File size: 87,403 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:08:45.685277Z"
    },
    "title": "Training Dynamic based data filtering may not work for NLP datasets",
    "authors": [
        {
            "first": "Arka",
            "middle": [],
            "last": "Talukdar",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Monika",
            "middle": [],
            "last": "Dagar",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Prachi",
            "middle": [],
            "last": "Gupta",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Varun",
            "middle": [],
            "last": "Menon",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The recent increase in dataset size has brought about significant advances in natural language understanding. These large datasets are usually collected through automation (search engines or web crawlers) or crowdsourcing which inherently introduces incorrectly labeled data. Training on these datasets leads to memorization and poor generalization. Thus, it is pertinent to develop techniques that help in the identification and isolation of mislabelled data. In this paper, we study the applicability of the Area Under the Margin (AUM) metric to identify and remove/rectify mislabelled examples in NLP datasets. We find that mislabelled samples can be filtered using the AUM metric in NLP datasets but it also removes a significant number of correctly labeled points and leads to the loss of a large amount of relevant language information. We show that models rely on the distributional information instead of relying on syntactic and semantic representations.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The recent increase in dataset size has brought about significant advances in natural language understanding. These large datasets are usually collected through automation (search engines or web crawlers) or crowdsourcing which inherently introduces incorrectly labeled data. Training on these datasets leads to memorization and poor generalization. Thus, it is pertinent to develop techniques that help in the identification and isolation of mislabelled data. In this paper, we study the applicability of the Area Under the Margin (AUM) metric to identify and remove/rectify mislabelled examples in NLP datasets. We find that mislabelled samples can be filtered using the AUM metric in NLP datasets but it also removes a significant number of correctly labeled points and leads to the loss of a large amount of relevant language information. We show that models rely on the distributional information instead of relying on syntactic and semantic representations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Modern deep learning networks are becoming deeper and powerful, and have led to significant advances in Natural Language Processing (NLP) (Devlin et al., 2019) , Computer Vision (He et al., 2015) , and Speech Processing (Graves et al., 2013) . However, these networks rely on large labeled datasets to be effective.",
                "cite_spans": [
                    {
                        "start": 138,
                        "end": 159,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 178,
                        "end": 195,
                        "text": "(He et al., 2015)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 220,
                        "end": 241,
                        "text": "(Graves et al., 2013)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The creation of large labeled datasets has fueled the advances in NLP (Rajpurkar et al., 2016; Bowman et al., 2015) . Abundant labeled data increases the likelihood of learning diverse phenomena, which in turn leads to models that generalize well (Linzen, 2020) .",
                "cite_spans": [
                    {
                        "start": 70,
                        "end": 94,
                        "text": "(Rajpurkar et al., 2016;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 95,
                        "end": 115,
                        "text": "Bowman et al., 2015)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 247,
                        "end": 261,
                        "text": "(Linzen, 2020)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Curating expert annotated datasets is very timeconsuming and costly (Malik and Bhardwaj, 2011) * Equal contribution therefore large language datasets are usually collected through crowd-sourcing, by hiring human annotators (Wang et al., 2019) or by crawling the web. Such methods inherently introduce label noise in the resulting data. Mislabelled training data is particularly problematic for deep neural networks with billions of parameters because they can overfit on the mislabelled data and achieve zero training error even on randomly assigned labels . Training models with noisy labels can also lead to misclassification on easy examples during test-time (Beigman and Beigman Klebanov, 2009) .",
                "cite_spans": [
                    {
                        "start": 223,
                        "end": 242,
                        "text": "(Wang et al., 2019)",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 662,
                        "end": 698,
                        "text": "(Beigman and Beigman Klebanov, 2009)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "It is prohibitively costly to manually remove mislabeled samples from large datasets. Hence, the need arises to create an automated pipeline to analyze and clean datasets. Area Under the Margin (AUM) metric was designed to identify and eliminate noisy data. It can be used as a plug-and-play method within the training pipeline of any classification network with minimal overhead (Pleiss et al., 2020) . AUM shows promising results in identifying mislabelled samples in image classification datasets.",
                "cite_spans": [
                    {
                        "start": 380,
                        "end": 401,
                        "text": "(Pleiss et al., 2020)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Thus, in this paper, we investigate the applicability of the AUM metric on text classification datasets. We make the following contributions: (i) We show that the AUM metric has lower efficacy for filtering mislabelled data in NLP datasets than image datasets. (ii) We hypothesize that AUM does not work as expected in NLP datasets as it did in image datasets because of the intrinsic nature of the data samples. They have high intra-class and low inter-class feature similarity (Ho et al., 2021) , which is usually not the case in NLP datasets. We show samples from NLP datasets to corroborate our hypothesis.",
                "cite_spans": [
                    {
                        "start": 479,
                        "end": 496,
