File size: 149,117 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T01:07:45.246806Z"
},
"title": "Improving Biomedical Pretrained Language Models with Knowledge",
"authors": [
{
"first": "Zheng",
"middle": [],
"last": "Yuan",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "Tsinghua University",
"location": {}
},
"email": ""
},
{
"first": "Yijia",
"middle": [],
"last": "Liu",
"suffix": "",
"affiliation": {
"laboratory": "Alibaba Group",
"institution": "",
"location": {}
},
"email": ""
},
{
"first": "Chuanqi",
"middle": [],
"last": "Tan",
"suffix": "",
"affiliation": {
"laboratory": "Alibaba Group",
"institution": "",
"location": {}
},
"email": "chuanqi.tcq@alibaba-inc.com"
},
{
"first": "Songfang",
"middle": [],
"last": "Huang",
"suffix": "",
"affiliation": {
"laboratory": "Alibaba Group",
"institution": "",
"location": {}
},
"email": "songfang.hsf@alibaba-inc.com"
},
{
"first": "Fei",
"middle": [],
"last": "Huang",
"suffix": "",
"affiliation": {
"laboratory": "Alibaba Group",
"institution": "",
"location": {}
},
"email": "f.huang@alibaba-inc.com"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "Pretrained language models have shown success in many natural language processing tasks. Many works explore incorporating knowledge into language models. In the biomedical domain, experts have taken decades of effort on building large-scale knowledge bases. For example, the Unified Medical Language System (UMLS) contains millions of entities with their synonyms and defines hundreds of relations among entities. Leveraging this knowledge can benefit a variety of downstream tasks such as named entity recognition and relation extraction. To this end, we propose KeBioLM, a biomedical pretrained language model that explicitly leverages knowledge from the UMLS knowledge bases. Specifically, we extract entities from PubMed abstracts and link them to UMLS. We then train a knowledge-aware language model that firstly applies a text-only encoding layer to learn entity representation and applies a text-entity fusion encoding to aggregate entity representation. Besides, we add two training objectives as entity detection and entity linking. Experiments on the named entity recognition and relation extraction from the BLURB benchmark demonstrate the effectiveness of our approach. Further analysis on a collected probing dataset shows that our model has better ability to model medical knowledge.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "Pretrained language models have shown success in many natural language processing tasks. Many works explore incorporating knowledge into language models. In the biomedical domain, experts have taken decades of effort on building large-scale knowledge bases. For example, the Unified Medical Language System (UMLS) contains millions of entities with their synonyms and defines hundreds of relations among entities. Leveraging this knowledge can benefit a variety of downstream tasks such as named entity recognition and relation extraction. To this end, we propose KeBioLM, a biomedical pretrained language model that explicitly leverages knowledge from the UMLS knowledge bases. Specifically, we extract entities from PubMed abstracts and link them to UMLS. We then train a knowledge-aware language model that firstly applies a text-only encoding layer to learn entity representation and applies a text-entity fusion encoding to aggregate entity representation. Besides, we add two training objectives as entity detection and entity linking. Experiments on the named entity recognition and relation extraction from the BLURB benchmark demonstrate the effectiveness of our approach. Further analysis on a collected probing dataset shows that our model has better ability to model medical knowledge.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Large-scale pretrained language models (PLMs) are proved to be effective in many natural language processing (NLP) tasks (Peters et al., 2018; Devlin et al., 2019) . However, there are still many works that explore multiple strategies to improve the PLMs. Firstly, in specialized domains (i.e biomedical domain), many works demonstrate that using indomain text (i.e. PubMed and MIMIC for biomedical domain) can further improve downstream tasks Figure 1 : An example of the biomedical sentence. Two entities \"glycerin\" and \"inflammation\" are linked to C0017861 (1,2,3-Propanetriol) and C0011603 (dermatitis) respectively with a relation triplet (C0017861, may_prevent, C0011603) in UMLS.",
"cite_spans": [
{
"start": 121,
"end": 142,
"text": "(Peters et al., 2018;",
"ref_id": "BIBREF27"
},
{
"start": 143,
"end": 163,
"text": "Devlin et al., 2019)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [
{
"start": 444,
"end": 452,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "over general-domain PLMs (Lee et al., 2020; Peng et al., 2019; Gu et al., 2020; Shin et al., 2020; Lewis et al., 2020; Alsentzer et al., 2019) . Secondly, unlike training language models (LMs) with unlabeled text, many works explore training the model with structural knowledge (i.e. triplets and facts) for better language understanding (Zhang et al., 2019; Peters et al., 2019; F\u00e9vry et al., 2020; . In this work, we propose to combine the above two strategies for a better Knowledge enhanced Biomedical pretrained Language Model (KeBioLM).",
"cite_spans": [
{
"start": 25,
"end": 43,
"text": "(Lee et al., 2020;",
"ref_id": "BIBREF18"
},
{
"start": 44,
"end": 62,
"text": "Peng et al., 2019;",
"ref_id": "BIBREF26"
},
{
"start": 63,
"end": 79,
"text": "Gu et al., 2020;",
"ref_id": null
},
{
"start": 80,
"end": 98,
"text": "Shin et al., 2020;",
"ref_id": "BIBREF30"
},
{
"start": 99,
"end": 118,
"text": "Lewis et al., 2020;",
"ref_id": "BIBREF19"
},
{
"start": 119,
"end": 142,
"text": "Alsentzer et al., 2019)",
"ref_id": "BIBREF0"
},
{
"start": 338,
"end": 358,
"text": "(Zhang et al., 2019;",
"ref_id": "BIBREF38"
},
{
"start": 359,
"end": 379,
"text": "Peters et al., 2019;",
"ref_id": "BIBREF28"
},
{
"start": 380,
"end": 399,
"text": "F\u00e9vry et al., 2020;",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "As an applied discipline that needs a lot of facts and evidence, the biomedical and clinical fields have accumulated data and knowledge from a very early age (Ashburner et al., 2000; Stearns et al., 2001) . One of the most representative work is Unified Medical Language System (UMLS) (Bodenreider, 2004 ) that contains more than 4M entities with their synonyms and defines over 900 kinds of relations. Figure 1 shows an example. There are two entities \"glycerin\" and \"inflammation\" that can be linked to C0017861 (1,2,3-Propanetriol) and C0011603 (dermatitis) respectively with a may_prevent relation in UMLS. As the most important facts in biomedical text, entities and relations can provide information for better text understanding (Xu et al., 2018; Yuan et al., 2020) .",
"cite_spans": [
{
"start": 158,
"end": 182,
"text": "(Ashburner et al., 2000;",
"ref_id": "BIBREF1"
},
{
"start": 183,
"end": 204,
"text": "Stearns et al., 2001)",
"ref_id": "BIBREF32"
},
{
"start": 285,
"end": 303,
"text": "(Bodenreider, 2004",
"ref_id": "BIBREF3"
},
{
"start": 736,
"end": 753,
"text": "(Xu et al., 2018;",
"ref_id": "BIBREF36"
},
{
"start": 754,
"end": 772,
"text": "Yuan et al., 2020)",
"ref_id": "BIBREF37"
}
],
"ref_spans": [
{
"start": 403,
"end": 411,
"text": "Figure 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "To this end, we propose to improve biomedical PLMs with explicit knowledge modeling. Firstly, we process the PubMed text to link entities to the knowledge base. We apply an entity recognition and linking tool ScispaCy to annotate 660M entities in 3.5M documents. Secondly, we implement a knowledge enhanced language model based on F\u00e9vry et al. (2020) , which performs a text-only encoding and a text-entity fusion encoding. Text-only encoding is responsible for bridging text and entities. Text-entity fusion encoding fuses information from tokens and knowledge from entities. Finally, two objectives as entity extraction and linking are added to learn better entity representations. To be noticed, we initialize the entity embeddings with TransE (Bordes et al., 2013) , which leverages not only entity but also relation information of the knowledge graph.",
"cite_spans": [
{
"start": 331,
"end": 350,
"text": "F\u00e9vry et al. (2020)",
"ref_id": "BIBREF10"
},
{
"start": 747,
"end": 768,
