File size: 125,401 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
{
    "paper_id": "D07-1014",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T16:18:42.945684Z"
    },
    "title": "Probabilistic Models of Nonprojective Dependency Trees",
    "authors": [
        {
            "first": "David",
            "middle": [
                "A"
            ],
            "last": "Smith",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Johns Hopkins University Baltimore",
                "location": {
                    "postCode": "21218",
                    "region": "MD",
                    "country": "USA"
                }
            },
            "email": "dasmith@cs.jhu.edu"
        },
        {
            "first": "Noah",
            "middle": [
                "A"
            ],
            "last": "Smith",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Carnegie Mellon University Pittsburgh",
                "location": {
                    "postCode": "15213",
                    "region": "PA",
                    "country": "USA"
                }
            },
            "email": "nasmith@cs.cmu.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "A notable gap in research on statistical dependency parsing is a proper conditional probability distribution over nonprojective dependency trees for a given sentence. We exploit the Matrix Tree Theorem (Tutte, 1984) to derive an algorithm that efficiently sums the scores of all nonprojective trees in a sentence, permitting the definition of a conditional log-linear model over trees. While discriminative methods, such as those presented in McDonald et al. (2005b), obtain very high accuracy on standard dependency parsing tasks and can be trained and applied without marginalization, \"summing trees\" permits some alternative techniques of interest. Using the summing algorithm, we present competitive experimental results on four nonprojective languages, for maximum conditional likelihood estimation, minimum Bayes-risk parsing, and hidden variable training.",
    "pdf_parse": {
        "paper_id": "D07-1014",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "A notable gap in research on statistical dependency parsing is a proper conditional probability distribution over nonprojective dependency trees for a given sentence. We exploit the Matrix Tree Theorem (Tutte, 1984) to derive an algorithm that efficiently sums the scores of all nonprojective trees in a sentence, permitting the definition of a conditional log-linear model over trees. While discriminative methods, such as those presented in McDonald et al. (2005b), obtain very high accuracy on standard dependency parsing tasks and can be trained and applied without marginalization, \"summing trees\" permits some alternative techniques of interest. Using the summing algorithm, we present competitive experimental results on four nonprojective languages, for maximum conditional likelihood estimation, minimum Bayes-risk parsing, and hidden variable training.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Recently dependency parsing has received renewed interest, both in the parsing literature (Buchholz and Marsi, 2006) and in applications like translation (Quirk et al., 2005) and information extraction (Culotta and Sorensen, 2004) . Dependency parsing can be used to provide a \"bare bones\" syntactic structure that approximates semantics, and it has the additional advantage of admitting fast parsing algorithms (Eisner, 1996; McDonald et al., 2005b ) with a negligible grammar constant in many cases.",
                "cite_spans": [
                    {
                        "start": 90,
                        "end": 116,
                        "text": "(Buchholz and Marsi, 2006)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 154,
                        "end": 174,
                        "text": "(Quirk et al., 2005)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 202,
                        "end": 230,
                        "text": "(Culotta and Sorensen, 2004)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 412,
                        "end": 426,
                        "text": "(Eisner, 1996;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 427,
                        "end": 449,
                        "text": "McDonald et al., 2005b",
                        "ref_id": "BIBREF34"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The latest state-of-the-art statistical dependency parsers are discriminative, meaning that they are based on classifiers trained to score trees, given a sentence, either via factored whole-structure scores (McDonald et al., 2005a) or local parsing decision scores (Hall et al., 2006) . In the works cited, these scores are not intended to be interpreted as probabilistic quantities.",
                "cite_spans": [
                    {
                        "start": 207,
                        "end": 231,
                        "text": "(McDonald et al., 2005a)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 265,
                        "end": 284,
                        "text": "(Hall et al., 2006)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Here we consider weighted dependency parsing models that can be used to define well-formed conditional distributions p(y | x), for dependency trees y and a sentence x. Conditional distributions over outputs (here, trees) given inputs (here, sentences) have certain advantages. They permit marginalization over trees to compute posteriors of interesting sub-events (e.g., the probability that two noun tokens bear a relation, regardless of which tree is correct). A probability model permits alternative decoding procedures (Goodman, 1996) . Well-motivated hidden variable training procedures (such as EM and conditional EM) are also readily available for probabilistic models. Finally, probability models can be chained together (as in a noisy channel model), mixed, or combined in a product-of-experts.",
                "cite_spans": [
                    {
                        "start": 207,
                        "end": 220,
                        "text": "(here, trees)",
                        "ref_id": null
                    },
                    {
                        "start": 523,
                        "end": 538,
                        "text": "(Goodman, 1996)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Sequence models, context-free models, and dependency models have appeared in several guises; a cross-model comparison clarifies the contribution of this paper. First, there were generative, stochastic models like HMMs, PCFGs, and Eisner's (1996) models. Local discriminative classifiers were proposed by McCallum et al. (2000) for sequence modeling, by Ratnaparkhi et al. (1994) for constituent parsing, and by Hall et al. (2006) (among others) for dependencies. Large-margin whole-structure models were proposed for sequence labeling by Altun et al. (2003) , for constituents by , and for dependency trees by McDonald et al. (2005a) . In this paper, we propose a model most similar to the conditional random fieldsinterpretable as log-linear models-of Lafferty et al. (2001) , which are now widely used for sequence labeling. Log-linear models have been used in parsing by Riezler et al. (2000) (for constraint-based grammars) and Johnson (2001) and Miyao and Tsujii (2002) (for CFGs). Like McDonald et al., we use an edge-factored model that permits nonprojective trees; like Lafferty et al., we argue for an alternative interpretation as a log-linear model over structures, conditioned on the observed sentence.",
                "cite_spans": [
                    {
                        "start": 230,
                        "end": 245,
                        "text": "Eisner's (1996)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 304,
                        "end": 326,
                        "text": "McCallum et al. (2000)",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 353,
                        "end": 378,
                        "text": "Ratnaparkhi et al. (1994)",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 411,
                        "end": 429,
                        "text": "Hall et al. (2006)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 538,
                        "end": 557,
                        "text": "Altun et al. (2003)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 610,
                        "end": 633,
                        "text": "McDonald et al. (2005a)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 753,
                        "end": 775,
                        "text": "Lafferty et al. (2001)",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 874,
                        "end": 895,
                        "text": "Riezler et al. (2000)",
                        "ref_id": "BIBREF43"
                    },
                    {
                        "start": 932,
                        "end": 946,
                        "text": "Johnson (2001)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 951,
                        "end": 974,
                        "text": "Miyao and Tsujii (2002)",