                        "text": "(Ho et al., 2021)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Detecting mislabelled Instances. Pleiss et al. (2020) and Swayamdipta et al. (2020) , both use model behavior on each sample over the training process, also known as training dynamics, to identify mislabelled instances in classification datasets but using different metrics. For each sample, Pleiss et al. (2020) finds the difference in logit value of the assigned class (gold label) and the highest other logit value among the non-assigned classes averaged over training epochs called the area under the margin (AUM) metric. They also introduce a fake class with samples having only mislabelled instances by definition to find a threshold AUM value. Samples with low AUM scores are likely to be mislabelled and the threshold AUM value is used to filter out such mislabelled instances. Swayamdipta et al. (2020) uses mean and standard deviation of the gold label probabilities over the training epochs, called confidence and variability scores, respectively, for each sample. They classify samples with low confidence and low variability as either mislabelled or \"hard-to-learn\" for the model. Bhardwaj et al. (2010) uses statistical methods to find annotators whose annotations differ considerably from the remaining annotators and use manual inspection to decide the verdict for samples annotated by these annotators. M\u00fcller and Markert (2019) classifies training samples with the lowest gold label probabilities on a robust classifier as potentially mislabelled followed by their manual review for final decision. Zhang and Sugiyama (2021) detects samples with erroneous labels using an instance-dependent noise model along with instance-based embedding to capture instance-specific label corruption.",
                "cite_spans": [
                    {
                        "start": 33,
                        "end": 53,
                        "text": "Pleiss et al. (2020)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 58,
                        "end": 83,
                        "text": "Swayamdipta et al. (2020)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 292,
                        "end": 312,
                        "text": "Pleiss et al. (2020)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 786,
                        "end": 811,
                        "text": "Swayamdipta et al. (2020)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1094,
                        "end": 1116,
                        "text": "Bhardwaj et al. (2010)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1320,
                        "end": 1345,
                        "text": "M\u00fcller and Markert (2019)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 1517,
                        "end": 1542,
                        "text": "Zhang and Sugiyama (2021)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Learning in the Presence of Noisy Labels. Several efforts have been made to account for noise in the data and prevent the model from memorizing wrong examples without actually identifying and removing such examples from the training set. Li et al. (2020) replaces the last layer of models trained on noisy data with a linear layer trained on a small set of clean data, Jindal et al. (2019) adds a non-linear noise-modeling layer on top of the target text-classification model. Kang and Hashimoto (2020) Other types of Noise in text data. Depending on the type of supervisory signal and data acquisition method, language datasets can have noise in the form other than labeling errors like spelling errors, grammatical errors (Subramaniam et al., 2009; Malik and Bhardwaj, 2011) . Caswell et al. (2021) provides large-scale systematic quality analysis of various web-crawled multilingual datasets and found large amounts of samples with inconsistencies in language codes and mistranslations. Robust-to-noise word embeddings (Malykh, 2019) , noisy data classifiers trained on clean data, and synthetically generated noisy data (Xu and Koehn, 2017) are some efforts to deal with non-label noise in language data. In this work, however, we only study label noise.",
                "cite_spans": [
                    {
                        "start": 238,
                        "end": 254,
                        "text": "Li et al. (2020)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 477,
                        "end": 502,
                        "text": "Kang and Hashimoto (2020)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 724,
                        "end": 750,
                        "text": "(Subramaniam et al., 2009;",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 751,
                        "end": 776,
                        "text": "Malik and Bhardwaj, 2011)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 779,
                        "end": 800,
                        "text": "Caswell et al. (2021)",
                        "ref_id": null
                    },
                    {
                        "start": 1022,
                        "end": 1036,
                        "text": "(Malykh, 2019)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 1124,
                        "end": 1144,
                        "text": "(Xu and Koehn, 2017)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Relation to annotator disagreement. The work on dealing with noisy labels in classification datasets can also be related to the work on studying annotator disagreements. Previous work (Beigman and Beigman Klebanov, 2009; Beigman Klebanov et al., 2008; Pavlick and Kwiatkowski, 2019) shows that there can be two reasons for disagreements in annotator labels in crowdsourced datasets: difference of opinion and attention slip. Former generally occurs when different groups of people agree with a different assigned label for a sample based on their understanding of the text. Latter generally occurs due to attention slip or genuine mistake during annotation. As a direction of future work, comparing samples identified as mislabelled using the AUM method with samples that get relatively low agreement among crowd worker annotators can provide meaningful insights.",
                "cite_spans": [
                    {
                        "start": 193,
                        "end": 220,
                        "text": "and Beigman Klebanov, 2009;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 221,
                        "end": 251,
                        "text": "Beigman Klebanov et al., 2008;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 252,
                        "end": 282,
                        "text": "Pavlick and Kwiatkowski, 2019)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "3 Implementation Details",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "We use the AUM metric and methodology from Pleiss et al. (2020) to identify training samples with AUM values below a threshold value as mislabelled.",
                "cite_spans": [
                    {
                        "start": 43,
                        "end": 63,
                        "text": "Pleiss et al. (2020)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Filtering data with AUM",
                "sec_num": "3.1"
            },
            {
