File size: 144,709 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:08:57.364884Z"
    },
    "title": "Discrete representations in neural models of spoken language",
    "authors": [
        {
            "first": "Bertrand",
            "middle": [],
            "last": "Higy",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "AI Tilburg University",
                "location": {}
            },
            "email": ""
        },
        {
            "first": "Lieke",
            "middle": [],
            "last": "Gelderloos",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tilburg University",
                "location": {}
            },
            "email": "l.j.gelderloos@tilburguniversity.edu"
        },
        {
            "first": "Afra",
            "middle": [],
            "last": "Alishahi",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tilburg University",
                "location": {}
            },
            "email": "a.alishahi@tilburguniversity.edu"
        },
        {
            "first": "Grzegorz",
            "middle": [],
            "last": "Chrupa\u0142a",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Tilburg University",
                "location": {}
            },
            "email": "grzegorz@chrupala.me"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The distributed and continuous representations used by neural networks are at odds with representations employed in linguistics, which are typically symbolic. Vector quantization has been proposed as a way to induce discrete neural representations that are closer in nature to their linguistic counterparts. However, it is not clear which metrics are the best-suited to analyze such discrete representations. We compare the merits of four commonly used metrics in the context of weakly supervised models of spoken language. We compare the results they show when applied to two different models, while systematically studying the effect of the placement and size of the discretization layer. We find that different evaluation regimes can give inconsistent results. While we can attribute them to the properties of the different metrics in most cases, one point of concern remains: the use of minimal pairs of phoneme triples as stimuli disadvantages larger discrete unit inventories, unlike metrics applied to complete utterances. Furthermore, while in general vector quantization induces representations that correlate with units posited in linguistics, the strength of this correlation is only moderate.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The distributed and continuous representations used by neural networks are at odds with representations employed in linguistics, which are typically symbolic. Vector quantization has been proposed as a way to induce discrete neural representations that are closer in nature to their linguistic counterparts. However, it is not clear which metrics are the best-suited to analyze such discrete representations. We compare the merits of four commonly used metrics in the context of weakly supervised models of spoken language. We compare the results they show when applied to two different models, while systematically studying the effect of the placement and size of the discretization layer. We find that different evaluation regimes can give inconsistent results. While we can attribute them to the properties of the different metrics in most cases, one point of concern remains: the use of minimal pairs of phoneme triples as stimuli disadvantages larger discrete unit inventories, unlike metrics applied to complete utterances. Furthermore, while in general vector quantization induces representations that correlate with units posited in linguistics, the strength of this correlation is only moderate.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The dominant machine learning paradigm for processing spoken language is based on neural network architectures, such as recurrent nets and transformers, inducing a hierarchy of hidden representations which are distributed and continuous. In contrast, human history has repeatedly seen the discovery and wide adoption of discrete, symbolic representations of speech in the form of writing. These systems commonly represent basic units of language such as morphemes, syllables or phonemes while discarding other information contained in the speech signal such as emotion or speaker identity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Symbolic representation of speech has proven tremendously useful for storage and transmission of information, and it also plays a crucial role in systems dealing with spoken language such as spoken dialog systems: these typically employ an automatic speech recognition (ASR) module to transcribe the speech signal into written form, which is then used as input to upstream language understanding modules. While some attempts have been made to train such systems end-to-end, pipelines are still very competitive (see Haghani et al., 2018; , which strengthens the point that a symbolic encoding of spoken language contains most of the information relevant for this task.",
                "cite_spans": [
                    {
                        "start": 516,
                        "end": 537,
                        "text": "Haghani et al., 2018;",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "It may thus be desirable to incorporate similar representations in neural architectures. Accordingly, multiple efforts have been made to design neural networks with discrete hidden representations and to apply them to spoken language data. This is evident in the recent editions of the ZeroSpeech challenge (Dunbar et al., 2019) on unit discovery, which have featured many such approaches. Specifically, Vector Quantization (VQ) has proven to be a simple and effective method to induce discrete neural representations (e.g., van den Oord et al., 2017; Harwath et al., 2020a; Chung et al., 2020; Liu et al., 2021) . VQ layers are added to neural architectures in order to map continuous activation vectors onto a finite set of discrete units, often referred to as codes, via a dictionary (or codebook) associating these codes with their vector embeddings; the number of entries in the codebook is the codebook size. Such symbolic codes have been claimed to correspond to phonemes and/or words. What is still lacking though is a detailed analysis of how much the reported equivalence is affected by details of the architectures such as the size and placement of the VQ layers, learning objectives and dataset, as well as by the evaluation metrics used to quantify it. The present study aims to fill this gap.",
                "cite_spans": [
                    {
                        "start": 307,
                        "end": 328,
                        "text": "(Dunbar et al., 2019)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 533,
                        "end": 551,
                        "text": "Oord et al., 2017;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 552,
                        "end": 574,
                        "text": "Harwath et al., 2020a;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 575,
                        "end": 594,
                        "text": "Chung et al., 2020;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 595,
                        "end": 612,
                        "text": "Liu et al., 2021)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We study two approaches to modeling spoken language: learning driven by language-internal structure, and learning driven by grounding in the extra-linguistic world. These two approaches are exemplified by two types of models with VQ layers: the self-supervised model for unit discovery of van Niekerk et al. (2020) , and a visually grounded model similar to Harwath et al. (2020a) . The datasets used to train each model, Zerospeech 2020 (Dunbar et al., 2020) and Flickr8K (Harwath and Glass, 2015; Rashtchian et al., 2010) are also typical of the task they are used for. Using these two models as our test cases, we systematically investigate the impact of the following factors: (i) the codebook size for the VQ layer, and (ii) the level of placement of the VQ layer. Furthermore, we apply and check the consistency across four different metrics for evaluating the correspondence of the representations with phonemes.",
                "cite_spans": [
                    {
                        "start": 293,
                        "end": 314,
                        "text": "Niekerk et al. (2020)",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 358,
                        "end": 380,
                        "text": "Harwath et al. (2020a)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 438,
                        "end": 459,
                        "text": "(Dunbar et al., 2020)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 473,
                        "end": 498,
                        "text": "(Harwath and Glass, 2015;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 499,
                        "end": 523,
                        "text": "Rashtchian et al., 2010)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The self-supervised model shows high variability, but with some of the evaluation metrics (especially ABX and RSA, see Section 3.3 for the definition of the metrics) there is a trend for better correspondence to phonemes for smaller codebook sizes . The visually grounded model, on the other hand, generally shows the closest match with phonemes for the largest codebook sizes (512 or 1024) when evaluated on full utterances. In contrast, smaller codebooks score higher for the short utterance segments used by the ABX metric (i.e. minimal pairs of phoneme triples). We also observe inconsistencies in the relative performance of VQ layers placed at different levels in the model for RSA vs. the other metrics. As discussed in Section 5, we attribute those inconsistencies to the properties of the different metrics. Thus, the conclusions drawn using a single metric, even a widely used one like the ZeroSpeech ABX metric, should be treated with caution, and further corroborated.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Findings",
                "sec_num": null
            },
            {
                "text": "The domain of speech processing has seen recent efforts to modify existing neural architectures to enable the induction of discrete latent representations. These developments are promising for boosting performance, improving interpretability, and modeling the acquisition and processing of linguistic knowledge in humans.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "Applying Vector Quantization (VQ) techniques for this purpose was pioneered by van den Oord et al. (2017), who propose generative models based on the variational auto-encoder (VAE) architecture and use VQ to induce discrete latent representations. They apply this method to images, videos, and speech, and show that the models can learn discrete latent representations without supervision. When applied to raw speech, the VQ-VAE architecture learns high-level discrete representations that are invariant to low-level features of the audio signal such as prosody and speaker identity, and mostly encode the content of the speech. Classification of the discrete representations into phoneme classes (based on majority ground truth label) suggests they capture phonemes to some extent.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "Learning discrete instead of (or in addition to) continuous representations can facilitate unit discovery in unsupervised models of speech. In the 2015 Zero Resource Speech Challenge (Versteegh et al., 2015) , Badino et al. (2015) present a binarized auto-encoder, certain variants of which outperform its continuous counterpart. In the 2017, 2019, and 2020 editions of this challenge (Dunbar et al., 2017 (Dunbar et al., , 2019 (Dunbar et al., , 2020 , following the work of van den Oord et al. 2017, several models include at least one VQ layer (see e.g. Chorowski et al., 2019; Eloff et al., 2019; Tjandra et al., 2019 Tjandra et al., , 2020 . These studies demonstrate the benefit of using VQ layers for phoneme classification and for learning speaker-invariant representations, focusing on the ABX phoneme discrimination metric to evaluate the encoding of phonemic information. However, little analysis on the impact of the size and configuration of the employed VQ layers is performed. For example, van Niekerk et al. (2020) train a VQ-VAE model for reconstructing audio waveforms, and a VQ-CPC (Contrastive Predictive Coding) model for predicting future acoustic units. They evaluate these architectures on the ABX phoneme discrimination task, voice conversion and speaker classification and show that VQ-CPC performs better than VQ-VAE overall, but they do not manipulate the configuration or the dimension of the VQ layers. Chung et al. (2020) , however, report the impact on phoneme and speaker classification of systematic manipulation of VQ-related factors. They train an Autoregressive Predictive Coding (APC) model to predict upcoming frames, and use VQ as a methodology to limit the model's capacity. Using a frame-wise diagnostic classifier (namely linear logistic regression), they show that under restricted configurations (only one VQ layer inserted at the In contrast to the work cited above, which discusses uni-modal speech models, Harwath et al. (2020a) use VQ layers within the setting of learning spoken language via grounding in the visual modality, where the speech signal is associated to images (for an overview of visually grounded speech models, see Chrupa\u0142a, 2021) . They hypothesize that discrete representations learned by such models are more likely to capture higher-level semantic information. Their analyses suggest that the trained multimodal models can learn discrete linguistic units at both word and sub-word levels, with quantization layers inserted at the lower levels of the network showing correspondence to sub-word (i.e. phonemic) units, and those inserted at the higher level corresponding to word-level units. Analyses are based on the Zerospeech ABX metric for phoneme encoding and F1 scores for word detection. Similarly, Liu et al. (2021) propose a framework based on VQ to discover discrete concepts in models of visually grounded language trained on video and text, video and audio or image and audio. Evidence of a correspondence between the learned concepts and visual entities/actions or words are given but no detailed analysis is performed.",