                        "ref_id": "BIBREF36"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In Section 2 we point out what would be required, computationally, for conditional training of nonprojective dependency models. The solution to the conditionalization problem is given in Section 3, using a widely-known but newly-applied Matrix Tree Theorem due to Tutte (1984) , and experimental results are presented with a comparison to the MIRA learning algorithm used by McDonald et al. (2005a) . We go on to describe and experiment with two useful applications of conditional modeling: minimum Bayesrisk decoding (Section 4) and hidden-variable training by conditional maximum likelihood estimation (Section 5). Discussion in Section 6 considers the implications of our experimental results. Two indepedent papers, published concurrently with this one, report closely related results to ours. Koo et al. (2007) and McDonald and Satta (2007) both describe how the Matrix Tree Theorem can be applied to computing the sum of scores of edgefactored dependency trees and the edge marginals. Koo et al. compare conditional likelihood training (as here) to the averaged perceptron and a maximum margin model trained using exponentiatedgradient (Bartlett et al., 2004) ; the latter requires the same marginalization calculations as conditional log-linear estimation. McDonald and Satta discuss a variety of applications (including minimum Bayesrisk decoding) and give complexity results for nonedge-factored models. Interested readers are referred to those papers for further discussion.",
                "cite_spans": [
                    {
                        "start": 264,
                        "end": 276,
                        "text": "Tutte (1984)",
                        "ref_id": "BIBREF48"
                    },
                    {
                        "start": 375,
                        "end": 398,
                        "text": "McDonald et al. (2005a)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 798,
                        "end": 815,
                        "text": "Koo et al. (2007)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 820,
                        "end": 845,
                        "text": "McDonald and Satta (2007)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 1142,
                        "end": 1165,
                        "text": "(Bartlett et al., 2004)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Let x = x 1 , ..., x n be a sequence of words (possibly with POS tags, lemmas, and morphological information) that are the input to a parser. y will refer to a directed, unlabeled dependency tree, which is a map y : {1, ..., n} \u2192 {0, ..., n} from child indices to parent indices; x 0 is the invisible \"wall\" symbol. Let Y x be the set of valid dependency trees for x. In this paper, Y x is equivalent to the set of all directed spanning trees over x. 1 A conditional model defines a family of probability distributions p(y | x), for all x and y \u2208 Y x . We propose that this model take a log-linear form:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Training for Nonprojective Dependency Models",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p \u03b8 (y | x) = e \u03b8\u2022 f (x,y) y \u2208Yx e \u03b8\u2022 f (x,y ) = e \u03b8\u2022 f (x,y) Z \u03b8 (x)",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Conditional Training for Nonprojective Dependency Models",
                "sec_num": "2"
            },
            {
                "text": "where f is a feature vector function on parsed sentences and \u03b8 \u2208 R m parameterizes the model. Following McDonald et al. (2005a) , we assume that the features are edge-factored:",
                "cite_spans": [
                    {
                        "start": 94,
                        "end": 127,
                        "text": "Following McDonald et al. (2005a)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Training for Nonprojective Dependency Models",
                "sec_num": "2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "f (x, y) = n i=1 f (x, x i , x y(i) )",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Conditional Training for Nonprojective Dependency Models",
                "sec_num": "2"
            },
            {
                "text": "In other words, the dependencies between words in the tree are all conditionally independent of each other, given the sequence x and the fact that the parse is a spanning tree. Despite the constraints they impose on features, edge-factored models have the advantage of tractable O(n 3 ) inference algorithms or, with some trickery, O(n 2 ) maximum a posteriori (\"best parse tree\") inference algorithms in the nonprojective case. Exact nonprojective inference and estimation become intractable if we break edge factoring (McDonald and Pereira, 2006) . We wish to estimate the parameters \u03b8 by maximizing the conditional likelihood (like a CRF) rather than the margin (McDonald et al., 2005a) . For an empirical distributionp given by a set of training examples, this means:",
                "cite_spans": [
                    {
                        "start": 520,
                        "end": 548,
                        "text": "(McDonald and Pereira, 2006)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 665,
                        "end": 689,
                        "text": "(McDonald et al., 2005a)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Training for Nonprojective Dependency Models",
                "sec_num": "2"
            },
            {
                "text": "max \u03b8 x,yp (x, y) \u03b8 \u2022 f (x, y) \u2212 xp (x) log Z \u03b8 (x) (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Training for Nonprojective Dependency Models",
                "sec_num": "2"
            },
            {
                "text": "This optimization problem is typically solved using a quasi-Newton numerical optimization method such as L-BFGS (Liu and Nocedal, 1989) . Such a method requires the gradient of the objective function, which for \u03b8 k is given by the following difference in expectations of the value of feature f k :",
                "cite_spans": [
                    {
                        "start": 112,
                        "end": 135,
                        "text": "(Liu and Nocedal, 1989)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Training for Nonprojective Dependency Models",
                "sec_num": "2"
            },
            {
                "text": "\u2202 \u2202\u03b8 k = (4) Ep (X,Y) [f k (X, Y)] \u2212 Ep (X)p \u03b8 (Y|X) [f k (X, Y)]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Training for Nonprojective Dependency Models",
                "sec_num": "2"
            },
            {
                "text": "The computation of Z \u03b8 (x) and the sufficient statistics (second expectation in Equation 4) are typically the difficult parts. They require summing the scores of all the spanning trees for a given sentence. Note that, in large-margin training, and in standard maximum a posteriori decoding, only a maximum over spanning trees is called for-it is conditional training that requires Z \u03b8 (x). In Section 3, we will show how this can be done exactly in O(n 3 ) time.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Training for Nonprojective Dependency Models",
                "sec_num": "2"
            },
            {
                "text": "3 Exploiting the Matrix Tree Theorem for Z \u03b8 (x)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Training for Nonprojective Dependency Models",
                "sec_num": "2"
            },
            {
                "text": "We wish to apply conditional training to estimate conditional models of nonprojective trees. This requires computing Z \u03b8 (x) for each training example (as an inner loop to training). In this section we show how the summation can be computed and how conditional training performs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conditional Training for Nonprojective Dependency Models",
                "sec_num": "2"
            },
            {
                "text": "Recall that we defined the unnormalized probability (henceforth, score) of a dependency tree as a combination of edge-factored scores for the edges present in the tree (Eq. 2):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Kirchoff Matrix",
                "sec_num": "3.1"
            },
            {
                "text": "exp \u03b8\u2022 f (x, y) = n i=1 e \u03b8\u2022 f (x,x i ,x y(i) ) = n i=1 s x, \u03b8 (i, y(i)) (5) where y(i) denotes the parent of x i in y. s x, \u03b8 (i, j),",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Kirchoff Matrix",
                "sec_num": "3.1"
            },
            {
                "text": "then, denotes the (multiplicative) contribution of the edge from child i to parent j to the total score of the tree, if the edge is present. Define the Kirchoff",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Kirchoff Matrix",
                "sec_num": "3.1"
            },
            {
                "text": "matrix K x, \u03b8 \u2208 R n\u00d7n by K x, \u03b8 mom,kid = (6) \uf8f1 \uf8f2 \uf8f3 \u2212s x, \u03b8 (kid , mom) if mom = kid j\u2208{0,...n}:j =mom s x, \u03b8 (kid , j) if mom = kid .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Kirchoff Matrix",
                "sec_num": "3.1"
            },
            {
                "text": "where mom indexes a parent node and kid a child node. K x \u03b8 can be regarded as a special weighted adjacency matrix in which the ith diagonal entry is the sum of edge-scores directed into vertex i (i.e., x i is the child)-note that the sum includes the score of attaching x i to the wall x 0 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Kirchoff Matrix",
