File size: 102,424 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T01:07:32.105513Z"
    },
    "title": "Measuring the relative importance of full text sections for information retrieval from scientific literature",
    "authors": [
        {
            "first": "Lana",
            "middle": [],
            "last": "Yeganova",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institutes of Health (NIH)",
                "location": {
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Won",
            "middle": [],
            "last": "Kim",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institutes of Health (NIH)",
                "location": {
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Donald",
            "middle": [
                "C"
            ],
            "last": "Comeau",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institutes of Health (NIH)",
                "location": {
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "W",
            "middle": [
                "John"
            ],
            "last": "Wilbur",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institutes of Health (NIH)",
                "location": {
                    "country": "USA"
                }
            },
            "email": ""
        },
        {
            "first": "Zhiyong",
            "middle": [],
            "last": "Lu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National Institutes of Health (NIH)",
                "location": {
                    "country": "USA"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "With the growing availability of full-text articles, integrating abstracts and full texts of documents into a unified representation is essential for comprehensive search of scientific literature. However, previous studies have shown that na\u00efvely merging abstracts with full texts of articles does not consistently yield better performance. Balancing the contribution of query terms appearing in the abstract and in sections of different importance in full text articles remains a challenge both with traditional bag-of-words IR approaches and for neural retrieval methods. In this work we establish the connection between the BM25 score of a query term appearing in a section of a full text document and the probability of that document being clicked or identified as relevant. Probability is computed using Pool Adjacent Violators (PAV), an isotonic regression algorithm, providing a maximum likelihood estimate based on the observed data. Using this probabilistic transformation of BM25 scores we show an improved performance on the PubMed Click dataset developed and presented in this study, as well as on the 2007 TREC Genomics collection.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "With the growing availability of full-text articles, integrating abstracts and full texts of documents into a unified representation is essential for comprehensive search of scientific literature. However, previous studies have shown that na\u00efvely merging abstracts with full texts of articles does not consistently yield better performance. Balancing the contribution of query terms appearing in the abstract and in sections of different importance in full text articles remains a challenge both with traditional bag-of-words IR approaches and for neural retrieval methods. In this work we establish the connection between the BM25 score of a query term appearing in a section of a full text document and the probability of that document being clicked or identified as relevant. Probability is computed using Pool Adjacent Violators (PAV), an isotonic regression algorithm, providing a maximum likelihood estimate based on the observed data. Using this probabilistic transformation of BM25 scores we show an improved performance on the PubMed Click dataset developed and presented in this study, as well as on the 2007 TREC Genomics collection.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "PubMed (https://pubmed.gov) is a search engine providing access to a collection of more than 30 million biomedical abstracts. Of these, about 5 million have full text available in PubMed Central (PMC; https://www.ncbi.nlm.nih.gov/pmc). Millions of users search PubMed and PMC daily (Fiorini, Canese, et al., 2018) . However, it is not currently possible for a user to simultaneously query the contents of both databases with a single integrated search.",
                "cite_spans": [
                    {
                        "start": 195,
                        "end": 200,
                        "text": "(PMC;",
                        "ref_id": null
                    },
                    {
                        "start": 282,
                        "end": 313,
                        "text": "(Fiorini, Canese, et al., 2018)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "With the growing availability of full-text articles, integrating these two rich resources to allow a unified retrieval becomes an essential goal, which has potential for improving information retrieval and the user search experience (Fiorini, Leaman, Lipman, & Lu, 2018) . An obvious benefit is improving the handling of queries that produce limited or no retrieval in PubMed. In many instances, incorporating full text information can yield useful retrieval results. For example, the query cd40 fmf retrieves no articles in PubMed, but finds 60 articles in PMC discussing protein cd40 and a computational technique of flow microfluorometry (FMF) .",
                "cite_spans": [
                    {
                        "start": 233,
                        "end": 270,
                        "text": "(Fiorini, Leaman, Lipman, & Lu, 2018)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 641,
                        "end": 646,
                        "text": "(FMF)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "A number of studies have pointed out the benefits of full text for a range of text mining tasks (Cejuela et al., 2014; Cohen, Johnson, Verspoor, Roeder, & Hunter, 2010; J. Kim, Kim, Han, & Rebholz-Schuhmann, 2015; Westergaard, Staerfeldt, T\u00f8nsberg, Jensen , & Brunak, 2018) and demonstrated improved performance on named entity recognition, relation extraction, and other natural language processing tasks (Wei, Allot, Leaman, & Lu, 2019) . For information retrieval, however, combining the full text of some papers with only the abstracts of others is not a trivial endeavor. Na\u00efvely merging the body text of articles with abstract data, naturally increases the recall, but at a cost in precision, generally degrading the overall quality of the combined search (W. Kim, Yeganova, Comeau, Wilbur, & Lu, 2018; Jimmy Lin, 2009) . This can be explained by several complexities associated with full texts, such as multiple subtopics often being discussed in a fulllength article or information being mentioned in the form of conjecture or a proposal for future work. In addition, not every record matching the query is focused on the query subject, as query words may be mentioned in passing, which is more common in full text. Another challenge in incorporating full text in retrieval is merging sources of information with different characteristics: the abstract, generally a concise summary on the topic of the study, versus a lengthy detailed description provided in full text. To address that, recent studies have attempted to use full text in a more targeted way -by performing paragraph-level retrieval (Hersh, Cohen, Ruslen, & Roberts, 2007; Jimmy Lin, 2009) , passage-level retrieval (Sarrouti & El Alaoui, 2017) or sentencelevel retrieval (Allot et al., 2019; Blanco & Zaragoza, 2010) . LitSense (Allot et al., 2019) , for example, searches over a half-billion sentences from the combined text of 30+ million PubMed records and \u223c3 million open access full-text articles in PMC.",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 118,
                        "text": "(Cejuela et al., 2014;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 119,
                        "end": 168,
                        "text": "Cohen, Johnson, Verspoor, Roeder, & Hunter, 2010;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 169,
                        "end": 213,
                        "text": "J. Kim, Kim, Han, & Rebholz-Schuhmann, 2015;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 214,
                        "end": 273,
                        "text": "Westergaard, Staerfeldt, T\u00f8nsberg, Jensen , & Brunak, 2018)",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 406,
                        "end": 438,
                        "text": "(Wei, Allot, Leaman, & Lu, 2019)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 766,