                "cite_spans": [
                    {
                        "start": 183,
                        "end": 207,
                        "text": "(Versteegh et al., 2015)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 385,
                        "end": 405,
                        "text": "(Dunbar et al., 2017",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 406,
                        "end": 428,
                        "text": "(Dunbar et al., , 2019",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 429,
                        "end": 451,
                        "text": "(Dunbar et al., , 2020",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 557,
                        "end": 580,
                        "text": "Chorowski et al., 2019;",
                        "ref_id": null
                    },
                    {
                        "start": 581,
                        "end": 600,
                        "text": "Eloff et al., 2019;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 601,
                        "end": 621,
                        "text": "Tjandra et al., 2019",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 622,
                        "end": 644,
                        "text": "Tjandra et al., , 2020",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 1433,
                        "end": 1452,
                        "text": "Chung et al. (2020)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1954,
                        "end": 1976,
                        "text": "Harwath et al. (2020a)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 2181,
                        "end": 2196,
                        "text": "Chrupa\u0142a, 2021)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 2774,
                        "end": 2791,
                        "text": "Liu et al. (2021)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "When evaluating the encoding of phonemic information in continuous representations from models of spoken language, recent work has shown that different metrics may yield different outcomes. show that representational similarity analysis (RSA) and diagnostic classifier (DC) applied to pooled representations disagree with the results of DC applied on local representa-tions for RNN-based architectures, while they are all in agreement when applied to transformer-based representations. Algayres et al. (2020) compare the aforementioned ABX metric and the mean-averageprecision (MAP) metric (which uses representations to predict whether two stimuli have the same ground-truth label) to each other and to a downstream frequency estimation task. Performance on the three metrics is correlated, but not to a high degree, and marked discrepancies are found for particular models. Table 1 summarizes some of the representative studies that use VQ layers and their specifications and reported analyses. As can be seen from this summary, existing work on learning VQ-based discrete representations does not easily lead to a coherent picture due to the wide range of the training objectives and modeling architecture they use, the analyses they perform, the evaluation metrics they employ and the VQ-related factors they manipulate. In this paper, we aim to provide this overview by employing different discretized speech modeling approaches and consistently comparing architectural parameters and evaluation metrics.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 876,
                        "end": 883,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Related work",
                "sec_num": "2"
            },
            {
                "text": "We investigate evaluation metrics for the analysis of discrete representations induced through vector quatization. Since phoneme classification/identification has been the dominant analysis task for discrete representations of speech, we use this as our main task. We do so through the specific case of speech representations learned by two different models: a self-supervised model of speech trained to reconstruct the audio waveform, and a visually-supervised model of spoken language which maps audio representations of spoken ut-terances and visual representations of their corresponding images to a shared semantic space. Both models employ VQ layers in their architecture to induce discretized representations. A VQ layer takes as input a continuous distributed representation in the form of a vector h \u2208 R d , and returns the closest of K prototype vectors contained in a trainable codebook {e 1 , e 2 , . . . , e K } where e i \u2208 R d . For a sequence of continuous vectors (h 1 , h 2 , . . . , h n ) the discrete codes are given by the sequence of indices of the prototype vectors returned by the VQ layer. Since the arg max operation needed to select the nearest vector is not differentiable, the gradient for backpropagation is approximated by using the straight-through estimator (Bengio et al., 2013) , which replaces each non-differentiable operation with the identity function for the backward pass. For further details, consult van den Oord et al. (2017).",
                "cite_spans": [
                    {
                        "start": 1290,
                        "end": 1311,
                        "text": "(Bengio et al., 2013)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Vector quantization",
                "sec_num": "3.1"
            },
            {
                "text": "Self-supervised Our self-supervised model is the VQ-VAE model introduced in van Niekerk et al. (2020). 1 The model consists of an encoder built out of a stack of five convolutional layers, a bottleneck comprising a linear projection and a VQ layer, and a decoder comprising an embedding layer and a stack of upsampling and recurrent layers; the decoder attempts to reconstruct the original waveform. For details of the architecture, see van Niekerk et al. (2020). In the experiments reported here, we vary the size of the codebook, but keep the placement of the VQ layer constant as the encoder contains only one fully connected layer after which the VQ layer can be placed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Target models",
                "sec_num": "3.2"
            },
            {
                "text": "Visually-supervised A visually-supervised model of spoken language with discrete representations was introduced by Harwath et al. 2020a: they adapted an existing model (Harwath et al., 2020b) by inserting one or more VQ layers within the speech encoder stack. We similarly adapt the architecture used in Merkx et al. (2019) and by inserting a single VQ layer at one of three levels: either following the first, second or third GRU layer of the speech encoder. In addition to VQ layer placement, we also vary the size of the codebook. Note that unlike Harwath et al. (2020a) we do not use a pre-training stage which by-passes the VQ layers; rather, we train the complete network from scratch. This model thus consists of an image encoder, which takes as input image features extracted via a pre-trained ResNet-152 model (He et al., 2016) and maps these features via a learned affine transform into a joint visual-language space. The audio input are MFCC features with total energy and delta and double-delta coefficients with combined size 39. The speech encoder consists of one 1D convolutional layer (with 64 output channels) which subsamples the input by a factor of two, four bidirectional GRU layers (each of size 2048), with a VQ layer inserted between a single pair of GRU layers. This stack is followed by a self-attention-based pooling layer. The objective function is a version of the triplet loss with negative examples from the current batch. The model is trained with the Adam optimizer (Kingma and Ba, 2015) with a cyclical learning rate schedule (Smith, 2017).",
                "cite_spans": [
                    {
                        "start": 168,
                        "end": 191,
                        "text": "(Harwath et al., 2020b)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 304,
                        "end": 323,
                        "text": "Merkx et al. (2019)",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 819,
                        "end": 836,
                        "text": "(He et al., 2016)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Target models",
                "sec_num": "3.2"
            },
            {
                "text": "Different evaluation methods have been used for analyzing the nature of information captured by VQ-based discrete representations in different studies. We present here a thorough examination of their formal similarities and differences as well as their sensitivity to different conditions. In this section we introduce the methods commonly used to evaluate the learned representations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation methods",
                "sec_num": "3.3"
            },
            {
                "text": "Chrupa\u0142a et al. (2020) study the effect representation scope, i.e. activation vectors retrieved at the level of frames (local) or pooled over whole utterances (global), concluding that it can affect results. Following their recommendations, and for the sake of simplicity, we include one measure for each scope. Since their findings suggest that local RSA lacks sensitivity, we use local DC (which is also the most widely used) as well as global RSA in our experiments. Global RSA has the double advantage of not using any trainable parameters and not requiring any alignments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation methods",
                "sec_num": "3.3"
            },
            {
                "text": "Normalized Mutual Information (NMI) An information-theoretically motivated measure of the association between two random variables is mutual information. In the general case of vectorvalued neural representations, computing mutual information with the target annotation is intractable. In the special case where the representation is discrete-valued, we can use the standard empirical estimate. Given discrete random variables X with image X and Y with image Y (i.e. frame-wise codes and phoneme labels in our case), the mutual information I(X; Y ) is",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation methods",
                "sec_num": "3.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "I(X; Y ) = x\u2208X y\u2208Y P (x, y) log P (x, y) P (x)P (y)",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Evaluation methods",
                "sec_num": "3.3"
            },
            {
                "text": "It is often more informative to use mutual information normalized by the arithmetic mean of the entropies of the two random variables:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation methods",
                "sec_num": "3.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "NMI(X; Y ) = 2 I(X; Y ) H(X) + H(Y )",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Evaluation methods",
                "sec_num": "3.3"
            },
            {
                "text": "where H(X) is the entropy of X. This definition of normalized mutual information (NMI) is equivalent to the V-measure (Rosenberg and Hirschberg, 2007) .",
                "cite_spans": [
                    {
                        "start": 118,
                        "end": 150,
                        "text": "(Rosenberg and Hirschberg, 2007)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation methods",
                "sec_num": "3.3"
            },
            {
                "text": "Diagnostic Classifier (DC) A diagnostic model, also known as a probe, is a classifier or regressor trained to predict some information of interest (such as a linguistic annotation) given a neural representation. To the extent that the model successfully predicts the annotation, we conclude that the neural representation encodes this information. Informally, such a diagnostic classifier can be seen as quantifying the amount of easily-accessible -or in the extreme case, linearly decodable -information about the target annotation (Adi et al., 2017; Alishahi et al., 2017; Hupkes et al., 2018; Conneau et al., 2018, among others) . As argued by Pimentel et al. (2020) , without the qualification that information be easily accessible, probing should aim to approximate the mutual information between the neural representation and the target annotation, and thus should use the bestperforming probe possible. Furthermore, it is not possible for the neural representation to contain more information about the target annotation than the source utterance itself, due to the information processing inequality, and thus, in the general case, probing with an unrestricted classifier is not a wellfounded exercise. In the special case of probing a discrete-valued variable (as is the case in our study) the situation is simpler: the accuracy of a linear classifier is closely related to the empirical estimate of the mutual information between the representation and the target annotation; see the formal argument in Appendix A.1 as well as our empirical results.",