"text": "(Bordes et al., 2013)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We conduct experiments on the named entity recognition (NER) and relation extraction (RE) tasks in the BLURB benchmark dataset. Results show that our KeBioLM outperforms the previous work with average scores of 87.1 and 81.2 on 5 NER datasets and 3 RE datasets respectively. Furthermore, our KeBioLM also achieves better performance in a probing task that requires models to fill the masked entity in UMLS triplets.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We summary our contributions as follows 1 :",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 We propose KeBioLM, a biomedical pretrained language model that explicitly incorporates knowledge from UMLS.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 We conduct experiments on 5 NER datasets and 3 RE datasets. Results demonstrate that our KeBioLM achieves the best performance on both NER and RE tasks.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 We collect a cloze-style probing dataset from UMLS relation triplets. The probing results show that our KeBioLM absorbs more knowledge than other biomedical PLMs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "2 Related Work",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Models like ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019) show the effectiveness of the paradigm of first pre-training an LM on the unlabeled text then fine-tuning the model on the downstream NLP tasks. However, direct application of the LMs pre-trained on the encyclopedia and web text usually fails on the biomedical domain, because of the distinctive terminologies and idioms. The gap between general and biomedical domains inspires the researchers to propose LMs specially tailored for the biomedical domain. BioBERT (Lee et al., 2020) is the most widely used biomedical PLM which is trained on PubMed abstracts and PMC articles. It outperforms vanilla BERT in named entity recognition, relation extraction, and question answering tasks. Jin et al. (2019) train BioELMo with PubMed abstracts, and find features extracted by BioELMo contain entity-type and relational information. Different training corpora have been used for enhancing performance of sub-domain tasks. ClinicalBERT (Alsentzer et al., 2019) , BlueBERT (Peng et al., 2019) and bio-lm (Lewis et al., 2020) utilize clinical notes MIMIC to improve clinical-related downstream tasks. SciB-ERT uses papers from the biomedical and computer science domain as training corpora with a new vocabulary. KeBioLM is trained on PubMed abstracts to adapt to PubMedrelated downstream tasks.",
"cite_spans": [
{
"start": 17,
"end": 38,
"text": "(Peters et al., 2018)",
"ref_id": "BIBREF27"
},
{
"start": 48,
"end": 69,
"text": "(Devlin et al., 2019)",
"ref_id": "BIBREF8"
},
{
"start": 533,
"end": 551,
"text": "(Lee et al., 2020)",
"ref_id": "BIBREF18"
},
{
"start": 754,
"end": 771,
"text": "Jin et al. (2019)",
"ref_id": "BIBREF15"
},
{
"start": 998,
"end": 1022,
"text": "(Alsentzer et al., 2019)",
"ref_id": "BIBREF0"
},
{
"start": 1034,
"end": 1053,
"text": "(Peng et al., 2019)",
"ref_id": "BIBREF26"
},
{
"start": 1065,
"end": 1085,
"text": "(Lewis et al., 2020)",
"ref_id": "BIBREF19"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Biomedical PLMs",
"sec_num": "2.1"
},
{
"text": "To understand the factors in pretraining biomedical LMs, Gu et al. (2020) study pretraining techniques systematically and propose PubMedBERT pretrained from scratch with an in-domain vocabulary. Lewis et al. (2020) also find using an indomain vocabulary enhances the downstream performances. This inspires us to utilize the in-domain vocabulary for KeBioLM.",
"cite_spans": [
{
"start": 195,
"end": 214,
"text": "Lewis et al. (2020)",
"ref_id": "BIBREF19"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Biomedical PLMs",
"sec_num": "2.1"
},
{
"text": "LMs like ELMo and BERT are trained to predict correlation between tokens, ignoring the meanings behind them. To capture both the textual and conceptual information, several knowledge-enhanced PLMs are proposed.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Knowledge-enhanced LMs",
"sec_num": "2.2"
},
{
"text": "Entities are used for bridging tokens and knowledge graphs. Zhang et al. (2019) align tokens and entities within sentences, and aggregate token and entity representations via two multi-head self-attentions. KnowBert (Peters et al., 2019) and Entity as Experts (EAE) (F\u00e9vry et al., 2020) use the entity linker to perform entity disambiguation for candidate entity spans and enhance token representations using entity embeddings. Inspired by entity-enhanced PLMs, we follow the model of EAE to inject biomedical knowledge into KeBi-oLM by performing entity detection and linking.",
"cite_spans": [
{
"start": 60,
"end": 79,
"text": "Zhang et al. (2019)",
"ref_id": "BIBREF38"
},
{
"start": 216,
"end": 237,
"text": "(Peters et al., 2019)",
"ref_id": "BIBREF28"
},
{
"start": 266,
"end": 286,
"text": "(F\u00e9vry et al., 2020)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Knowledge-enhanced LMs",
"sec_num": "2.2"
},
{
"text": "Relation triplets provide intrinsic knowledge be-tween entity pairs. KEPLER learns the knowledge embeddings through relation triplets while pretraining. K-BERT (Liu et al., 2020) converts input sentences into sentence trees by relation triplets to infuse knowledge. In the biomedical domain, He et al. (2020) inject disease knowledge to existing PLMs by predicting diseases names and aspects on Wikipedia passages. Michalopoulos et al. (2020) use UMLS synonyms to supervise masked language modeling. We propose KeBioLM to infuse various kinds of biomedical knowledge from UMLS including but not limited to diseases.",
"cite_spans": [
{
"start": 160,
"end": 178,
"text": "(Liu et al., 2020)",
"ref_id": null
},
{
"start": 292,
"end": 308,
"text": "He et al. (2020)",
"ref_id": "BIBREF12"
},
{
"start": 415,
"end": 442,
"text": "Michalopoulos et al. (2020)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Knowledge-enhanced LMs",
"sec_num": "2.2"
},
{
"text": "In this paper, we assume to access an entity set E = {e 1 , ..., e t }. For a sentence x = {x 1 , ..., x n }, we assume some spans m = (x i , ..., x j ) can be grounded to one or more entities in E. We further assume the disjuncture of these spans. In this paper, we use UMLS to set the entity set.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Approach",
"sec_num": "3"
},
{
"text": "To explicitly model both the textual and conceptual information, we follow F\u00e9vry et al. 2020and use a multi-layer self-attention network to encode both the text and entities. The model can be viewed as building the links between text and entities in the lower layers and fusing the text and entity representation in the upper layers. The overall architecture is shown in Figure 2 . To be more specific, we set the PubMedBERT (Gu et al., 2020) as our backbone. We split the layers of the backbone into two groups, performing a text-only encoding and text-entity fusion encoding respectively.",
"cite_spans": [
{
"start": 425,
"end": 442,
"text": "(Gu et al., 2020)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 371,
"end": 379,
"text": "Figure 2",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "3.1"
},
{
"text": "Text-only encoding. For the first group, which is closer to the input, we extract the final hidden states and perform a token-wise classification to identify if the token is at the beginning, inside, or outside of a mention (i.e., the BIO scheme). The probabilities of the B/I/O label {l i } are written as:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "3.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "h 1 , ..., h n = Transformers 0 (x 1 , ..., x n ) (1) p(l i | x) = softmax(W l h i + b l )",
"eq_num": "(2)"
}
],
"section": "Model Architecture",
"sec_num": "3.1"
},
{
"text": "After identifying the mention boundary, we maintain a function M(i) \u2192 E \u222a {NIL}, which returns the entity of the i-th token belongs. 2 We collect the mentions with a sentence x. For a mention m = (s, t), where s and t represents the starting and ending indexes of m, we encode it as the concatenation of hidden states of the boundary tokens",
"cite_spans": [
{
"start": 133,
"end": 134,
"text": "2",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "3.1"
},
{
"text": "h m = [h s ; h t ].",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "3.1"
},
{
"text": "For an entity e j \u2208 E in the KG, we denote its entity embedding as e j . For a mention m, we search the k nearest entities of its projected representation h m = W m h m + b m in the entity embedding space, obtaining a set of entities E . The normalized similarity between h m and e j is calculated as",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "3.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "a j = exp(h m \u2022 e j ) e k \u2208E exp(h m \u2022 e k )",
"eq_num": "(3)"
}
],
"section": "Model Architecture",
"sec_num": "3.1"
},
{
"text": "The additional entity representation e m of m is calculated as a weighted sum of the embeddings e m = e j \u2208E a j \u2022 e j .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "3.1"
},
{
"text": "Text-entity fusion encoding. After getting the mentions and entities, we fuse the entity embeddings with the text embedding by summation. For the i-th token, the entity-enhanced embedding is calculated as:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "3.1"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "h * i = h i + (W e e m + b e ) , \u2203m, M(i) = m, h i , otherwise.",
"eq_num": "(4"
}
],
"section": "Model Architecture",
"sec_num": "3.1"
},
{
"text": ") M(i) = m represents the i-th token belong to entity e m . The sequence of h * 1 , ..., h * n is then fed into the second group of transformer layers to generate text-entity representations. The final hidden states h f i are calculated as:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "3.1"
},
{
"text": "h f 1 , ..., h f n = Transformers 1 (h * 1 , ..., h * n ) (5)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Model Architecture",
"sec_num": "3.1"
},
{
"text": "We have three pretraining tasks for KeBioLM. Masked language modeling is a cloze-style task for predicting masked tokens. Since the entities are the main focus of our model, we add two tasks as entity detection and linking respectively following F\u00e9vry et al. (2020) . Finally, we jointly minimize the following loss:",
"cite_spans": [
{
"start": 246,
"end": 265,
"text": "F\u00e9vry et al. (2020)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Pretraining Tasks",
"sec_num": "3.2"
},
{
"text": "L = L M LM + L ED + L EL (6)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pretraining Tasks",
"sec_num": "3.2"
},
{