                        "end": 808,
                        "text": "Kim, Yeganova, Comeau, Wilbur, & Lu, 2018;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 809,
                        "end": 825,
                        "text": "Jimmy Lin, 2009)",
                        "ref_id": null
                    },
                    {
                        "start": 1606,
                        "end": 1645,
                        "text": "(Hersh, Cohen, Ruslen, & Roberts, 2007;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 1646,
                        "end": 1662,
                        "text": "Jimmy Lin, 2009)",
                        "ref_id": null
                    },
                    {
                        "start": 1689,
                        "end": 1717,
                        "text": "(Sarrouti & El Alaoui, 2017)",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 1745,
                        "end": 1765,
                        "text": "(Allot et al., 2019;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 1766,
                        "end": 1790,
                        "text": "Blanco & Zaragoza, 2010)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1802,
                        "end": 1822,
                        "text": "(Allot et al., 2019)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Towards the overarching goal of improving PubMed document retrieval by incorporating the full texts of articles in PMC, in this work we lay the groundwork by studying strategies for integrating full text information with abstract for one query token at a time. We choose to use BM25, a classical term weighting approach, as a base token score. We, however, observe that token BM25 scores are not directly comparable between the sections of a full text article -the same BM25 score may have a different significance depending on the section. To address variable significance of sections, we propose converting BM25 section scores into probabilities of a document being clicked and using these probabilities to compute the overall token score. To summarize, given a single token in a query, we 1) define how to compute section scores, 2) examine the relative importance of different sections in the full text, and 3) study how to combine section scores from a document.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "To examine these questions, we use two evaluation datasets. One is a standard TREC dataset frequently used for evaluating ad-hoc information retrieval. The second is a dataset we created based on PubMed user click information. The dataset is constructed from PubMed queries and clicks under the assumption that a clicked document is relevant to a user issuing a query. The dataset is used for both training and evaluation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Neural retrieval models have been extensively studies in recent years in the context of Information Retrieval (Guo et al., 2020; Jimmy Lin et al., 2021) . However, despite significant advances, they show no consistent improvement over traditional bag of words IR methods (Chen & Hersh, 2020; Zhang et al., 2020) . BM25 remains in the core of most production search systems, including Lucene's search engine and PubMed. In addition, many relevance ranking algorithms rely on BM25 as a preliminary retrieval step, followed by reranking of the top scoring documents (Fiorini, Canese, et al., 2018) .",
                "cite_spans": [
                    {
                        "start": 110,
                        "end": 128,
                        "text": "(Guo et al., 2020;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 129,
                        "end": 152,
                        "text": "Jimmy Lin et al., 2021)",
                        "ref_id": null
                    },
                    {
                        "start": 271,
                        "end": 291,
                        "text": "(Chen & Hersh, 2020;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 292,
                        "end": 311,
                        "text": "Zhang et al., 2020)",
                        "ref_id": null
                    },
                    {
                        "start": 563,
                        "end": 594,
                        "text": "(Fiorini, Canese, et al., 2018)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In the next section, we describe the evaluation datasets, and lay out a retrieval framework for studying the problem at hand. Then, we describe our approach of converting the raw BM25 section score into the probability of document relevance. Such probabilities are comparable across the sections of full text documents, including the abstract. In section 4 we learn how to combine them in a way which accounts for the relative importance of sections. Results are presented in section 5, followed by the Discussion and Conclusions section.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Retrieval methods are generally evaluated based on how the retrieval output compares to a gold standard. A gold standard is a set of records judged for relevance to a query that provides a benchmark against which to measure the quality of search results. This approach is used at the annual Text Retrieval Conference (TREC), run by the National Institute of Standards and Technology (NIST) (Voorhees, 2001) . NIST develops a list of queries, called topics, and provides large test collections and uniform scoring procedures. The difficulty with this approach is that a gold standard is created by human experts which makes the evaluation expensive, time consuming, and therefore not available for large scale experiments involving thousands of queries. To compare different retrieval approaches without a manually created gold standard we describe semi-automatically created test data based on indirect human judgements that can be utilized in our setting. The PubMed User Click dataset is created based on retrospective analysis of PubMed queries under the assumption that a clicked document is relevant to a user issuing a query. In our study we use both, the TREC 2007 Genomics and PubMed user click datasets.",
                "cite_spans": [
                    {
                        "start": 390,
                        "end": 406,
                        "text": "(Voorhees, 2001)",
                        "ref_id": "BIBREF21"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Datasets",
                "sec_num": "2"
            },
            {
                "text": "TREC 2007 Genomics dataset. The Genomics dataset (Hersh et al., 2007) consists of 36 queries, called topics, and 162,259 full-text articles from Highwire Press (http:// highwire.stanford.edu/). 160K of these documents were successfully mapped to their corresponding PubMed Identifiers (PMIDs) and are the basis of our experiments. Each document is split into legal spans corresponding to paragraphs in the articles, amounting to over 12 million legal spans. For each of the 36 topics human relevance judgements are provided on the paragraph level. Following previous studies, a document is labeled positive, if it contains at least 1 paragraph judged to be relevant to the query.",
                "cite_spans": [
                    {
                        "start": 49,
                        "end": 69,
                        "text": "(Hersh et al., 2007)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Datasets",
                "sec_num": "2"
            },
            {
                "text": "The query topics are presented in the form of biological questions, such as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Datasets",
                "sec_num": "2"
            },
            {
                "text": "What toxicities are associated with etidronate? What signs or symptoms are caused by human parvovirus infection? These question-like topic formulations contain generic words, that are not representative of the specific information need of a user, such as \"what\", \"associated\", etc. We applied a combination of frequency-based techniques and manual validation to filter these stop words out and used the remaining 165 content terms for our analysis.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Datasets",
                "sec_num": "2"
            },
            {
                "text": "PubMed Click Dataset. The dataset is constructed from PubMed queries and clicks, under the general assumption that a clicked document is relevant to a user issuing a query.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Datasets",
                "sec_num": "2"
            },
            {