                "sec_num": "3.1"
            },
            {
                "text": "In our notation and in one specific form, the Matrix Tree Theorem (Tutte, 1984) states: 2",
                "cite_spans": [
                    {
                        "start": 66,
                        "end": 79,
                        "text": "(Tutte, 1984)",
                        "ref_id": "BIBREF48"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Kirchoff Matrix",
                "sec_num": "3.1"
            },
            {
                "text": "Theorem 1 The determinant of the Kirchoff matrix K x, \u03b8 is equal to the sum of scores of all directed spanning trees in Y x rooted at x 0 . Formally:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Kirchoff Matrix",
                "sec_num": "3.1"
            },
            {
                "text": "K x, \u03b8 = Z \u03b8 (x).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Kirchoff Matrix",
                "sec_num": "3.1"
            },
            {
                "text": "A proof is omitted; see Tutte (1984) .",
                "cite_spans": [
                    {
                        "start": 24,
                        "end": 36,
                        "text": "Tutte (1984)",
                        "ref_id": "BIBREF48"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Kirchoff Matrix",
                "sec_num": "3.1"
            },
            {
                "text": "To compute Z \u03b8 (x), we need only take the determinant of K x, \u03b8 , which can be done in O(n 3 ) time using the standard LU factorization to compute the matrix inverse. Since all of the edge weights used to construct the Kirchoff matrix are positive, it is diagonally dominant and therefore non-singular (i.e., invertible).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Kirchoff Matrix",
                "sec_num": "3.1"
            },
            {
                "text": "The gradient of Z \u03b8 (x) (required for numerical optimization; see Eqs. 3-4) can be efficiently computed from the same matrix inverse. While \u2207 log Z \u03b8 (x) equates to a vector of feature expectations (Eq. 4), we exploit instead some facts from linear algebra",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "K x, \u03b8 = \uf8ee \uf8ef \uf8ef \uf8ef \uf8ef \uf8ef \uf8ef \uf8ef \uf8ef \uf8ef \uf8ef \uf8f0 j\u2208{0,...,n}:j =1 s x, \u03b8 (1, j) \u2212s x, \u03b8 (2, 1) \u2022 \u2022 \u2022 \u2212s x, \u03b8 (n, 1) \u2212s x, \u03b8 (1, 2) j\u2208{0,...,n}:j =2 s x, \u03b8 (2, j) \u2022 \u2022 \u2022 \u2212s x, \u03b8 (n, 2) . . . . . . . . . . . . \u2212s x, \u03b8 (1, n) \u2212s x, \u03b8 (2, n) \u2022 \u2022 \u2022 j\u2208{0,...,n}:j =n s x, \u03b8 (n, j) \uf8f9 \uf8fa \uf8fa \uf8fa \uf8fa \uf8fa \uf8fa \uf8fa \uf8fa \uf8fa \uf8fa \uf8fb",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "and the chain rule. First, note that, for any weight \u03b8 k ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2202 log Z \u03b8 (x) \u2202\u03b8 k = \u2202 log |K x, \u03b8 | \u2202\u03b8 k = 1 |K x, \u03b8 | \u2202|K x, \u03b8 | \u2202\u03b8 k = 1 |K x, \u03b8 | n i=1 n j=0 \u2202|K x, \u03b8 | \u2202s x, \u03b8 (i, j) \u2202s x, \u03b8 (i, j) \u2202\u03b8 k = 1 |K x, \u03b8 | n i=1 n j=0 s x, \u03b8 (i, j)f k (x, x i , x j ) \u00d7 \u2202|K x, \u03b8 | \u2202s x, \u03b8 (i, j)",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "(We assume s x, \u03b8 (i, i) = 0, for simplicity of notation.) The last line follows from the definition of",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "s x, \u03b8 (i, j) as exp \u03b8\u2022 f (x, x i , x j ). Now, since s x, \u03b8 (i, j)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "affects the Kirchoff matrix in at most two cells-(i, i) and (j, i), the latter only when j > 0-we know that",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2202|K x, \u03b8 | \u2202s x, \u03b8 (i, j) = \u2202|K x, \u03b8 | \u2202[K x, \u03b8 ] i,i \u2202[K x, \u03b8 ] i,i \u2202s x, \u03b8 (i, i) \u2212 \u2202|K x, \u03b8 | \u2202[K x, \u03b8 ] j,i \u2202[K x, \u03b8 ] j,i \u2202s x, \u03b8 (i, j) = \u2202|K x, \u03b8 | \u2202[K x, \u03b8 ] i,i \u2212 \u2202|K x, \u03b8 | \u2202[K x, \u03b8 ] j,i",
                        "eq_num": "(8)"
                    }
                ],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "We have now reduced the problem of the gradient to a linear function of \u2207|K x, \u03b8 | with respect to the cells of the matrix itself. At this point, we simplify notation and consider an arbitrary matrix A.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "The minor m j,i of a matrix A is the determinant of the submatrix obtained by striking out row j and column i of A; the cofactor c j,i of A is then (\u22121) i+j m j,i . Laplace's formula defines the determinant as a linear combination of matrix cofactors of an arbitrary row j:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "|A| = n i=1 [A] j,i c j,i",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "It should be clear that any c j,k is constant with respect to the cell [A] j,i (since it is formed by removing row j of A) and that other entries of A are constant with respect to the cell [A] j,i . Therefore:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2202|A| \u2202[A] j,i = c j,i",
                        "eq_num": "(10)"
                    }
                ],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "The inverse matrix A \u22121 can also be defined in terms of cofactors:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "[A \u22121 ] i,j = c j,i |A|",
                        "eq_num": "(11)"
                    }
                ],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "Combining Eqs. 10 and 11, we have:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2202|A| \u2202[A] j,i = |A|[A \u22121 ] i,j",
                        "eq_num": "(12)"
                    }
                ],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "Plugging back in through Eq. 8 to Eq. 7, we have:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2202 log Z \u03b8 (x) \u2202\u03b8 k = n i=1 n j=0 s x, \u03b8 (i, j)f k (x, x i , x j ) \u00d7 K \u22121 x, \u03b8 i,i \u2212 K \u22121 x, \u03b8 i,j",
                        "eq_num": "(13)"
                    }
                ],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "where [K \u22121 ] i,0 is taken to be 0. Note that the cofactors do not need to be computed directly. We proposed in Section 3.1 to get Z \u03b8 (x) by computing the inverse of the Kirchoff matrix (which is known to exist). Under that procedure, the marginalization is a by-product of the gradient. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Gradient",
                "sec_num": "3.2"
            },
            {
                "text": "We compare conditional training of a nonprojective edge-factored parsing model to the online MIRA training used by McDonald et al. (2005b) . Four languages with relatively common nonprojective phenomena were tested: Arabic (Haji\u010d et al., 2004) , Czech (B\u00f6hmov\u00e1 et al., 2003) , Danish (Kromann, 2003) , and Dutch (van der Beek et al., 2002) . The Danish and Dutch datasets were prepared for the CoNLL 2006 shared task (Buchholz and Marsi, 2006) ; Arabic and Czech are from the 2007 shared task. We used the same features, extracted by Mc-Donald's code, in both MIRA and conditional training. In this paper, we consider only unlabeled dependency parsing.",
                "cite_spans": [
                    {
                        "start": 115,
                        "end": 138,
                        "text": "McDonald et al. (2005b)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 223,
                        "end": 243,
                        "text": "(Haji\u010d et al., 2004)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 252,
                        "end": 274,
                        "text": "(B\u00f6hmov\u00e1 et al., 2003)",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 284,
                        "end": 299,
                        "text": "(Kromann, 2003)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 312,
                        "end": 339,
                        "text": "(van der Beek et al., 2002)",
                        "ref_id": "BIBREF49"
                    },
                    {
                        "start": 417,
                        "end": 443,
                        "text": "(Buchholz and Marsi, 2006)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment",
                "sec_num": "3.3"
            },
            {
                "text": "Our conditional training used an online gradientbased method known as stochastic gradient descent (see, e.g., Bottou, 2003) . Training with MIRA and conditional estimation take about the same amount of time: approximately 50 sentences per second. Training proceeded as long as an improvement on held-out data was evident. The accuracy of the hypothesized parses for the two models, on each language, are shown in the top two rows of Tab. 1 (labeled \"map\" for maximum a posteriori, meaning that the highest-weighted tree is hypothesized).",
                "cite_spans": [
                    {
                        "start": 110,
                        "end": 123,
                        "text": "Bottou, 2003)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment",
