
}
],
"year": 2003,
"venue": "Proc. of TLT",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. T. Kromann. 2003. The Danish dependency treebank and the underlying linguistic theory. In Proc. of TLT.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Minimum Bayes risk decoding for statistical machine translation",
"authors": [
{
"first": "S",
"middle": [],
"last": "Kumar",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Byrne",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. of HLT-NAACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Kumar and W. Byrne. 2004. Minimum Bayes risk decoding for statistical machine translation. In Proc. of HLT-NAACL.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Conditional random fields: Probabilistic models for segmenting and labeling sequence data",
"authors": [
{
"first": "J",
"middle": [],
"last": "Lafferty",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Mccallum",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Pereira",
"suffix": ""
}
],
"year": 2001,
"venue": "Proc. of ICML",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. Lafferty, A. McCallum, and F. Pereira. 2001. Con- ditional random fields: Probabilistic models for seg- menting and labeling sequence data. In Proc. of ICML.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "On the limited memory BFGS method for large scale optimization",
"authors": [
{
"first": "D",
"middle": [
"C"
],
"last": "Liu",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 1989,
"venue": "Math. Programming",
"volume": "45",
"issue": "",
"pages": "503--528",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. C. Liu and J. Nocedal. 1989. On the limited mem- ory BFGS method for large scale optimization. Math. Programming, 45:503-528.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Probabilistic CFG with latent annotations",
"authors": [
{
"first": "T",
"middle": [],
"last": "Matsuzaki",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Miyao",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Tsujii",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Probabilis- tic CFG with latent annotations. In Proc. of ACL.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Maximum entropy Markov models for information extraction and segmentation",
"authors": [
{
"first": "A",
"middle": [],
"last": "Mccallum",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Freitag",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Pereira",
"suffix": ""
}
],
"year": 2000,
"venue": "Proc. of ICML",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. McCallum, D. Freitag, and F. Pereira. 2000. Maxi- mum entropy Markov models for information extrac- tion and segmentation. In Proc. of ICML.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Online learning of approximate dependency parsing algorithms",
"authors": [
{
"first": "R",
"middle": [],
"last": "Mcdonald",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Pereira",
"suffix": ""
}
],
"year": 2006,
"venue": "Proc. of EACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. McDonald and F. Pereira. 2006. Online learning of approximate dependency parsing algorithms. In Proc. of EACL.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "On the complexity of non-projective data-driven dependency parsing",
"authors": [
{
"first": "R",
"middle": [],
"last": "Mcdonald",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Satta",
"suffix": ""
}
],
"year": 2007,
"venue": "Proc. of IWPT",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. McDonald and G. Satta. 2007. On the complexity of non-projective data-driven dependency parsing. In Proc. of IWPT.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Online large-margin training of dependency parsers",
"authors": [
{
"first": "K",
"middle": [],
"last": "Mcdonald",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Crammer",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Pereira",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "McDonald, K. Crammer, and F. Pereira. 2005a. On- line large-margin training of dependency parsers. In Proc. of ACL.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Non-projective dependency parsing using spanning tree algorithms",
"authors": [
{
"first": "R",
"middle": [],
"last": "Mcdonald",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Pereira",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Ribarov",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Haji\u010d",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. of HLT-EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. McDonald, F. Pereira, K. Ribarov, and J. Haji\u010d. 2005b. Non-projective dependency parsing using spanning tree algorithms. In Proc. of HLT-EMNLP.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "A generalization of the all minors matrix tree theorem to semirings",
"authors": [
{
"first": "M",
"middle": [],
"last": "Minoux",
"suffix": ""
}
],
"year": 1999,
"venue": "Discrete Mathematics",
"volume": "199",
"issue": "",
"pages": "139--150",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "M. Minoux. 1999. A generalization of the all minors ma- trix tree theorem to semirings. Discrete Mathematics, 199:139-150.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "Maximum entropy estimation for feature forests",
"authors": [
{
"first": "Y",
"middle": [],
"last": "Miyao",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Tsujii",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. of HLT",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Y. Miyao and J. Tsujii. 2002. Maximum entropy estima- tion for feature forests. In Proc. of HLT.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Distributional clustering of English words",
"authors": [
{
"first": "F",
"middle": [
"C N"
],
"last": "Pereira",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Tishby",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Lee",
"suffix": ""
}
],
"year": 1993,
"venue": "Proc. of the 31st ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. C. N. Pereira, N. Tishby, and L. Lee. 1993. Distribu- tional clustering of English words. In Proc. of the 31st ACL.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "Improved inference for unlexicalized parsing",