                "text": "The presence of a query token in the title is known to present a strong signal associated with a document being clicked (W. Kim et al., 2018; Resnick, 1961) . Users searching PubMed only see the title of the document on the DocSum page and not the abstract or the full text. If query tokens do not appear in the title, then predictions on the abstract or the full text can only be effective to the extent they predict something about the title that makes the user choose to click. This is a weaker signal and would be obscured by query words appearing in a title. To remove this bias, we only consider documents for which none of the query tokens appear in the title. Note that since the document is retrieved via PubMed, all query tokens must be found in the title, abstract or article citation information. We collect only retrieved documents for which none of the query tokens appear in the title and all of them appear in the abstract.",
                "cite_spans": [
                    {
                        "start": 124,
                        "end": 141,
                        "text": "Kim et al., 2018;",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 142,
                        "end": 156,
                        "text": "Resnick, 1961)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Datasets",
                "sec_num": "2"
            },
            {
                "text": "Clicked documents are assumed to be relevant to the user issuing the query, and we label a clicked document as a positive instance. We further assumed that documents displayed above the clicked document were seen by the user and rejected. These documents are labeled negative. Clicks on the top rank are ignored as a precaution, as those clicks might simply represent a user's urge to click on something indiscriminately. Documents displayed below the lowest clicked document on the document summary page are ignored as the user may not have considered them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Datasets",
                "sec_num": "2"
            },
            {
                "text": "The same query string may be searched multiple times within a period of time and subsequently may result in different articles displayed and different documents clicked. In addition, a query within a single search may receive multiple clicks on the same page. To account for these user search actions, we merge the data for the evaluation dataset as follows. Given a unique query string, we collect all positive and negative data points associated with each click instance, and remove from the negative set those documents that also appear as positives following the reasoning: if a document is thought to be relevant by at least one user we consider it relevant for that query string. Using this dataset, for each query token we wish to compare its score coming from a document's abstract versus the body text. First, to directly measure the benefit of full text, for each query in the PubMed Click Dataset, we perform this comparison on a subset of documents in the dataset that have full text available in PMC. Second, for each query in the dataset, we perform the comparison on all documents available in the PubMed Click dataset. This includes documents that do and do not have the full text available, as in production PubMed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Datasets",
                "sec_num": "2"
            },
            {
                "text": "We randomly sampled 2 million unique queries from the PubMed query log in 2017, which retrieved at least one positive document. On average there are 6.60 documents collected for each query, an average of ~30% of which are labeled positive. Of 6.60 documents available for each query, only 2.65 documents have full text available in PubMed Central (~40%). We separated two thirds of queries for training PAV functions described in the next section, and one third for testing. 634,364 queries along with collected labeled documents comprise the test portion of the PubMed click dataset. A subset of that dataset that includes queries for which all retrieved documents have full text available constitutes 232,636 queries, and will be referred to as Set_FT.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Datasets",
                "sec_num": "2"
            },
            {
                "text": "Here we examine how to optimally use BM25 scores coming from the abstracts and full text paragraphs to improve retrieval performance. We first define the score of a token within a full-text section, which then we transform into a probability of that document being relevant given the score and the section. We then learn how to combine these section-based token scores into an overall score predicting the probability of a document being relevant.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methods -Using Full Text to score a query token",
                "sec_num": "3"
            },
            {
                "text": "We obtain full text documents from the PubMed Central full text collection in BioC (https://www.ncbi.nlm.nih.gov/research/bionlp/A PIs) (Comeau, Wei, Do\u011fan, & Z., 2019) . This collection contains about 5 million full text manuscripts. BioC allows one to obtain full text information by paragraphs.",
                "cite_spans": [
                    {
                        "start": 136,
                        "end": 168,
                        "text": "(Comeau, Wei, Do\u011fan, & Z., 2019)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Obtaining Full Text",
                "sec_num": "3.1"
            },
            {
                "text": "Full-text articles are typically comprised of sections presented in a logical sequence. Sections such as Introduction, Materials and Methods, Results, and Discussion predominantly appear as they represent the logical sequence in scientific writing. Frequently, however, sections carrying similar types of information are referred to differently depending on the journal, the requirements of the publishing entity, and author writing style. For example, Introduction and Background section titles are used interchangeably. Results sections can be also referred to as Results and Experiments, etc. Using BioC provided section type identifiers that are based on the labels and regular expressions found in (Kafkas et al., 2015) . To normalize section titles, we concentrate on the following section types: Abstract, Abbreviation, Caption, Discussion, Case, Keyword, Conclusion, Result, Methods, Introduction, Generic Section Title, Supplement, and Appendix. In what follows, all the sections other than the Abstract text will be referred to as body sections or full text sections.",
                "cite_spans": [
                    {
                        "start": 703,
                        "end": 724,
                        "text": "(Kafkas et al., 2015)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Obtaining Full Text",
                "sec_num": "3.1"
            },
            {
                "text": "Given a token \" we can compute a BM25 score representing relevance of the token to a paragraph of text. The score is a product of the IDF weight and a local weighting factor that is zero if does not occur in the paragraph. Using BM25 scoring of tokens in paragraphs, our goal is to devise a number representing the full text and its contribution to an overall document score that predicts user clicks based on each token in a query.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Defining the score of a token in a section",
                "sec_num": "3.2"
            },
            {
                "text": "Since there are generally multiple paragraphs within each section of a paper, we keep the largest BM25 score for a token in a section paragraph and call it the BM25 score of the section type (stype) in a full text document and denote it Keeping the maximum score is plausible because it is not affected by the size of the section (Jimmy Lin, 2009) . Thus, given a token, for any document we have potentially thirteen different BM25 scores for that token, one from each section type.",
                "cite_spans": [
                    {
                        "start": 337,
                        "end": 347,
                        "text": "Lin, 2009)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Defining the score of a token in a section",
                "sec_num": "3.2"
            },
            {