"text": "Masked Language Modeling Like BERT and other LMs, we predict the masked tokens {x i } in inputs using the final hidden representations {h f i }. The loss L M LM is calculated based on the crossentropy of masked and predicted tokens: Whole word masking is successful in training masked language models (Devlin et al., 2019; Cui et al., 2019) . In the biomedical domain, entities are the semantic units of texts. Therefore, we extend this technique to whole entity masking. We mask all tokens within a word or entity span. KeBioLM replaces 12% of tokens to [MASK] and 1.5% tokens to random tokens. This is more difficult for models to recover tokens, which leads to learning better entity representations.",
"cite_spans": [
{
"start": 301,
"end": 322,
"text": "(Devlin et al., 2019;",
"ref_id": "BIBREF8"
},
{
"start": 323,
"end": 340,
"text": "Cui et al., 2019)",
"ref_id": "BIBREF7"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Pretraining Tasks",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "p M (x i | x) = softmax(W m h f i + b m )",
"eq_num": "(7)"
}
],
"section": "Pretraining Tasks",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "L M LM = \u2212 log p M (x i | x)",
"eq_num": "(8)"
}
],
"section": "Pretraining Tasks",
"sec_num": "3.2"
},
{
"text": "Entity Detection Entity detection is an important task in biomedical NLP to link the tokens to entities. Thus, We add an entity detection loss by calculating the cross-entropy for BIO labels:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pretraining Tasks",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "L ED = n i=1 \u2212 log p(l i | x)",
"eq_num": "(9)"
}
],
"section": "Pretraining Tasks",
"sec_num": "3.2"
},
{
"text": "Entity Linking One medical entity in different names linking to the same index permits the model to learn better text-entity representations. To link mention {m} in texts with entities {e} in entity set E, we calculate the cross-entropy loss using similarities between {h m } and entities in E:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pretraining Tasks",
"sec_num": "3.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "L EL = \u2212 log exp(h m \u2022 e) e j \u2208E exp(h m \u2022 e j )",
"eq_num": "(10)"
}
],
"section": "Pretraining Tasks",
"sec_num": "3.2"
},
{
"text": "Given a sentence S from PubMed content, we need to recognize entities and link them to the UMLS knowledge base. We use ScispaCy , a robust biomedical NER and entity linking model, to annotate the sentence. Unlike previous work (Vashishth et al., 2020 ) that only retains recognized entities in a subset of Medical Subject Headings (MeSH) (Lipscomb, 2000) , we relax the restriction to annotate all entities to UMLS 2020 AA release 3 whose linking scores are higher than a threshold of 0.85.",
"cite_spans": [
{
"start": 227,
"end": 250,
"text": "(Vashishth et al., 2020",
"ref_id": "BIBREF33"
},
{
"start": 338,
"end": 354,
"text": "(Lipscomb, 2000)",
"ref_id": "BIBREF21"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data Creation",
"sec_num": "3.3"
},
{
"text": "In this section, we first introduce the pretraining details of KeBioLM. Then we introduce the BLURB datasets for evaluating our approach. Finally, we introduce a probing dataset based on UMLS triplets for evaluating knowledge modeling.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experiments",
"sec_num": "4"
},
{
"text": "We use ScispaCy to acquire 477K CUIs and 660M entities among 3.5M PubMed documents 4 from PubMedDS dataset (Vashishth et al., 2020) as training corpora. We initialize entity embeddings by TransE (Bordes et al., 2013) which learns embeddings from relation triplets. Relation triplets come from UMLS ,203 5,347 5,385 15,935 10,373 8,993 BC5dis 4,182 4,244 4,424 12,850 8,846 3,878 NCBI 5,137 787 960 6,884 1, The parameters of transformers in KeBioLM are initialized from the checkpoint of PubMedBERT. We also use the vocabulary from PubMedBERT. AdamW (Loshchilov and Hutter, 2017) is used as the optimizer for KeBioLM with 10,000 steps warmup and linear decay. We use an 8-layer transformer for text-only encoding and a 4-layer transformer for text-entity fusion encoding. We set the learning rate to 5e-5, batch size to 512, max sequence length to 512, and training epochs to 2. For each input sequence, we limit the max entities count to 50 and the excessive entities will be truncated. To generate entity representation e m , the most k = 100 similar entities are used. We train our model with 8 NVIDIA 16GB V100 GPUs.",
"cite_spans": [
{
"start": 107,
"end": 131,
"text": "(Vashishth et al., 2020)",
"ref_id": "BIBREF33"
},
{
"start": 568,
"end": 597,
"text": "(Loshchilov and Hutter, 2017)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 298,
"end": 424,
"text": ",203 5,347 5,385 15,935 10,373 8,993 BC5dis 4,182 4,244 4,424 12,850 8,846 3,878 NCBI 5,137 787 960 6,884 1,",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Pretraining Details",
"sec_num": "4.1"
},
{
"text": "#Train #Dev #Test #Ments #Ments (UMLS) #Ments (KeBioLM) BC5chem 5",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Pretraining Details",
"sec_num": "4.1"
},
{
"text": "In this section, we evaluate KeBioLM on NER tasks and RE tasks of the BLURB benchmark 5 (Gu et al., 2020) . For all tasks, we use the preprocessed version from BLURB. We measure the NER and RE datasets in terms of F1-score. Table 1 shows the counts of training instances in BLURB datasets (i.e., annotated mentions for NER datasets and sentences with two mentions for RE datasets). We also report the count of annotated mentions overlapping with the UMLS 2020 release and Ke-BioLM in each dataset. The percentage of men-5 https://microsoft.github.io/BLURB/ tions overlapping with KeBioLM ranges from 8.7% (NCBI-disease) to 58.5% (DDI) which indicates that KeBioLM learns entity knowledge related to downstream tasks. JNLPBA (Collier and Kim, 2004) includes 2,000 PubMed abstracts to identify molecular biology-related entities. We ignore entity types in JNLPBA following Gu et al. (2020) .",
"cite_spans": [
{
"start": 88,
"end": 105,
"text": "(Gu et al., 2020)",
"ref_id": null
},
{
"start": 724,
"end": 747,
"text": "(Collier and Kim, 2004)",
"ref_id": "BIBREF6"
},
{
"start": 871,
"end": 887,
"text": "Gu et al. (2020)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 224,
"end": 231,
"text": "Table 1",
"ref_id": "TABREF2"
}
],
"eq_spans": [],
"section": "Datasets",
"sec_num": "4.2"
},
{
"text": "ChemProt (Krallinger et al., 2017) classifies the relation between chemicals and proteins within sentences from PubMed abstracts. Sentences are classified into 6 classes including a negative class.",
"cite_spans": [
{
"start": 9,
"end": 34,
"text": "(Krallinger et al., 2017)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Relation Extraction",
"sec_num": "4.2.2"
},
{
"text": "DDI (Herrero-Zazo et al., 2013) is a RE dataset with sentence-level drug-drug relation on PubMed abstracts. There are four classes for relation: advice, effect, mechanism, and false.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Relation Extraction",
"sec_num": "4.2.2"
},
{
"text": "GAD (Bravo et al., 2015 ) is a gene-disease relation binary classification dataset collected from PubMed sentences.",
"cite_spans": [
{
"start": 4,
"end": 23,
"text": "(Bravo et al., 2015",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Relation Extraction",
"sec_num": "4.2.2"
},
{
"text": "NER We follow Gu et al. (2020) BIO tagging scheme and ignore the entity types in NER datasets. We classify labels of tokens by a linear layer on top of the hidden representations.",
"cite_spans": [
{
"start": 14,
"end": 30,
"text": "Gu et al. (2020)",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Fine-tuning Details",
"sec_num": "4.3"
},
{
"text": "RE We replace the entity mentions in RE datasets with entity indicators like @DISEASE$ or @GENE$ to avoid models classifying relations by memorizing entity names. We add these entity indicators into the vocabulary of LMs. We concatenate the representation of two concerned entities and feed it into a linear layer for relation classification.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Fine-tuning Details",
"sec_num": "4.3"
},
{
"text": "Parameters We adopt AdamW as the optimizer with a 10% steps linear warmup and a linear decay. We search the hyperparameters of learning rate among 1e-5, 3e-5, and 5e-5. We fine-tune the model for 60 epochs. We evaluate the model at the end of each epoch and choose the best model according to the evaluation score on the development set. We set batch size as 16 when fine-tuning. The maximal input lengths are 512 for all NER datasets. We truncate ChemProt and DDI to 256 tokens, and GAD to 128 tokens. To perform a fair comparison, we fine-tune our model with 5 different seeds and report the average score.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Fine-tuning Details",
"sec_num": "4.3"
},
{
"text": "We compare KeBioLM with following base-size biomedical PLMs on the above-mentioned datasets:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results",
"sec_num": "4.4"
},
{
"text": "BioBERT (Lee et al., 2020) , SciBERT , ClinicalBERT (Alsentzer et al., 2019) , BlueBERT (Peng et al., 2019) , bio-lm (Lewis et al., 2020) , diseaseBERT (He et al., 2020) , and Pub-",
"cite_spans": [
{
"start": 8,
"end": 26,
"text": "(Lee et al., 2020)",
"ref_id": "BIBREF18"
},
{
"start": 52,
"end": 76,
"text": "(Alsentzer et al., 2019)",
"ref_id": "BIBREF0"
},
{
"start": 88,
"end": 107,
"text": "(Peng et al., 2019)",
"ref_id": "BIBREF26"
},
{
"start": 117,
"end": 137,
"text": "(Lewis et al., 2020)",
"ref_id": "BIBREF19"
},
{
"start": 152,
"end": 169,
"text": "(He et al., 2020)",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Results",