                "sec_num": "3.3"
            },
            {
                "text": "The two methods are, not surprisingly, close in performance; conditional likelihood outperformed MIRA on Arabic and Danish, underperformed MIRA on Czech, and the two tied on Dutch. Results are significant at the .05 level on a permutation test. Conditional estimation is in practice more prone to over-fitting than maximum margin methods, though we did not see any improvement using zero-mean Gaussian priors (variance 1 or 10).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment",
                "sec_num": "3.3"
            },
            {
                "text": "These experiments serve to validate conditional estimation as a competitive learning algorithm for parsing models, and the key contribution of the summing algorithm that permits conditional estimation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment",
                "sec_num": "3.3"
            },
            {
                "text": "A second application of probability distributions over trees is the alternative decoding algorithm known as minimum Bayes-risk (mBr) decoding. The more commonly used maximum a posteriori decoding (also known as \"Viterbi\" decoding) that we applied in Section 3.3 sought to minimize the expected whole-tree loss:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Minimum Bayes-Risk Decoding",
                "sec_num": "4"
            },
            {
                "text": "y = argmax y p \u03b8 (y | x) = argmin y E p \u03b8 (Y|x) [\u2212\u03b4(y, Y)] (14)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Minimum Bayes-Risk Decoding",
                "sec_num": "4"
            },
            {
                "text": "Minimum Bayes-risk decoding generalizes this idea to an arbitrary loss function on the proposed tree:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Minimum Bayes-Risk Decoding",
                "sec_num": "4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "y = argmin y E p \u03b8 (Y|x) [ (y, Y)]",
                        "eq_num": "(15)"
                    }
                ],
                "section": "Minimum Bayes-Risk Decoding",
                "sec_num": "4"
            },
            {
                "text": "This technique was originally applied in speech recognition (Goel and Byrne, 2000) and translation (Kumar and Byrne, 2004) ; Goodman (1996) proposed a similar idea in probabilistic context-free parsing, seeking to maximize expected recall. For more applications in parsing, see Petrov and Klein (2007) .",
                "cite_spans": [
                    {
                        "start": 60,
                        "end": 82,
                        "text": "(Goel and Byrne, 2000)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 99,
                        "end": 122,
                        "text": "(Kumar and Byrne, 2004)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 125,
                        "end": 139,
                        "text": "Goodman (1996)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 278,
                        "end": 301,
                        "text": "Petrov and Klein (2007)",
                        "ref_id": "BIBREF38"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Minimum Bayes-Risk Decoding",
                "sec_num": "4"
            },
            {
                "text": "The most common loss function used to evaluate dependency parsers is the number of attachment errors, so we seek to decode using:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Minimum Bayes-Risk Decoding",
                "sec_num": "4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "y = argmin y E p \u03b8 (Y|x) n i=1 \u2212\u03b4(y(i), Y(i)) = argmax y n i=1 p \u03b8 (Y(i) = y(i) | x)",
                        "eq_num": "(16)"
                    }
                ],
                "section": "Minimum Bayes-Risk Decoding",
                "sec_num": "4"
            },
            {
                "text": "To apply this decoding method, we make use of Eq. 13, which gives us the posterior probabilities of edges under the model, and the same Chiu-Liu-Edmonds maximum directed spanning tree algorithm used for maximum a posteriori decoding. Note that this decoding method can be applied regardless of how the model is trained. It merely requires assuming that the tree scores under the trained model (probabilistic or not) can be treated as unnormalized log-probabilities over trees given the sentence x.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Minimum Bayes-Risk Decoding",
                "sec_num": "4"
            },
            {
                "text": "We applied minimum Bayes-risk decoding to the models trained using MIRA and using conditional estimation (see Section 3.3). Table 1 shows that, across languages, minimum Bayes-risk decoding hurts slightly the performance of a MIRA-trained model, but helps slightly or does not affect the performance of a conditionally-trained model. Since MIRA does not attempt to model the distribution over trees, this result is not surprising; interpreting weights as defining a conditional log-linear distribution is questionable under MIRA's training criterion.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 124,
                        "end": 131,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Minimum Bayes-Risk Decoding",
                "sec_num": "4"
            },
            {
                "text": "One option, which we do not test here, is to use minimum Bayes-risk decoding inside of MIRA training, to propose a hypothesis tree (or k-best trees) at each training step. Doing this would more closely match the training conditions with the testing conditions; however, it is unclear whether there is a formal interpretation of such a combination, for example its relationship to McDonald et al.'s \"factored MIRA.\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Minimum Bayes-Risk Decoding",
                "sec_num": "4"
            },
            {
                "text": "Minimum Bayes-risk decoding, we believe, will become important in nonprojective parsing with non-edge-factored models. Note that minimium Bayes-risk decoding reduces any parsing problem to the maximum directed spanning tree problem, even if the original model is not edge-factored. All that is required are the marginals p \u03b8 (Y(i) = y(i) | x), which may be intractable to compute exactly, though it may be possible to develop efficient approximations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Minimum Bayes-Risk Decoding",
                "sec_num": "4"
            },
            {
                "text": "A third application of probability distributions over trees is hidden-variable learning. The Expectation-Maximization (EM) algorithm (Baum and Petrie, 1966; Dempster et al., 1977; Baker, 1979) , for example, is a way to maximum the likelihood of training data, marginalizing out hidden variables. This has been applied widely in unsupervised parsing (Carroll and Charniak, 1992; Klein and Manning, 2002) . More recently, EM has been used to learn hidden variables in parse trees; these can be head-child annotations (Chiang and Bikel, 2002) , latent head features (Matsuzaki et al., 2005; Prescher, 2005; Dreyer and Eisner, 2006) , or hierarchicallysplit nonterminal states (Petrov et al., 2006) .",
                "cite_spans": [
                    {
                        "start": 133,
                        "end": 156,
                        "text": "(Baum and Petrie, 1966;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 157,
                        "end": 179,
                        "text": "Dempster et al., 1977;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 180,
                        "end": 192,
                        "text": "Baker, 1979)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 350,
                        "end": 378,
                        "text": "(Carroll and Charniak, 1992;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 379,
                        "end": 403,
                        "text": "Klein and Manning, 2002)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 516,
                        "end": 540,
                        "text": "(Chiang and Bikel, 2002)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 564,
                        "end": 588,
                        "text": "(Matsuzaki et al., 2005;",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 589,
                        "end": 604,
                        "text": "Prescher, 2005;",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 605,
                        "end": 629,
                        "text": "Dreyer and Eisner, 2006)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 674,
                        "end": 695,
                        "text": "(Petrov et al., 2006)",
                        "ref_id": "BIBREF39"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hidden Variables",
                "sec_num": "5"
            },
            {
                "text": "To date, we know of no attempts to apply hidden variables to supervised dependency tree models. If the trees are constrained to be projective, EM is easily applied using the inside-outside variant of the parsing algorithm described by Eisner (1996) to compute the marginal probability. Moving to the nonprojective case, there are two difficulties: (a) we must marginalize over nonprojective trees and (b) we must define a generative model over (X, Y).",