                "text": "Because of the structure of full text documents, the appearance of a token in different sections makes different contributions to the relevance of the document. The same BM25 score may have a different significance depending on the section. For example, a high score in the Results section would likely be more indicative of importance than if it occurred in the Methods section of a paper. To address the issue of variable significance of sections, we convert these BM25 section scores into probabilities of a document being clicked. The Pool Adjacent Violators (PAV) Algorithm (Ayer, Brunk, Ewing, Reid, & Silverman, 1954; Hardle, 1991; Wilbur, Yeganova, & Kim, 2005 ) is ideal for this purpose.",
                "cite_spans": [
                    {
                        "start": 579,
                        "end": 624,
                        "text": "(Ayer, Brunk, Ewing, Reid, & Silverman, 1954;",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 625,
                        "end": 638,
                        "text": "Hardle, 1991;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 639,
                        "end": 668,
                        "text": "Wilbur, Yeganova, & Kim, 2005",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Defining the score of a token in a section",
                "sec_num": "3.2"
            },
            {
                "text": "Given a set of labeled data points along with their scores with the property that the higher the score the more likely a point is in the positive class, PAV is a simple and efficient algorithm that derives from such data a monotonically non-decreasing estimate of the probability that a point is in the positive class. Among non-decreasing functions that estimate the probability of a point being positive as a function of score, the PAV function assigns the highest likelihood to the actual observed class of the data points. Using training data, we apply PAV to the BM25 scores coming from each section type and obtain a function, , that predicts the probability of relevance. By nature of the monotonically non-decreasing estimate, the probabilities satisfy:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training a PAV Function",
                "sec_num": "3.3"
            },
            {
                "text": "All scores from single tokens from queries appearing in training documents are distinct data points included for learning these PAV-derived probabilities. The stepwise linear PAV function for each of the thirteen document sections are presented in Figure 1 . Results are presented in four blocks, each block comparing three body section PAV probability functions to the abstract probability function. The figures show that there is a difference between the sections in their relative importance. Given two sections, a higher BM25 token score from one section does not necessarily translate to a higher probability of relevance compared to the other section. If one section is more important for retrieval than the other, the same BM25 score in each section will lead to a higher probability in a more important section. Abrupt jumps may be due to sparseness of data This will have implications for retrieval. The PAV-based probabilistic transformation allows one to directly compare the value of section scores to each other. A clear conclusion here is that the raw BM25 scores do not well reflect the relative importance of different body sections, as expected.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 248,
                        "end": 256,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Training a PAV Function",
                "sec_num": "3.3"
            },
            {
                "text": "Now we examine how to combine these probability scores coming from different sections into a single document score that predicts the document being relevant. Let us denote the probability of relevance given BM25 section scores as #(%&'|)*25 section scores). Then, the log odds ratio, defined as is monotonically related to the probability of relevance. We apply Bayes' Theorem. The na\u00efve Bayes' assumption will allow us to factor the right side of (2) as log $ %(+,25 section scores|'())%('()) %(+,25 secttion scores|\u00ac'())%(\u00acrel) 9",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Scores from Different Sections of the Body Text",
                "sec_num": "3.4"
            },
            {
                "text": "(3) = log = > %(? !\"#$% |'())",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Scores from Different Sections of the Body Text",
                "sec_num": "3.4"
            },
            {
                "text": "!\"#$% > %(? !\"#$% |\u00ac'()) !\"#$% @ + log B %('()) %(\u00ac'()) C .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Scores from Different Sections of the Body Text",
                "sec_num": "3.4"
            },
            {
                "text": "The second term on the right in equation 3 is a constant and can be disregarded, as it will not affect the ranking. The first term on the right side of equation 3 can be rewritten as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Scores from Different Sections of the Body Text",
                "sec_num": "3.4"
            },
            {
                "text": "log = > %(? !\"#$% |'()) !\"#$% > %(? !\"#$% |\u00ac'()) !\"#$% @ (4) = F log $ %('()|? !\"#$% ) 1 \u2212 %('()|? !\"#$% ) %('()) 1 \u2212 %('()) H 9 !\"#$% .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Scores from Different Sections of the Body Text",
                "sec_num": "3.4"
            },
            {
                "text": "The right side of equation 4 is monotonically related to the left side of equation 2, and consequently should rank documents in the order of their probability of being relevant. This is the ideal ranking according to the probability ranking principle (Robertson, Walker, Jones, Hancock-Beaulieu, & Gatford, 1994) . Here !(#$%|' !\"#$% ) = ! !\"#$% (' !\"#$% ) is the PAV determined probability estimate for the section type, while !(#$%) is the fraction of positive documents in the training set. Based on these results we define the log odds score of a token in a section as",
                "cite_spans": [
                    {
                        "start": 251,
                        "end": 312,
                        "text": "(Robertson, Walker, Jones, Hancock-Beaulieu, & Gatford, 1994)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Scores from Different Sections of the Body Text",
                "sec_num": "3.4"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "log &''! !\"#$% (\") = log B $ !\"#$% *! \" !\"#$% + ,-$ !\"#$% *! \" !\"#$% + $ &'()*+ ,-$ &'()*+ H C.",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Combining Scores from Different Sections of the Body Text",
                "sec_num": "3.4"
            },
            {
                "text": "where % ./0'&1 = !(#$%). Such scores for tokens can be added if the naive assumption of independence of the BM25 scores on which they are based is reasonably accurate. Now we test different ways of combining scores of a token from different sections to derive a fulltext score for the token. In (Jimmy Lin, 2009) , the author found that computing the article score as the maximum score over all spans is superior to computing the score for an article as sum of scores over all spans. Spans in that work were paragraphs of full text documents from the TREC genomics collection, which consists of 36 topics (query questions) and manually annotated spans representing 2,477 full-text articles. In contrast, (Hearst & Plaunt, 1993) found that using the sum of scores over all spans in scoring a document produces a superior ranking when evaluated on a data set of 43 queries and 274 full text documents. Spans in (Hearst & Plaunt, 1993) are computed segments correlating with subtopics of a full text paper and are different from paragraphs.",
                "cite_spans": [
                    {
                        "start": 295,
                        "end": 312,
                        "text": "(Jimmy Lin, 2009)",
                        "ref_id": null
                    },
                    {
                        "start": 704,
                        "end": 727,
                        "text": "(Hearst & Plaunt, 1993)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 909,
                        "end": 932,
                        "text": "(Hearst & Plaunt, 1993)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Scores from Different Sections of the Body Text",
                "sec_num": "3.4"
            },
            {