"sec_num": "4.4"
},
{
"text": "MedBERT (Gu et al., 2020) 6 . Table 2 shows the main results on NER and RE datasets of the BLURB benchmark. In addition, we report the average scores for NER and RE tasks respectively. KeBioLM achieves state-ofthe-art performance for NER and RE tasks. Compared with the strong baseline BioBERT, KeBi-oLM shows stable improvements in NER and RE datasets (+1.1 in NER, +1.9 in RE). Compared with our baseline model PubMedBERT, KeBioLM performs significantly better in BC5dis, NCBI, JNLPBA, ChemProt, and GAD (p \u2264 0.05 based on one-sample t-test) and achieves better average scores (+0.8 in NER, +0.6 in RE). DiseaseBERT is a model carefully designed for predicting disease names and aspects, which leads to better performance in the BC5dis dataset (+0.4). They only report the promising results in disease-related tasks, however, our model obtains consistent promising performances across all kinds of biomedical tasks. In the BC2GM dataset, KeBioLM outperforms our baseline model PubMedBERT and other PLMs except for bio-lm, and the standard deviation of the BC2GM task is evidently larger than other tasks. Another exception is the DDI dataset, we observe a slight performance degradation compared to PubMedBERT (-0.5). The average performances demonstrate that fusing entity knowledge into the LM boosts the performances across the board. Table 3 : Ablation studies for KeBioLM architecture on the BLURB benchmark. We use -wem, +rand and +frz to represent pretraining setting (a), (b) and (c), respectively.",
"cite_spans": [
{
"start": 8,
"end": 27,
"text": "(Gu et al., 2020) 6",
"ref_id": null
}
],
"ref_spans": [
{
"start": 30,
"end": 37,
"text": "Table 2",
"ref_id": "TABREF4"
},
{
"start": 1340,
"end": 1347,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Results",
"sec_num": "4.4"
},
{
"text": "We conduct ablation tests to validate the effectiveness of each part in KeBioLM. We pretrain the model with the following settings and reuse the same parameters described above: (a) Remove whole entity masking and retain whole word masking while pretraining (-wem); (b) Initialize entity embeddings randomly (+rand); (c) Initialize entity embeddings by TransE and freeze the entity embeddings while pretraining (+frz).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Ablation Test",
"sec_num": "4.5"
},
{
"text": "In Table 3 , we observe the following results. Firstly, comparing KeBioLM with setting (a) shows that whole entity masking boosting the performances consistently in all datasets (+0.5 in NER, +0.9 in RE). Secondly, comparing KeBioLM with setting (b) indicates initializing the entity embeddings randomly degrades performances in NER tasks and RE tasks (-0.4 in NER, -1.2 in RE). Entity embeddings initialized by TransE utilize relation knowledge in UMLS and enhance the results. Thirdly, freezing the entity embeddings in setting (c) reduces the performances on all datasets compared to KeBioLM except BC2GM (-0.4 in NER, -1.1 in RE). This indicates that updating entity embedding while pretraining helps KeBioLM to have better text-entity representations, and this leads to better downstream performances.",
"cite_spans": [],
"ref_spans": [
{
"start": 3,
"end": 10,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "Ablation Test",
"sec_num": "4.5"
},
{
"text": "To evaluate how the count of transformer layers affects our model, we pretrain KeBioLM with the different number of layers. For the convenience of notation, denote l 0 is the layer count of text-only encoding and l 1 is the layer count of text-entity fusion encoding. We have the following settings: (i) l 0 = 8, l 1 = 4 (our base model), (ii)l 0 = 4, l 1 = 8, (iii)l 0 = 12, l 1 = 0 (without the second group of transformer layers, {h i } are used for token representations). Results are shown in Table 4 . Our base model (i) has better performance than setting (ii) (+0.3 in NER, +0.7 in RE). Training setting (iii) is equal to a traditional BERT model with additional entity extraction and entity linking tasks. The comparison with (i) and (iii) indicates that text-entity representations have better performances than textonly representations (+0.5 in NER, +0.9 in RE) in the same amount of parameters.",
"cite_spans": [],
"ref_spans": [
{
"start": 498,
"end": 505,
"text": "Table 4",
"ref_id": "TABREF7"
}
],
"eq_spans": [],
"section": "Ablation Test",
"sec_num": "4.5"
},
{
"text": "l 0 = 8 l 1 = 4 l 0 = 4 l 1 = 8 l 0 = 12 l 1 = 0",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Ablation Test",
"sec_num": "4.5"
},
{
"text": "We establish a probing dataset based on UMLS triplets to evaluate how LMs understand medical knowledge via pretraining.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "UMLS Knowledge Probing",
"sec_num": "4.6"
},
{
"text": "UMLS triplets are stored in the form of (s, r, o) where s and o are CUIs in UMLS and r is a relation type. We generate two queries for one triplet based on names of CUIs and relation type:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Probing Dataset",
"sec_num": "4.6.1"
},
{
"text": "\u2022 Q 1 : [CLS] s r [MASK] [SEP] \u2022 Q 2 : [CLS] [MASK] r o [SEP]",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Probing Dataset",
"sec_num": "4.6.1"
},
{
"text": "For example, we sample a triplet and terms of corresponded entities (C0048038:apraclonidine, may_prevent, C0028840:ocular hypertension). We remove the underscores of relation names and generate two queries (we omit [CLS] and [SEP]):",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Probing Dataset",
"sec_num": "4.6.1"
},
{
"text": "\u2022 Q 1 : apraclonidine may prevent [MASK].",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Probing Dataset",
"sec_num": "4.6.1"
},
{
"text": "\u2022 Q 2 : [MASK] may prevent ocular hypertension.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Probing Dataset",
"sec_num": "4.6.1"
},
{
"text": "#Queries #Relations #Avg. CUIs 143,771 922 2.39 Table 5 : The number of generated UMLS relation probing dataset.",
"cite_spans": [],
"ref_spans": [
{
"start": 48,
"end": 55,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "Probing Dataset",
"sec_num": "4.6.1"
},
{
"text": "For relation names end with \"of\", \"as\" , and \"by\", we add \"is\" in front of relation names. For instance, translation_of is converted to is translation of, classified_as is converted to is classified as, and used_by is converted to is used by. Commonly, different relation triplets can generate same query since triplets may overlap (s, r, \u2212) or (\u2212, r, o) with each other. We deduplicate all repeat queries and randomly choose at most 200 queries from all relation types in UMLS. After deduplication, one query can have multiple CUIs as answers. For example:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Probing Dataset",
"sec_num": "4.6.1"
},
{
"text": "\u2022 Q: [MASK] may treat essential tremor.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Probing Dataset",
"sec_num": "4.6.1"
},
{
"text": "\u2022 A 1 : C0282321: propranolol hydrochloride",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Probing Dataset",
"sec_num": "4.6.1"
},
{
"text": "\u2022 A 2 : C0033497: propranolol",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Probing Dataset",
"sec_num": "4.6.1"
},
{
"text": "We summarize our generated UMLS relation probing dataset in Table 5 . Unlike LAMA (Petroni et al., 2019) and X-FACTR (Jiang et al., 2020 ) that contain less than 50 kinds of relation, our probing task is a more difficult task requiring a model to decode entities over 900 kinds of relations.",
"cite_spans": [
{
"start": 82,
"end": 104,
"text": "(Petroni et al., 2019)",
"ref_id": "BIBREF29"
},
{
"start": 117,
"end": 136,
"text": "(Jiang et al., 2020",
"ref_id": "BIBREF14"
}
],
"ref_spans": [
{
"start": 60,
"end": 67,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "Probing Dataset",
"sec_num": "4.6.1"
},
{
"text": "To probe PLMs using generated queries, we require models to recover the masked tokens. Since biomedical entities are usually formed by multiple words and each word can be tokenized into several wordpieces (Wu et al., 2016) , models have to recover multiple [MASK] tokens. We limit the max length of one entity is 10 for decoding. We decode the multi [MASK] tokens using the confidence-based method described in Jiang et al. (2020) . We also implement a beam search for decoding. Unlike beam search in machine translation that decodes tokens from left to right, we decode tokens in an arbitrary order. For each step, we calculate the probabilities of all undecoded masked tokens based on original input and decoded tokens. We predict only one token within undecoded tokens with the top B = 5 accumulated log probabilities. Decoding will be accomplished after count of [MASK] times iterations and we keep the best B = 5 decoding results. We skip the refinement stage since it is time-consuming and does not significantly improve the results. ",
"cite_spans": [
{
"start": 205,
"end": 222,
"text": "(Wu et al., 2016)",
"ref_id": "BIBREF35"
},
{
"start": 411,
"end": 430,
"text": "Jiang et al. (2020)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Multi [MASK] Decoding",
"sec_num": "4.6.2"
},
{
"text": "Since multiple correct CUIs exist for one query, we consider a model answering the query correctly if any decoded tokens in any [MASK] length hit any of the correct CUIs. We evaluate the probing results by the relation-level macro-recall@5.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation Metric",
"sec_num": "4.6.3"
},
{