                "text": "To calculate this threshold, original training data is distributed to make a fake class with equal samples from all the original classes. The classification model is trained on this new dataset configuration to generate the AUM values for all the data points. Samples in fake class are by definition mislabelled hence AUM values of fake class samples can be used as a threshold for the samples in the original classes. This method is repeated to find the mislabelled samples among the samples which were in fake class initially. In the second run, a fake class is created such that it does not have any samples which were in the fake class in the first run. As discussed in Section 5, we observed that the heuristic-based thresholding technique suggested in Pleiss et al. (2020) , wherein they used the AUM value of the 99th percentile threshold sample as the threshold to filter the data, does not show major improvement in NLP datasets. We thus consider the AUM threshold value as a hyperparameter and fine-tune it. We also propose a method to rectify the labels and reuse the data for training (discussed in Section 4).",
                "cite_spans": [
                    {
                        "start": 758,
                        "end": 778,
                        "text": "Pleiss et al. (2020)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Filtering data with AUM",
                "sec_num": "3.1"
            },
            {
                "text": "We finetuned a distillBERT-base model on SST-2 (Socher et al., 2013) and CoLA (Warstadt et al., 2019) , pretrained using a masked language modeling (MLM) objective (Sanh et al., 2019 ) with a default AdamW optimizer (Loshchilov and Hutter, 2017) . We selected distillBERT for our experimentation because it is small and fast while preserving over 95% of BERT's performance measured on GLUE benchmark (Sanh et al., 2019) . Zhang and Sugiyama (2021) show the mislabelled samples present in CoLA and SST-2 datasets, and we use these results to validate the efficacy of AUM to identify mislabelled data.",
                "cite_spans": [
                    {
                        "start": 47,
                        "end": 68,
                        "text": "(Socher et al., 2013)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 78,
                        "end": 101,
                        "text": "(Warstadt et al., 2019)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 164,
                        "end": 182,
                        "text": "(Sanh et al., 2019",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 216,
                        "end": 245,
                        "text": "(Loshchilov and Hutter, 2017)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 400,
                        "end": 419,
                        "text": "(Sanh et al., 2019)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 422,
                        "end": 447,
                        "text": "Zhang and Sugiyama (2021)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental Setup",
                "sec_num": "3.2"
            },
            {
                "text": "Following the recommendations from Pleiss et al. (2020), we test the efficacy of AUM on syntheticnoisy and real-world NLP datasets to identify mislabelled samples. To create synthetic-noisy datasets, we injected noise in the real-world datasets by uniformly sampling data points and flipping their labels. We run two experiments on both types of datasets. First, we discard the samples classified by AUM as mislabelled; we will refer to this process as Sieving. Second, instead of discarding samples, we rectify the label and reuse them for training; we will refer to this process as Flipping. Since we train on binary-classification tasks, we flip the label of the samples which are classified as mislabelled.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "As noted in Pleiss et al. (2020) , the AUM threshold for filtration is dataset dependent. The authors provide a simple heuristic for classifying samples as mislabelled; samples with AUM lower than the Table 4 : Cluster of data points in CoLA with high inter-class similarity; Dominant class -class with samples that have high structural and vocab similarity (This similarity is not quantified numerically but was observed during manual inspection of the data); Class 0 is the major class in this example but the high structural and vocab similarity within class 1 reinforces the modeling process to present it as the dominant class 99th percentile threshold sample's AUM will be classified as mislabelled. Further, they also note that the filtration performance is robust to this hyperparameter (percentile threshold). In our experiments with CoLA and SST-2, we observed that this does not translate well to NLP datasets. Indiscriminately removing samples with AUM less than the 99th percentile threshold consistently had poor performance compared to the unfiltered dataset. As the percentile threshold was reduced, the validation accuracy increases as seen in Figure 2 for CoLA and Table 1 for SST-2. It is because that samples with AUM lower than a high percentile threshold could be a hard-to-learn sample which helps generalization (Swayamdipta et al., 2020) . To support this hypothesis, we classified data points using the method (refer to Section 2 for details) suggested by Swayamdipta et al. (2020) . We observed significant overlap in samples identified as mislabelled using AUM and samples identified as hard-to-learn using Swayamdipta et al. (2020) which can be seen in Figure 1 . As we reduce the percentile threshold, we proportionately filter a larger fraction of truly mislabelled data than hard-to-learn samples.",
                "cite_spans": [
                    {
                        "start": 12,
                        "end": 32,
                        "text": "Pleiss et al. (2020)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 1336,
                        "end": 1362,
                        "text": "(Swayamdipta et al., 2020)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1482,
                        "end": 1507,
                        "text": "Swayamdipta et al. (2020)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1635,
                        "end": 1660,
                        "text": "Swayamdipta et al. (2020)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 201,
                        "end": 208,
                        "text": "Table 4",
                        "ref_id": null
                    },
                    {
                        "start": 1161,
                        "end": 1169,
                        "text": "Figure 2",
                        "ref_id": null
                    },
                    {
                        "start": 1183,
                        "end": 1190,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 1682,