                "text": "Taking these references into consideration, we study and compare the Sum and Max scoring strategies using BM25 raw scores and log odds of BM25 scores. BM25 on Abstracts is also computed as it is used in the PubMed search system. In these four graphs 12 PAV functions for 12 different body sections are compared to the abstract PAV function. X-axis represents the BM25 score across all four graphs, Y axis represents the Probability of a click based on the section term score.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Combining Scores from Different Sections of the Body Text",
                "sec_num": "3.4"
            },
            {
                "text": "The score of token t in document d is computed as the sum of log odds scores, as defined in (5), coming from sections within the full text document:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sum LogOdds:",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "'+, &'(_*+,-..! (-, /) = 0 log _,--' !\"#$% (/) !\"#$%\u2208.",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Sum LogOdds:",
                "sec_num": null
            },
            {
                "text": "Max LogOdds: The score of token t in document is computed as the maximum log odds score coming from sections within the full text document:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sum LogOdds:",
                "sec_num": null
            },
            {
                "text": "'+, 012_*+,-..! (-, /) (7) = max {log _,--' !\"#$% (/)|'/<!$ \u2208 -} Abstract BM25: The score of token t in document d is computed as the raw BM25 token score of the abstract '+, 3045_67! (-, /) = 8 ! \"#$",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sum LogOdds:",
                "sec_num": null
            },
            {
                "text": "Sum BM25: The score of token t in document d is computed as the sum of BM25 section token scores within the full text document",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sum LogOdds:",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "'+, &'(_3045 (-, /) = 0 8 ! $!%&' !\"#$%\u2208.",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Sum LogOdds:",
                "sec_num": null
            },
            {
                "text": "Max BM25: The score of token t in document d is computed as the highest BM25 section token score within the full text document '+, 012_3045 (-, /) = @AB !\"#$%\u2208. C' \" !\"#$% D (10)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sum LogOdds:",
                "sec_num": null
            },
            {
                "text": "After trying scoring based directly on log odds using formulas (6) and 7, it was evident that we are dealing with two kinds of documents, which behave differently. Those documents that contain the search token only in the abstract receive a single score from the abstract, and Sum and Max really don't play a role. But for those documents having the term in multiple sections, Sum and Max do play a role, and the log odds scores are higher. In order to balance the scores for best results, we found it necessary to create PAV curves for Sum and Max scores just on documents with multiple sections providing scores. We simply use the probabilities based on a PAV curve for each type of document to rank the different types in the same ranking for retrieval. In what follows, we will continue to use the term LogOdds to refer to this scoring.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sum LogOdds:",
                "sec_num": null
            },
            {
                "text": "Proposed methods are tested on the PubMed Click Dataset and on the TREC Genomics collection (Hersh et al., 2007) .",
                "cite_spans": [
                    {
                        "start": 92,
                        "end": 112,
                        "text": "(Hersh et al., 2007)",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "4"
            },
            {
                "text": "To directly measure the benefit of full text, for each query in the PubMed Click Dataset we first compare the proposed scoring techniques on Set_FT. Set_FT is a subset of the PubMed Click dataset that includes queries for which all labeled documents in the evaluation dataset have full text available. Second, we extend this analysis to the whole test portion of the PubMed Click dataset. It contains queries and labeled documents, which may or may not have full text available. For each query token, we score its corresponding retrieved documents in the evaluation dataset and compute the average Precision using labels in the evaluation dataset. These are averaged over all tokens in a query, and then average over all queries producing the MAP results presented in Figure 2 . Figure 2 demonstrates our findings computed on the complete set of tokens available in the two test sets. We observe that the LogOdds probabilistic scoring approach significantly outperforms the BM25 scoring for both Sum and Max variants for the PubMed click data and Set_FT. A bigger difference is observed on Set_FT, where full text is available for every participating document. Additionally, we observe that LogOdds Sum computed on article full text outperforms the abstract score and the difference although small is statistically significant.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 768,
                        "end": 776,
                        "text": "Figure 2",
                        "ref_id": "FIGREF4"
                    },
                    {
                        "start": 779,
                        "end": 787,
                        "text": "Figure 2",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "The PubMed Click Dataset",
                "sec_num": "4.1"
            },
            {
                "text": "We conducted pairwise statistical tests for all methods to verify if the differences in performance for each pair of tests is significant. We used the \"Percentile bootstrap\" test at the 5% significance level which works well for our study because the distribution is symmetric around the MAP value (https://en.wikipedia.org/wiki/Bootstrapping). Differences between all pairs of methods are statistically significant, except for the Max LogOdds and the Abs BM25 for the Set_FT subset of PubMed Click Dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The PubMed Click Dataset",
                "sec_num": "4.1"
            },
            {
                "text": "Based on these results we believe that log odds scoring is a useful approach for retrieval incorporating body text. The intuition behind it is that BM25 scores have a different meaning depending on the sections from which they are derived as illustrated in Fig 1. For a single query token, results in Figure 2 also suggest that the Sum scoring approach provides a better estimate of token importance than the Max scoring approach when using the log odds scoring for the Click dataset. If sections within a full text document were truly independent from each other, Sum LogOdds would be the ideal method to score a single query token over the multiple sections in a document. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 257,
                        "end": 263,
                        "text": "Fig 1.",
                        "ref_id": null
                    },
                    {
                        "start": 301,
                        "end": 309,
                        "text": "Figure 2",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "The PubMed Click Dataset",
                "sec_num": "4.1"
            },
            {
                "text": "We apply the proposed methods to each query token in the TREC dataset. We score the retrieved documents in the evaluation dataset and compute the Average Precision using gold standard labels. These are then averaged over all query tokens, and the MAP results are presented in Figure 3 . Leaveone-out training strategy was used for each topic. Figure 3 demonstrates our findings computed on non-stop word query tokens in the TREC Genomics Dataset. We observe that the Sum LogOdds probabilistic scoring significantly outperforms Sum BM25 scoring. Similarly, the Max LogOdds probabilistic scoring significantly outperforms Max BM25 scoring. Similar to the PubMed Click Dataset, here we observe that Sum LogOdds has a slight advantage over Max LogOdds, and both are competitive with the abstract BM25 score.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 276,
                        "end": 284,
                        "text": "Figure 3",
                        "ref_id": "FIGREF5"
                    },
                    {
                        "start": 343,
                        "end": 351,
                        "text": "Figure 3",
                        "ref_id": "FIGREF5"
                    }
                ],
                "eq_spans": [],
                "section": "The TREC Genomics Dataset",
                "sec_num": "4.2"
            },
            {