                "cite_spans": [
                    {
                        "start": 533,
                        "end": 551,
                        "text": "(Adi et al., 2017;",
                        "ref_id": null
                    },
                    {
                        "start": 552,
                        "end": 574,
                        "text": "Alishahi et al., 2017;",
                        "ref_id": null
                    },
                    {
                        "start": 575,
                        "end": 595,
                        "text": "Hupkes et al., 2018;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 596,
                        "end": 631,
                        "text": "Conneau et al., 2018, among others)",
                        "ref_id": null
                    },
                    {
                        "start": 647,
                        "end": 669,
                        "text": "Pimentel et al. (2020)",
                        "ref_id": "BIBREF27"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation methods",
                "sec_num": "3.3"
            },
            {
                "text": "RSA is a second-order technique originating in neuroscience (Kriegeskorte et al., 2008) where similarities between pairs of stimuli are measured in two representation spaces: e.g. neural activation pattern space and a space of symbolic linguistic annotations such as sequences of phonemes or syntax trees. The correlation between these pairwise similarity measurements quantifies how much the two representations are aligned. This approach requires a similarity or distance metric for pairs of stimuli within each representation space, but does not need a way of mapping from one space to the other. It generally does not have any trainable parameters. As a consequence, it is sensitive to the purity of the representation with regard to the variable of interest: unlike DC, the RSA metric will penalize representations for encoding any information unrelated to the target variable. See for example Bouchacourt and Baroni 2018 When the neural representations of the stimuli evaluated are sequences of vectors, we need to make a choice regarding how to measure similarities or distances between them. Here we focus on neural representations which take the form of sequences of symbolic codes, which makes measuring distances simple: a natural choice is the Levenshtein edit distance normalized by the length of the longer string. We can thus apply the same edit-distance metric on both the neural representations and on the reference sequences of phonemes or words (for efficiency we collapsed code repetitions).",
                "cite_spans": [
                    {
                        "start": 60,
                        "end": 87,
                        "text": "(Kriegeskorte et al., 2008)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Representational Similarity Analysis (RSA)",
                "sec_num": null
            },
            {
                "text": "ABX discriminability (ABX) The ABX phoneme discriminability metric (Schatz, 2016) as used in the Zerospeech challenge (Dunbar et al., 2019) is based on triples of stimuli (A, B, X) where A and X belong to the same category and B and X belong to different categories. The ABX error is a function of d(A, X) and d(B, X) where d(\u2022, \u2022) is a distance metric for the representation being evaluated: 2 The categories are determined by gold annotation: in the case of Zerospeech they are phoneme labels. The stimuli are presented in context in the form of minimal pairs: (A =/beg/ 1 , B =/bag/, X =/beg/ 2 ), where /beg/ 1 and /beg/ 2 are two different utterances of this phoneme sequence. In our use case, alignments between the gold phoneme transcriptions and the evaluated representations are required to extract the stimuli for ABX. Here we use the same distance metric as for RSA: Levenshtein edit distance normalized by the length of the longer string.",
                "cite_spans": [
                    {
                        "start": 67,
                        "end": 81,
                        "text": "(Schatz, 2016)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 118,
                        "end": 139,
                        "text": "(Dunbar et al., 2019)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Representational Similarity Analysis (RSA)",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "abx(A, B, X) = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 1 if d(A, X) > d(B, X) 1 2 if d(A, X) = d(B, X) 0 otherwise",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Representational Similarity Analysis (RSA)",
                "sec_num": null
            },
            {
                "text": "The ABX error is loosely related to the RSA score. With RSA, pairwise distances are measured between gold representations of stimuli (e.g. their phonemic transcriptions) as well as between system representations of the same set of stimuli. The correlation coefficient between these two sets of distance measurements is the RSA score. With RSA there is no notion of a stimulus triple, but rather the score reflects distances between all pairs of stimuli. Likewise, the representation of stimuli according to the gold standard is typically not in the form of atomic categorical labels but can be any representation with an associated distance (or similarity) metric. Thus RSA can be seen as more general than ABX, while being less controlled. Table 2 summarizes the main characteristics of the evaluation metrics described above in the context of analyzing neural representations of speech, along the following facets: the need to arrange input in the form of minimalpaired stimulus triples, the need for alignment between input/codes and phonemic transcriptions, the presence of trainable parameters, and reliance on a distance metric between stimuli. According to these criteria, RSA and NMI are the least restricted in their applicability, requiring only a distance function or alignment, respectively. In addition to a distance metric, ABX needs minimal-paired stimulus triples to be extracted. In addition to alignment DC has trainable parameters, and in the case of analyzing discrete codes, it behaves like an approximation to the NMI metric.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 741,
                        "end": 748,
                        "text": "Table 2",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Representational Similarity Analysis (RSA)",
                "sec_num": null
            },
            {
                "text": "We evaluate the induced discrete representations by applying the trained networks on the relevant examples -either full utterances, or speech segments corresponding to sequences of three phonemes (triplets) -and extract the sequences of codes from the VQ layer. We do the same for randomly initialized (untrained) versions of the networks, in order to provide a baseline score, following the methodology of . In Section 4, we include in the plots both the baseline scores and the scores with the trained models. For the self-supervised target model we vary only the size of the codebook in the VQ layer, 3 using sizes 2 n for n \u2208 [5, 10] . For the visually-supervised target model we use the same sizes and also vary the placement of the VQ layer between one of three levels (following first, second or third GRU layer). For both target models, each variant was trained three times with a different random initialization; the scatter plots in Section 4 show each of these runs, as well as a LOESS fit (Cleveland, 1979) to each combination of codebook size and level.",
                "cite_spans": [
                    {
                        "start": 630,
                        "end": 633,
                        "text": "[5,",
                        "ref_id": null
                    },
                    {
                        "start": 634,
                        "end": 637,
                        "text": "10]",
                        "ref_id": null
                    },
                    {
                        "start": 1001,
                        "end": 1018,
                        "text": "(Cleveland, 1979)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation procedure",
                "sec_num": "3.4"
            },
            {
                "text": "Training target models Following van Niekerk et al. (2020) we train the self-supervised model on about 15 hours of speech from over 100 speakers provided by Zerospeech 2020 (Dunbar et al., 2020) . 4 The visually-supervised model is trained on the Flickr8K Audio Caption Corpus (Harwath and Glass, 2015; Rashtchian et al., 2010) 5 , which consists of 8,000 images of daily scenes each paired with five spoken captions. The training portion of this dataset contains 6,000 images and about 34 hours of speech.",
                "cite_spans": [
                    {
                        "start": 173,
                        "end": 194,
                        "text": "(Dunbar et al., 2020)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 197,
                        "end": 198,
                        "text": "4",
                        "ref_id": null
                    },
                    {
                        "start": 277,
                        "end": 302,
                        "text": "(Harwath and Glass, 2015;",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 303,
                        "end": 329,
                        "text": "Rashtchian et al., 2010) 5",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "3.5"
            },
            {
                "text": "Evaluation We encode the development captions of Flickr8K (5,000 captions) using the encoders of the trained and untrained target models, and for each utterance extract the sequence of codes output by the VQ layer. We split this data in half, and use one half for training the DC, and the other half for computing the scores for DC, RSA and NMI.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "3.5"
            },
            {
                "text": "As ABX (and one experiment with RSA) is not computed on full utterances but on phoneme trigrams, we prepare this data by sampling 1,000 captions from the Flickr8K development set, and cutting the audio into non-overlapping segments corresponding to a sequence of three phonemes. We then use the ZeroSpeech code to generate minimal-pair stimulus triples.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "3.5"
            },
            {
                "text": "In order to obtain reference phonemic transcriptions we use forced alignment with the Gentle toolkit, 6 based on Kaldi (Povey et al., 2011) . This fails for a small number of utterances, which we remove from the data.",
                "cite_spans": [
                    {
                        "start": 119,
                        "end": 139,
                        "text": "(Povey et al., 2011)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "3.5"
            },
            {
                "text": "The code for replicating our experiments is available at https://github.com/bhigy/discrete-repr under Apache License 2.0.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Repository",
                "sec_num": "3.6"
            },
            {
                "text": "Here we report experiments examining how VQ layers encode phonemes in each target model according to different evaluation metrics. The impact of VQ layers on performance of the visuallysupervised model in image retrieval is reported in Section A.2 of the Supplementary Material.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental results",
                "sec_num": "4"
            },
            {
                "text": "We extract codes from visually-supervised VQ models trained on the Flickr8K data while varying VQ layer placement and codebook size. We evaluate how much these codes correspond to phonemes according to four metrics: DC, NMI, RSA and ABX. These results are shown in Figure 1 . DC vs. NMI As expected on theoretical grounds, diagnostic classifiers and mutual information give very similar results. Overall, VQ layers at level 1 and 2 perform significantly better than VQ layers at level 3 or equivalent untrained models. Larger codebook sizes also tend to perform better than smaller ones.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 265,
                        "end": 273,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Visually-supervised representations",
                "sec_num": "4.1"
            },
            {
                "text": "DC and NMI vs. RSA RSA differs from the other two metrics on three main aspects: (i) VQ layers at level 3 perform comparably to level 2, (ii) medium codebook sizes give better performances for VQ layers at level 1, and (iii) untrained models show very poor performance. The three points can be explained by the sensitivity of RSA to the purity of the representations. Focusing on the last point first, while representations extracted from untrained models can still contain meaningful information, it will be less explicit and mixed with information that is not relevant for the task of interest. A similar explanation might also hold for the first two points; in particular, we observed that the VQ layers at level 1 retain much more information on the speaker than the other two levels and that the encoding of speaker information increases with the size of the codebook (see Section A.4 of the Supplementary Material for related experiments).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Visually-supervised representations",