                        "end": 1690,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "Overfitting is another issue that is facilitated by indiscriminately removing samples with low AUM as the proportion of easy-to-learn samples is increased in the filtered dataset (Swayamdipta et al., 2020) . Table 1 shows the results for Sieving on the realworld dataset (SST-2). This experiment also shows how increasing the percentile threshold decreases the increase in performance, hinting at the fact that large amounts of relevant language information might be getting filtered. Table 5 shows the result for sieving and flipping on synthetic mislabelled samples (SST-2). We expected to observe a drastic dip in performance with noise injection and a relatively large gain once filtered, but we only observed a marginal dip after injecting noise and a marginal increase after filtering in performance. For the Flipping experiment, we only saw~1% increase after flipping 68 samples (<0.1 percentile threshold) with the lowest AUM. We considered such a low threshold in an attempt to flip only the truly mislabelled data. Investigating further, we saw that about 60-65% of the noise samples were filtered from our experiments. Figure 3 shows the distribution of AUM values of the synthetic noise and clean samples. The graphs clearly show that AUM does help in identifying the mislabelled samples to some extent (Table 2 and Table 3 show the mislabelled samples we detected in SST-2 and CoLA with low AUM values) but a lot of correctly labeled samples also get filtered depending on how noisy the dataset is. Although there is a high correlation between noise and correctly labeled samples being filtered, the amount of noise alone does not explain this behavior. This leads us to question the efficacy of the AUM metric in NLP datasets. On manual inspection of the CoLA dataset, we found multiple clusters with high feature similarities. Table 4 shows an example of such clusters. We observed that the model is relying on superficial features like word co-occurrence statistics (Sinha et al., 2021) , within these clusters and builds a bias for the dominant class label in a particular cluster. Thus the non-dominant class samples (which usually are correctly labeled) get low AUM values instead of the synthetic noise samples. This does not go hand in hand with our previous observations where Figure 3 shows that synthetic noise samples have low AUM, but it is important to note that synthetic noise samples also happen to be a part of the non-dominant class in most cases (noise in an acceptable dataset is non-dominant). Again, we emphasize correlation does not imply causation.",
                "cite_spans": [
                    {
                        "start": 179,
                        "end": 205,
                        "text": "(Swayamdipta et al., 2020)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1982,
                        "end": 2002,
                        "text": "(Sinha et al., 2021)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 208,
                        "end": 215,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 485,
                        "end": 492,
                        "text": "Table 5",
                        "ref_id": "TABREF7"
                    },
                    {
                        "start": 1130,
                        "end": 1138,
                        "text": "Figure 3",
                        "ref_id": null
                    },
                    {
                        "start": 1315,
                        "end": 1335,
                        "text": "(Table 2 and Table 3",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 1842,
                        "end": 1849,
                        "text": "Table 4",
                        "ref_id": null
                    },
                    {
                        "start": 2299,
                        "end": 2307,
                        "text": "Figure 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "4"
            },
            {
                "text": "In Table 4 , the synthetically introduced noise (marked in red) and members of class 0 (marked in yellow) are both parts of the non-dominant class which gives these samples a negative AUM. While the red labeled samples are legitimate candidates for removal, the removal of yellow samples causes loss of correctly labeled data points. We observed the same pattern through all clusters.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 10,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results & Analysis",
                "sec_num": "5"
            },
            {
                "text": "We report on the applicability of AUM on NLP datasets. AUM does help in identifying mislabelled samples available to some extent, but sieving these samples indiscriminately removes large amounts of relevant language information. We hypothesize that the reason AUM works well in image datasets is because of the intrinsic nature of the data samples, i.e., data samples in image datasets have high intra-class and less inter-class feature similarity whereas in NLP datasets, data samples have high inter-class feature similarity as seen in Table 4 and this coupled with the model dependency on superficial features results in low AUM values for the non-dominant class samples instead of the mislabelled class samples consequently reducing the efficacy of the AUM metric in NLP datasets.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 538,
                        "end": 545,
                        "text": "Table 4",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results & Analysis",
                "sec_num": "5"
            }
        ],
        "back_matter": [
            {
                "text": "We would like to thank Prof. Samuel R. Bowman for his guidance and support. We greatly benefited from the discussions we had with him.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgement",
                "sec_num": "7"
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Learning with annotation noise",
                "authors": [
                    {
                        "first": "Eyal",
                        "middle": [],
                        "last": "Beigman",
                        "suffix": ""
                    },
                    {
                        "first": "Beata",
                        "middle": [],
                        "last": "Beigman Klebanov",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP",
                "volume": "",
                "issue": "",
                "pages": "280--287",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eyal Beigman and Beata Beigman Klebanov. 2009. Learning with annotation noise. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pages 280-287, Suntec, Singapore. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Analyzing disagreements",
                "authors": [
                    {
                        "first": "Eyal",
                        "middle": [],
                        "last": "Beata Beigman Klebanov",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Beigman",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Diermeier",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Coling 2008: Proceedings of the workshop on Human Judgements in Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2--7",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Beata Beigman Klebanov, Eyal Beigman, and Daniel Diermeier. 2008. Analyzing disagreements. In Col- ing 2008: Proceedings of the workshop on Human Judgements in Computational Linguistics, pages 2- 7, Manchester, UK. Coling 2008 Organizing Com- mittee.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Anveshan: A framework for analysis of multiple annotators' labeling behavior",