                "cite_spans": [
                    {
                        "start": 235,
                        "end": 248,
                        "text": "Eisner (1996)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hidden Variables",
                "sec_num": "5"
            },
            {
                "text": "We have already shown in Section 3 how to solve (a); here we avoid (b) by maximizing conditional likelihood, marginalizing out the hidden variable, denoted z:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hidden Variables",
                "sec_num": "5"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "max \u03b8 x,yp (x, y) log z p \u03b8 (y, z | x)",
                        "eq_num": "(17)"
                    }
                ],
                "section": "Hidden Variables",
                "sec_num": "5"
            },
            {
                "text": "This sort of conditional training with hidden variables was carried out by Koo and Collins (2005) , for example, in reranking; it is related to the information bottleneck method (Tishby et al., 1999) and contrastive estimation (Smith and Eisner, 2005) .",
                "cite_spans": [
                    {
                        "start": 75,
                        "end": 97,
                        "text": "Koo and Collins (2005)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 178,
                        "end": 199,
                        "text": "(Tishby et al., 1999)",
                        "ref_id": "BIBREF46"
                    },
                    {
                        "start": 227,
                        "end": 251,
                        "text": "(Smith and Eisner, 2005)",
                        "ref_id": "BIBREF44"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hidden Variables",
                "sec_num": "5"
            },
            {
                "text": "Noting that our model is edge-factored (Eq. 2), we define our hidden variables to be edge-factored as well. We can think of the hidden variables as clusters on dependency tokens, and redefine the score of an edge to be:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Latent Dependency Labels",
                "sec_num": "5.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "s x, \u03b8 (i, j) = z\u2208Z e \u03b8\u2022 f (x,x i ,x j ,z)",
                        "eq_num": "(18)"
                    }
                ],
                "section": "Latent Dependency Labels",
                "sec_num": "5.1"
            },
            {
                "text": "where Z is a set of dependency clusters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Latent Dependency Labels",
                "sec_num": "5.1"
            },
            {
                "text": "Note that keeping the model edge-factored means that the cluster of each dependency in a tree is conditionally independent of all the others, given the words. This is computationally advantageous (we can factor out the marginalization of the hidden variable by edge), and it permits the use of any clustering method at all. For example, if an auxiliary clustering model q(z | x, y)-perhaps one that did not make such independence assumptions-were used, the posterior probability q(Z i = z | x, y) could be a feature in the proposed model. On the other hand, we must consider carefully the role of the dependency clusters in the model; if clusters are learned extrinsic to estimation of the parsing model, we should not expect them to be directly advantageous to parsing accuracy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Latent Dependency Labels",
                "sec_num": "5.1"
            },
            {
                "text": "We tried two sets of experiments with clustering. In one case, we simply augmented all of McDonald et al.'s edge features with a cluster label in hopes of improved accuracy. Models were initialized near zero, with Gaussian noise added to break symmetry among clusters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5.2"
            },
            {
                "text": "Under these conditions, performance stayed the same or changed slightly (see Table 2 ); none of the improvements are significant. Note that three decoders were applied: maximum a posteriori (map) and minimum Bayes-risk (mBr) as described in Section 4, and \"max-z,\" in which each possible edge was labeled and weighted only with its most likely cluster (rather than the sum over all clusters), before finding the most probable tree. 3 For each of the three languages tested, some number of clusters and some decoding method gave small improvements over the baseline.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 77,
                        "end": 84,
                        "text": "Table 2",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5.2"
            },
            {
                "text": "More ambitiously, we hypothesized that many lexicalized features on edges could be \"squeezed\" through clusters to reduce the size of the feature set. We thus removed all word-word and lemma-lemma features and all tag fourgrams. Although this reduced our feature set by a factor of 60 or more (prior to taking a cross-product with the clusters), the damage of breaking the features was tremendous, and performance even with a thousand clusters barely broke 25% accuracy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5.2"
            },
            {
                "text": "Noting that adding latent features to nonterminals in unlexicalized context-free parsing has been very successful (Chiang and Bikel, 2002; Matsuzaki et al., 2005; Prescher, 2005; Dreyer and Eisner, 2006; Petrov et al., 2006) more substantial performance improvement through latent features. We propose several interpretations. First, it may simply be that many more clusters may be required. Note that the label-set sizes for the labeled versions of these datasets are larger than 32 (e.g., 50 for Danish). This has the unfortunate effect of blowing up the feature space beyond the memory capacity of our machines (hence our attempts at squeezing high-dimensional features through the clusters). Of course, improved clustering methods may also improve performance. In particular, a clusterlearning algorithm that permits clusters to split and/or merge, as in Petrov et al. (2006) or in Pereira et al. (1993) , may be appropriate.",
                "cite_spans": [
                    {
                        "start": 114,
                        "end": 138,
                        "text": "(Chiang and Bikel, 2002;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 139,
                        "end": 162,
                        "text": "Matsuzaki et al., 2005;",
                        "ref_id": "BIBREF29"
                    },
                    {
                        "start": 163,
                        "end": 178,
                        "text": "Prescher, 2005;",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 179,
                        "end": 203,
                        "text": "Dreyer and Eisner, 2006;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 204,
                        "end": 224,
                        "text": "Petrov et al., 2006)",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 859,
                        "end": 879,
                        "text": "Petrov et al. (2006)",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 886,
                        "end": 907,
                        "text": "Pereira et al. (1993)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "Given the relative simplicity of clustering methods for context-free parsing to date (gains were found just by using Expectation-Maximization), we believe the fundamental reason clustering was not particularly helpful here is a structural one. In context-free parsing, the latent features are (in published work to date) on nonterminal states, which are the stuctural \"bridge\" between context-free rules. Adding features to those states is a way of pushing information-encoded indirectly, perhaps-farther around the tree, and therefore circumventing the strict independence assumptions of probabilistic CFGs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "In an edge-factored dependency model, on the other hand, latent features on the edges seem to have little effect. Given that they are locally \"summed out\" when we compute the scores of possible attachments, it should be clear that the edge clusters do not circumvent any independence assumptions. Three options appear to present themselves. First, we might attempt to learn clusters in tandem with estimating a richer, non-edge-factored model which would require approximations to Z \u03b8 (x), if conditional training were to be used. Note that the approximations to maximizing over spanning trees with second-order features, proposed by McDonald and Pereira (2006) , do not permit estimating the clusters as part of the same process as weight estimation (at least not without modification). In the conditional estimation case, a variational approach might be appropriate. The second option is to learn clusters offline, before estimating the parser. (We suggested how to incorporate soft clusters into our model in Section 5.1.) This option is computationally advantageous but loses sight of the aim of learning the clusters specifically to improve parsing accuracy. Third, noting that the structural \"bridge\" between two coincident edges is the shared vertex (word), we might consider word token clustering. We also believe this structural locality issue helps explain the modesty of the gains using minimum Bayes-risk decoding with conditional training (Section 4). In other dependency parsing scenarios, minimum Bayes-risk decoding has been found to offer significant advantages-why not here? Minimum Bayes-risk makes use of global statistical dependencies in the posterior when making local decisions. But in an edge-factored model, the edges are all conditionally independent, given that y is a spanning tree.",