                "sec_num": "4.1"
            },
            {
                "text": "ABX vs. rest ABX is the most divergent metric. While VQ layers at level 1 and 2 still perform better, the gap with equivalent untrained models is smaller. The effect of codebook size is also much less pronounced and layer-specific. The difference in patterns of results between the metrics might be due to the different testing stimuli used by ABX versus the other three metrics: whereas DC, NMI and RSA are tested on full utterance audio files, ABX is tested on small phoneme trigram files.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Visually-supervised representations",
                "sec_num": "4.1"
            },
            {
                "text": "Role of stimulus size To disentangle the impact of the metric and the size of the stimulus it is applied on, we run two additional experiments. First, we re-calculate RSA using the same phoneme trigram files used for ABX. The correlation coefficient between ABX and this version of RSA is much stronger (see Table 3 ), suggesting that the type of stimulus used to test the model does play a role. The other experiment goes in the opposite direction and brings the ABX evaluation closer to the other three metrics. Training the target model on full sentences but applying it to short segments could play a role. Thus, we run an additional set of experiments where we apply the models to full utterances and generate the representation used in ABX by extracting the portion of the code sequence corresponding to each phoneme trigram from the full sequence of activations. The correlation with RSA is still low (0.14) indicating that the problem is intrisic to the evaluation relying on phoneme triplets and not train/test mismatch. This impact of stimulus size on results is likely related to the fact that, with very short stimuli, most normalized edit distances will be maximum, or near maximum, and this will especially be the case for large codebook sizes, giving very skewed and long-tailed edit distance distributions (see details in Section A.3 in the Supplementary Material).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 308,
                        "end": 315,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Visually-supervised representations",
                "sec_num": "4.1"
            },
            {
                "text": "We extract codes from a number of self-supervised VQ-VAE models trained on the Zerospeech 2019 challenge dataset with varying codebook sizes (note that the VAE model has only one possible placement for the VQ layer). We compare how well these codes correspond to phonemes according to the same four metrics, as displayed in Figure 1 . In contrast to what we see for visually-supervised representations, here RSA and ABX scores are largely consistent and suggest that a larger codebook leads to weaker encoding of phonemic information. The effect is more pronounced for ABX though with the largest codebook performing similarly to the baseline. DC and NMI are relatively insensitive to the size of the codebook.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 324,
                        "end": 332,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Self-supervised representations",
                "sec_num": "4.2"
            },
            {
                "text": "The self-supervised model does not show the discrepancy observed with the visually-supervised model when RSA and ABX scores are run on testing input of different size. This is confirmed by the correlation coefficients between the ABX score and RSA computed on complete utterances and phoneme triplets shown in Table 3 . The VQ layer in the self-supervised model only has access to a limited context, which provides enough information to subsequently reconstruct the input audio frame. The visually-supervised architecture on the other hand builds a representation for the whole utterance, supported by recurrent layers. This core difference may explain the pattern of results we report here.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 310,
                        "end": 317,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Self-supervised representations",
                "sec_num": "4.2"
            },
            {
                "text": "To summarize, the different metrics we compared give divergent views of the same representations. This should not necessarily be interpreted as one metric being right while the others are flaweded. It is likely that the different metrics account for somewhat different properties of the representation. The differences between RSA and DC/NMI are probably related to the purity of the representation. RSA is based on the correlation of distances between pairs of stimuli and is thus sensitive to the presence of additional information in the representation. If the model's representation contains information that is not related to the representation that is the target of the analysis (in our case phonemes identification), this will be reflected in lower RSA scores.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "An obvious example of such information that a model of speech is likely to encode is speaker identity. As pointed out in Section 4.1, the pattern of results obtained with a classifier trained to predict speaker identity supports this view. The encoding of speaker information could lead to comparatively lower scores with RSA, especially for level 1 and large codebooks where speaker identity is better encoded.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "In general, our results suggest that different metrics might be preferred depending on the question that one is trying to answer. RSA scores are a better indicator of the exact match between two representations while DC/NMI better evaluate the extent to which a given information can be extracted from a model's representation, irrespective of other sources of information that might be encoded at the same time. This could be confirmed through white-box experiments, where the different metrics would be applied to hand-crafted representations with different properties (e.g. in term of purity). We leave this to future work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "The only remaining point of concern that arises from our results is the interaction between codebook size and input size. Larger codebook sizes tend to be disadvantaged when short input segments are used as input, such as minimal pairs of phoneme triplets. This is particularly relevant for ABX where the use of minimal pairs of phoneme triplets is a common practice. Analysis of discrete representations using short segments should preferably be carried with diagnostic classifiers or NMI, especially if codebooks or different sizes are compared.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "It is also important to highlight that the importance of this effect is dependent on the architecture and the training objective of the model, as our experiments with a self-supervised model show.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "5"
            },
            {
                "text": "We compared four different metrics for discrete representations induced by VQ layers in weaklysupervised models of spoken language, and while the results are broadly consistent, some differences did emerge. RSA tends to show a bigger gap between trained and untrained models as it is more sensitive to the purity of representations with respect to the information of interest. More surprising is the divergent results we observe when evaluation is performed on minimal pairs of phoneme trigrams: this is likely due to the skew of distance distributions with large codebooks sizes. This is an important finding as some previous work on discrete representations focused exclusively on the ABX metric. In contrast, we recommend corroborating results with multiple analytical approaches, as currently their behavior in different settings is incompletely understood.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "Overall, our findings do support the idea that vector quantization is an effective way to induce discrete representations, and that these correlate with symbolic representations assumed in linguistics. However, it is worth noting that the absolute values of our metrics measuring correspondence to phonemes are moderate at best. 7 It is thus important to keep in mind that these symbolic units are not exact analogs of the concepts familiar from linguistic theory and psycholinguistic studies.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "The most general measure of the amount of information about the value of a random variable Y obtained through the observation of the value of random variable X is mutual information I(Y ; X). Here we relate the loss of a logistic diagnostic classifier predicting Y from X in the special case where both Y and X are discrete, with image Y and X respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Loss of a logistic diagnostic classifier",
                "sec_num": null
            },
            {
                "text": "We can construct a logistic classifier which outputs the empirical probabilityP (Y = y|X = x) with y \u2208 Y and x \u2208 X , by using a one-hot encoding of the categorical predictor variable X as x and by setting the classifier coefficients W as W y,x = lnP (Y = y|X = x).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Loss of a logistic diagnostic classifier",
                "sec_num": null
            },
            {
                "text": "(4)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Loss of a logistic diagnostic classifier",
                "sec_num": null
            },
            {
                "text": "The softmax of the logistic classifier with these coefficients simplifies to the empirical estimates of conditional probabilities of Y :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Loss of a logistic diagnostic classifier",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p y|x = exp(lnP (Y = y|X = x)) z\u2208Y exp(lnP (Y = z|X = x))",
                        "eq_num": "(5)"
                    }
                ],
                "section": "A.1 Loss of a logistic diagnostic classifier",
                "sec_num": null
            },
            {
                "text": "=P (Y = y|X = x).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Loss of a logistic diagnostic classifier",
                "sec_num": null
            },
            {
                "text": "The cross entropy of the predictions of this classifer is then:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Loss of a logistic diagnostic classifier",
                "sec_num": null
            },
            {
                "text": "J(w) = \u2212 1 N N n=1 lnP (Y = y n |X = x n ) (7)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Loss of a logistic diagnostic classifier",
                "sec_num": null
            },
            {
                "text": "where y n and x n are the values taken by the random variables Y and X for the n th example. The loss is equivalent to the empirical estimate of the conditional entropy H(Y |X), and related to the mutual information between I(Y ; X) via:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Loss of a logistic diagnostic classifier",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "I(Y ; X) = H(Y ) \u2212 H(Y |X).",
                        "eq_num": "(8)"
                    }
                ],
                "section": "A.1 Loss of a logistic diagnostic classifier",
                "sec_num": null
            },
            {
                "text": "To the extent that the scores of the logistic diagnostic classifier and normalized mutual information applied to the same data are not perfectly correlated, this would be due to the stochasticity of training, regularization, as well as the use of accuracy rather than cross entropy to measure performance.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.1 Loss of a logistic diagnostic classifier",
                "sec_num": null
            },
            {
                "text": "Since the visually-supervised model is trained and optimized for matching images and their corresponding spoken captions, we measure the recall@10 of retrieving the correct image for a given spoken utterance as a function of the size of the learned codebook and the placement of the VQ layer. Figure 2 shows these results. We observed the following patterns:",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 293,
                        "end": 301,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "A.2 Overall performance of the visually supervised model",
                "sec_num": null
            },
            {
                "text": "\u2022 Most models perform worse than a model without the VQ layer, with the exception of the models with the VQ layer at level 1 and a codebook of size 512 or 1024.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.2 Overall performance of the visually supervised model",
                "sec_num": null
            },
            {
                "text": "\u2022 Performance on the image retrieval task is negatively correlated with the level of placement of the VQ layer.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "A.2 Overall performance of the visually supervised model",