                "authors": [
                    {
                        "first": "Vikas",
                        "middle": [],
                        "last": "Bhardwaj",
                        "suffix": ""
                    },
                    {
                        "first": "Rebecca",
                        "middle": [],
                        "last": "Passonneau",
                        "suffix": ""
                    },
                    {
                        "first": "Ansaf",
                        "middle": [],
                        "last": "Salleb-Aouissi",
                        "suffix": ""
                    },
                    {
                        "first": "Nancy",
                        "middle": [],
                        "last": "Ide",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the Fourth Linguistic Annotation Workshop",
                "volume": "",
                "issue": "",
                "pages": "47--55",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vikas Bhardwaj, Rebecca Passonneau, Ansaf Salleb- Aouissi, and Nancy Ide. 2010. Anveshan: A frame- work for analysis of multiple annotators' labeling be- havior. In Proceedings of the Fourth Linguistic An- notation Workshop, pages 47-55, Uppsala, Sweden. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "A large annotated corpus for learning natural language inference",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Samuel",
                        "suffix": ""
                    },
                    {
                        "first": "Gabor",
                        "middle": [],
                        "last": "Bowman",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Angeli",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Potts",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "632--642",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D15-1075"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. 2015. A large anno- tated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empiri- cal Methods in Natural Language Processing, pages 632-642, Lisbon, Portugal. Association for Compu- tational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Speech recognition with deep recurrent neural networks",
                "authors": [
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Graves",
                        "suffix": ""
                    },
                    {
                        "first": "Mohamed",
                        "middle": [],
                        "last": "Abdel-Rahman",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [],
                        "last": "Hinton",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "2013 IEEE International Conference on Acoustics, Speech and Signal Processing",
                "volume": "",
                "issue": "",
                "pages": "6645--6649",
                "other_ids": {
                    "DOI": [
                        "10.1109/icassp.2013.6638947"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. 2013. Speech recognition with deep recur- rent neural networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Pro- cessing, pages 6645-6649. IEEE.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Deep residual learning for image recognition",
                "authors": [
                    {
                        "first": "Kaiming",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Xiangyu",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Shaoqing",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep residual learning for image recog- nition.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Learning embeddings for image clustering: An empirical study of triplet loss approaches",
                "authors": [
                    {
                        "first": "Kalun",
                        "middle": [],
                        "last": "Ho",
                        "suffix": ""
                    },
                    {
                        "first": "Janis",
                        "middle": [],
                        "last": "Keuper",
                        "suffix": ""
                    },
                    {
                        "first": "Franz-Josef",
                        "middle": [],
                        "last": "Pfreundt",
                        "suffix": ""
                    },
                    {
                        "first": "Margret",
                        "middle": [],
                        "last": "Keuper",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "2020 25th International Conference on Pattern Recognition (ICPR)",
                "volume": "",
                "issue": "",
                "pages": "87--94",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kalun Ho, Janis Keuper, Franz-Josef Pfreundt, and Margret Keuper. 2021. Learning embeddings for im- age clustering: An empirical study of triplet loss ap- proaches. In 2020 25th International Conference on Pattern Recognition (ICPR), pages 87-94. IEEE.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "An effective label noise model for DNN text classification",
                "authors": [
                    {
                        "first": "Ishan",
                        "middle": [],
                        "last": "Jindal",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Pressel",
                        "suffix": ""
                    },
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Lester",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Nokleby",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "3246--3256",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1328"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ishan Jindal, Daniel Pressel, Brian Lester, and Matthew Nokleby. 2019. An effective label noise model for DNN text classification. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3246-3256, Minneapolis, Minnesota. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Improved natural language generation via loss truncation",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Kang",
                        "suffix": ""
                    },
                    {
                        "first": "Tatsunori",
                        "middle": [
                            "B"
                        ],
                        "last": "Hashimoto",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "718--731",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.66"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel Kang and Tatsunori B. Hashimoto. 2020. Im- proved natural language generation via loss trunca- tion. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 718-731, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Noisy labels can induce good representations",
                "authors": [
                    {