                "text": "We conducted Wilcoxon signed rank test (https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test) at 5% significance level to verify if the differences in performance for each pair of tests is significant. The differences between Max LogOdds and Abs BM25 as well as Sum LogOdds and Abs BM25 are not statistically significant. The differences between all other pairs of methods are statistically significant. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The TREC Genomics Dataset",
                "sec_num": "4.2"
            },
            {
                "text": "Based on the PubMed Click dataset and the TREC genomics dataset, we studied how to integrate full text and abstract information for scoring a query token. The main contribution of this work is to study the benefits of log odds of BM25 compared to raw BM25 scores. Our experimental results on both datasets support these important conclusions:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Discussion",
                "sec_num": "5"
            },
            {
                "text": "1. PAV based log odds scoring is a useful way to compare the contribution of a token in different sections of a document for predicting clicks. BM25 scores are not directly comparable with each other for making such predictions. The same BM25 score is of different value depending on the section type in which it is found.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Discussion",
                "sec_num": "5"
            },
            {
                "text": "2. We proposed two methods to compute the log odds body score by taking the sum or max of scores. In both cases, PAV based LogOdds scoring is significantly better than ranking based on raw BM25 scores. The difference between Sum and Max scoring is small.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Discussion",
                "sec_num": "5"
            },
            {
                "text": "For the PubMed Click dataset, using the Sum LogOdds score from the whole document for a query token produces better results than using only the abstract score. In the TREC genomics dataset, the performance of full text LogOdds is comparable to abstract only score. This is an important contribution and meaningful building block towards improving full text retrieval in PubMed. Our immediate plan is to extend this single token analysis to full queries.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Discussion",
                "sec_num": "5"
            },
            {
                "text": "Based on the PubMed Click dataset and the TREC genomics dataset, we studied how to integrate full text and abstract information for scoring a query token. The main contribution of this work is to study the benefits of log odds of BM25 compared to raw BM25 scores. Our experimental results on both datasets support these important conclusions:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Discussion",
                "sec_num": "6"
            },
            {
                "text": "1. PAV based log odds scoring is a useful way to compare the contribution of a token in different sections of a document for predicting clicks. BM25 scores are not directly comparable with each other for making such predictions. The same BM25 score is of different value depending on the section type in which it is found.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Discussion",
                "sec_num": "6"
            },
            {
                "text": "2. We proposed two methods to compute the log odds body score by taking the sum or max of scores. In both cases, PAV based LogOdds scoring is significantly better than ranking based on raw BM25 scores. The difference between Sum and Max scoring is small. For the PubMed Click dataset, using the Sum LogOdds score from the whole document for a query token produces better results than using only the abstract score. In the TREC genomics dataset, the performance of full text LogOdds is comparable to abstract only score. This is an",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and Discussion",
                "sec_num": "6"
            }
        ],
        "back_matter": [
            {
                "text": "important contribution and meaningful building block towards improving full text retrieval in PubMed. Our immediate plan is to extend this single token analysis to full queries.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "acknowledgement",
                "sec_num": null
            },
            {
                "text": "This work was supported by the Intramural Research Program of the National Library of Medicine, National Institutes of Health.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "FUNDING",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "LitSense: making sense of biomedical literature at sentence level",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Allot",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Vera Alvarez",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "C"
                        ],
                        "last": "Comeau",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "J"
                        ],
                        "last": "Wilbur",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Nucleic Acids Research",
                "volume": "47",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Allot, A., Chen, Q., Kim, S., Vera Alvarez, R., Comeau, D. C., Wilbur, W. J., & Lu, Z. (2019). LitSense: making sense of biomedical literature at sentence level. Nucleic Acids Research, 47(Web Server issue ).",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "An empirical distribution function for sampling with incomplete information",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Ayer",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Brunk",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Ewing",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Reid",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Silverman",
                        "suffix": ""
                    }
                ],
                "year": 1954,
                "venue": "Ann Math Stat",
                "volume": "26",
                "issue": "",
                "pages": "641--647",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ayer, M., Brunk, H., Ewing, G., Reid, W., & Silverman, E. (1954). An empirical distribution function for sampling with incomplete information. Ann Math Stat, 26, 641-647.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Finding Support Sentences for Entities",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Blanco",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Zaragoza",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "SIGIR '10 Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Blanco, R., & Zaragoza, H. (2010). Finding Support Sentences for Entities. SIGIR '10 Proceedings of the 33rd international ACM SIGIR conference on Research and development in information retrieval",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "tagtog: interactive and text-mining-assisted annotation of gene mentions in PLOS full-text articles",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Cejuela",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Mcquilton",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Ponting",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Marygold",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Stefancsik",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Millburn",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "Consortium",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Database (Oxford)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1093/database/bau033"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Cejuela, J., McQuilton, P., Ponting, L., Marygold, S., Stefancsik, R., Millburn, G., . . . Consortium, F. (2014). tagtog: interactive and text-mining-assisted annotation of gene mentions in PLOS full-text articles. Database (Oxford). doi:10.1093/database/bau033. Print 2014.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "A Comparative Analysis of System Features Used in the TREC-COVID Information Retrieval Challenge",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "R"
                        ],
                        "last": "Hersh",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1101/2020.10.15.20213645)"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Chen, J., & Hersh, W. R. (2020). A Comparative Analysis of System Features Used in the TREC- COVID Information Retrieval Challenge (Publication no. https://doi.org/10.1101/2020.10.15.20213645).",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "The structural and content aspects of abstracts versus bodies of full text journal articles are different",