                "cite_spans": [
                    {
                        "start": 634,
                        "end": 661,
                        "text": "McDonald and Pereira (2006)",
                        "ref_id": "BIBREF31"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "As a post hoc experiment, we compared purely greedy attachment (attach each word to its maximum-weighted parent, without any tree constraints). Edge scores as defined in the model were compared to minimum Bayes-risk posterior scores, and the latter were consistently better (though this always under-performed optimal spanning-tree decoding, unsurprisingly). This comparison serves only to confirm that minimum Bayes-risk decoding is a way to circumvent independence assumptions (here made by a decoder), but only when the trained model does not make those particular assumptions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "We have shown how to carry out exact marginalization under an edge-factored, conditional log-linear model over nonprojective dependency trees. The method has cubic runtime in the length of the sequence, but is very fast in practice. It can be used in conditional training of such a model, in minimum Bayes-risk decoding (regardless of how the model is trained), and in training with hidden variables. We demonstrated how each of these techniques gives results competitive with state-of-the-art existing dependency parsers.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "7"
            },
            {
                "text": "To be precise, every word has in-degree 1, with the sole edge pointing from the word's parent, x y(i) \u2192 xi. x0 has indegree 0. By definition, trees are acyclic. The edges need not be planar and may \"cross\" in the plane, since we do not have a projectivity constraint. In some formulations, exactly one node in x can attach to x0; here we allow multiple nodes to attach to x0, since this occurs with some frequency in many existing datasets. Summation over trees where x0 has exactly one child is addressed directly byKoo et al. (2007).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "There are proven generalizations of this theorem(Chen, 1965;Chaiken, 1982;Minoux, 1999); we give the most specific form that applies to our case, originally proved by Tutte in 1948. Strictly speaking, our K x, \u03b8 is not the Kirchoff matrix, but rather a submatrix of the Kirchoff matrix with a leftmost column of zeroes and a topmost row [0, \u2212s x, \u03b8 (1, 0), ..., \u2212s x, \u03b8 (n, 0)] removed. Farther afield,Jaakkola et al. (1999) used an undirected matrix tree theorem for learning tree structures for graphical models.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Czech experiments were not done, since the number of features (more than 14 million) was too high to multiply out by clusters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "The authors thank the anonymous reviewers, Jason Eisner, Keith Hall, and Sanjeev Khudanpur for helpful comments, and Michael Collins and Ryan Mc-Donald for sharing drafts of their related, concurrent papers. This work was supported in part by NSF ITR grant IIS-0313193.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Investigating loss functions and optimization methods for discriminative learning of label sequences",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Altun",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Hofmann",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Altun, M. Johnson, and T. Hofmann. 2003. Inves- tigating loss functions and optimization methods for discriminative learning of label sequences. In Proc. of EMNLP.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Trainable grammars for speech recognition",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "K"
                        ],
                        "last": "Baker",
                        "suffix": ""
                    }
                ],
                "year": 1979,
                "venue": "Proc. of the",
                "volume": "",
                "issue": "",
                "pages": "547--550",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. K. Baker. 1979. Trainable grammars for speech recog- nition. In Proc. of the Acoustical Society of America, pages 547-550.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Exponentiated gradient algorithms for largemargin structured classification",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Bartlett",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Taskar",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Mcallester",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Advances in NIPS 17",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Bartlett, M. Collins, B. Taskar, and D. McAllester. 2004. Exponentiated gradient algorithms for large- margin structured classification. In Advances in NIPS 17.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Statistical inference for probabilistic functions of finite state Markov chains",
                "authors": [
                    {
                        "first": "L",
                        "middle": [
                            "E"
                        ],
                        "last": "Baum",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Petrie",
                        "suffix": ""
                    }
                ],
                "year": 1966,
                "venue": "Annals of Mathematical Statistics",
                "volume": "37",
                "issue": "",
                "pages": "1554--1563",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L. E. Baum and T. Petrie. 1966. Statistical inference for probabilistic functions of finite state Markov chains. Annals of Mathematical Statistics, 37:1554-1563.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "The PDT: a 3-level annotation scenario",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "B\u00f6hmov\u00e1",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Haji\u010d",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Haji\u010dov\u00e1",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Hladk\u00e1",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. B\u00f6hmov\u00e1, J. Haji\u010d, E. Haji\u010dov\u00e1, and B. Hladk\u00e1. 2003. The PDT: a 3-level annotation scenario.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Building and Exploiting Syntactically-Annotated Corpora",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "In A. Abeille, editor, Building and Exploiting Syntactically-Annotated Corpora. Kluwer.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Stochastic learning",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Bottou",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Advanced Lectures in Machine Learning",
                "volume": "",
                "issue": "",
                "pages": "146--168",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L. Bottou. 2003. Stochastic learning. In Advanced Lec- tures in Machine Learning, pages 146-168. Springer.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "CoNLL-X shared task on multilingual dependency parsing",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Buchholz",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Marsi",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of CoNLL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Buchholz and E. Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In Proc. of CoNLL.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Two experiments on learning probabilistic dependency grammars from corpora",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Carroll",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Charniak",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. Carroll and E. Charniak. 1992. Two experiments on learning probabilistic dependency grammars from cor- pora. Technical report, Brown University.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "A combinatorial proof of the all minors matrix tree theorem",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Chaiken",
                        "suffix": ""
                    }
                ],
                "year": 1982,
                "venue": "SIAM Journal on Algebraic and Discrete Methods",
                "volume": "3",
                "issue": "3",
                "pages": "319--329",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Chaiken. 1982. A combinatorial proof of the all mi- nors matrix tree theorem. SIAM Journal on Algebraic and Discrete Methods, 3(3):319-329.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Topological analysis for active networks",
                "authors": [
                    {
                        "first": "W.-K",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 1965,
                "venue": "IEEE Transactions on Circuit Theory",
                "volume": "12",