                        "first": "Jingling",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Mozhi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Keyulu",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [
                            "P"
                        ],
                        "last": "Dickerson",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2012.12896"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jingling Li, Mozhi Zhang, Keyulu Xu, John P. Dickerson, and Jimmy Ba. 2020. Noisy labels can induce good representations. ArXiv preprint arXiv:2012.12896.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "How can we accelerate progress towards human-like linguistic generalization?",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Tal Linzen",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "5210--5217",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.465"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tal Linzen. 2020. How can we accelerate progress to- wards human-like linguistic generalization? In Pro- ceedings of the 58th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 5210- 5217, Online. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Sgdr: Stochastic gradient descent with warm restarts",
                "authors": [
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Loshchilov",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Hutter",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ilya Loshchilov and Frank Hutter. 2017. Sgdr: Stochas- tic gradient descent with warm restarts.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Automatic training data cleaning for text classification",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Hassan",
                        "suffix": ""
                    },
                    {
                        "first": "Vikas",
                        "middle": [
                            "S"
                        ],
                        "last": "Malik",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Bhardwaj",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "2011 IEEE 11th International Conference on Data Mining Workshops",
                "volume": "",
                "issue": "",
                "pages": "442--449",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICDMW.2011.36"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hassan H. Malik and Vikas S. Bhardwaj. 2011. Au- tomatic training data cleaning for text classifica- tion. In 2011 IEEE 11th International Conference on Data Mining Workshops, pages 442-449.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Robust to noise models in natural language processing tasks",
                "authors": [
                    {
                        "first": "Valentin",
                        "middle": [],
                        "last": "Malykh",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop",
                "volume": "",
                "issue": "",
                "pages": "10--16",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-2002"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Valentin Malykh. 2019. Robust to noise models in nat- ural language processing tasks. In Proceedings of the 57th Annual Meeting of the Association for Com- putational Linguistics: Student Research Workshop, pages 10-16, Florence, Italy. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Identifying mislabeled instances in classification datasets",
                "authors": [
                    {
                        "first": "Nicolas",
                        "middle": [
                            "M"
                        ],
                        "last": "M\u00fcller",
                        "suffix": ""
                    },
                    {
                        "first": "Karla",
                        "middle": [],
                        "last": "Markert",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "2019 International Joint Conference on Neural Networks (IJCNN)",
                "volume": "",
                "issue": "",
                "pages": "1--8",
                "other_ids": {
                    "DOI": [
                        "10.1109/IJCNN.2019.8851920"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nicolas M. M\u00fcller and Karla Markert. 2019. Identi- fying mislabeled instances in classification datasets. In 2019 International Joint Conference on Neural Networks (IJCNN), pages 1-8.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Inherent disagreements in human textual inferences",
                "authors": [
                    {
                        "first": "Ellie",
                        "middle": [],
                        "last": "Pavlick",
                        "suffix": ""
                    },
                    {
                        "first": "Tom",
                        "middle": [],
                        "last": "Kwiatkowski",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "7",
                "issue": "",
                "pages": "677--694",
                "other_ids": {
                    "DOI": [
                        "10.1162/tacl_a_00293"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent disagreements in human textual inferences. Transac- tions of the Association for Computational Linguis- tics, 7:677-694.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Identifying mislabeled data using the area under the margin ranking",
                "authors": [
                    {
                        "first": "Geoff",
                        "middle": [],
                        "last": "Pleiss",
                        "suffix": ""
                    },
                    {
                        "first": "Tianyi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Ethan",
                        "middle": [
                            "R"
                        ],
                        "last": "Elenberg",
                        "suffix": ""
                    },
                    {
                        "first": "Kilian",
                        "middle": [
                            "Q"
                        ],
                        "last": "Weinberger",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Geoff Pleiss, Tianyi Zhang, Ethan R. Elenberg, and Kilian Q. Weinberger. 2020. Identifying mislabeled data using the area under the margin ranking.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "SQuAD: 100,000+ questions for machine comprehension of text",
                "authors": [
                    {
                        "first": "Pranav",
                        "middle": [],
                        "last": "Rajpurkar",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Konstantin",
                        "middle": [],
                        "last": "Lopyrev",
                        "suffix": ""
                    },
                    {
                        "first": "Percy",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2383--2392",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D16-1264"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions for machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natu- ral Language Processing, pages 2383-2392, Austin, Texas. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter",