                "sec_num": null
            },
            {
                "text": "\u2022 VQ layers with larger codebooks perform better. Table 4 presents skew and excess kurtosis of edit distance distributions for both target models, using codebooks of size 32 and 1024 and trained on long and short segments, confirming the hypothesis that the combination of short segments and large codebooks leads to skewed distributions. Figure 3 shows accuracy of diagnostic classifiers trained on code sequences encoded as vectors of code frequencies. For visually-supervised models, speaker identity is represented to some degree in untrained models, for codebooks of all sizes and at all levels, and most strongly for large codebook sizes at level 1. After training, we observe differentiated patterns for VQ layers at level 1 versus 2 and 3. While speaker identity is emphasized in codebooks at level 1 compared to the untrained models, it is weakened for subsequent layers, to the point of being effectively removed at level 3. These results indicate that VQ layers at level 1 represent speaker-dependent information, possibly encoding acoustic rather than phonemic information. The self-supervised models show results similar to the visually-supervised models with the VQ layer at level 1 when trained, but capture nearly no speaker information before training. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 50,
                        "end": 57,
                        "text": "Table 4",
                        "ref_id": "TABREF7"
                    },
                    {
                        "start": 339,
                        "end": 347,
                        "text": "Figure 3",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "A.2 Overall performance of the visually supervised model",
                "sec_num": null
            },
            {
                "text": "We use the authors' implementation available at github.com/bshall/ZeroSpeech.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The ABX error is thus similar to a discretized version of the triplet loss.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The self-supervised model has the VQ layer as part of its original architecture, in a bottleneck composed of only one linear layer making it hard to manipulate the level of the layer without disrupting the model. 4 https://zerospeech.com/2020/ 5 https://groups.csail.mit.edu/sls/downloads/flickraudio/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The highest RSA correlations are around 0.3 and NMI values slightly above 0.25.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "Bertrand Higy was supported by a NWO/E-Science Center grant number 027.018.G03.We would also like to thank multiple anonymous reviewers for their useful comments which helped us improve this paper.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Higher-order comparisons of sentence encoder representations",
                "authors": [
                    {
                        "first": "Mostafa",
                        "middle": [],
                        "last": "Abdou",
                        "suffix": ""
                    },
                    {
                        "first": "Artur",
                        "middle": [],
                        "last": "Kulmizev",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Hill",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [
                            "M"
                        ],
                        "last": "Low",
                        "suffix": ""
                    },
                    {
                        "first": "Anders",
                        "middle": [],
                        "last": "S\u00f8gaard",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Yoshua Bengio, Nicholas L\u00e9onard, and Aaron Courville. 2013. Estimating or propagating gradients through stochastic neurons for conditional computation",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1593"
                    ],
                    "arXiv": [
                        "arXiv:1308.3432"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mostafa Abdou, Artur Kulmizev, Felix Hill, Daniel M. Low, and Anders S\u00f8gaard. 2019. Higher-order com- parisons of sentence encoder representations. In Yoshua Bengio, Nicholas L\u00e9onard, and Aaron Courville. 2013. Estimating or propagating gradi- ents through stochastic neurons for conditional com- putation. arXiv preprint arXiv:1308.3432.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "How agents see things: On visual representations in an emergent language game",
                "authors": [
                    {
                        "first": "Diane",
                        "middle": [],
                        "last": "Bouchacourt",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Baroni",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "981--985",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D18-1119"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Diane Bouchacourt and Marco Baroni. 2018. How agents see things: On visual representations in an emergent language game. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 981-985, Brussels, Bel- gium. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Samy Bengio, and A\u00e4ron van den Oord. 2019. Unsupervised Speech Representation Learning Using WaveNet Autoencoders",
                "authors": [
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Chorowski",
                        "suffix": ""
                    },
                    {
                        "first": "Ron",
                        "middle": [
                            "J"
                        ],
                        "last": "Weiss",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1109/TASLP.2019.2938863"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jan Chorowski, Ron J. Weiss, Samy Bengio, and A\u00e4ron van den Oord. 2019. Unsupervised Speech Rep- resentation Learning Using WaveNet Autoencoders.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Speech, and Language Processing",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "27",
                "issue": "",
                "pages": "2041--2053",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "IEEE/ACM Transactions on Audio, Speech, and Lan- guage Processing, 27(12):2041-2053. Conference Name: IEEE/ACM Transactions on Audio, Speech, and Language Processing.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Correlating neural and symbolic representations of language",
                "authors": [
                    {
                        "first": "Grzegorz",
                        "middle": [],
                        "last": "Chrupa\u0142a",
                        "suffix": ""
                    },
                    {
                        "first": "Afra",
                        "middle": [],
                        "last": "Alishahi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2952--2962",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P19-1283"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Grzegorz Chrupa\u0142a and Afra Alishahi. 2019. Corre- lating neural and symbolic representations of lan- guage. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics, pages 2952-2962, Florence, Italy. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Analyzing analytical methods: The case of phonology in neural models of spoken language",
                "authors": [
                    {
                        "first": "Grzegorz",
                        "middle": [],
                        "last": "Chrupa\u0142a",
                        "suffix": ""
                    },
                    {
                        "first": "Bertrand",
                        "middle": [],
                        "last": "Higy",
                        "suffix": ""
                    },
                    {
                        "first": "Afra",
                        "middle": [],
                        "last": "Alishahi",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4146--4156",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.381"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Grzegorz Chrupa\u0142a, Bertrand Higy, and Afra Alishahi. 2020. Analyzing analytical methods: The case of phonology in neural models of spoken language. In Proceedings of the 58th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 4146- 4156, Online. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Visually grounded models of spoken language: A survey of datasets, architectures and evaluation techniques",
                "authors": [
                    {
                        "first": "Grzegorz",
                        "middle": [],
                        "last": "Chrupa\u0142a",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "CoRR",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Grzegorz Chrupa\u0142a. 2021. Visually grounded mod- els of spoken language: A survey of datasets, architectures and evaluation techniques. CoRR, abs/2104.13225.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Vector-quantized autoregressive predictive coding",
                "authors": [
                    {
                        "first": "Yu-An",
                        "middle": [],
                        "last": "Chung",
                        "suffix": ""
                    },
                    {
                        "first": "Hao",
                        "middle": [],
                        "last": "Tang",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Glass",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2005.08392"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yu-An Chung, Hao Tang, and James Glass. 2020. Vector-quantized autoregressive predictive coding. arXiv preprint arXiv:2005.08392.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Robust locally weighted regression and smoothing scatterplots",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "William",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Cleveland",
                        "suffix": ""
                    }
                ],
                "year": 1979,
                "venue": "Journal of the American statistical association",
                "volume": "74",
                "issue": "368",
                "pages": "829--836",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "William S Cleveland. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American statistical association, 74(368):829- 836.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "What you can cram into a single $&!#* vector: Probing sentence embeddings for linguistic properties",
                "authors": [
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Conneau",
                        "suffix": ""
                    },
                    {
                        "first": "German",
                        "middle": [],
                        "last": "Kruszewski",
                        "suffix": ""
                    },
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Lample",
                        "suffix": ""
                    },
                    {
                        "first": "Lo\u00efc",
                        "middle": [],
                        "last": "Barrault",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Baroni",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "2126--2136",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P18-1198"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alexis Conneau, German Kruszewski, Guillaume Lam- ple, Lo\u00efc Barrault, and Marco Baroni. 2018. What you can cram into a single $&!#* vector: Probing sentence embeddings for linguistic properties. In Proceedings of the 56th Annual Meeting of the As- sociation for Computational Linguistics (Volume 1: Long Papers), pages 2126-2136, Melbourne, Aus- tralia. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Discourse structure interacts with reference but not syntax in neural language models",
                "authors": [
                    {
                        "first": "Forrest",
                        "middle": [],
                        "last": "Davis",
                        "suffix": ""
                    },
                    {
                        "first": "Marten",
                        "middle": [],
                        "last": "Van Schijndel",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 24th Conference on Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "396--407",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.conll-1.32"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Forrest Davis and Marten van Schijndel. 2020. Dis- course structure interacts with reference but not syn- tax in neural language models. In Proceedings of the 24th Conference on Computational Natural Lan- guage Learning, pages 396-407, Online. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "The zero resource speech challenge 2017",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Dunbar",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [
                            "N"
                        ],
                        "last": "Cao",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Benjumea",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Karadayi",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Bernard",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Besacier",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Anguera",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Dupoux",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)",