"text": "We classify probing queries into two types based on their difficulties. Type 1: answers within queries (24,260 queries); Type 2: answers not in queries (119,511 queries). Here are examples of Type 1 (Q 1 and A 1 ) and Type 2 (Q 2 and A 2 ) queries:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Probing Results",
"sec_num": "4.6.4"
},
{
"text": "\u2022 Q 1 : [MASK] has form tacrolimus monohydrate.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Probing Results",
"sec_num": "4.6.4"
},
{
"text": "\u2022 A 1 : C0085149: tacrolimus",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Probing Results",
"sec_num": "4.6.4"
},
{
"text": "\u2022 Q 2 : cosyntropin may diagnose [MASK].",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Probing Results",
"sec_num": "4.6.4"
},
{
"text": "\u2022 A 2 : C0001614: adrenal cortex disease Table 6 summarizes the probing results of different PLMs according to query types. Checkpoints of BioBERT and PubMedBERT miss a cls/predictions layer and cannot perform the probe directly. Compared to other PLMs, KeBioLM achieves the best scores in both two types and obviously outperforms BlueBERT and ClincalBERT with a large margin, which indicates that KeBioLM learns more medical knowledge. Table 7 lists some probing examples. SciBERT can decode medical entities for [MASK] tokens which may be unrelated. KeBioLM decodes relation correctly and is aware of the synonyms of hepatic. KeBioLM states that Vaccination may prevent tetanus which is a correct but not precise statement.",
"cite_spans": [
{
"start": 514,
"end": 520,
"text": "[MASK]",
"ref_id": null
}
],
"ref_spans": [
{
"start": 41,
"end": 48,
"text": "Table 6",
"ref_id": "TABREF9"
},
{
"start": 437,
"end": 444,
"text": "Table 7",
"ref_id": "TABREF11"
}
],
"eq_spans": [],
"section": "Probing Results",
"sec_num": "4.6.4"
},
{
"text": "In this paper, we propose to improve biomedical pretrained language models with knowledge. We propose KeBioLM which applies text-only encoding and text-entity fusion encoding and has two additional entity-related pretraining tasks: entity detection and entity linking. Extensive experiments have shown that KeBioLM outperforms other PLMs on NER and RE datasets of the BLURB benchmark. We further probe biomedical PLMs by querying UMLS relation triplets, which indicates KeBioLM absorbs more biomedical knowledge than others. In this work, we only leverage the relation information in TransE to initialize the entity embeddings. We will further investigate how to directly incorporate the relation information into LMs in the future.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions",
"sec_num": "5"
},
{
"text": "Our codes and model can be found at https:// github.com/GanjinZero/KeBioLM.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "NIL is returned when there is no entity being matched.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://www.nlm.nih.gov/research/ umls/licensedcontent/umlsarchives04. html#2020AA4 The count of documents in PubMedDS is based on https://arxiv.org/pdf/2005.00460v1.pdf.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "We use BioBERT v1.1, SciBERT-scivocab-uncased, Bio-ClinicalBERT, BlueBERT-pubmed-mimic, bio-lm(RoBERTabase-PM-M3-Voc), diseaseBERT-biobert and PubMedBERTabstract versions for comparison.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "We would like to thank the anonymous reviewers for their helpful comments and suggestions. This work is supported by Alibaba Group through Alibaba Research Intern Program.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgements",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Publicly available clinical BERT embeddings",
"authors": [
{
"first": "Emily",
"middle": [],
"last": "Alsentzer",
"suffix": ""
},
{
"first": "John",
"middle": [],
"last": "Murphy",
"suffix": ""
},
{
"first": "William",
"middle": [],
"last": "Boag",
"suffix": ""
},
{
"first": "Wei-Hung",
"middle": [],
"last": "Weng",
"suffix": ""
},
{
"first": "Di",
"middle": [],
"last": "Jindi",
"suffix": ""
},
{
"first": "Tristan",
"middle": [],
"last": "Naumann",
"suffix": ""
},
{
"first": "Matthew",
"middle": [],
"last": "Mcdermott",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2nd Clinical Natural Language Processing Workshop",
"volume": "",
"issue": "",
"pages": "72--78",
"other_ids": {
"DOI": [
"10.18653/v1/W19-1909"
]
},
"num": null,
"urls": [],
"raw_text": "Emily Alsentzer, John Murphy, William Boag, Wei- Hung Weng, Di Jindi, Tristan Naumann, and Matthew McDermott. 2019. Publicly available clini- cal BERT embeddings. In Proceedings of the 2nd Clinical Natural Language Processing Workshop, pages 72-78, Minneapolis, Minnesota, USA. Asso- ciation for Computational Linguistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Gene ontology: tool for the unification of biology",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "Ashburner",
"suffix": ""
},
{
"first": "Catherine",
"middle": [
"A"
],
"last": "Ball",
"suffix": ""
},
{
"first": "Judith",
"middle": [
"A"
],
"last": "Blake",
"suffix": ""
},
{
"first": "David",
"middle": [],
"last": "Botstein",
"suffix": ""
},
{
"first": "Heather",
"middle": [],
"last": "Butler",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Cherry",
"suffix": ""
},
{
"first": "Allan",
"middle": [
"P"
],
"last": "Davis",
"suffix": ""
},
{
"first": "Kara",
"middle": [],
"last": "Dolinski",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Selina",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Dwight",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Janan",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Eppig",
"suffix": ""
}
],
"year": 2000,
"venue": "Nature genetics",
"volume": "25",
"issue": "1",
"pages": "25--29",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler, J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al. 2000. Gene ontology: tool for the unification of biology. Nature genetics, 25(1):25-29.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "SciB-ERT: A pretrained language model for scientific text",
"authors": [
{
"first": "Iz",
"middle": [],
"last": "Beltagy",
"suffix": ""
},
{
"first": "Kyle",
"middle": [],
"last": "Lo",
"suffix": ""
},
{
"first": "Arman",
"middle": [],
"last": "Cohan",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "3615--3620",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1371"
]
},
"num": null,
"urls": [],
"raw_text": "Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB- ERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), pages 3615- 3620, Hong Kong, China. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "The unified medical language system (umls): integrating biomedical terminology",
"authors": [
{
"first": "Olivier",
"middle": [],
"last": "Bodenreider",
"suffix": ""
}
],
"year": 2004,
"venue": "Nucleic acids research",
"volume": "32",
"issue": "suppl_1",
"pages": "267--270",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Olivier Bodenreider. 2004. The unified medical lan- guage system (umls): integrating biomedical termi- nology. Nucleic acids research, 32(suppl_1):D267- D270.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Translating embeddings for modeling multirelational data",
"authors": [
{
"first": "Antoine",
"middle": [],
"last": "Bordes",
"suffix": ""
},
{
"first": "Nicolas",
"middle": [],
"last": "Usunier",
"suffix": ""
},
{
"first": "Alberto",
"middle": [],
"last": "Garcia-Duran",
"suffix": ""
},
{
"first": "Jason",
"middle": [],
"last": "Weston",
"suffix": ""
},
{
"first": "Oksana",
"middle": [],
"last": "Yakhnenko",
"suffix": ""
}
],
"year": 2013,
"venue": "Neural Information Processing Systems (NIPS)",
"volume": "",
"issue": "",
"pages": "1--9",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Antoine Bordes, Nicolas Usunier, Alberto Garcia- Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating embeddings for modeling multi- relational data. In Neural Information Processing Systems (NIPS), pages 1-9.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research",
"authors": [
{
"first": "\u00c0lex",
"middle": [],
"last": "Bravo",
"suffix": ""
},
{
"first": "Janet",
"middle": [],
"last": "Pi\u00f1ero",
"suffix": ""
},
{
"first": "N\u00faria",
"middle": [],
"last": "Queralt-Rosinach",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Rautschka",
"suffix": ""
},
{
"first": "Laura",
"middle": [
"I"
],
"last": "Furlong",
"suffix": ""
}
],
"year": 2015,
"venue": "BMC bioinformatics",
"volume": "16",
"issue": "1",
"pages": "1--17",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "\u00c0lex Bravo, Janet Pi\u00f1ero, N\u00faria Queralt-Rosinach, Michael Rautschka, and Laura I Furlong. 2015. Ex- traction of relations between genes and diseases from text and large-scale data analysis: implica- tions for translational research. BMC bioinformat- ics, 16(1):1-17.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Introduction to the bio-entity recognition task at JNLPBA",
"authors": [
{
"first": "Nigel",
"middle": [],
"last": "Collier",
"suffix": ""
},
{
"first": "Jin-Dong",
"middle": [],
"last": "Kim",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications (NLPBA/BioNLP)",
"volume": "",
"issue": "",
"pages": "73--78",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nigel Collier and Jin-Dong Kim. 2004. Introduc- tion to the bio-entity recognition task at JNLPBA. In Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and its Applications (NLPBA/BioNLP), pages 73-78, Geneva, Switzerland. COLING.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Pre-training with whole word masking for chinese bert",
"authors": [
{
"first": "Yiming",
"middle": [],
"last": "Cui",
"suffix": ""
},
{
"first": "Wanxiang",
"middle": [],
"last": "Che",
"suffix": ""
},
{
"first": "Ting",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Bing",
"middle": [],