                "authors": [
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.01108"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Masked language modeling and the distributional hypothesis: Order word matters pre-training for little",
                "authors": [
                    {
                        "first": "Koustuv",
                        "middle": [],
                        "last": "Sinha",
                        "suffix": ""
                    },
                    {
                        "first": "Robin",
                        "middle": [],
                        "last": "Jia",
                        "suffix": ""
                    },
                    {
                        "first": "Dieuwke",
                        "middle": [],
                        "last": "Hupkes",
                        "suffix": ""
                    },
                    {
                        "first": "Joelle",
                        "middle": [],
                        "last": "Pineau",
                        "suffix": ""
                    },
                    {
                        "first": "Adina",
                        "middle": [],
                        "last": "Williams",
                        "suffix": ""
                    },
                    {
                        "first": "Douwe",
                        "middle": [],
                        "last": "Kiela",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2104.06644"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle Pineau, Adina Williams, and Douwe Kiela. 2021. Masked language modeling and the distributional hypothesis: Order word matters pre-training for lit- tle. arXiv preprint arXiv:2104.06644.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Recursive deep models for semantic compositionality over a sentiment treebank",
                "authors": [
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Perelygin",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Jean",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Chuang",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Christopher",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Andrew",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Potts",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the conference on empirical methods in natural language processing",
                "volume": "1631",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Richard Socher, Alex Perelygin, Jean Y Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and Christopher Potts. 2013. Recursive deep models for semantic compositionality over a sentiment tree- bank. In Proceedings of the conference on empirical methods in natural language processing (EMNLP), volume 1631, page 1642. Citeseer.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "A survey of types of text noise and techniques to handle noisy text",
                "authors": [
                    {
                        "first": "L",
                        "middle": [
                            "Venkata"
                        ],
                        "last": "Subramaniam",
                        "suffix": ""
                    },
                    {
                        "first": "Shourya",
                        "middle": [],
                        "last": "Roy",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Tanveer",
                        "suffix": ""
                    },
                    {
                        "first": "Sumit",
                        "middle": [],
                        "last": "Faruquie",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Negi",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Proceedings of The Third Workshop on Analytics for Noisy Unstructured Text Data, AND '09",
                "volume": "",
                "issue": "",
                "pages": "115--122",
                "other_ids": {
                    "DOI": [
                        "10.1145/1568296.1568315"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "L. Venkata Subramaniam, Shourya Roy, Tanveer A. Faruquie, and Sumit Negi. 2009. A survey of types of text noise and techniques to handle noisy text. In Proceedings of The Third Workshop on Analyt- ics for Noisy Unstructured Text Data, AND '09, page 115-122, New York, NY, USA. Association for Computing Machinery.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Dataset cartography: Mapping and diagnosing datasets with training dynamics",
                "authors": [
                    {
                        "first": "Swabha",
                        "middle": [],
                        "last": "Swayamdipta",
                        "suffix": ""
                    },
                    {
                        "first": "Roy",
                        "middle": [],
                        "last": "Schwartz",
                        "suffix": ""
                    },
                    {
                        "first": "Nicholas",
                        "middle": [],
                        "last": "Lourie",
                        "suffix": ""
                    },
                    {
                        "first": "Yizhong",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Hannaneh",
                        "middle": [],
                        "last": "Hajishirzi",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "9275--9293",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.746"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie, Yizhong Wang, Hannaneh Hajishirzi, Noah A. Smith, and Yejin Choi. 2020. Dataset cartography: Mapping and diagnosing datasets with training dy- namics. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process- ing (EMNLP), pages 9275-9293, Online. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Glue: A multi-task benchmark and analysis platform for natural language understanding",
                "authors": [
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Amanpreet",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Julian",
                        "middle": [],
                        "last": "Michael",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Hill",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [
                            "R"
                        ],
                        "last": "Bowman",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019. Glue: A multi-task benchmark and analysis platform for natural language understanding.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Neural network acceptability judgments",
                "authors": [
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Warstadt",
                        "suffix": ""
                    },
                    {
                        "first": "Amanpreet",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Samuel",
                        "middle": [
                            "R"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "7",
                "issue": "",
                "pages": "625--641",
                "other_ids": {