                "volume": "",
                "issue": "",
                "pages": "323--330",
                "other_ids": {
                    "DOI": [
                        "10.1109/ASRU.2017.8268953"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "E. Dunbar, X. N. Cao, J. Benjumea, J. Kara- dayi, M. Bernard, L. Besacier, X. Anguera, and E. Dupoux. 2017. The zero resource speech chal- lenge 2017. In 2017 IEEE Automatic Speech Recog- nition and Understanding Workshop (ASRU), pages 323-330.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "The zero resource speech challenge",
                "authors": [
                    {
                        "first": "Ewan",
                        "middle": [],
                        "last": "Dunbar",
                        "suffix": ""
                    },
                    {
                        "first": "Robin",
                        "middle": [],
                        "last": "Algayres",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Karadayi",
                        "suffix": ""
                    },
                    {
                        "first": "Mathieu",
                        "middle": [],
                        "last": "Bernard",
                        "suffix": ""
                    },
                    {
                        "first": "Juan",
                        "middle": [],
                        "last": "Benjumea",
                        "suffix": ""
                    },
                    {
                        "first": "Xuan-Nga",
                        "middle": [],
                        "last": "Cao",
                        "suffix": ""
                    },
                    {
                        "first": "Lucie",
                        "middle": [],
                        "last": "Miskic",
                        "suffix": ""
                    },
                    {
                        "first": "Charlotte",
                        "middle": [],
                        "last": "Dugrain",
                        "suffix": ""
                    },
                    {
                        "first": "Lucas",
                        "middle": [],
                        "last": "Ondel",
                        "suffix": ""
                    },
                    {
                        "first": "Alan",
                        "middle": [
                            "W"
                        ],
                        "last": "Black",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Tts without t",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1904.11469"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ewan Dunbar, Robin Algayres, Julien Karadayi, Math- ieu Bernard, Juan Benjumea, Xuan-Nga Cao, Lucie Miskic, Charlotte Dugrain, Lucas Ondel, Alan W Black, et al. 2019. The zero resource speech challenge 2019: Tts without t. arXiv preprint arXiv:1904.11469.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "The Zero Resource Speech Challenge 2020: Discovering Discrete Subword and Word Units",
                "authors": [
                    {
                        "first": "Ewan",
                        "middle": [],
                        "last": "Dunbar",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Karadayi",
                        "suffix": ""
                    },
                    {
                        "first": "Mathieu",
                        "middle": [],
                        "last": "Bernard",
                        "suffix": ""
                    },
                    {
                        "first": "Xuan-Nga",
                        "middle": [],
                        "last": "Cao",
                        "suffix": ""
                    },
                    {
                        "first": "Robin",
                        "middle": [],
                        "last": "Algayres",
                        "suffix": ""
                    },
                    {
                        "first": "Lucas",
                        "middle": [],
                        "last": "Ondel",
                        "suffix": ""
                    },
                    {
                        "first": "Laurent",
                        "middle": [],
                        "last": "Besacier",
                        "suffix": ""
                    },
                    {
                        "first": "Sakriani",
                        "middle": [],
                        "last": "Sakti",
                        "suffix": ""
                    },
                    {
                        "first": "Emmanuel",
                        "middle": [],
                        "last": "Dupoux",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proc. Interspeech 2020",
                "volume": "",
                "issue": "",
                "pages": "4831--4835",
                "other_ids": {
                    "DOI": [
                        "10.21437/Interspeech.2020-2743"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ewan Dunbar, Julien Karadayi, Mathieu Bernard, Xuan-Nga Cao, Robin Algayres, Lucas Ondel, Laurent Besacier, Sakriani Sakti, and Emmanuel Dupoux. 2020. The Zero Resource Speech Chal- lenge 2020: Discovering Discrete Subword and Word Units. In Proc. Interspeech 2020, pages 4831- 4835.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Unsupervised acoustic unit discovery for speech synthesis using discrete latent-variable neural networks",
                "authors": [
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Eloff",
                        "suffix": ""
                    },
                    {
                        "first": "Andr\u00e9",
                        "middle": [],
                        "last": "Nortje",
                        "suffix": ""
                    },
                    {
                        "first": "Avashna",
                        "middle": [],
                        "last": "Benjamin Van Niekerk",
                        "suffix": ""
                    },
                    {
                        "first": "Leanne",
                        "middle": [],
                        "last": "Govender",
                        "suffix": ""
                    },
                    {
                        "first": "Arnu",
                        "middle": [],
                        "last": "Nortje",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Pretorius",
                        "suffix": ""
                    },
                    {
                        "first": "Ewald",
                        "middle": [],
                        "last": "Elan Van Biljon",
                        "suffix": ""
                    },
                    {
                        "first": "Lisa",
                        "middle": [],
                        "last": "Van Der Westhuizen",
                        "suffix": ""
                    },
                    {
                        "first": "Herman",
                        "middle": [],
                        "last": "Van Staden",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kamper",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1904.07556"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ryan Eloff, Andr\u00e9 Nortje, Benjamin van Niekerk, Avashna Govender, Leanne Nortje, Arnu Pretorius, Elan van Biljon, Ewald van der Westhuizen, Lisa van Staden, and Herman Kamper. 2019. Unsu- pervised acoustic unit discovery for speech synthe- sis using discrete latent-variable neural networks. arXiv:1904.07556 [cs, eess]. ArXiv: 1904.07556.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Understanding and improving word embeddings through a neuroscientific lens",
                "authors": [
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Fereidooni",
                        "suffix": ""
                    },
                    {
                        "first": "Viola",
                        "middle": [],
                        "last": "Mocz",
                        "suffix": ""
                    },
                    {
                        "first": "Dragomir",
                        "middle": [],
                        "last": "Radev",
                        "suffix": ""
                    },
                    {
                        "first": "Marvin",
                        "middle": [],
                        "last": "Chun",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sam Fereidooni, Viola Mocz, Dragomir Radev, and Marvin Chun. 2020. Understanding and improv- ing word embeddings through a neuroscientific lens. bioRxiv.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "From Audio to Semantics: Approaches to End-to-End Spoken Language Understanding",
                "authors": [
                    {
                        "first": "Parisa",
                        "middle": [],
                        "last": "Haghani",
                        "suffix": ""
                    },
                    {
                        "first": "Arun",
                        "middle": [],
                        "last": "Narayanan",
                        "suffix": ""
                    },
                    {
                        "first": "Michiel",
                        "middle": [],
                        "last": "Bacchiani",
                        "suffix": ""
                    },
                    {
                        "first": "Galen",
                        "middle": [],
                        "last": "Chuang",
                        "suffix": ""
                    },
                    {
                        "first": "Neeraj",
                        "middle": [],
                        "last": "Gaur",
                        "suffix": ""
                    },
                    {
                        "first": "Pedro",
                        "middle": [],
                        "last": "Moreno",
                        "suffix": ""
                    },
                    {
                        "first": "Rohit",
                        "middle": [],
                        "last": "Prabhavalkar",
                        "suffix": ""
                    },
                    {
                        "first": "Zhongdi",
                        "middle": [],
                        "last": "Qu",
                        "suffix": ""
                    },
                    {
                        "first": "Austin",
                        "middle": [],
                        "last": "Waters",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "2018 IEEE Spoken Language Technology Workshop (SLT)",
                "volume": "",
                "issue": "",
                "pages": "720--726",
                "other_ids": {
                    "DOI": [
                        "10.1109/SLT.2018.8639043"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Parisa Haghani, Arun Narayanan, Michiel Bacchiani, Galen Chuang, Neeraj Gaur, Pedro Moreno, Ro- hit Prabhavalkar, Zhongdi Qu, and Austin Waters. 2018. From Audio to Semantics: Approaches to End-to-End Spoken Language Understanding. In 2018 IEEE Spoken Language Technology Workshop (SLT), pages 720-726. ISSN: null.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Deep multimodal semantic embeddings for speech and images",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Harwath",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Glass",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)",
                "volume": "",
                "issue": "",
                "pages": "237--244",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Harwath and James Glass. 2015. Deep mul- timodal semantic embeddings for speech and im- ages. In 2015 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pages 237- 244. IEEE.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Learning hierarchical discrete linguistic units from visually-grounded speech",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Harwath",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Ning",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [
                            "R"
                        ],
                        "last": "Glass",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "8th International Conference on Learning Representations",
                "volume": "2020",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Harwath, Wei-Ning Hsu, and James R. Glass. 2020a. Learning hierarchical discrete linguistic units from visually-grounded speech. In 8th Inter- national Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Jointly discovering visual objects and spoken words from raw sensory input",
                "authors": [
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Harwath",
                        "suffix": ""
                    },
                    {
                        "first": "Adri\u00e0",
                        "middle": [],
                        "last": "Recasens",
                        "suffix": ""
                    },
                    {
                        "first": "D\u00eddac",
                        "middle": [],
                        "last": "Sur\u00eds",
                        "suffix": ""
                    },
                    {
                        "first": "Galen",
                        "middle": [],
                        "last": "Chuang",
                        "suffix": ""
                    },
                    {
                        "first": "Antonio",
                        "middle": [],