                "issue": "1",
                "pages": "85--91",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W.-K. Chen. 1965. Topological analysis for active networks. IEEE Transactions on Circuit Theory, 12(1):85-91.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Recovering latent information in treebanks",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Chiang",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Bikel",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of COLING",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Chiang and D. Bikel. 2002. Recovering latent infor- mation in treebanks. In Proc. of COLING.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Dependency tree kernels for relation extraction",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Culotta",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Sorensen",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Culotta and J. Sorensen. 2004. Dependency tree ker- nels for relation extraction. In Proc. of ACL.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Maximum likelihood estimation from incomplete data via the EM algorithm",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Dempster",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Laird",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Rubin",
                        "suffix": ""
                    }
                ],
                "year": 1977,
                "venue": "Journal of the Royal Statistical Society B",
                "volume": "39",
                "issue": "",
                "pages": "1--38",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Dempster, N. Laird, and D. Rubin. 1977. Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society B, 39:1-38.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Better informed training of latent syntactic features",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Dreyer",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Eisner",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Dreyer and J. Eisner. 2006. Better informed training of latent syntactic features. In Proc. of EMNLP.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Three new probabilistic models for dependency parsing: An exploration",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Eisner",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proc. of COL-ING",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Eisner. 1996. Three new probabilistic models for de- pendency parsing: An exploration. In Proc. of COL- ING.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Minimum Bayes risk automatic speech recognition",
                "authors": [
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Goel",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Byrne",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Computer Speech and Language",
                "volume": "14",
                "issue": "2",
                "pages": "115--135",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "V. Goel and W. Byrne. 2000. Minimum Bayes risk auto- matic speech recognition. Computer Speech and Lan- guage, 14(2):115-135.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Parsing algorithms and metrics",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Goodman",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Goodman. 1996. Parsing algorithms and metrics. In Proc. of ACL.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Prague Arabic Dependency Treebank: Development in data and tools",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Haji\u010d",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Smr\u017e",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Zem\u00e1nek",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "\u0160naidauf",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Be\u0161ka",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of the NEMLAR Intern. Conf. on Arabic Language Resources and Tools",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Haji\u010d, O. Smr\u017e, P. Zem\u00e1nek J.\u0160naidauf, and E. Be\u0161ka. 2004. Prague Arabic Dependency Treebank: Devel- opment in data and tools. In Proc. of the NEMLAR In- tern. Conf. on Arabic Language Resources and Tools.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Discriminative learning for data-driven dependency parsing",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Hall",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Nivre",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Nilsson",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of COLING-ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Hall, J. Nivre, and J. Nilsson. 2006. Discriminative learning for data-driven dependency parsing. In Proc. of COLING-ACL.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Maximum entropy discrimination",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Jaakkola",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Meila",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Jebara",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Advances in NIPS 12",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Jaakkola, M. Meila, and T. Jebara. 1999. Maximum entropy discrimination. In Advances in NIPS 12.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Joint and conditional estimation of tagging and parsing models",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Johnson. 2001. Joint and conditional estimation of tagging and parsing models. In Proc. of ACL.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "A generative constituent-context model for improved grammar induction",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Klein and C. D. Manning. 2002. A generative constituent-context model for improved grammar in- duction. In Proc. of ACL.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Hidden-variable models for discriminative reranking",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Koo",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Koo and M. Collins. 2005. Hidden-variable models for discriminative reranking. In Proc. of EMNLP.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Structured prediction models via the Matrix-Tree Theorem",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Koo",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Globerson",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Carreras",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc. of EMNLP-CoNLL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Koo, A. Globerson, X. Carreras, and M. Collins. 2007. Structured prediction models via the Matrix-Tree The- orem. In Proc. of EMNLP-CoNLL.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "The Danish dependency treebank and the underlying linguistic theory",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "T"
                        ],
                        "last": "Kromann",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. of TLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. T. Kromann. 2003. The Danish dependency treebank and the underlying linguistic theory. In Proc. of TLT.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Minimum Bayes risk decoding for statistical machine translation",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Byrne",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of HLT-NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Kumar and W. Byrne. 2004. Minimum Bayes risk decoding for statistical machine translation. In Proc. of HLT-NAACL.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Conditional random fields: Probabilistic models for segmenting and labeling sequence data",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proc. of ICML",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Lafferty, A. McCallum, and F. Pereira. 2001. Con- ditional random fields: Probabilistic models for seg- menting and labeling sequence data. In Proc. of ICML.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "On the limited memory BFGS method for large scale optimization",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "C"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "Math. Programming",
                "volume": "45",
                "issue": "",