                "authors": [
                    {
                        "first": "K",
                        "middle": [
                            "B"
                        ],
                        "last": "Cohen",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Verspoor",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Roeder",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Hunter",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "BMC Bioinformatics",
                "volume": "",
                "issue": "492",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Cohen, K. B., Johnson, H., Verspoor, K., Roeder, C., & Hunter, L. (2010). The structural and content aspects of abstracts versus bodies of full text journal articles are different. BMC Bioinformatics, 11(492).",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "PMC text mining subset in BioC: about 3 million full text articles and growing",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "C"
                        ],
                        "last": "Comeau",
                        "suffix": ""
                    },
                    {
                        "first": "C.-H",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "I"
                        ],
                        "last": "Do\u011fan",
                        "suffix": ""
                    },
                    {
                        "first": "&",
                        "middle": [
                            "Z"
                        ],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1093/bioinformatics/btz070"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Comeau, D. C., Wei, C.-H., Do\u011fan, R. I., & Z., L. (2019). PMC text mining subset in BioC: about 3 million full text articles and growing. Bioinformatics, doi:10.1093/bioinformatics/btz070.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Best Match: New relevance search for PubMed",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Fiorini",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Canese",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Starchenko",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Kireev",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Miller",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "PLOS Biology",
                "volume": "",
                "issue": "8",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        ":10.1371/journal.pbio.2005343"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Fiorini, N., Canese, K., Starchenko, G., Kireev, E., Kim, W., Miller, V., . . . Lu, Z. (2018). Best Match: New relevance search for PubMed. PLOS Biology, 16(8). doi:doi: 10.1371/journal.pbio.2005343",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "How user intelligence is improving PubMed",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Fiorini",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Leaman",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "J"
                        ],
                        "last": "Lipman",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Nature Biotechnology",
                "volume": "36",
                "issue": "",
                "pages": "937--945",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fiorini, N., Leaman, R., Lipman, D. J., & Lu, Z. (2018). How user intelligence is improving PubMed. Nature Biotechnology, 36, 937-945.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "A Deep Look into Neural Ranking Models for Information Retrieval",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Fan",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Pang",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [],
                        "last": "Ai",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Zamani",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Journal of Information Processing and Management",
                "volume": "",
                "issue": "6",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guo, J., Fan, Y., Pang, L., Yang, L., Ai, Q., Zamani, H., . . . Cheng, X. (2020). A Deep Look into Neural Ranking Models for Information Retrieval. Journal of Information Processing and Management, 57(6).",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Smoothing techniques: with implementation in S",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Hardle",
                        "suffix": ""
                    }
                ],
                "year": 1991,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hardle, W. (1991). Smoothing techniques: with implementation in S. New York: Springer-Verlag.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Subtopic structuring for full-length document access",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "A"
                        ],
                        "last": "Hearst",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Plaunt",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "SIGIR93: 16th International ACM/SIGIR '93 Conference on Research and Development in Information Retrieval",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hearst, M. A., & Plaunt, C. (1993). Subtopic structuring for full-length document access. Paper presented at the SIGIR93: 16th International ACM/SIGIR '93 Conference on Research and Development in Information Retrieval, Pittsburgh PA USA.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Genomics Track Overview Proceedings of the Sixteenth Text REtrieval Conference",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Hersh",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Cohen",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Ruslen",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Roberts",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hersh, W., Cohen, A., Ruslen, L., & Roberts, P. (2007). TREC 2007 Genomics Track Overview Proceedings of the Sixteenth Text REtrieval Conference (TREC 2007).",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Section level search functionality in Europe PMC",
                "authors": [
                    {
                        "first": "\u015e",
                        "middle": [],
                        "last": "Kafkas",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Pi",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Marinos",
                        "suffix": ""
                    },
                    {
                        "first": "'",
                        "middle": [],
                        "last": "Talo",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Morrison",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mcentyre",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Journal of Biomed Semantics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        ":10.1186/s13326-015-0003-7"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kafkas, \u015e., Pi, X., Marinos, N., Talo', F., Morrison, A., & McEntyre, J. R. (2015). Section level search functionality in Europe PMC. Journal of Biomed Semantics. doi:doi: 10.1186/s13326-015-0003-7",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Extending the evaluation of Genia Event task toward knowledge base construction and comparison to Gene Regulation Ontology task",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Rebholz-Schuhmann",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "BMC Bioinformatics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1186/1471-2105-16-S10-S3"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kim, J., Kim, J., Han, X., & Rebholz-Schuhmann, D. (2015). Extending the evaluation of Genia Event task toward knowledge base construction and comparison to Gene Regulation Ontology task. BMC Bioinformatics. doi:10.1186/1471-2105-16- S10-S3. Epub 2015 Jul 13.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "MeSH-based dataset for measuring the relevance of text retrieval",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Yeganova",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "C"
                        ],
                        "last": "Comeau",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "J"
                        ],
                        "last": "Wilbur",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the BioNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kim, W., Yeganova, L., Comeau, D. C., Wilbur, W. J., & Lu, Z. (2018). MeSH-based dataset for measuring the relevance of text retrieval. Proceedings of the BioNLP 2018 workshop.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Is searching full text more effective than searching abstracts?",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "BMC Bioinformatics",