                        "last": "Torralba",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Glass",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "International Journal of Computer Vision",
                "volume": "128",
                "issue": "3",
                "pages": "620--641",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "David Harwath, Adri\u00e0 Recasens, D\u00eddac Sur\u00eds, Galen Chuang, Antonio Torralba, and James Glass. 2020b. Jointly discovering visual objects and spoken words from raw sensory input. International Journal of Computer Vision, 128(3):620-641.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Deep residual learning for image recognition",
                "authors": [
                    {
                        "first": "Kaiming",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Xiangyu",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Shaoqing",
                        "middle": [],
                        "last": "Ren",
                        "suffix": ""
                    },
                    {
                        "first": "Jian",
                        "middle": [],
                        "last": "Sun",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "2016 IEEE Conference on Computer Vision and Pattern Recognition",
                "volume": "",
                "issue": "",
                "pages": "770--778",
                "other_ids": {
                    "DOI": [
                        "10.1109/CVPR.2016.90"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recog- nition. In 2016 IEEE Conference on Computer Vi- sion and Pattern Recognition, CVPR 2016, Las Ve- gas, NV, USA, June 27-30, 2016, pages 770-778. IEEE Computer Society.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Textual Supervision for Visually Grounded Spoken Language Understanding",
                "authors": [
                    {
                        "first": "Bertrand",
                        "middle": [],
                        "last": "Higy",
                        "suffix": ""
                    },
                    {
                        "first": "Desmond",
                        "middle": [],
                        "last": "Elliott",
                        "suffix": ""
                    },
                    {
                        "first": "Grzegorz",
                        "middle": [],
                        "last": "Chrupa\u0142a",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Findings of the Association for Computational Linguistics: EMNLP 2020",
                "volume": "",
                "issue": "",
                "pages": "2698--2709",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.findings-emnlp.244"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Bertrand Higy, Desmond Elliott, and Grzegorz Chru- pa\u0142a. 2020. Textual Supervision for Visually Grounded Spoken Language Understanding. In Findings of the Association for Computational Lin- guistics: EMNLP 2020, pages 2698-2709, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Visualisation and 'diagnostic classifiers' reveal how recurrent and recursive neural networks process hierarchical structure",
                "authors": [
                    {
                        "first": "Dieuwke",
                        "middle": [],
                        "last": "Hupkes",
                        "suffix": ""
                    },
                    {
                        "first": "Sara",
                        "middle": [],
                        "last": "Veldhoen",
                        "suffix": ""
                    },
                    {
                        "first": "Willem",
                        "middle": [],
                        "last": "Zuidema",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Journal of Artificial Intelligence Research",
                "volume": "61",
                "issue": "",
                "pages": "907--926",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema. 2018. Visualisation and 'diagnostic classifiers' re- veal how recurrent and recursive neural networks process hierarchical structure. Journal of Artificial Intelligence Research, 61:907-926.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Adam: A method for stochastic optimization",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Diederik",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "3rd International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In 3rd Inter- national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Representational similarity analysisconnecting the branches of systems neuroscience",
                "authors": [
                    {
                        "first": "Nikolaus",
                        "middle": [],
                        "last": "Kriegeskorte",
                        "suffix": ""
                    },
                    {
                        "first": "Marieke",
                        "middle": [],
                        "last": "Mur",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [
                            "A"
                        ],
                        "last": "Bandettini",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Frontiers in systems neuroscience",
                "volume": "2",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nikolaus Kriegeskorte, Marieke Mur, and Peter A Ban- dettini. 2008. Representational similarity analysis- connecting the branches of systems neuroscience. Frontiers in systems neuroscience, 2:4.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Cross-Modal Discrete Representation Learning",
                "authors": [
                    {
                        "first": "Alexander",
                        "middle": [
                            "H"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Souyoung",
                        "middle": [],
                        "last": "Jin",
                        "suffix": ""
                    },
                    {
                        "first": "-I. Jeff",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Lai",
                        "suffix": ""
                    },
                    {
                        "first": "Aude",
                        "middle": [],
                        "last": "Rouditchenko",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Oliva",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Glass",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2106.05438[cs].ArXiv:2106.05438"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alexander H. Liu, SouYoung Jin, Cheng-I. Jeff Lai, An- drew Rouditchenko, Aude Oliva, and James Glass. 2021. Cross-Modal Discrete Representation Learn- ing. arXiv:2106.05438 [cs]. ArXiv: 2106.05438.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Language Learning Using Speech to Image Retrieval",
                "authors": [
                    {
                        "first": "Danny",
                        "middle": [],
                        "last": "Merkx",
                        "suffix": ""
                    },
                    {
                        "first": "Stefan",
                        "middle": [
                            "L"
                        ],
                        "last": "Frank",
                        "suffix": ""
                    },
                    {
                        "first": "Mirjam",
                        "middle": [],
                        "last": "Ernestus",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proc. Interspeech",
                "volume": "",
                "issue": "",
                "pages": "1841--1845",
                "other_ids": {
                    "DOI": [
                        "10.21437/Interspeech.2019-3067"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Danny Merkx, Stefan L. Frank, and Mirjam Ernestus. 2019. Language Learning Using Speech to Image Retrieval. In Proc. Interspeech 2019, pages 1841- 1845.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Information-theoretic probing for linguistic structure",
                "authors": [
                    {
                        "first": "Tiago",
                        "middle": [],
                        "last": "Pimentel",
                        "suffix": ""
                    },
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Valvoda",
                        "suffix": ""
                    },
                    {
                        "first": "Rowan",
                        "middle": [],
                        "last": "Hall Maudslay",
                        "suffix": ""
                    },
                    {
                        "first": "Ran",
                        "middle": [],
                        "last": "Zmigrod",
                        "suffix": ""
                    },
                    {
                        "first": "Adina",
                        "middle": [],
                        "last": "Williams",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Cotterell",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "4609--4622",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.420"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay, Ran Zmigrod, Adina Williams, and Ryan Cotterell. 2020. Information-theoretic probing for linguistic structure. In Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, pages 4609-4622, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "The kaldi speech recognition toolkit",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Povey",
                        "suffix": ""
                    },
                    {
                        "first": "Arnab",
                        "middle": [],
                        "last": "Ghoshal",
                        "suffix": ""
                    },
                    {
                        "first": "Gilles",
                        "middle": [],
                        "last": "Boulianne",
                        "suffix": ""
                    },
                    {
                        "first": "Lukas",
                        "middle": [],
                        "last": "Burget",
                        "suffix": ""
                    },
                    {
                        "first": "Ondrej",
                        "middle": [],
                        "last": "Glembek",
                        "suffix": ""
                    },
                    {
                        "first": "Nagendra",
                        "middle": [],
                        "last": "Goel",
                        "suffix": ""
                    },
                    {
                        "first": "Mirko",
                        "middle": [],
                        "last": "Hannemann",
                        "suffix": ""
                    },
                    {
                        "first": "Petr",
                        "middle": [],
                        "last": "Motlicek",
                        "suffix": ""
                    },
                    {
                        "first": "Yanmin",
                        "middle": [],
                        "last": "Qian",
                        "suffix": ""
                    },
                    {
                        "first": "Petr",
                        "middle": [],
                        "last": "Schwarz",
                        "suffix": ""
                    },
                    {
                        "first": "Jan",
                        "middle": [],
                        "last": "Silovsky",
                        "suffix": ""
                    },
                    {
                        "first": "Georg",
                        "middle": [],
                        "last": "Stemmer",
                        "suffix": ""
                    },
                    {
                        "first": "Karel",
                        "middle": [],
                        "last": "Vesely",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "IEEE 2011 Workshop on Automatic Speech Recognition and Understanding",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek, Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky, Georg Stemmer, and Karel Vesely. 2011. The kaldi speech recognition toolkit. In IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE Signal Pro- cessing Society. IEEE Catalog No.: CFP11SRW- USB.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Collecting image annotations using Amazon's Mechanical Turk",
                "authors": [
                    {
                        "first": "Cyrus",
                        "middle": [],
                        "last": "Rashtchian",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Young",
                        "suffix": ""
                    },
                    {
                        "first": "Micah",
                        "middle": [],
                        "last": "Hodosh",
                        "suffix": ""
                    },
                    {
                        "first": "Julia",
                        "middle": [],
                        "last": "Hockenmaier",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon's Mechanical Turk",
                "volume": "",
                "issue": "",
                "pages": "139--147",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cyrus Rashtchian, Peter Young, Micah Hodosh, and Julia Hockenmaier. 2010. Collecting image annota- tions using Amazon's Mechanical Turk. In Proceed- ings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon's Mechan- ical Turk, pages 139-147, Los Angeles. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Vmeasure: A conditional entropy-based external cluster evaluation measure",