"last": "Qin",
"suffix": ""
},
{
"first": "Ziqing",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": "Shijin",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Guoping",
"middle": [],
"last": "Hu",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1906.08101"
]
},
"num": null,
"urls": [],
"raw_text": "Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, and Guoping Hu. 2019. Pre-training with whole word masking for chinese bert. arXiv preprint arXiv:1906.08101.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
"authors": [
{
"first": "Jacob",
"middle": [],
"last": "Devlin",
"suffix": ""
},
{
"first": "Ming-Wei",
"middle": [],
"last": "Chang",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Kristina",
"middle": [],
"last": "Toutanova",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "4171--4186",
"other_ids": {
"DOI": [
"10.18653/v1/N19-1423"
]
},
"num": null,
"urls": [],
"raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Ncbi disease corpus: a resource for disease name recognition and concept normalization",
"authors": [
{
"first": "Robert",
"middle": [],
"last": "Rezarta Islamaj Dogan",
"suffix": ""
},
{
"first": "Zhiyong",
"middle": [],
"last": "Leaman",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2014,
"venue": "Journal of biomedical informatics",
"volume": "47",
"issue": "",
"pages": "1--10",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Rezarta Islamaj Dogan, Robert Leaman, and Zhiyong Lu. 2014. Ncbi disease corpus: a resource for dis- ease name recognition and concept normalization. Journal of biomedical informatics, 47:1-10.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Entities as experts: Sparse memory access with entity supervision",
"authors": [
{
"first": "Thibault",
"middle": [],
"last": "F\u00e9vry",
"suffix": ""
},
{
"first": "Baldini",
"middle": [],
"last": "Livio",
"suffix": ""
},
{
"first": "Nicholas",
"middle": [],
"last": "Soares",
"suffix": ""
},
{
"first": "Eunsol",
"middle": [],
"last": "Fitzgerald",
"suffix": ""
},
{
"first": "Tom",
"middle": [],
"last": "Choi",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Kwiatkowski",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "4937--4951",
"other_ids": {
"DOI": [
"10.18653/v1/2020.emnlp-main.400"
]
},
"num": null,
"urls": [],
"raw_text": "Thibault F\u00e9vry, Livio Baldini Soares, Nicholas FitzGer- ald, Eunsol Choi, and Tom Kwiatkowski. 2020. En- tities as experts: Sparse memory access with entity supervision. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process- ing (EMNLP), pages 4937-4951, Online. Associa- tion for Computational Linguistics.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Jianfeng Gao, and Hoifung Poon. 2020. Domainspecific language model pretraining for biomedical natural language processing",
"authors": [
{
"first": "Yu",
"middle": [],
"last": "Gu",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Tinn",
"suffix": ""
},
{
"first": "Hao",
"middle": [],
"last": "Cheng",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Lucas",
"suffix": ""
},
{
"first": "Naoto",
"middle": [],
"last": "Usuyama",
"suffix": ""
},
{
"first": "Xiaodong",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Tristan",
"middle": [],
"last": "Naumann",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:2007.15779"
]
},
"num": null,
"urls": [],
"raw_text": "Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng Gao, and Hoifung Poon. 2020. Domain- specific language model pretraining for biomedi- cal natural language processing. arXiv preprint arXiv:2007.15779.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Infusing Disease Knowledge into BERT for Health Question Answering, Medical Inference and Disease Name Recognition",
"authors": [
{
"first": "Yun",
"middle": [],
"last": "He",
"suffix": ""
},
{
"first": "Ziwei",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Yin",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Qin",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "James",
"middle": [],
"last": "Caverlee",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "4604--4614",
"other_ids": {
"DOI": [
"10.18653/v1/2020.emnlp-main.372"
]
},
"num": null,
"urls": [],
"raw_text": "Yun He, Ziwei Zhu, Yin Zhang, Qin Chen, and James Caverlee. 2020. Infusing Disease Knowledge into BERT for Health Question Answering, Medical In- ference and Disease Name Recognition. In Proceed- ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4604-4614, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "The ddi corpus: An annotated corpus with pharmacological substances and drug-drug interactions",
"authors": [
{
"first": "Mar\u00eda",
"middle": [],
"last": "Herrero-Zazo",
"suffix": ""
},
{
"first": "Isabel",
"middle": [],
"last": "Segura-Bedmar",
"suffix": ""
},
{
"first": "Paloma",
"middle": [],
"last": "Mart\u00ednez",
"suffix": ""
},
{
"first": "Thierry",
"middle": [],
"last": "Declerck",
"suffix": ""
}
],
"year": 2013,
"venue": "Journal of biomedical informatics",
"volume": "46",
"issue": "5",
"pages": "914--920",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mar\u00eda Herrero-Zazo, Isabel Segura-Bedmar, Paloma Mart\u00ednez, and Thierry Declerck. 2013. The ddi corpus: An annotated corpus with pharmacological substances and drug-drug interactions. Journal of biomedical informatics, 46(5):914-920.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "X-FACTR: Multilingual factual knowledge retrieval from pretrained language models",
"authors": [
{
"first": "Zhengbao",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Antonios",
"middle": [],
"last": "Anastasopoulos",
"suffix": ""
},
{
"first": "Jun",
"middle": [],
"last": "Araki",
"suffix": ""
},
{
"first": "Haibo",
"middle": [],
"last": "Ding",
"suffix": ""
},
{
"first": "Graham",
"middle": [],
"last": "Neubig",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "5943--5959",
"other_ids": {
"DOI": [
"10.18653/v1/2020.emnlp-main.479"
]
},
"num": null,
"urls": [],
"raw_text": "Zhengbao Jiang, Antonios Anastasopoulos, Jun Araki, Haibo Ding, and Graham Neubig. 2020. X-FACTR: Multilingual factual knowledge retrieval from pre- trained language models. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5943-5959, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Probing biomedical embeddings from language models",
"authors": [
{
"first": "Qiao",
"middle": [],
"last": "Jin",
"suffix": ""
},
{
"first": "Bhuwan",
"middle": [],
"last": "Dhingra",
"suffix": ""
},
{
"first": "William",
"middle": [],
"last": "Cohen",
"suffix": ""
},
{
"first": "Xinghua",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP",
"volume": "",
"issue": "",
"pages": "82--89",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Qiao Jin, Bhuwan Dhingra, William Cohen, and Xinghua Lu. 2019. Probing biomedical embeddings from language models. In Proceedings of the 3rd Workshop on Evaluating Vector Space Representa- tions for NLP, pages 82-89.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Adam: A method for stochastic optimization",
"authors": [
{
"first": "P",
"middle": [],
"last": "Diederik",
"suffix": ""
},
{
"first": "Jimmy",
"middle": [],
"last": "Kingma",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Ba",
"suffix": ""
}
],
"year": 2014,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1412.6980"
]
},
"num": null,
"urls": [],
"raw_text": "Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Overview of the biocreative vi chemical-protein interaction track",
"authors": [
{
"first": "Martin",
"middle": [],
"last": "Krallinger",
"suffix": ""
},
{
"first": "Obdulia",
"middle": [],
"last": "Rabal",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Saber",
"suffix": ""
},
{
"first": "Mart\u0131n",
"middle": [],
"last": "Akhondi",
"suffix": ""
},
{
"first": "Jes\u00fas",
"middle": [],
"last": "P\u00e9rez P\u00e9rez",
"suffix": ""
},
{
"first": "Gael",
"middle": [
"P\u00e9rez"
],
"last": "Santamar\u00eda",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Rodr\u00edguez",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the sixth BioCreative challenge evaluation workshop",
"volume": "1",
"issue": "",
"pages": "141--146",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Martin Krallinger, Obdulia Rabal, Saber A Akhondi, Mart\u0131n P\u00e9rez P\u00e9rez, Jes\u00fas Santamar\u00eda, Gael P\u00e9rez Rodr\u00edguez, et al. 2017. Overview of the biocreative vi chemical-protein interaction track. In Proceed- ings of the sixth BioCreative challenge evaluation workshop, volume 1, pages 141-146.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Biobert: a pre-trained biomedical language representation model for biomedical text mining",
"authors": [
{
"first": "Jinhyuk",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Wonjin",
"middle": [],
"last": "Yoon",
"suffix": ""
},
{
"first": "Sungdong",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "Donghyeon",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "Sunkyu",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "Chan",
"middle": [],
"last": "Ho So",
"suffix": ""
},
{
"first": "Jaewoo",
"middle": [],
"last": "Kang",
"suffix": ""
}
],
"year": 2020,
"venue": "Bioinformatics",
"volume": "36",
"issue": "4",
"pages": "1234--1240",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. 2020. Biobert: a pre-trained biomed- ical language representation model for biomedical text mining. Bioinformatics, 36(4):1234-1240.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Pretrained language models for biomedical and clinical tasks: Understanding and extending the state-of-the-art",
"authors": [
{
"first": "Patrick",
"middle": [],
"last": "Lewis",
"suffix": ""
},
{
"first": "Myle",
"middle": [],
"last": "Ott",