                "volume": "",
                "issue": "46",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lin, J. (2009). Is searching full text more effective than searching abstracts? BMC Bioinformatics, 10(46).",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Pyserini: An Easy-to-Use Python Toolkit to Support Replicable IR Research with Sparse and Dense Representations",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "S.-C",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "J.-H",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Pradeep",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Nogueira",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lin, J., Ma, X., Lin, S.-C., Yang, J.-H., Pradeep, R., & Nogueira, R. (2021). Pyserini: An Easy-to-Use Python Toolkit to Support Replicable IR Research with Sparse and Dense Representations.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Relative effectiveness of document titles and abstracts for determining relevance of documents",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Resnick",
                        "suffix": ""
                    }
                ],
                "year": 1961,
                "venue": "Science",
                "volume": "134",
                "issue": "3484",
                "pages": "1004--1006",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Resnick, A. (1961). Relative effectiveness of document titles and abstracts for determining relevance of documents. Science, 134(3484), pp. 1004-1006.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Okapi at TREC-3",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Robertson",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Jones",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Hancock-Beaulieu",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Gatford",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Proceedings of the 3rd Text REtrieval Conference (TREC-3)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robertson, S., Walker, S., Jones, S., Hancock- Beaulieu, M., & Gatford, M. (1994). Okapi at TREC-3. Proceedings of the 3rd Text REtrieval Conference (TREC-3).",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "A passage retrieval method based on probabilistic information retrieval model and UMLS concepts in biomedical question answering",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Sarrouti",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "O"
                        ],
                        "last": "El Alaoui",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Journal of Biomedical Informatics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sarrouti, M., & El Alaoui, S. O. (2017). A passage retrieval method based on probabilistic information retrieval model and UMLS concepts in biomedical question answering. . Journal of Biomedical Informatics, 68.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "The philosophy of information retrieval evaluation. CLEF 2001: Evaluation of Cross-Language Information Retrieval Systems",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Voorhees",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "2406",
                "issue": "",
                "pages": "355--370",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Voorhees, E. (2001). The philosophy of information retrieval evaluation. CLEF 2001: Evaluation of Cross-Language Information Retrieval Systems, Volume 2406, pp. 355-370.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "PubTator central: automated concept annotation for biomedical full text articles",
                "authors": [
                    {
                        "first": "C.-H",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Allot",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Leaman",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Lu",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Nucleic Acids Research",
                "volume": "",
                "issue": "W1",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wei, C.-H., Allot, A., Leaman, R., & Lu, Z. (2019). PubTator central: automated concept annotation for biomedical full text articles. Nucleic Acids Research, 47(W1).",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "A comprehensive and quantitative comparison of textmining in 15 million full-text articles versus their corresponding abstracts",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Westergaard",
                        "suffix": ""
                    },
                    {
                        "first": "H.-H",
                        "middle": [],
                        "last": "Staerfeldt",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "T\u00f8nsberg",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [
                            "J"
                        ],
                        "last": "Jensen",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Brunak",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Plos Computational Biology",
                "volume": "",
                "issue": "2",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Westergaard, D., Staerfeldt, H.-H., T\u00f8nsberg, C., Jensen , L. J., & Brunak, S. (2018). A comprehensive and quantitative comparison of text- mining in 15 million full-text articles versus their corresponding abstracts. Plos Computational Biology, 14(2).",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "The Synergy Between PAV and AdaBoost. Machine Learning",
                "authors": [
                    {
                        "first": "W",
                        "middle": [
                            "J"
                        ],
                        "last": "Wilbur",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Yeganova",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Kim",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "61",
                "issue": "",
                "pages": "71--103",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wilbur, W. J., Yeganova, L., & Kim, W. (2005). The Synergy Between PAV and AdaBoost. Machine Learning, 61, 71-103.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Covidex: Neural Ranking Models and Keyword Search Infrastructure for the COVID-19 Open Research Dataset",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the First Workshop on Scholarly Document Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lin, J. (2020). Covidex: Neural Ranking Models and Keyword Search Infrastructure for the COVID-19 Open Research Dataset. Proceedings of the First Workshop on Scholarly Document Processing.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF2": {
                "uris": null,
                "text": "25 section scores|'())%('()) %(+,25 section scores|\u00ac'())%(\u00ac'()) 9",
                "type_str": "figure",
                "num": null
            },
            "FIGREF3": {
                "uris": null,
                "text": "Fig 1. In these four graphs 12 PAV functions for 12 different body sections are compared to the abstract PAV function. X-axis represents the BM25 score across all four graphs, Y axis represents the Probability of a click based on the section term score.",
                "type_str": "figure",
                "num": null
            },
            "FIGREF4": {
                "uris": null,
                "text": "Average Precision for all query tokens is computed, averaged for each query and then over all queries for the PubMed Click dataset and its subset Set_FT. For both datasets, LogOdds Sum and LogOdds Max scoring methods demonstrate a significantly improved performance compared to Sum and Max on raw BM25 scores.",
                "type_str": "figure",
                "num": null
            },
            "FIGREF5": {
                "uris": null,
                "text": "Mean Average Precision on TREC Genomics Dataset is computed on single tokens and averaged for all tokens in the experiment. Sum LogOdds and Max LogOdds demonstrate a significantly improved performance compared to those on raw BM25 scores.",
                "type_str": "figure",
                "num": null
            },
            "TABREF0": {
                "num": null,
                "content": "<table><tr><td>i stype t s</td><td>\u00a3</td><td>j stype t s</td><td>\u00de</td><td>p</td><td>stype</td><td>i stype t s</td><td>\u00a3</td><td>p</td><td>stype</td><td>j stype t s</td></tr></table>",
                "type_str": "table",
                "text": ") .",
                "html": null
            }
        }
    }
}