                "pages": "503--528",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. C. Liu and J. Nocedal. 1989. On the limited mem- ory BFGS method for large scale optimization. Math. Programming, 45:503-528.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Probabilistic CFG with latent annotations",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Matsuzaki",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Miyao",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Tsujii",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Probabilis- tic CFG with latent annotations. In Proc. of ACL.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Maximum entropy Markov models for information extraction and segmentation",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mccallum",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Freitag",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc. of ICML",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. McCallum, D. Freitag, and F. Pereira. 2000. Maxi- mum entropy Markov models for information extrac- tion and segmentation. In Proc. of ICML.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Online learning of approximate dependency parsing algorithms",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of EACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. McDonald and F. Pereira. 2006. Online learning of approximate dependency parsing algorithms. In Proc. of EACL.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "On the complexity of non-projective data-driven dependency parsing",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Satta",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc. of IWPT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. McDonald and G. Satta. 2007. On the complexity of non-projective data-driven dependency parsing. In Proc. of IWPT.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Online large-margin training of dependency parsers",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Crammer",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "McDonald, K. Crammer, and F. Pereira. 2005a. On- line large-margin training of dependency parsers. In Proc. of ACL.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Non-projective dependency parsing using spanning tree algorithms",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Mcdonald",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Pereira",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Ribarov",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Haji\u010d",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of HLT-EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. McDonald, F. Pereira, K. Ribarov, and J. Haji\u010d. 2005b. Non-projective dependency parsing using spanning tree algorithms. In Proc. of HLT-EMNLP.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "A generalization of the all minors matrix tree theorem to semirings",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Minoux",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Discrete Mathematics",
                "volume": "199",
                "issue": "",
                "pages": "139--150",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Minoux. 1999. A generalization of the all minors ma- trix tree theorem to semirings. Discrete Mathematics, 199:139-150.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Maximum entropy estimation for feature forests",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Miyao",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Tsujii",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of HLT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. Miyao and J. Tsujii. 2002. Maximum entropy estima- tion for feature forests. In Proc. of HLT.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Distributional clustering of English words",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "C N"
                        ],
                        "last": "Pereira",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Tishby",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Proc. of the 31st ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. C. N. Pereira, N. Tishby, and L. Lee. 1993. Distribu- tional clustering of English words. In Proc. of the 31st ACL.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Improved inference for unlexicalized parsing",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proc. of HLT-NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Petrov and D. Klein. 2007. Improved inference for unlexicalized parsing. In Proc. of HLT-NAACL.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "Learning accurate, compact, and interpretable tree annotation",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Petrov",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Barrett",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Thibaux",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of COLING-ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006. Learning accurate, compact, and interpretable tree an- notation. In Proc. of COLING-ACL.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Head-driven PCFGs with latent-head statistics",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Prescher",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of IWPT",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Prescher. 2005. Head-driven PCFGs with latent-head statistics. In Proc. of IWPT.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Dependency treelet translation: Syntactically informed phrasal SMT",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Quirk",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Menezes",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Cherry",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Quirk, A. Menezes, and C. Cherry. 2005. De- pendency treelet translation: Syntactically informed phrasal SMT. In Proc. of ACL.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "A maximum entropy model for parsing",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Ratnaparkhi",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "T"
                        ],
                        "last": "Ward",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Proc. of IC-SLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Ratnaparkhi, S. Roukos, and R. T. Ward. 1994. A maximum entropy model for parsing. In Proc. of IC- SLP.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Lexicalized stochastic modeling of constraint-based grammars using log-linear measures and EM training",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Riezler",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Prescher",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kuhn",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Riezler, D. Prescher, J. Kuhn, and M. Johnson. 2000. Lexicalized stochastic modeling of constraint-based grammars using log-linear measures and EM training. In Proc. of ACL.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Contrastive estimation: Training log-linear models on unlabeled data",
                "authors": [
                    {
                        "first": "N",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Eisner",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. A. Smith and J. Eisner. 2005. Contrastive estimation: Training log-linear models on unlabeled data. In Proc. of ACL.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "Max-margin parsing",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Taskar",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Klein",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Collins",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Koller",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Taskar, D. Klein, M. Collins, D. Koller, and C. Man- ning. 2004. Max-margin parsing. In Proc. of EMNLP.",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "The information bottleneck method",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Tishby",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "C N"
                        ],
                        "last": "Pereira",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Bialek",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Proc. of the",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. Tishby, F. C. N. Pereira, and W. Bialek. 1999. The information bottleneck method. In Proc. of the 37th",
                "links": null
            },
            "BIBREF48": {
                "ref_id": "b48",
                "title": "Graph Theory",
                "authors": [
                    {
                        "first": "W",
                        "middle": [
                            "T"
                        ],
                        "last": "Tutte",
                        "suffix": ""
                    }
                ],
                "year": 1984,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W. T. Tutte. 1984. Graph Theory. Addison-Wesley.",
                "links": null
            },
            "BIBREF49": {
                "ref_id": "b49",
                "title": "The Alpino dependency treebank",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Van Der Beek",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Bouma",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Malouf",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Van Noord",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "CLIN",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L. van der Beek, G. Bouma, R. Malouf, and G. van No- ord. 2002. The Alpino dependency treebank. In CLIN.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF1": {
                "num": null,
                "type_str": "table",
                "text": "Unlabeled dependency parsing accuracy (on test data) for two training methods(MIRA, as in  McDonald et al. (2005b), and conditional estimation) and with maximum a posteriori (map) and minimum Bayes-risk (mBr) decoding. Boldface scores are best in their column on a permutation test at the .05 level.",
                "content": "<table/>",
                "html": null
            },
            "TABREF3": {
                "num": null,
                "type_str": "table",
                "text": "",
                "content": "<table><tr><td>: Augmenting edge features with clusters re-</td></tr><tr><td>sults in similar performance to conditional training</td></tr><tr><td>with no clusters (top two lines). Scores are unla-</td></tr><tr><td>beled dependency accuracy on test data.</td></tr></table>",
                "html": null
            }
        }
    }
}