                    "DOI": [
                        "10.1162/tacl_a_00290"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alex Warstadt, Amanpreet Singh, and Samuel R. Bow- man. 2019. Neural network acceptability judgments. Transactions of the Association for Computational Linguistics, 7:625-641.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Zipporah: a fast and scalable data cleaning system for noisy webcrawled parallel corpora",
                "authors": [
                    {
                        "first": "Hainan",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Philipp",
                        "middle": [],
                        "last": "Koehn",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2945--2950",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D17-1319"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hainan Xu and Philipp Koehn. 2017. Zipporah: a fast and scalable data cleaning system for noisy web- crawled parallel corpora. In Proceedings of the 2017 Conference on Empirical Methods in Natural Lan- guage Processing, pages 2945-2950, Copenhagen, Denmark. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Understanding deep learning requires rethinking generalization",
                "authors": [
                    {
                        "first": "Chiyuan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Samy",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    },
                    {
                        "first": "Moritz",
                        "middle": [],
                        "last": "Hardt",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chiyuan Zhang, Samy Bengio, Moritz Hardt, Ben- jamin Recht, and Oriol Vinyals. 2016. Understand- ing deep learning requires rethinking generalization. CoRR, abs/1611.03530.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Approximating instance-dependent noise via instanceconfidence embedding",
                "authors": [
                    {
                        "first": "Yivan",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Masashi",
                        "middle": [],
                        "last": "Sugiyama",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yivan Zhang and Masashi Sugiyama. 2021. Ap- proximating instance-dependent noise via instance- confidence embedding.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Visualizing AUM values of SST-2 samples along with their Data Map plotted as perSwayamdipta et al. (2020) shows considerable overlap in samples with low AUM values and samples identified as hard-tolearn/mislabelled as per Data map (sampled with low confidence and low variability scores).",
                "type_str": "figure",
                "uris": null,
                "num": null
            },
            "TABREF0": {
                "type_str": "table",
                "content": "<table><tr><td>Percentile</td></tr></table>",
                "text": "improves faithfulness in text generation by adaptively removing high log loss examples during the training process. Acc. on Unfiltered Data Acc. on Filtered Data 1 87.91 \u00b1 0.25 88.02 \u00b1 0.79 10 87.79 \u00b1 0.50 87.79 \u00b1 0.61 50 87.87 \u00b1 0.36 87.72 \u00b1 0.48 90 87.79 \u00b1 0.49 87.72 \u00b1 0.48",
                "html": null,
                "num": null
            },
            "TABREF1": {
                "type_str": "table",
                "content": "<table/>",
                "text": "Accuracy on SST-2 dataset at different AUM threshold percentiles; Sieving",
                "html": null,
                "num": null
            },
            "TABREF3": {
                "type_str": "table",
                "content": "<table><tr><td>: Filtered examples from CoLA dataset (1 =</td></tr><tr><td>grammatically acceptable; 0 = grammatically unaccept-</td></tr><tr><td>able)</td></tr><tr><td>Figure 2: CoLA: Percentile threshold vs Validation ac-</td></tr><tr><td>curacy</td></tr></table>",
                "text": "",
                "html": null,
                "num": null
            },
            "TABREF4": {
                "type_str": "table",
                "content": "<table><tr><td>Sample Id</td><td>Text</td><td>Label</td></tr><tr><td>41767</td><td>a damn fine and a truly distinctive and a deeply pertinent film</td><td>Negative</td></tr><tr><td>42407</td><td>guts and</td><td>Negative</td></tr><tr><td>62237</td><td colspan=\"2\">as original and Positive</td></tr><tr><td>19159</td><td>he script is n't up to the level of the direction</td><td>Positive</td></tr><tr><td>62178</td><td>though it runs 163 minutes , safe conduct is anything but languorous .</td><td>Positive</td></tr></table>",
                "text": "insightful as last week 's episode of behind the music . Negative 6886 loves the members of the upper class almost as much as they love themselves Negative 19153 of how horrible we are to ourselves and each other",
                "html": null,
                "num": null
            },
            "TABREF5": {
                "type_str": "table",
                "content": "<table><tr><td>Sample Id</td><td>Text</td><td>Label</td><td>AUM</td></tr><tr><td>1432</td><td>I disliked the boy's playing the piano loudly.</td><td>0</td><td>-0.501698</td></tr><tr><td>1433</td><td>The boy whose loud playing of the piano I disliked was a student.</td><td>1</td><td>0.163168</td></tr><tr><td>1434</td><td>The piano which I disliked the boy's playing loudly was badly out of tune.</td><td>0</td><td>-0.349795</td></tr><tr><td>1435</td><td>The boy's loud playing of the piano drove everyone crazy.</td><td>1</td><td>0.99208</td></tr><tr><td>1436</td><td>The boy's playing the piano loudly drove everyone crazy.</td><td>1</td><td>0.521766</td></tr><tr><td>1437</td><td>That piano, the boy's loud playing of which drove everyone crazy, was badly out of tune.</td><td>1</td><td>0.49058</td></tr><tr><td>1438</td><td>That piano, the boy's playing which loudly drove everyone crazy, was badly out of tune.</td><td>0</td><td>-0.333451</td></tr><tr><td>1439</td><td>That piano, which the boy's playing loudly drove everyone crazy, was badly out of tune.</td><td>0</td><td>-0.628104</td></tr><tr><td>1440</td><td>Did that he played the piano surprise you?</td><td>0</td><td>-0.290151</td></tr><tr><td>1441</td><td>Would for him to have played the piano have surprised you?</td><td>0</td><td>-0.430419</td></tr><tr><td>1442</td><td>Is whether he played the piano known?</td><td>0</td><td>-0.292625</td></tr><tr><td>1443</td><td>Did his having played the piano surprise you?</td><td>1</td><td>0.332026</td></tr></table>",
                "text": "Filtered examples from Stanford Sentiment Treebank (SST2)",
                "html": null,
                "num": null
            },
            "TABREF7": {
                "type_str": "table",
                "content": "<table><tr><td>Synthetic noise)</td></tr></table>",
                "text": "Accuracy on Synthetic mislabelled Samples (SST-2); Seed: 100; Threshold Percentile: 90 Figure 3: Histogram of AUM values of synthetic noise and unaltered data. (Blue \u2192 Unaltered data, Orange \u2192",
                "html": null,
                "num": null
            }
        }
    }
}