"suffix": ""
},
{
"first": "Jingfei",
"middle": [],
"last": "Du",
"suffix": ""
},
{
"first": "Veselin",
"middle": [],
"last": "Stoyanov",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 3rd Clinical Natural Language Processing Workshop",
"volume": "",
"issue": "",
"pages": "146--157",
"other_ids": {
"DOI": [
"10.18653/v1/2020.clinicalnlp-1.17"
]
},
"num": null,
"urls": [],
"raw_text": "Patrick Lewis, Myle Ott, Jingfei Du, and Veselin Stoy- anov. 2020. Pretrained language models for biomed- ical and clinical tasks: Understanding and extend- ing the state-of-the-art. In Proceedings of the 3rd Clinical Natural Language Processing Workshop, pages 146-157, Online. Association for Computa- tional Linguistics.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Biocreative v cdr task corpus: a resource for chemical disease relation extraction. Database",
"authors": [
{
"first": "Jiao",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Yueping",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Robin",
"suffix": ""
},
{
"first": "Daniela",
"middle": [],
"last": "Johnson",
"suffix": ""
},
{
"first": "Chih-Hsuan",
"middle": [],
"last": "Sciaky",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Wei",
"suffix": ""
},
{
"first": "Allan",
"middle": [
"Peter"
],
"last": "Leaman",
"suffix": ""
},
{
"first": "Carolyn",
"middle": [
"J"
],
"last": "Davis",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Mattingly",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Thomas",
"suffix": ""
},
{
"first": "Zhiyong",
"middle": [],
"last": "Wiegers",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jiao Li, Yueping Sun, Robin J Johnson, Daniela Sci- aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter Davis, Carolyn J Mattingly, Thomas C Wiegers, and Zhiyong Lu. 2016. Biocreative v cdr task corpus: a resource for chemical disease relation extraction. Database, 2016.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Medical subject headings (mesh)",
"authors": [
{
"first": "Carolyn",
"middle": [
"E"
],
"last": "Lipscomb",
"suffix": ""
}
],
"year": 2000,
"venue": "Bulletin of the Medical Library Association",
"volume": "88",
"issue": "3",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Carolyn E Lipscomb. 2000. Medical subject headings (mesh). Bulletin of the Medical Library Association, 88(3):265.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Haotang Deng, and Ping Wang. 2020. K-bert: Enabling language representation with knowledge graph",
"authors": [
{
"first": "Weijie",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Peng",
"middle": [],
"last": "Zhou",
"suffix": ""
},
{
"first": "Zhe",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Zhiruo",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Qi",
"middle": [],
"last": "Ju",
"suffix": ""
}
],
"year": null,
"venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
"volume": "34",
"issue": "",
"pages": "2901--2908",
"other_ids": {
"DOI": [
"10.1609/aaai.v34i03.5681"
]
},
"num": null,
"urls": [],
"raw_text": "Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and Ping Wang. 2020. K-bert: Enabling language representation with knowledge graph. Proceedings of the AAAI Conference on Arti- ficial Intelligence, 34(03):2901-2908.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Umlsbert: Clinical domain knowledge augmentation of contextual embeddings using the unified medical language system metathesaurus",
"authors": [
{
"first": "George",
"middle": [],
"last": "Michalopoulos",
"suffix": ""
},
{
"first": "Yuanxin",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Hussam",
"middle": [],
"last": "Kaka",
"suffix": ""
},
{
"first": "Helen",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Alex",
"middle": [],
"last": "Wong",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "George Michalopoulos, Yuanxin Wang, Hussam Kaka, Helen Chen, and Alex Wong. 2020. Umlsbert: Clin- ical domain knowledge augmentation of contextual embeddings using the unified medical language sys- tem metathesaurus.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "ScispaCy: Fast and robust models for biomedical natural language processing",
"authors": [
{
"first": "Mark",
"middle": [],
"last": "Neumann",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "King",
"suffix": ""
},
{
"first": "Iz",
"middle": [],
"last": "Beltagy",
"suffix": ""
},
{
"first": "Waleed",
"middle": [],
"last": "Ammar",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 18th BioNLP Workshop and Shared Task",
"volume": "",
"issue": "",
"pages": "319--327",
"other_ids": {
"DOI": [
"10.18653/v1/W19-5034"
]
},
"num": null,
"urls": [],
"raw_text": "Mark Neumann, Daniel King, Iz Beltagy, and Waleed Ammar. 2019. ScispaCy: Fast and robust models for biomedical natural language processing. In Pro- ceedings of the 18th BioNLP Workshop and Shared Task, pages 319-327, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Transfer learning in biomedical natural language processing: An evaluation of BERT and ELMo on ten benchmarking datasets",
"authors": [
{
"first": "Yifan",
"middle": [],
"last": "Peng",
"suffix": ""
},
{
"first": "Shankai",
"middle": [],
"last": "Yan",
"suffix": ""
},
{
"first": "Zhiyong",
"middle": [],
"last": "Lu",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 18th BioNLP Workshop and Shared Task",
"volume": "",
"issue": "",
"pages": "58--65",
"other_ids": {
"DOI": [
"10.18653/v1/W19-5006"
]
},
"num": null,
"urls": [],
"raw_text": "Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019. Transfer learning in biomedical natural language processing: An evaluation of BERT and ELMo on ten benchmarking datasets. In Proceedings of the 18th BioNLP Workshop and Shared Task, pages 58- 65, Florence, Italy. Association for Computational Linguistics.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Deep contextualized word representations",
"authors": [
{
"first": "Matthew",
"middle": [],
"last": "Peters",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Neumann",
"suffix": ""
},
{
"first": "Mohit",
"middle": [],
"last": "Iyyer",
"suffix": ""
},
{
"first": "Matt",
"middle": [],
"last": "Gardner",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Kenton",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Luke",
"middle": [],
"last": "Zettlemoyer",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
"volume": "1",
"issue": "",
"pages": "2227--2237",
"other_ids": {
"DOI": [
"10.18653/v1/N18-1202"
]
},
"num": null,
"urls": [],
"raw_text": "Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word rep- resentations. In Proceedings of the 2018 Confer- ence of the North American Chapter of the Associ- ation for Computational Linguistics: Human Lan- guage Technologies, Volume 1 (Long Papers), pages 2227-2237, New Orleans, Louisiana. Association for Computational Linguistics.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Knowledge enhanced contextual word representations",
"authors": [
{
"first": "Matthew",
"middle": [
"E"
],
"last": "Peters",
"suffix": ""
},
{
"first": "Mark",
"middle": [],
"last": "Neumann",
"suffix": ""
},
{
"first": "Robert",
"middle": [],
"last": "Logan",
"suffix": ""
},
{
"first": "Roy",
"middle": [],
"last": "Schwartz",
"suffix": ""
},
{
"first": "Vidur",
"middle": [],
"last": "Joshi",
"suffix": ""
},
{
"first": "Sameer",
"middle": [],
"last": "Singh",
"suffix": ""
},
{
"first": "Noah",
"middle": [
"A"
],
"last": "Smith",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "43--54",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1005"
]
},
"num": null,
"urls": [],
"raw_text": "Matthew E. Peters, Mark Neumann, Robert Logan, Roy Schwartz, Vidur Joshi, Sameer Singh, and Noah A. Smith. 2019. Knowledge enhanced contextual word representations. In Proceedings of the 2019 Con- ference on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 43-54, Hong Kong, China. Associ- ation for Computational Linguistics.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Association for Computational Linguistics",
"authors": [
{
"first": "Fabio",
"middle": [],
"last": "Petroni",
"suffix": ""
},
{
"first": "Tim",
"middle": [],
"last": "Rockt\u00e4schel",
"suffix": ""
},
{
"first": "Sebastian",
"middle": [],
"last": "Riedel",
"suffix": ""
},
{
"first": "Patrick",
"middle": [],
"last": "Lewis",
"suffix": ""
},
{
"first": "Anton",
"middle": [],
"last": "Bakhtin",
"suffix": ""
},
{
"first": "Yuxiang",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Alexander",
"middle": [],
"last": "Miller",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
"volume": "",
"issue": "",
"pages": "2463--2473",
"other_ids": {
"DOI": [
"10.18653/v1/D19-1250"
]
},
"num": null,
"urls": [],
"raw_text": "Fabio Petroni, Tim Rockt\u00e4schel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and Alexander Miller. 2019. Language models as knowl- edge bases? In Proceedings of the 2019 Confer- ence on Empirical Methods in Natural Language Processing and the 9th International Joint Confer- ence on Natural Language Processing (EMNLP- IJCNLP), pages 2463-2473, Hong Kong, China. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "BioMegatron: Larger biomedical domain language model",
"authors": [
{
"first": "Hoo-Chang",
"middle": [],
"last": "Shin",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Evelina",
"middle": [],
"last": "Bakhturina",
"suffix": ""
},
{
"first": "Raul",
"middle": [],
"last": "Puri",
"suffix": ""
},
{
"first": "Mostofa",
"middle": [],
"last": "Patwary",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Shoeybi",
"suffix": ""
},
{
"first": "Raghav",
"middle": [],
"last": "Mani",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "4700--4706",
"other_ids": {
"DOI": [
"10.18653/v1/2020.emnlp-main.379"