"authors": [
{
"first": "S",
"middle": [],
"last": "Petrov",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Klein",
"suffix": ""
}
],
"year": 2007,
"venue": "Proc. of HLT-NAACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Petrov and D. Klein. 2007. Improved inference for unlexicalized parsing. In Proc. of HLT-NAACL.",
"links": null
},
"BIBREF39": {
"ref_id": "b39",
"title": "Learning accurate, compact, and interpretable tree annotation",
"authors": [
{
"first": "S",
"middle": [],
"last": "Petrov",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Barrett",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Thibaux",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Klein",
"suffix": ""
}
],
"year": 2006,
"venue": "Proc. of COLING-ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006. Learning accurate, compact, and interpretable tree an- notation. In Proc. of COLING-ACL.",
"links": null
},
"BIBREF40": {
"ref_id": "b40",
"title": "Head-driven PCFGs with latent-head statistics",
"authors": [
{
"first": "D",
"middle": [],
"last": "Prescher",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. of IWPT",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "D. Prescher. 2005. Head-driven PCFGs with latent-head statistics. In Proc. of IWPT.",
"links": null
},
"BIBREF41": {
"ref_id": "b41",
"title": "Dependency treelet translation: Syntactically informed phrasal SMT",
"authors": [
{
"first": "C",
"middle": [],
"last": "Quirk",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Menezes",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Cherry",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "C. Quirk, A. Menezes, and C. Cherry. 2005. De- pendency treelet translation: Syntactically informed phrasal SMT. In Proc. of ACL.",
"links": null
},
"BIBREF42": {
"ref_id": "b42",
"title": "A maximum entropy model for parsing",
"authors": [
{
"first": "A",
"middle": [],
"last": "Ratnaparkhi",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Roukos",
"suffix": ""
},
{
"first": "R",
"middle": [
"T"
],
"last": "Ward",
"suffix": ""
}
],
"year": 1994,
"venue": "Proc. of IC-SLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Ratnaparkhi, S. Roukos, and R. T. Ward. 1994. A maximum entropy model for parsing. In Proc. of IC- SLP.",
"links": null
},
"BIBREF43": {
"ref_id": "b43",
"title": "Lexicalized stochastic modeling of constraint-based grammars using log-linear measures and EM training",
"authors": [
{
"first": "S",
"middle": [],
"last": "Riezler",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Prescher",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Kuhn",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Johnson",
"suffix": ""
}
],
"year": 2000,
"venue": "Proc. of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Riezler, D. Prescher, J. Kuhn, and M. Johnson. 2000. Lexicalized stochastic modeling of constraint-based grammars using log-linear measures and EM training. In Proc. of ACL.",
"links": null
},
"BIBREF44": {
"ref_id": "b44",
"title": "Contrastive estimation: Training log-linear models on unlabeled data",
"authors": [
{
"first": "N",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Eisner",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. of ACL",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "N. A. Smith and J. Eisner. 2005. Contrastive estimation: Training log-linear models on unlabeled data. In Proc. of ACL.",
"links": null
},
"BIBREF45": {
"ref_id": "b45",
"title": "Max-margin parsing",
"authors": [
{
"first": "B",
"middle": [],
"last": "Taskar",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Klein",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Collins",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Koller",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. of EMNLP",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man- ning. 2004. Max-margin parsing. In Proc. of EMNLP.",
"links": null
},
"BIBREF46": {
"ref_id": "b46",
"title": "The information bottleneck method",
"authors": [
{
"first": "N",
"middle": [],
"last": "Tishby",
"suffix": ""
},
{
"first": "F",
"middle": [
"C N"
],
"last": "Pereira",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Bialek",
"suffix": ""
}
],
"year": 1999,
"venue": "Proc. of the",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "N. Tishby, F. C. N. Pereira, and W. Bialek. 1999. The information bottleneck method. In Proc. of the 37th",
"links": null
},
"BIBREF48": {
"ref_id": "b48",
"title": "Graph Theory",
"authors": [
{
"first": "W",
"middle": [
"T"
],
"last": "Tutte",
"suffix": ""
}
],
"year": 1984,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "W. T. Tutte. 1984. Graph Theory. Addison-Wesley.",
"links": null
},
"BIBREF49": {
"ref_id": "b49",
"title": "The Alpino dependency treebank",
"authors": [
{
"first": "L",
"middle": [],
"last": "Van Der Beek",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Bouma",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Malouf",
"suffix": ""
},
{
"first": "G",
"middle": [],
"last": "Van Noord",
"suffix": ""
}
],
"year": 2002,
"venue": "CLIN",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L. van der Beek, G. Bouma, R. Malouf, and G. van No- ord. 2002. The Alpino dependency treebank. In CLIN.",
"links": null
}
},
"ref_entries": {
"TABREF1": {
"num": null,
"type_str": "table",
"text": "Unlabeled dependency parsing accuracy (on test data) for two training methods(MIRA, as in McDonald et al. (2005b), and conditional estimation) and with maximum a posteriori (map) and minimum Bayes-risk (mBr) decoding. Boldface scores are best in their column on a permutation test at the .05 level.",
"content": "<table/>",
"html": null
},
"TABREF3": {
"num": null,
"type_str": "table",
"text": "",
"content": "<table><tr><td>: Augmenting edge features with clusters re-</td></tr><tr><td>sults in similar performance to conditional training</td></tr><tr><td>with no clusters (top two lines). Scores are unla-</td></tr><tr><td>beled dependency accuracy on test data.</td></tr></table>",
"html": null
}
}
}
} |