                "authors": [
                    {
                        "first": "Andrew",
                        "middle": [],
                        "last": "Rosenberg",
                        "suffix": ""
                    },
                    {
                        "first": "Julia",
                        "middle": [],
                        "last": "Hirschberg",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL)",
                "volume": "",
                "issue": "",
                "pages": "410--420",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Andrew Rosenberg and Julia Hirschberg. 2007. V- measure: A conditional entropy-based external clus- ter evaluation measure. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pages 410- 420, Prague, Czech Republic. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "ABX-discriminability measures and applications",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Schatz",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas Schatz. 2016. ABX-discriminability measures and applications. Ph.D. thesis, Universit\u00e9 Paris 6 (UPMC).",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Cyclical learning rates for training neural networks",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Leslie",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "2017 IEEE Winter Conference on Applications of Computer Vision (WACV)",
                "volume": "",
                "issue": "",
                "pages": "464--472",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Leslie N Smith. 2017. Cyclical learning rates for train- ing neural networks. In 2017 IEEE Winter Confer- ence on Applications of Computer Vision (WACV), pages 464-472. IEEE.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Transformer VQ-VAE for Unsupervised Unit Discovery and Speech Synthesis",
                "authors": [
                    {
                        "first": "Andros",
                        "middle": [],
                        "last": "Tjandra",
                        "suffix": ""
                    },
                    {
                        "first": "Sakriani",
                        "middle": [],
                        "last": "Sakti",
                        "suffix": ""
                    },
                    {
                        "first": "Satoshi",
                        "middle": [],
                        "last": "Nakamura",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "ZeroSpeech 2020 Challenge",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2005.11676"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. 2020. Transformer VQ-VAE for Unsupervised Unit Discovery and Speech Synthesis: ZeroSpeech 2020 Challenge. arXiv:2005.11676 [cs, eess]. ArXiv: 2005.11676.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "VQVAE Unsupervised Unit Discovery and Multi-scale Code2Spec Inverter for Zerospeech Challenge",
                "authors": [
                    {
                        "first": "Andros",
                        "middle": [],
                        "last": "Tjandra",
                        "suffix": ""
                    },
                    {
                        "first": "Berrak",
                        "middle": [],
                        "last": "Sisman",
                        "suffix": ""
                    },
                    {
                        "first": "Mingyang",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Sakriani",
                        "middle": [],
                        "last": "Sakti",
                        "suffix": ""
                    },
                    {
                        "first": "Haizhou",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "Satoshi",
                        "middle": [],
                        "last": "Nakamura",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1905.11449"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Andros Tjandra, Berrak Sisman, Mingyang Zhang, Sakriani Sakti, Haizhou Li, and Satoshi Naka- mura. 2019. VQVAE Unsupervised Unit Discov- ery and Multi-scale Code2Spec Inverter for Ze- rospeech Challenge 2019. arXiv:1905.11449 [cs, eess]. ArXiv: 1905.11449.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "Neural discrete representation learning",
                "authors": [
                    {
                        "first": "A\u00e4ron",
                        "middle": [],
                        "last": "Van Den Oord",
                        "suffix": ""
                    },
                    {
                        "first": "Oriol",
                        "middle": [],
                        "last": "Vinyals",
                        "suffix": ""
                    },
                    {
                        "first": "Koray",
                        "middle": [],
                        "last": "Kavukcuoglu",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "6306--6315",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A\u00e4ron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. 2017. Neural discrete representation learning. In Advances in Neural Information Pro- cessing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4- 9, 2017, Long Beach, CA, USA, pages 6306-6315.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "Vector-quantized neural networks for acoustic unit discovery in the zerospeech 2020 challenge",
                "authors": [
                    {
                        "first": "Leanne",
                        "middle": [],
                        "last": "Benjamin Van Niekerk",
                        "suffix": ""
                    },
                    {
                        "first": "Herman",
                        "middle": [],
                        "last": "Nortje",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kamper",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2005.09409"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Benjamin van Niekerk, Leanne Nortje, and Herman Kamper. 2020. Vector-quantized neural networks for acoustic unit discovery in the zerospeech 2020 challenge. arXiv preprint arXiv:2005.09409.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "The zero resource speech challenge 2015",
                "authors": [
                    {
                        "first": "Maarten",
                        "middle": [],
                        "last": "Versteegh",
                        "suffix": ""
                    },
                    {
                        "first": "Roland",
                        "middle": [],
                        "last": "Thiolliere",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Schatz",
                        "suffix": ""
                    },
                    {
                        "first": "Xuan",
                        "middle": [
                            "Nga"
                        ],
                        "last": "Cao",
                        "suffix": ""
                    },
                    {
                        "first": "Xavier",
                        "middle": [],
                        "last": "Anguera",
                        "suffix": ""
                    },
                    {
                        "first": "Aren",
                        "middle": [],
                        "last": "Jansen",
                        "suffix": ""
                    },
                    {
                        "first": "Emmanuel",
                        "middle": [],
                        "last": "Dupoux",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Sixteenth annual conference of the international speech communication association",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maarten Versteegh, Roland Thiolliere, Thomas Schatz, Xuan Nga Cao, Xavier Anguera, Aren Jansen, and Emmanuel Dupoux. 2015. The zero resource speech challenge 2015. In Sixteenth annual conference of the international speech communication associa- tion.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "; Chrupa\u0142a and Alishahi (2019); Abnar et al. (2019); Abdou et al. (2019); Chrupa\u0142a et al. (2020); Fereidooni et al. (2020); Davis and van Schijndel (2020) for uses in NLP and speech processing.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "text": "Accuracy of speaker classification on codebooks for the self-supervised and visually-supervised models. Trained models are represented by black icons and solid lines. Dashed lines and white filled icons represent randomly initialized models.",
                "uris": null,
                "num": null,
                "type_str": "figure"
            },
            "TABREF0": {
                "content": "<table><tr><td>Study</td><td>Objective</td><td>Model</td><td>Analysis</td><td>Manipulated factors</td></tr><tr><td colspan=\"2\">van den Oord et al. (2017) RAW</td><td>VAE</td><td>Phoneme (majority label)</td><td>None</td></tr><tr><td>Chorowski et al. (2019)</td><td>RAW</td><td>(V)AE, VQ-</td><td>Phoneme (ABX, frame-wise</td><td>VAE latent dimensions</td></tr><tr><td/><td/><td>VAE</td><td>DC), gender, speaker</td><td/></tr><tr><td>Chung et al. (2020)</td><td>Predicting next</td><td>APC</td><td>Phoneme (frame-wise DC),</td><td>VQ layer number, posi-</td></tr><tr><td/><td>frame</td><td/><td>speaker</td><td>tion, codebook size</td></tr><tr><td colspan=\"2\">van Niekerk et al. (2020) RAW, predicting</td><td>VQ-VAE,</td><td>Phoneme (ABX), speaker, voice</td><td>None</td></tr><tr><td/><td>future frames</td><td>VQ-CPC</td><td>conversion</td><td/></tr><tr><td>Harwath et al. (2020a)</td><td>Visual ground-</td><td colspan=\"2\">ResDAVEnet Phoneme (ABX), bitrate, word</td><td>VQ layer number, posi-</td></tr><tr><td/><td>ing</td><td/><td>(F1 scores)</td><td>tion, training regime</td></tr><tr><td colspan=\"3\">top), phoneme prediction using discrete represen-</td><td/><td/></tr><tr><td colspan=\"3\">tations improves over using continuous representa-</td><td/><td/></tr><tr><td colspan=\"3\">tions learned by an APC model without VQ. In this</td><td/><td/></tr><tr><td colspan=\"3\">configuration, larger codebook sizes lead to better</td><td/><td/></tr><tr><td colspan=\"3\">performance in phoneme classification but not in</td><td/><td/></tr><tr><td>speaker identification.</td><td/><td/><td/><td/></tr></table>",
                "text": "A comparison of studies of VQ-based speech models. RAW (Reconstructing Audio Waveform); VAE (Variational Autoencoder); APC (Autoregressive Predictive Coding); CPC (Contrastive Predictive Coding); DC (Diagnostic Classifier).",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF2": {
                "content": "<table/>",
                "text": "Summary of the main features of the evaluation metrics used.",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF4": {
                "content": "<table/>",
                "text": "Correlation between the ABX and RSA scores, with RSA computed on complete utterances and phoneme triplets, for the visually supervised (VS) and self-supervised (SS) models.",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF5": {
                "content": "<table><tr><td/><td>0.4</td><td/><td/><td>DC</td><td/><td/><td/><td>NMI</td></tr><tr><td>Accuracy</td><td>0.2 0.3</td><td/><td/><td>Model Self-supervised VS -VQ at level 1 VS -VQ at level 2 VS -VQ at level 3 Mode trained random</td><td>NMI</td><td>0.1 0.2</td><td/><td>Model Self-supervised VS -VQ at level 1 VS -VQ at level 2 VS -VQ at level 3 Mode trained random</td></tr><tr><td/><td>0.1</td><td>32</td><td>64</td><td>128 256 512 1024 Codebook size</td><td/><td>0</td><td>32</td><td>64</td><td>Codebook size 128 256 512 1024</td></tr><tr><td/><td/><td/><td/><td>RSA</td><td/><td/><td/><td>ABX</td></tr><tr><td/><td>0.3</td><td/><td/><td/><td/><td/><td/></tr><tr><td>r</td><td>0.1 0.2</td><td/><td/><td>Model Self-supervised VS -VQ at level 1 VS -VQ at level 2 VS -VQ at level 3 Mode trained random</td><td>Accuracy</td><td>0.7 0.8</td><td/><td>Model Self-supervised VS -VQ at level 1 VS -VQ at level 2 VS -VQ at level 3 Mode trained random</td></tr><tr><td/><td>0</td><td/><td/><td/><td/><td/><td/></tr><tr><td/><td/><td>32</td><td>64</td><td>128 256 512 1024 Codebook size</td><td/><td/><td>32</td><td>64</td><td>128 256 512 1024 Codebook size</td></tr><tr><td colspan=\"9\">Figure 1: Correspondence of codes to phonemes according to four different metrics as a function of codebook size,</td></tr><tr><td colspan=\"9\">type of model, and level of VQ layer placement (in the visually-supervised case).</td></tr><tr><td colspan=\"3\">Top left:</td><td/><td/><td/><td/><td/></tr></table>",
                "text": "Accuracy of the DC. Top right: NMI between codes and phoneme labels. Bottom left: RSA score measured against phonemic transcriptions. Bottom right: Accuracy on the ABX task. RSA is computed on full utterances; ABX on phoneme-triple segments. DC and NMI are computed frame-wise on full utterances forced-aligned to the phonemic transcriptions. Higher scores are better for all metrics. Trained models are represented by black icons and solid lines. Dashed lines and white filled icons represent randomly initialized models.",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF7": {
                "content": "<table/>",
                "text": "Skew and excess kurtosis of edit distance distributions, for the self-supervised (SS) and visuallysupervised level 1 (VS) models.",
                "num": null,
                "type_str": "table",
                "html": null
            }
        }
    }
}