]
},
"num": null,
"urls": [],
"raw_text": "Hoo-Chang Shin, Yang Zhang, Evelina Bakhturina, Raul Puri, Mostofa Patwary, Mohammad Shoeybi, and Raghav Mani. 2020. BioMegatron: Larger biomedical domain language model. In Proceed- ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 4700-4706, Online. Association for Computational Linguistics.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Overview of biocreative ii gene mention recognition",
"authors": [
{
"first": "Larry",
"middle": [],
"last": "Smith",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Lorraine",
"suffix": ""
},
{
"first": "Rie",
"middle": [],
"last": "Tanabe",
"suffix": ""
},
{
"first": "Cheng-Ju",
"middle": [],
"last": "Johnson Nee Ando",
"suffix": ""
},
{
"first": "I-Fang",
"middle": [],
"last": "Kuo",
"suffix": ""
},
{
"first": "Chun-Nan",
"middle": [],
"last": "Chung",
"suffix": ""
},
{
"first": "Yu-Shi",
"middle": [],
"last": "Hsu",
"suffix": ""
},
{
"first": "Roman",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Christoph",
"middle": [
"M"
],
"last": "Klinger",
"suffix": ""
},
{
"first": "Kuzman",
"middle": [],
"last": "Friedrich",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Ganchev",
"suffix": ""
}
],
"year": 2008,
"venue": "Genome biology",
"volume": "9",
"issue": "2",
"pages": "1--19",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Larry Smith, Lorraine K Tanabe, Rie Johnson nee Ando, Cheng-Ju Kuo, I-Fang Chung, Chun-Nan Hsu, Yu-Shi Lin, Roman Klinger, Christoph M Friedrich, Kuzman Ganchev, et al. 2008. Overview of biocreative ii gene mention recognition. Genome biology, 9(2):1-19.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Snomed clinical terms: overview of the development process and project status",
"authors": [
{
"first": "Q",
"middle": [],
"last": "Michael",
"suffix": ""
},
{
"first": "Colin",
"middle": [],
"last": "Stearns",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Price",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Kent",
"suffix": ""
},
{
"first": "Amy",
"middle": [
"Y"
],
"last": "Spackman",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Wang",
"suffix": ""
}
],
"year": 2001,
"venue": "Proceedings of the AMIA Symposium",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Q Stearns, Colin Price, Kent A Spackman, and Amy Y Wang. 2001. Snomed clinical terms: overview of the development process and project sta- tus. In Proceedings of the AMIA Symposium, page 662. American Medical Informatics Association.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Medtype: Improving medical entity linking with semantic type prediction",
"authors": [
{
"first": "Shikhar",
"middle": [],
"last": "Vashishth",
"suffix": ""
},
{
"first": "Rishabh",
"middle": [],
"last": "Joshi",
"suffix": ""
},
{
"first": "Ritam",
"middle": [],
"last": "Dutt",
"suffix": ""
},
{
"first": "Denis",
"middle": [],
"last": "Newman-Griffis",
"suffix": ""
},
{
"first": "Carolyn",
"middle": [],
"last": "Rose",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:2005.00460"
]
},
"num": null,
"urls": [],
"raw_text": "Shikhar Vashishth, Rishabh Joshi, Ritam Dutt, Denis Newman-Griffis, and Carolyn Rose. 2020. Medtype: Improving medical entity linking with semantic type prediction. arXiv preprint arXiv:2005.00460.",
"links": null
},
"BIBREF34": {
"ref_id": "b34",
"title": "Kepler: A unified model for knowledge embedding and pretrained language representation",
"authors": [
{
"first": "Xiaozhi",
"middle": [],
"last": "Wang",
"suffix": ""
},
{
"first": "Tianyu",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "Zhaocheng",
"middle": [],
"last": "Zhu",
"suffix": ""
},
{
"first": "Zhiyuan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Juanzi",
"middle": [],
"last": "Li",
"suffix": ""
},
{
"first": "Jian",
"middle": [],
"last": "Tang",
"suffix": ""
}
],
"year": 2019,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1911.06136"
]
},
"num": null,
"urls": [],
"raw_text": "Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2019. Kepler: A unified model for knowledge embedding and pre- trained language representation. arXiv preprint arXiv:1911.06136.",
"links": null
},
"BIBREF35": {
"ref_id": "b35",
"title": "Google's neural machine translation system",
"authors": [
{
"first": "Yonghui",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Schuster",
"suffix": ""
},
{
"first": "Zhifeng",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Quoc",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "Wolfgang",
"middle": [],
"last": "Norouzi",
"suffix": ""
},
{
"first": "Maxim",
"middle": [],
"last": "Macherey",
"suffix": ""
},
{
"first": "Yuan",
"middle": [],
"last": "Krikun",
"suffix": ""
},
{
"first": "Qin",
"middle": [],
"last": "Cao",
"suffix": ""
},
{
"first": "Klaus",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Macherey",
"suffix": ""
}
],
"year": 2016,
"venue": "Bridging the gap between human and machine translation",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1609.08144"
]
},
"num": null,
"urls": [],
"raw_text": "Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google's neural machine translation system: Bridging the gap between hu- man and machine translation. arXiv preprint arXiv:1609.08144.",
"links": null
},
"BIBREF36": {
"ref_id": "b36",
"title": "Leveraging biomedical resources in bi-lstm for drug-drug interaction extraction",
"authors": [
{
"first": "B",
"middle": [],
"last": "Xu",
"suffix": ""
},
{
"first": "X",
"middle": [],
"last": "Shi",
"suffix": ""
},
{
"first": "Z",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "W",
"middle": [],
"last": "Zheng",
"suffix": ""
}
],
"year": 2018,
"venue": "IEEE Access",
"volume": "6",
"issue": "",
"pages": "33432--33439",
"other_ids": {
"DOI": [
"10.1109/ACCESS.2018.2845840"
]
},
"num": null,
"urls": [],
"raw_text": "B. Xu, X. Shi, Z. Zhao, and W. Zheng. 2018. Leverag- ing biomedical resources in bi-lstm for drug-drug in- teraction extraction. IEEE Access, 6:33432-33439.",
"links": null
},
"BIBREF37": {
"ref_id": "b37",
"title": "Coder: Knowledge infused cross-lingual medical term embedding for term normalization",
"authors": [
{
"first": "Zheng",
"middle": [],
"last": "Yuan",
"suffix": ""
},
{
"first": "Zhengyun",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Sheng",
"middle": [],
"last": "Yu",
"suffix": ""
}
],
"year": 2020,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:2011.02947"
]
},
"num": null,
"urls": [],
"raw_text": "Zheng Yuan, Zhengyun Zhao, and Sheng Yu. 2020. Coder: Knowledge infused cross-lingual medical term embedding for term normalization. arXiv preprint arXiv:2011.02947.",
"links": null
},
"BIBREF38": {
"ref_id": "b38",
"title": "ERNIE: Enhanced language representation with informative entities",
"authors": [
{
"first": "Zhengyan",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Xu",
"middle": [],
"last": "Han",
"suffix": ""
},
{
"first": "Zhiyuan",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Xin",
"middle": [],
"last": "Jiang",
"suffix": ""
},
{
"first": "Maosong",
"middle": [],
"last": "Sun",
"suffix": ""
},
{
"first": "Qun",
"middle": [],
"last": "Liu",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "1441--1451",
"other_ids": {
"DOI": [
"10.18653/v1/P19-1139"
]
},
"num": null,
"urls": [],
"raw_text": "Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu. 2019. ERNIE: En- hanced language representation with informative en- tities. In Proceedings of the 57th Annual Meet- ing of the Association for Computational Linguis- tics, pages 1441-1451, Florence, Italy. Association for Computational Linguistics.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"num": null,
"uris": null,
"type_str": "figure",
"text": "The overall architecture of KeBioLM."
},
"FIGREF1": {
"num": null,
"uris": null,
"type_str": "figure",
"text": "BC5-chem & BC5-disease(Li et al., 2016) contain 1500 PubMed abstracts for extracting chemical and disease entities respectively.NCBI-disease (Dogan et al., 2014) includes 793PubMed abstracts to detect disease entities.BC2GM(Smith et al., 2008) contains 20K PubMed sentences to extract gene entities."
},
"TABREF2": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>",
"text": "The training instances (mentions for NER tasks and sentences with two entities for RE tasks) and the mention counts of NER and RE datasets preprocessed in BLURB benchmark respectively. The mention counts overlapping with UMLS 2020 AA release and KeBioLM are also listed. For the GAD dataset, annotated mentions do not appear in the BLURB preprocessed version."
},
"TABREF4": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>",
"text": "F1-scores on NER and RE tasks in BLURB benchmark. Standard deviations of KeBioLM are reported across five runs. Results of diseaseBERT-biobert and bio-lm come from their corresponded papers. Others are copied from BLURB. * indicates that p \u2264 0.05 of one-sample t-test which compares whether the mean performance of KeBioLM is better than PubMedBERT. \u2020 Bio-lm applies different metrics with BLURB (micro F1 v.s."
},
"TABREF7": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>",
"text": "Ablation studies for transformer layers count in KeBioLM on the BLURB benchmark."
},
"TABREF9": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>",
"text": "Results of the probing test in terms of Recall@5."
},
"TABREF11": {
"type_str": "table",
"num": null,
"html": null,
"content": "<table/>",
"text": "Probing examples of UMLS relation triplets. Queries and answer CUIs are listed. We only list one correct CUI for each query. For each model, one [MASK] token decoding result and an example of multi [MASK] decoding result are displayed. Bold text represents a term of the answer CUI."
}
}
}
} |